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1. INTRODUCTION 

The concept of regular synthesis has been introduced by Bolt’anski in his 
classical paper [I] (cf. also [2]) on the sufficiency of the Pontrjagin maximum 
principle for time-optimal control problems. It has been used as an assumption 
on a closed-loop control to generate open-loop optimal controls. Using the 
theory of subanalytic sets it has been proved in [3] that every normal linear 
system admits a regular time-optimal synthesis. Subsequently, in [S], Sussmann 
has been able to dispose of the normality condition and to extend the theorem to 
a certain class of nonlinear systems. 

All of the mentioned papers deal entirely with the time-optimal control 
problem for systems which are linear in the control, with polyhedral control 
domains. The present paper constitutes an extension towards optimal control 
problems with general performance criteria and general control domains. The 
abstract theorem proved in this paper is modelled after an important class of 
problems-linear-quadratic optimal control problems with linear control 
constraints. This problem will be dealt with in a forthcoming paper. 

An important requirement in Bolt’anski’s definition of regular synthesis 
which is followed in [3,4] as well as [8, 91 is that the optimal trajectories enter 
the switching surfaces (called cells) transversally. This requirement has to be 
dropped not only in the linear-quadratic optimal control problem but also in 
the linear time-optimal control problem with a control domain having a piece- 
wise smooth curvilinear boundary, as the following example demonstrates: 

Consider the system 

4 = x, + u, ) 

$ = u* (1) 

with the control domain U = {(r+ , ua) 1 -1 + aa* < u, < 1 - r+“} (Fig. 1) 
and the time-optimal control problem of steering this system to the target 
state 0. 
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FIGURE 1 

Given an initial state x, the maximum principle requires that the optimal 
controls u(t), t E [0, T] satisfy the condition 

h(t) m + #z(t) u&) = ~E$w> UI + 1C’&) 4 
for t E [0, T], where 4(t) is a non-zero solution of the adjoint system 

$1 = 0, $2 = -A, 

(2) 

(3) 

the solution of which has the form #r(t) = c, &,(t) = -ct + d with c # 0 
or d # 0. 

The condition (2) can be rewritten in the form 

u(t) = 24 if and only if #(t) E W(U), 

where W(U) is the cone of outward normals to U at u. 
The cones W((0, l)), W((0, -1)) have a non-empty interior while the normal 

cones at the points of the open arcs joining the points (0, 1) and (0, -1) reduce 
to halflines. Furthermore, obviously the points of the arcs are continuous func- 
tions of their normal vectors. As usual, we construct the synthesis by following 
backwards the trajectories of (1) through 0, satisfying (2), for various solutions 
of the adjoint equation. All the solutions of the adjoint equation with #JO) = 
c < 0, #a(O) = d > 0 such that (c, d) E int W((0, 1)) stay in W((0, I)) for 
t < 0 sufficiently small and then leave it for some finite 7 < 0. The corre- 
sponding control u(t) will be equal to (0, 1) for t E [T, 0] and for t < 7 it will 
move continuously along the left boundary arc of U away from (0, 1). Therefore, 
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FIGURE 2 

the corresponding trajectory will follow the trajectory of the equation 4 = X, , 
’ X2 = 1 (which is the halfparabola .1cr = $a2, x1 > 0) and at t = 7 leave it in 
a tangent way. In the synthesis terminology the parabola constitutes a cell which 
is joint by the optimal trajectories in a tangent way (Fig. 2). 

In this paper we extend the concept of regular synthesis to problems in which 
non-transversal meeting of switching surfaces by optimal trajectories cannot be 
excluded (Section 2) and we formulate (Section 3) and prove (Section 4) an 
existence theorem for such problems. The Appendix contains a transcription of 
Bolt’anski’s proof of the optimality of a regular synthesis to general problems 
under the extended concept of synthesis. 

2. REGULAR SYNTHESIS FOR GENERAL PERFORMANCE CRITERIA 

Consider the control system 

* = f(X, u), XER~, UE UCR”, 

f: Rn x R” -+ R” being Cl, and the cost function 

where f O: R* x R” -+ R is Cl. Given an initial point 5 and target point 4,. 
by an admissible control we understand a piecewise continuous function 
[0, T] + U such that the solution x(t) of the equation 

R = f (x, u(t)) (6) 
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(called the response of U) satisfying x(0) = s,, exists on [0, T]. If x(T) = P, 
we say that the control u(t) steers the system from x,, to 4 (in time T) 
An admissible control u: [0, T] 4 U will be called optimal if it minimizes J 
among all admissible controls steering the system from x0 to 2. 

It will be convenient at some places (as usual in optimal control theory) to 
include the performance variable x0 into the state variables of the system. That 
is, we add to the system equations (4) the equation 

3iu =fO(x, u), s?(O) = 0. 

Also, we denote f = col(x0, x), f = col(fO,f). 
A control u(t) and its response x(t) will be called extremal (with respect to 

a non-zero solution #(t) of the adjoint equation) 

(7) 

(the asterisk standing for transpose) if the triple X, u,. + satisfies Pontrjagin’s 
maximum condition 

where 

If for a given x there is a unique extremal control U, steering .v to 4 we denote 
by Y, the set of all non-zero solutions of (7) with respect to which ur is extremal 
and by YE(t) the set of their values at time t. 

Let us also note that by a piecewise continuous function we understand a 
function which is continuous except for a finite number of jump discontinuities. 
As the value of the function at a point of discontinuity we shall always take its 
right-hand limit. 

Given a C1 manifold M and two sets G C H C M, by a stratification of G in 
H we understand a locally finite (in H) partition B of G into Cr submanifolds 
of M (called strata) such that if P, Q E 8, P n Q # 0 and P # Q then P C B 
and dim P < dimQ. By the dimension of a stratification we understand the 
maximum of the dimensions of its strata. We shall call G a stratified set of 
dimension m if it admits a stratification of dimension m. 

Let G C Rn be an open domain such that 2 E G. By a regular synthesis in G 
of the control problem (5), (6) with target point 2 we shall understand a 6-tuple 
(9, % , -55 , fl, Z: -4, where 

v is a union of the one-point set (i} and a locally finite (in G) partition of 
G\{i} into C1 connected submanifolds of R” (called cells), 
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Y is a disjoint union of Yr (cells of type I) and Sp, (cells of type II), 
17: Yr+Y,ZzYs-+~randv:G -+ U (the closed loop control) are maps, 

such that the following properties are satisfied: 

A. The set G’ = (J (SE Y ] dim S < n}\(i) is a stratified subset of G 
of dimension <n (if Y is a family of sets, we use the notation u Y = 
U(SISEY} ={xlxESE9}). 

B. The function v is Cr on each cell. If S, E n and x E S, , thenf(x, V(X)) E 
T,S, (the tangent space to S, at X) and there exists a T(X) such that the trajectory 
5, of the equation 

in S, with &JO) = x satisfies &(t) E S, for t E [0 T(X)) and limt+r(z) &z(t) E 
n(S,). If S, E Y2 then v is continuous on S, U Z(S,) and for each x E S, there 
is a unique trajectory 6% of (9) such that &JO) = x and f,(t) E Z(S.J for t > 0 
small. The time +) for which 6, reaches U(S,) for x E S, and L&Z(Ss)) for 
x E S, is a Cl function on S, , S, respectively and the trajectory t%(t) and the 
control uz(t) generated by 

are Cl functions oft, x for x E S, (X E S, respectively) and t E [0, T(X)) and can be 
extended to Cl functions for t 3 r(x) close to r(x). 

C. The trajectory f,(t) of (9) which is uniquely defined by B until it 
stays in G, is extremal and reaches 2 in finite time T(x) passing only finitely 
many times from one cell to another. 

D. The value 

is a continuous function of x in G. 

The point where the definition of regular synthesis had to be substantially 
altered with respect to [3] is B. The fact that the transversal entering of n(S) 
by the trajectories of (9) cannot be required in general has been demonstrated 
by the example in Section 1. Consequently, it cannot be required that v can be 
extended to a C1 function in a neighbourhood of S since the trajectories of (9) 
could then never enter 17(S) tangentially (this would violate the uniqueness 
theorem for ordinary differential equations). Because of this lack of uniqueness 
the maps n, 2 are not automatically defined by P’ and v and we had to include 
them into the definition of the synthesis (note that we require only the uniqueness 
of the distinguished trajectory 5, satisfying the requirements of B for a given x). 
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Let us note that the transversality assumptions in Bolt’anski’s definition are 
needed to establish the Cl dependence of J(x, u,) and some estimates on a cell 
of dimension rz in the sufficiency proof. Nevertheless, as shown in the Appendix, 
the assumptions of B are still sufficient for carrying out the proof. 

The formulation of B is rather cumbersome and one may wonder how its 
Cl dependence requirements can be verified. However, there is a standard 
way to do this (via an auxiliary partition in the product space of the state space 
and the space of adjoint variables) which will become clear in the proof of the 
existence theorem. 

3. THE THEOREM 

We consider the optimal control problem (4) (5) with the target point 4. 

THEOREM. Let G C Rn be open and let f E G. Assume that 

1. The functions f, f O are analytic in N, u. 
2. There exists a covering of G x (R"+l\{O}) by closed in R" x (R"+l\(O}) 

sets NI ,..., N, with conical x-sections such that for every i = 1 ,..., Y there exists 
an analytic function w<(N, 1+5) in some neighbourhood of Nj satisfying Pontrjagin’s 
maximum condition 

fqx, Wi(X, $4, $q = T,‘E”v” fqx, u, #) jar (x, #) c Ni (11) 

(by saying that Ni has a conical x-section we understand that for any fixed x the 
set of points (x, +!I) E Ni completed by thepoint (x, 0) is a cone). 

3. For every N E G u {a} there is a unique extremal control u=(t), t E [0, T(x)] 
steering x to i and such that its response 5, with 5‘,(O) = Y satis$es &(t) E G for 
t E [0, T(x)). Further, for each x E G there exists a unique p(x) E {l,..., r} such 
that if # E Yj, , then (t,(t), #(t)) is a sohtion of the system 

2 = f (x, u), 

4 = - ($x, u,)* #, 
u = w,(x, yq, 

(12) 

with i = p(x) satisfying (t,(t), $(t)) E Ni for t > 0 from some neighbourhood of 0. 

4. The number of points (which we shall call switching points of u,) t such that 
p( E,(s)) # p( &.(t)) for s < t near t is untformly locally bounded in the following 
sense: for every compact KC G C {S} there exists a v = v(K) > 0 such that u, 
has not more than v switching points for x E K. 
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5. The value J(x, u,) of the performance index J, computed along the 
extremals, is a continuous function of x in G. 

6. For every compact KC G v {Z} there exists a y(K) > 0 such that 
T(x) < y(K) for x E K. 

7. There exists an 7 > 0 such that the solution (x(t), #(t)) of the system 
(12) with x(0) E G and (x(O), 4(O)) E Ni exists on the interval [-7, 0] and satisjies 
x(t) E G for t E r-7, 0] for any i = l,..., r. 

Then, the problem (4), (5) with the target point 2 admits a regular synthesis in G. 

This theorem differs from that of [S] in several ways. While in [8] it is assumed 
that the optimal control can be found among finite concatenations of controls 
generated by a collection of closed-loop controls u = vi(x) (which is natural 
for the class of problems linear in the control, which are studied there) we do 
not assume a priori that the extremal controls u, are optimal-their optimality 
follows from the regularity of the synthesis by Bolt’anski’s theorem. Further, 
in the class of problems we have in mind the solution of the maximum condition 
(11) as a rule depdns on the adjoint variable too. 

On the other hand we assume unique covering of G by the extremals which 
is a rather restrictive condition. Although formally we do not exclude singular 
extremals (we do not assume that wi(s, (cr) is the unique solution of (1 I)), they 
are often excluded by Assumption 3. 

Due to the linearity of H in ~4 we may without loss of generality assume that 
the functions ecj are constant along the rays of iVi , i.e., wi(x, c#) = wI(x, #) 
for c > 0. Finally, let us note that Assumption 7 can be slightly relaxed: it 
suffices to have an v > 0 satisfying the requirements of this assumption for 
each compact subset of G u {i}. 

The assumptions of the theorem (2, 3 in particular) are rather complicated. 
However, they are based on an abstraction of those features of the linear- 
quadratic optimal control problem with a polyhedral control domain which have 
been found to be essential for the existence of the regular synthesis. This 
abstraction has been slightly modified in order that the theorem could be applied 
to other problems, including some particular ones with singular extremals. 
We complete this section by two examples on which we shall illustrate the 
hypotheses of the theorem, the first example being the linear-quadratic problem. 

It is not claimed that the theorem contributes to the proof of the sufficiency 
of the Pontrjagin maximum principle in these particular problems-the suffi- 
ciency follows immediately from the existence of optimal controls and the unicity 
of extremals. Indeed, it cannot be expected that the theorem, in which the 
unicity of the extremals is assumed, would contribute significantly to the suffi- 
ciency problem. Rather, it justifies the idea about the structure of the optimal 
feedback (piecewise smoothness with regular switching surfaces) one gets from 
ihe simple examples in which the latter can he constructed explicitely. 



324 PAVOL BRUNOVSK?! 

Unlike in the formulation of the general optimal control problem, the time T 
is fixed in both the examples. However, the case T = rf fixed can be reduced 
to the case of T free by including the time into the state variables, the equation 
t = 1 into the system equation and the equality t(T) = p into the definition 
of the target point. Of course, this means that the synthesis will be constructed 
in R”+r, e, becoming time-dependent in general. 

EXAMPLE 1. Consider the problem (4), (5) withf(x, ZJ) = Ax + Bu, A, B, 
constant and f”@, u) = x*Qx + u*Ru, Q, R, symmetric constant, Q > 0, 
R > 0, f = 0, T = 0. We assume that U is a convex compact polytope, 
u = {u 1 (q , uj < df , i = I ,...) p} containing the origin in its interior and 
that the system (4) is controllable, i.e., rank(B, AB ,..., An-lB) = n. 

For G we take the interior of the domain of controllability to (0, 0), which 
is the set of those points (t, X) from which the system can be steered to (0,O). 
It follows from [IO] that G is non-empty, for each (t, X) E G there is a unique 
extremal joining (t, X) with (0,O) and this extremal lies entirely in G. Also, 
(b. < 0 holds for such an extremal. 

The expression which is to be minimized in the maximum condition (11) 
reduces to L(u, 3) = u*Ru + (#‘, Bu), where #’ = (#r ,..., I/~). Let I be a 
subset of the set (I,..., p} of cardinality <m. Then, PI = (u 1 (ci , u) = di , 
i~l}is the afhne hulloftheface W~={U/(ci,uj=di,iEI,(ci,uj< 
di , i $ I} of U (provided there are no redundant constraints). We define w, by 

qw(+), 4) = $+(u, 99 I 

Using the Lagrange multiplier rule it can be proved that the functions w, are 
afhne. We define 

ATI = R"+l x cl{+ I & < O,w,($) = w(4)} 

(the closure to be taken in R”+l\(O}) where w(#) is uniquely defined by 

The sets N1 and the functions wI are the sets and the functions the existence 
of which is asserted in Assumption 2. Under certain “normality” conditions it 
can be proved that Assumptions 3 and 4 hold (the normality condition consists 
in certain polynomial inequalities which are satisfied for almost all problems). 
The proofs (expecially that of the boundedness of the number of switchings) 
are rather complicated. They will be carried out in detail in a separate paper 
dealing with this problem. The remaining hypotheses either follow immediately 
from the formulation of the problem or can be obtained by simple arguments 
based on the standard theory. 
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EXAMPLE 2. Consider the optimal control problem 

Xl = x2 , 
ff, = u, - u2 - kx, , 

fO(X, 4 = VI , 

u = {u = (Ul , 4 I Ul E LO, PI, 112 E 4x4, 

k, (Y, 18 > 0 with target point ? = 0, 4 = 0 and G being the intersection of the 
set F = {(t, x1 , x2) 1 t < 0, X, < 0, xz > 0} with the set of points that can 
be steered to the target point along a trajectory lying entirely in F. This problem 
is a simplified model of the minimum energy control problem of a train on an 
ideally straight line where x1 stands for distance, .Q for velocity, u1 and r+ for 
the tracking and braking force respectively. The term --Kx, represents resistance 
and xZul (the integral of which is the work of the tracking force) is assumed to 
be proportional to the energy consumption (cf. [I I]). 

From the standard existence theory it follows that the optimal control exists 
for each (t, w) E G. The solution of the maximum condition (11) is unique except 
for & = 0 or & = -&xg . It is given by the formula 

u = (P, 0) if 9% > 44 
= (0, 0) if 0 < *z < -*fiZ 

= (0, 4 if #Z < 0. 

As shown in [ 1 I] no optimal control can contain a singular interval with I,!& = 0 
but for I,& =I -&,xs a singular control can occur, namely u = (kr, , 0). Also, 
it can be proved that for every (r, X) E G there is precisely one extremal control 
steering the system from (t, X) to (0,O) and that this control acquires the values 
(/A 01, (b I 01, (0, O), (0, (Y in this order (some of them possibly missing). ) 

Therefore, if we denote Ni = ((x, #) 1 z,$ > -~ooxZ}, iV2 = ((x, #) ( #e = 
-~oxz>, N3 = {(x, 4) IO < A < -$dcd, N4 = {(x, 4) I 4, < 01 (note that 
N, C Nl> Ns C W, W&G $1 = (A 01, w&i $1 = (kx, so), wdx, #) = (0, O), 
W&Z, #) = (0, (y.), then Assumptions 2, 3, 4 are satisfied. It is not difficult to 
verify that this is the case also for the remaining assumptions. 

4. THE PROOF 

As in the proof of similar theorems in [3, 81 some results of the theory of 
subanalytic sets [5,6] will be used. For the necessary material the reader is 
referred to [7-91. where it is summarized in a form which is most convenient for 
our purposes. 

The proof follows a similar pattern as the proof of the similar theorem in [3]. 
Following the extremal trajectories backwards we construct inductively the 
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cells of the partition 9’. In each induction step we show that they are CASA 
sets (i.e., connected analytic submanifolds of Rn which are subanalytic) satisfying 
the conditions B-D. After that we prove that they cover G locally finitely from 
which it immediately follows that Y has property A (a locally finnite union of 
subanalytic sets is subanalytic and thus a stratified set). However, in order to 
prove B we have to construct an auxiliary partition of the subanalytic set D(S) 
in RPnfl (to be defined below) associated with a cell S E 9 into CASA sets which 
are met transversaly by the entering and exiting trajectories of the system (12). 

The terms ancestor and descendant will be used for the cells as in [3, 41. 
That is, a cell S will be said to be an ancestor of S if the extremals starting in S 
pass S’ before reaching 4; S will be called a descendant of S’ if S’ is an ancestor 
of S. The cells constructed at the kth induction step will be called cells of order k, 
the unique cell of order 0 being (i}. By Yk = .Ykl u Yk2 we denote the set of 
cells of order <k and by G, we denote their union. Among the cells of Yk 
we distinguish a certain class of cells, called border cells, the set of which we 
denote by 9;. 

Let N E G. We denote E(x) = Yz(0), i.e., E(x) is the set of those $ E Rrrtl 
which are initial values for the non-zero solutions of the adjoint equation with 
respect to which 11, is extremal; further, we denote E(i) = Rnll\{O}, E”(x) = 
{I/J E E(x) 1 1 Z/J / = I}, 1 1 standing for the Euclidean norm. Under the assump- 
tions of the theorem the set E(x) has the following properties: 

El. E(X) u (O{ is a convex cone for any x E G. 

E2. If # E E(X) and (x(t), 4(t)) is a solution of (12) on [T, 01, T < 0 (or, 
[0, T], 7 > 0) such that .x(O) = X, 4(O) = 9, (x(t), #(t)) E Ni , x(t) E G u {i} 

for t E [T, 0] (or, t E [0, T], respectively) then y%(T) E E(x(T)). 

Assume now that Sp, = Ykl u Yk2 (and the restrictions of 17, .Z and v to -Yk) 
has been constructed in such a way that the following induction hypotheses 
are satisfied: 

Il. 9, is a finite partition of Gk into relatively compact CASA sets. 

12. For every SE Y,, the set D(S) = {(s, #) ( x E S, I/J E EO(x)} is sub- 
analytic. 

13. For every cell SE Y/C , P(N) is constant over S and the formula 

for *E E(x) (13) 

defines uniquely an analytic function v: S -+ U (we shall occasionally use the 
notation p(S) instead of p”(x) for x E S). 

14. Y; (together with the restrictions of l7, Z’, v on Gk) has the properties 
B-D on Gk . 

15. The set {t > 0 / t,(t) E G,} is closed for every x E G. 
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16. If &(t,) E Gkml for some t, E [0, 71, p(,Qt)) = i for some 1 < i < Y 

andallO,<t<t,,thenxEGk. 

17. If SE Yk\5“; , &(t) E S f or some x E G and t > 0, p( t=(s)) = p( &Jr)) 
for all s < t from some neighbourhood oft then f,(s) E Gk for s < t from some 
neighbourhood of t then &.(s) E Gk for s < t sufficiently near t. 

18. If x’ E P’“;\Y”;-, , x’ = &Z(t) for some x E G, t > 0 then x $ G, . 
19. If S is of order i < k, its descendants are of order >i, its immediate 

descendant being of order <i + 1; if S’ is a descendant of S of order i, then 
PW) = CL(S). 

Let S be a cell of order K and 1 < i < Y. We shall call (S, i) an admissible 
pair if either S is a border cell or i # p(S). The cells of order k + 1 will be 
obtained by the construction described below as descendants of the cells S 
of order K associated with i E (I,..., Y} for all admissible pairs (S, i). 

Let (S, ;) be an admissible pair. Denote by Fi the flow of the system of 
equations (12). Since wI(x, c#) = wi(x, I/) for c > 0 and E(x) u {0} is a cone 
for x E G, if (x(t), 9(t)) is a solution of (12) and G(O) E E(x), then the same is 
true for (x(t), c+(t)) for all c > 0. It follows that if we consider (12) as a differ- 
ential equation on G x (Rn+l\(O}) ( w ic we can-because we deal only with h h 
non-zero adjoint vectors) there exists an analytic flow api on G x S” (the 
n-sphere) which is the radial projection of Fi. By this we mean that if x: G x 

(R”+l\(O}) -+ G x F!P is the projection X(X, 4) = (x, 1 ~+5 1-l #), then Git 0 
x(x, #) = x 0 Fit@, 4) f or each t for which Fit is defined (cf. [3, Lemma 71). 

We denote by NF = x(N,), YXO = {I #(.)1-l+(.) j /J E YZ}. Because of the 
homogeneity of the condition (8) in 4 the trajectories of the system of equations 
(12) can be replaced in the formulation of the theorem by the trajectories of 
@’ in an obvious way, Ni , YZ replaced by NF, YZo respectively (cf. [3, 
Remark I]). 

Denote 

H’ = (@!,,(x, +) 1 (x, 4) E D(S) and Qis(3c, #) E Nio for -r) < s < 01, 

H” = (Pt(.t, #) / (x, #) E D(S), -7 < t < 0 and Qis(x, $) E Ario for t < s < O}. 

Since t ranges over a bounded interval in the expression for H’, it follows from 
the characterization of subanalytic sets in [9] that H’, H” as well as H = H’ U H 
are subanalytic. We define further K” = r,JH”), K = rZ(H’), K = K’ u 
K” = r,JH), where rZ is the natural projection on the x-space. Since S” is 
compact, rZ is proper on R” x S”, which implies that K’, K” and K are sub- 
analytic. Also, since S is relatively compact and t in the expression for H’ 
ranges over a bounded interval, K is relatively compact. 

The descendants of S associated with i will be obtained by a sequence of 
partitions of the sets K, K’ into CASA sets, the subsets of K’ becoming the 
border cells. 
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Let X be a vector field on a manifold M. A submanifold A of M will be called 
parallel (transversal) to X (or, to its its flow) if X(x) E T,J (X(x) $ Td respec- 
tively) for all x E A. A collection & of submanifolds of M will be called com- 
patible with X if each member of .JZJ’ is either parallel or transversal to X. 
A partition & of a manifold M will be said to be compatible with B C M, 
if, for every A E .Q’, either A C B or A n B = @ ; EZ’ will be said to be compa- 
tible with a family of subsets 3 of M if it is compatible with each B E g. 

Let A, B be subsets of analytic manifolds M, N respectively. By a CASA 
stratification of an analytic map f: A ---f B we understand a pair (.Y,3?), where 
B is a CASA stratification of A, W is a CASA stratification of B such that 
f(P) E 9 and rank f Ip = dim f (P) for each P E 8. 

Note that it is important to indicate the set B in the last definition as the set 
which is stratified by W. Further, note that it follows immediately from the defi- 
nition that if R ~9 and f-‘(R) # a, then there exists a PEW such that 
f(P) = R. We shall call (9,3?) a CASA quasistratification off: A -+ B if it 
satisfies all the conditions for a stratification but for the rank condition which 
is replaced by the following weaker condition: for each R E%? such that 
f-l(R) # o there exists a P E 9 such that f (P) = R and rankf lp = dim A. 

We shall need several lemmas for the proof of the theorem. 

LEMMA 1. Let -4 be a subanalytic subset of un analytic man;fold M and let 
@ be the flow of a vectorjeld X such that QPt(x) is defined for all x E A 
and t E [-7, 01. Then, there exists a CASA stratijcation of @I-,,.~J(A) such that 
the function u: @[-,&A) -+ R1 dejined by u(x) = inf,a,{t 1 at(x) E A} is analytic 
on each stratum of 3. 

Proof. By [9, Corollary 21 it suffices to prove that the graph of 0 is subanalytic. 
This follows from the fact that the point (x, t) belongs to the graph of a if and 
only if x E @t-,,,](d) A (Vs)(O < s < t 3 as(x) E M\A) A (Ve) [0 < E < 1 2 
(3~)(0 < 7 < E A Qtci(“) E 8. The subanalyticity of this set follows from 
the characterization of subanalytic sets given in [9]. 

LEMMA 2. Let, 121, N be analytic manifolds, A C M, B C N and let (9, ?) 
be a CrZSA stratification of the analytic map f: A -+ B. If 8, W are C,4SrZ 
stratifcatzons of A, B compatible with Y, .7 respectively such that f(P) E 9 for 
every P E B then (9,W) is a quasistratiJication off: A -+ B. 

Proof. Let R E W, f-l(R) # 0. Then, there exist T E .7, S E Y such that 
R C T = f(S). Denote dim S = s, dim T = t, dim R = r. Because of the 
rank condition, the set f -l(R) n S is a submanifold of S of dimension s - t + T. 
On the other hand, f -l(R) n S is a locally finite union of members of 8. Let P 
be the one of them with the highest dimension which has to be s - t + r. 
If rank f I,.. < r then rank f Is < rankfI,+dimS-dimP<v+s-s+ 
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t - T = t which contradicts the assumption that (9, Y) is a stratification of 
f:A+B. 

LEMMA 3. Let M, N be analytic manifblds, N compact, H C M x N sub- 
analytic and let X be an analytic vector field on M x N. Let %, 9 be locally $nite 
collections of subanalytic subsets of M x N, M respectively. Then, there exists 
a pair of &IS,4 stvat.$cations 8,&Z? of H, K = TV, (where n,,, is the natural 
projection of M x N on M) respectively such that 

1. 9rM(P) E W for every P E 9, 

2. 9, W are compatible with %?‘, 9 respectively, 

3. 9 is compatible with X. 

This lemma we obtain by induction from the following 

LEMMA 4. Let M, N, H, K, X, %‘, 9 be as in Lemma 3. Assume that H, K 
are CASA and dim K = k. Then, there exist CASA stratifications 9, W of H, K 
respectively, satisfying 1, 2 of Lemma 3 and 

3’. 9’ = (P E B 1 dim r,,,,(P) = k} is compatible with X. 

Proof. By [7, Theorem 81 there exists a CASA stratification d of H com- 
patible with X and $9. Further, there is a CASA stratification 9 of K compatible 
with 9 u {7r,,,(E) 1 E E b}. Denote W’ = {FE 9 1 dim F = k}, 9’ = 
(E n Z-~(F) 1 FE&@‘, E E &}. For FEW’, the set r:(F) n H is open in H, 
so En r;(F) is an open submanifold of E for E E b, and therefore remains 
compatible with X. Thus, 9’ is compatible with X. 

There exists a CASA stratification (Y’, 9%“‘) of V, : H\U 9’ -+ K\U W 
such that 9” is compatible with d and (B n (H\U 9’) ) P E 9’) and 99” is 
compatible with %. Since cl(H\U 9”) n U 9’ = ,D, cl(K\U9’) n (JW, = 0, 
the pair (P’, W), 9’ = 8” u P, W = w” U 9’ will satisfy the requirements 
of the lemma. 

Proof of Lemma 3. As the induction statement we employ the following one: 
There exist CASA stratifications (gk (9,) of H, K respectively satisfying 

conditions 1, 2 and 

3k . (P E 8, ( dim T,~(P) 3 k} is compatible with X. 

By [7, Theorem 41 there exists a CASA stratification (Y,5) of ?r, : H + K 
such that Y is compatible with V, and Y is compatible with 9. Since condition 
3k is trivially satisfied for k > dim K, we can take 9, = 9, 9Pk = 9 for k = 
dim K + 1. We prove that from the existence of (gk, 9,) the existence of 
(Pkml ,9&-r) follows by Lemma 4. 

By Lemma 4, for each B EWE such that dim B = k - 1, there exist CASA 
stratifications 8, , Ws of H n W;‘(B) and B respectively such that v,,,,(P) E 9, 
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for each P E 8, and 9; 3 {P E 9, ) dim ws(P) = k - l} is compatible with X. 
By [7, Theorem 4J there exists a CASA stratification (9, &?‘) of mz : u {P E gk j 
dim r%(P) < k - l} + u {R E W, ) dim R < k - 1) such that 8’ is compatible 
with 8, and all P for P E .Yde and 9’ is compatible with 8, and all i? for R E 9, , 
for all BE@, , dimB=k-1. Since J,nnA,= o and B,nB,= 0 
for B, , B, E 9fk , dimB, = k- 1, dimB, 3 k- 1, A,,A,E~~, 
dim m,,.&) = k - 1 and dim 7rM(./fa) > k - 1, if we denote 8,-r = {P E 8, ) 
dimx,(P)3k~uU{~,IB~~~,dimB=k-l}~B’,W,_,={REW~I 
dim R > k) u lJ (gB \ B E 9k , dim B == k - 1) u w’, then (gk-r ,9& will 
satisfy conditions I, 2 as well as 3k--1 . 

We will now return to the proof of the theorem. 
From Lemma I and [7, Theorem 41 it follows that there exists a CASA 

stratification 8, of H, compatible with the partition {H’, H”} and such that the 
function U: H -+ D(S) defined by u(x, #) = inf(t > 0, @t(x, #) E D(S)) is 
analytic on each stratum of 9, . Further, there exists a CASA stratification 
(92,9*) of “a! : H -+ K such that 8, is compatible with p1 . 

It follows directly from the definitions of H, K and from E2 that for every 
x E K we have {$ ( ($, X) E H) C J?‘(X) and that for (3, X) E H the control u(t) 
defined by 

where y = ~,(@$,,&, I$)), is an extremal control steering x to 2. From 
Assumption 3 it follows that u(t) = n=(t) for 0 < t < u(x, $) + T(y), 
~&@i&c, 4)) = &.(t) for 0 < t < U(X, $I), independently of (G such that 
(I/J, X) E H; also, it follows that p(x) = i, {$ 1 (x, #) E H} = E”(x) for x E K and 
that u is independent of I/ on H. This means that the formula 

Z’(X) = zui(X, $q = q&)(“, #) for (x, $) E H (15) 

defines uniquely a function V: K -+ U. 
If R E .%?a , there exists a P E ~9~ such that vz(P) = R. Since rank rr, Jp = 

rank R, for any point (x, 4) E P there exists an analytic submanifold Q of P 
containing (x, #) such that rz lo : Q-+nJQ) is an isomorphism and 7rJQ) contains 
a neighbourhood of x in R. We have V(X) = (rz lo)-’ wI(x, I/J) in some neighbour- 
hood of x in R from which it follows that er is analytic in this neighbourhood. 
Thus, ‘u is analytic on each stratum of 99, . 

By Lemma 3 there exists a pair of CASA stratifications (gs , 9’s) of H, K 
respectively such that pa is compatible with 9, and @, W, is compatible with 
W, and (consequently), v is analytic on each stratum of W, . By Lemma 2, 
(9s ,$!@a) is a CASA quasistratification of mz : H -+ K. 
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To obtain the descendents of S associated with i we have to split g3 further 
in such a way that each member of the resulting partition of K has uniquely 
defined ancestors. 

In order to do so we project the members of 9s on D(S) along the trajectories 
of @, i.e., we consider the sets p(P), P E 9, , where p(x) = Q&(X, $) (we have 
p(x) E D(S) because of 15 and t,(t) = ~~(@~(.r, #)) for 0 < t < U(X). From 
the expression 

P(P) = T&, @t(t, x, $1 I (x3 4) E p, 0 < t < 79 @t(x, !b) 

E D(S), Dis(x, Z&F D(S) for 0 < s < t}, 

where rr$,$ is the natural projection of the (t, X, #)-space on the (x, #)-space, 
it follows that the sets p(P) are subanalytic. Therefore, there exists a CASA 
stratification Y: of p(H) compatible with @ and the family of the sets {p(P) ) 
PEP& u (D A D(S) ) PE S>. Since no point of a parallel member of ?? can 
be the first point at which a trajectory of @ starting in H meets D(S), all the 
members of %? have to be transversal and this will remain true for each strati- 
fication of p(H) compatible with %. 

Denote p1 the projection of K on S along the trajectories 4, i.e. pi(x) = 
~-~(p(x, #)) = [,(u(.x)) for (x, #) E H. By [7, Theorem 41 there exists a CASA 
stratification (A, N) of r$ : p(H) + pi(K) such that ~2’ is compatible with Y?. 
We now denote 8, W the partitions of H, K respectively, the members of which 
are connected components of the sets P n p-l(M), PE.~~, MGJ& and 
R n p;‘(N), R ~3’~ , NE JV respectively. Obviously, 9 is compatible with @. 
Further, we have p(Pl) = p(PJ if p(PJ n p(P,) # a, PI , Pz E B and, similarly, 
p,(R,) = p,(R,) if p,(R,) n pl(Rz) # o, RI , R, ~92. Also, if P E 9, P E Pa n 
p-‘(M), then rz(P) is obviously contained in some connected component of 
~4pJ n ~34W). 

It is obvious that the members of 9,s are subanalytic. We prove that they 
are analytic submanifolds and that for each x E R ~9 there exist p E P E 9 
such that x = Z-J p) and rank rz IP ( p) = rank R (consequently, r,(P) covers 
a neighbourhood of s in R. 

First, take a P E 9, P E P3 n p-l(M), P3 E 9’a , M E ~2 with P3 transversal. 
Since JZ is compatible with Y: and (p(P) 1 P E 9’.J, ai is transversal also to M 
and we have MC p(P,). This means that for any p E P, p E M, p 1 P3 has a 
local right inverse at p that maps Q onto p and is analytic. Consequently, p lp 
is a local analytic isomorphism of P and M at p, which means that P has to be 
an analytic submanifold of Pa and, thus, also of RZn+r. 

If P3 is parallel, for a given p E P we take an analytic transversal submanifold 
T of P3 of codimension 1 in P3 through p. The same argument as for Pz trans 
versa1 proves that T n P (and, consequently, also P) is an analytic submanifold. 

Let now x E R ~9, R = R, n p;‘(N), Rx EL%&, NE JV. Since (9a, 9.J 
is a quasistratification of n;, : H -+ K, there exists a P3 E 9, such that rz IP3 = R, 

5f35l3wJ-2 
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and rank rz Jpg = rank R3. Therefore, there exists an analytic submanifold 
P’ of P, such that (na: Ip,)-l is a local isomorphism of R3 and P’ at x. Further- 
more, since the diagram 

* 
K p1 Plh 

commutes we see that ~JI = rz 0 p 0 (rz Ip,)-l is an analytic map of a neighbour- 
hood of x in R3 on a neighbourhood of pi(x) in p,(R,). On the other hand, since 
(.M, M) is a stratification of rr, : p(H) -+ p,(K), there exists a submanifold 
M’ of some ME .M, MC p8(P3) such that rrz IM* is a local isomorphism of M’ 
and pi(R) = iV at y(x). 

Assume first that P, is transversal. Since both Ps and p(P.J are transversal, 
p-?(M’) r\ P3 is isomorphic to M’ and from the commutativity of (16) it follows 
that rz 0 p-1 o (lr* lM,)-l is locally at v(x) analytic and equal to p-l. This means 
that p is a local isomorphism of R and N at x which proves that R is an analytic 
submanifold of R3 and, thus, also of R”. 

If P, is parallel then f(~, W(X)) is obviously parallel to R3 for x E R, . We 
consider an analytic submanifold R; of R3 of codimension 1 in R3 through x 
which is transversal tof(x, w(x)) for x E R; . As in the case of P3 transversal we 
can prove that R n Ri is a submanifold of R; from which it immediately follows 
that R is a submanifold of R, and, thus, also of R”. 

Keeping the meaning of X, R, Ps , R, let now PE 9 be such that 
dim(P n n;‘(x)) = dim P3 - dim R, . Such a member exists since 9 is locally 
finite and r;‘(x) n P3 is subanalytic. Then, there has to exist a p E P such that 
dim(T,P n T,(r;l(x) n P3)) = dim P3 - dim R, . By the dimension argument 
used in the proof of Lemma 2 we obtain rank rr, Ip ( p) = dim R. 

The partition W is the final partition of K, the members of which we take as 
the descendants of S associated with i. Those of the members which are subsets 
of K’ we take as border cells. We now show that by this construction the induc- 
tion hypotheses remain valid for k + I, with II, Z properly extended. 

In order to distinguish the induction hypotheses from the statements to be 
proved we shall label them according to the order in which they are considered 
(11, > &+1, etc.). Further, henceforth we shall denote k’, H, 8, Lit?, etc., the 
unions over all admissible pairs (S, i) of the sets K, H, 9, 99, etc., respectively 
which we have clnsidered for a particular admissible pair (S, i). By K(S, i), 
etc., we shall denote that part of them which consists of descendants of S E Y; 
associated with i. By p, pl we denote the maps H + (J {D(S) 1 S E Yk}, K * G, 
respectively, the restriction of which to H(S, i), K(S, i) we have formerly denoted 
by the same symbols. 

To establish I1,+1 we have to prove that two cells of =Yk+, cannot intersect. 
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Let S, , S, E Yk+l , x E S, n S, . If S, E & , S, E spk+r\gk then from Assump- 
tion 3 it follows r(Sr) = CL(&). Let S, E~@(S, i). Then, since x E S, , S, is a 
descendant of S of order R and by 19k, ~(4) = p(S) = p(Sr) = i. Since (S, i) 
is admissible, S is a border cell, which violates 18k . 

So, S, , S, E spk+l\Yk. Since the members of W(S, i) do not intersect for 
any admissible pair (S, i), if S, n S, # 0, either ,u(SJ # CL(&) or Sr , S, 
are descendants of different cells of Sp, . Both possibilities obviously contradict 
Assumption 3. This proves Ilk+1 . 

By E2 we have for each S E Yk+r\Yk 

D(S) = Hn 7$(S) 

from which 12k+l immediately follows. 
For the proof of Iak+r assume S E W(S’, i). Then, it follows directly from the 

construction that p(S) = i and D(S) C iVi . The analyticity of w on S follows 
from the compatibility of W with gr . 

Since D is trivially satisfied by Assumuption 5, in order to establish 14k+1 
we have to prove that for n, Z properly extended to Y;E+l , B, C are satisfied 
over y;C+i as well. 

First we consider property C. Since Y;, has property C and for each x E K(S, i), 
8, can pass from one cell of Y,,,,+l\Y;c to another only if 0:(x, (G) for (x, I/J) E H 
passes from one member of B(S, ;) to another, it suffices to prove that the latter 
can happen at most finitely many times. Since B(S, z) is finite, if this were not 
the case, there would exist a P E P(S, i) such that P n @iO,o(z))(~, 4) would 
have an infinite number of connected components. This, however, is impossible 
since P n @to.dz&, #) as an intersection of two subanalytic sets is subanalytic 
and therefore has finitely many connected components. 

To verify B we note first that by 13,+, , which we have already established, v 
is analytic on every cell. As the cells of type I we take those members of W which 
contain the projection of at least one parallel member of 8, the remaining cells 
to become cells of type II. It is obvious that for S, of type I every x E S, is covered 
by a rr,-projection of some parallel member of B and that f(x, V(X)) E TzSl 
for each x S, . 

Let S, E%‘(S, i). We d enote by n(S,) = n(S, , X) that member of Yk+r 
which is met first by f,(t) after leaving S, , for x E S, . For a fixed x this member 
is well defined because of C, which we have already verified. In order to prove 
that the definition of n(S,) is independent of the choice of x E S, it obviously 
suffices to prove that for any x E S, , n(S, , y) is independent of y from some 
neighbourhood of x in S, . 

To prove this we take a p E P 6 B such that x = rz( p) and rank rr, / P(p) = 
rank S, . Obviously, P has to be parallel. We denote by P’ the first member 
of B u M met by oti( p) for t > 0 the rz-projection of which lies outside S, . 
P’ is well defined since, as we have shown when verifying C, @t(p) can pass 
from one member of B to another at most finitely many times before reaching 
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D(S). We prove that the last member P” of 9, which @ti( p) meets before meeting 
P’, is parallel from which it immediately follows that P’ is transversal. 

Assume the contrary. From the transversality of P” it follows that there exists 
a t, > 0 such that @t,(p) E P” and @ri( p) E P’ for t > t, near t . Denote 
s’ = ~~(@f,( p)). There exist a Q E 9 parallel and a point q EQ such that 
rr,(q) = x’. Since Q is parallel, we have t,(t) = n,(@,i(q)) E S, for t > 0 
small. On the other hand, we have also &(t) = z-~(@+,( p)) 4 S, for t > 0, 
which is a contradiction. 

Now let 7s be such that @t.,(p) E P’, n,(Qti( p)) E S, for t < r0 . From the 
transversality of P’ it follows that there exists an analytic function T defined 
on some neighbourhood W of p in P such that 7(p) = r0 and Q&(q) E P’ 
for 4 E W. Since rank x, l,(p) = rank S, , nz( W) is a neighbourhood of s. 
For every q E: W we have f,,c,,(r(q)) E TTJP’). Since TV ~17(,$ , x), we have 
&,(T( y)) E l7(S, , x) for every y E nz( W), where T(Y) = ~(4) for q E W n m;l( y). 
This means n(S, ,y) = 17(S,, X) p rovided we prove that &,(t) does not meet 
any R E 3, R # S, for 0 < t < T(Y). We prove that there exists a neighbour- 
hood W, C T~( JV) of s in S, such that the latter is impossible for J E: IV, . 

Indeed, were this not the case, there would exist a Q E 9’ transversal, sequences 
p, - p, py E P, t, - t* E [0, T( p)] such that qy = @id py) E Q, q = @f*( p) E g\Q. 
Let Q C P, E 9s . From the construction of P from 9, and from p, , p E S, 
it follows q E p,\P, . Since 9s is a stratification of H, either q belongs to some 
member of 9s of dimension < dim P3 or it belongs to P3 n D(S) the dimension 
of which is also < dim P3 . Since &!(S, ;) is a stratification compatible with the 
sets p(P,) and Pa n S, P3 E Y3 , in both cases p(q) cannot belong to the same 
member of &’ as p(qJ, so pv cannot belong to the same member of d as p which 
contradicts py E P. 

Now,letS,beoftypeII,x~S,,x=?r,(p),p~P~~~,rank~,I,(p)= 
rank S, . Then, P is necessarily transversal, so ati( p) E P’ for t > 0 sufficiently 
small for some P’ parallel. Since P’ is parallel, nz(P’) n S, = B and, conse- 
quently, f%(t) E z-,(P’) cf S, for t > 0 small. We denote by Z(S,) = Z(S, , .x) 
that member of 92 which contains rrx(P’). Again, in order to prove thdt Z(S,) 
is well defined, it suffices to prove that for a given x E S, , Z(S, , y) does not 
depend on y for y from some neighbourhood of x in S, . However, were this 
not the case, it would be easy to conclude that there would exist a Q E B trans- 
versal such that p EQ\Q and the contradiction could be obtained in a manner 
similar to that in the case of 17. 

Next we show that the regularity requirements of B are satisfied. 
Take a cell S, E~?(S, i) of type I (the modifications for a cell of type II are 

obvious) and any x E S, . Since there exist p E P E 9 such that .v = ~~(9) 
and rank nX jp ( p) = rank S, , as we have mentioned above, there exists a neigh- 
bourhood W of x in S, and an analytic submanifold M of P such that rrTjE lM : 
M + W is an isomorphism. Thus, for y E W there exists a unique I& depending 
analytically on y such that ( y, 4,) E M. 
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We have 

for t E [0, u(y)] 
(17) 

Since @*i(y) can be extended beyond u(y), the required analytic dependence of 
f, and u, on y and t follows immediately from (17). The analyticity of T we have 
in fact proved when verifying that n is well defined. 

To verify 15k+l assume x 4 G,+l and denote t, = inf{t 1 E,(t) E G,+d. We 
have to prove &(t,,) E Gk+r . If t,(t) E G, for t > to close to t, this follows from 
ISk so we assume t,(t) E G,+,\G, for t > t, near f, . Then, there exists a cell 
S E Yk+,\Yk such that t,(f) E S and p( t,(t)) = p(S) for t > t, near t, . Since 
N U(sJ is closed, we have p( E,(Q) = /L(S) and from the construction of the cells 
of order k + 1 it follows immediately that &(t,,) E Gk+l . 

Because of 15, we may, without loss of generality, assume for the proof of 
16k+l that x’ = [,(t,) E S C G, but t,(t) $ G, for t < t, . From the assumption 
and from E2 it follows that Qti(x, $) E Ni , E,(t) = rr(@ti(x, I/)) for 0 < t < t, 
and @E,(x, #) E D(S), provided # E EO(x). Since t, < 1 this means &(t) E K(S, i) 
for t E [0, tr). Because of 17* either i # p(S) or S E 9; which means that (S, ;) 
is an admissible pair and therefore K(S, i) C G,:,, . 

For the proof of 17k+, assume that S E &+r\Y;+, , S E a(S’, z), (S’, i) 
admissible, S’ E Yk . Then, &(s) E K(S’, i), ~(&(s)) = i for t < s < t + u, 
[,(t + U) E S’. From E2 it follows that (x’, #‘) E D(S) for #E yj, where X’ = 
.f5(t + u), I)’ = / #(t + u)I-l #(t + u). Since p(s,(s)) = i for t - 6 < s < t + u 
for some 6 > 0 we have @~+o-,(~‘, $‘) = (t&s), ) #(s)\-’ 4(s)) E Ni for t - 6, < 
s < t + u and, consequently, f,(s) = ~z(@~+o--s(~‘, $‘)) E K(S’, i) C G,,, for 
t - 6, < s < t + u, where 6, = min{S, 7 - u). 

The properties 18k+1 , Igh.+r follow immediately from the construction of the 
set K and the unicity of extremals. This completes the proof of the induction 
step. 

By induction it follows that Y = (Ja>o Yk is a regular synthesis provided we 
prove that every CC G compact is covered by a finite number of cells of Y. 
This follows immediately from the following 

LEMMA 5. Let x E G. Then, x is contained in a cell of order < q-IT(x) + 8(x) 
where 19 is the number ofswitchings of the extremal control us . 

Proof. We prove this lemma by induction in the number v-‘T(x) + 6(x). 
If T(x) = 0, the statement is trivial. Assume that it holds for all x E G such that 
T-‘T(x) + &J(x) < k. Let x E G be such that q-IT(x) + 8(x) < k + 1. Let t, 
be the first switching point of u, , 7 = min(7, tl}. Denote x’ = t,(r). Then, 
+T(fz,(4) + S(f,(d) < 4 so &(7) E G, , By 16, x E G,,, , which proves the 
lemma. 
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Now, take a compact C C G. By Assumptions 4 and 6 we have T(x) < y(C), 
6(x) < V(C), so v-lT(x) + 6(x) < +r(C) + V(C) for any x E C. By Lemma 5, 
x belongs to a cell of order < q-+(C) + V(C) which means that C is covered 
by the cells of order <q-l,(C) + V(C) the number of which is finite. This 
completes the proof of the theorem. 

APPENDIX 

In this appendix we transcribe Bolt’anski’s proof of the optimality of the con- 
trols generated by a regular synthesis to the case of a general performance index 
and the modified definition of synthesis. 

We consider the system 

k = f(X, 24) 

x E R”, u E R* with the performance index 

the control domain UC R” and the target point 4. By J(xo , U) we denote the 
value of the performance index for the control u and the initial state x0 . We 
assume that f and f” are Cl. 

LEMMA Al. Let G C Rn be open, 4 E c, and let V: G u {i) + R1 be conti- 
nuous in G U (9, Cl in G and satisfy for every x E G, u E U the inequality 

f O(x, 4 + g (x) f (x, u) 2 0. (Al) 

Let u(t), t E [0, T] be a control steering the point x0 E G to 2 such that its response 
x(t) starting at x0 satisfies x(t) E G for each t E (0, T). Then, 

J(xo 9 4 a- V(xo) - VW (4 

Proof. We have 

Jbo 9 4 = L’f’(x(t), u(t)) dt 2 - L’ g (x(t))f (x(t), u(t)) dt 

=--- I oT $ (V(x(t))) dt = V(x,) - V(2). 

LEMMA A2. Let G C Rn be open and let MC G. Let V: G u (G} + R1 be 
continuous on G u {a>, C’ on G\M a.nd satisfy (1) for every u E U and x E G\M. 
Let u(t), t E [0, T] b e a control steering the system from x0 to k such that its response 
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x(t) has a finite number of intersections with M and satisfies x(t) E G fur t E [0, 2’). 
Then, (A2) holds. 

Proof. Let 0 < 81 < ... < a,-, < T be all the moments of intersection 
of x(t) with M, 6, = 0,6, = T. Then, we can apply Lemma 1 to the restrictions 
of u(t) to the intervals [JL+, , S,], i = l,..., s to obtain 

- v(x(8ii)) + vt/(x(8i-d) G (II f o(x(t)9 Nt)) dt, 

i = l,..., s. Adding these inequalities we obtain (A2). 

LEMMA A3. Let G, V be as in Lemma A2. Let u(t), t E [0, T] steer the system 
from x to 4, its response x(t) satisfying x(t) E G foY each t E [0, T). Assume that 
in any neighbourhood of x,, there exists an y,, E G such that the response of u(t) 
starting at y,, meets M atfiniteZy many points on [0, T]. Then, (A2) holds. 

Proof. Let E > 0. There exist neighbourhoods W, , W, of x0, 4 respectively 
such that j V(x) - V(x,)l < E, 1 V(X) - V@)j < E for x E W, , x E W, n G 
respectively and a 6 > 0 such that x(T - 6) E W, n G and 

J‘ r~afo(x(t). u(t)) dt > --E. WI 

There exists a neighbourhood Wi C W, of x,, such that the response y(t) of u(t) 
starting at an arbitrary ys E Wd satisfies y(T - 6) E WI n G, y(t) E G for 
t E [0, T - S] and 

- &-‘f “(r(t), u(t)) dt + L=-‘f O@(t), u(t)) dt > --E. (A4) 

By the assumption of the lemma there exists a y. E Wi such that y(t) meets 
Mat at most finitely many points. According to Lemma A2 we have 

- V”(y(T - 6)) + v(yo> < j-=-*fO(u(t), u(t)) dt. WI 
0 

Further, since y. E Wi , we have y(T - 6) E W, n G, so 

--v(Yo) + Wo) < E 

- V(Z) + V( y( T - 8)) < E. 

Adding (A3)-(A6) we obtain 

l-46) 

(A7) 

- v(%> + V(xo) - 2r < ST f “(x(t), u(t)) dt + 2~. 
0 

Since E > 0 may be taken arbitrarily small, we have (A2). 
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LEMMA A4 Let G C Rn be open and let M be a stratified subset of G of dimen- 
sion <n. Let u(t), t E [0, T] be a control such that its response x(t, x0, u) starting 
at x0 lies entirely in G. Then, in every neighbourhood of x,, , there exists a y0 such 
that x(t, y,, , u) has jinitely many intersections with M. 

This lemma is proved in [3] (cf. also Erratum to [3]). As a corollary of Lemmas 
A3, A4 we obtain 

THEOREM Al. Let G C Rn be open and let M be a closed stratified subset of G 
of dimension <n. Let BE G, V: G u (2) - R1 be continuous on G u (2) and Cl 
on G\M, V(g) = 0. For each x E G let there exist a control uz(t), t E [0, T(x)] 
steering the system from x to f such that x(t, x, uz) E G for t E [0, T(x)) and 
J(x, u,) = V(x). Then, in order that all ul: be optimal for the initial state x, it is 
necessary and su#icient that V satisfy (Al ) in G\M. 

Proof. The sufficiency follows immediately from Lemmas A3, A4. To prove 
necessity, assume that there exists a point x0 E G\M and u* E U such that 

f O(xo , u*) + g (x0) f (x0 ) u*) -=I 0. (-48) 

Since G\M is open, there exists an e > 0 such that x(t, x0 , u*) E G for t E [0, l ) 
(here by u* we understand the constant control with value u*) and that (A8) 
is satisfied with x0 replaced by x(t, x0 , u*), t E [0, E). We concatenate the constant 
control u* on [0, 6) with the control u,(,,,~,~.) and keep the notation u* for this 
control. Its response x(t, x0, u*) we denote by x*(t). Then we have from (A8) 
for t E [0, l ) 

fyx*(t), u*) < - g (x’(t)) f (x(t), u*> = - ; (x*(t)) 

from which we obtain 

- V(X*(E)) + V(x,) > s’fO(x*(s), u*(s)) ds. 
0 

If we denote by T = T(x*(e)), we have from (A9) 

s 
T+E 

I@0 9 u*) = o f O@*(t), u*) dt = Jc: f O(x*(t), u*) dt 

+ ST f O(x(t, x*(c), u,*(c)) dt < W,,) - V(x*(e)) 
0 

+ Q*(g) - VW = V(xo) = J(xo 9 u,), 

b49) 

which means that uzO is not optimal. 
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Now we use Theorem Al to prove 

THEOREM A2. Let (9, v) be a regular synthesis in an open domain G, 2 E c. 
Then, for every x E G the control uz(t), generated by the closed-loop control v 
via the equation 

u,(t) = v(&-(t)) W) 

is the optimal control for the initial state x. 

Proof. Denote 

V(x) = l=“‘f (5,(t), %(t)) dt = J(x, u,). 

By D, V is continuous in G. By Theorem Al and Assumption A it remains to 
prove that V is Cl in G\G’ and satisfies (Al) there. 

Obviously, v is Cl on G\G’ if it is Cl on each of the cells of dimension 71. 
By induction in the number of the passings of 4, from one cell to another we 
prove that this is true for all cells. First we note that it follows from Assumption B 
that given a cell SE Y there is a unique sequence of cell S, ,..., S, , 4 = q(S) 
such that every trajectory .$ for x E S passes precisely the cells S, ,..., S, 
(in this order) until it reaches E. The statement is satisfied trivially for 4 =.O, 
since the only cell with 4 = 0 is (21. Assume that Vis Cl on each cell with p ,< k. 
Then, the Cl dependence of V on x on each cell with 4 = k + 1 follows imme- 
diately from the expression 

(r defined as in Assumption B) by B and the induction assumption. 
Assume now that x E S, dim S = n and that S, ,..., S,. are the cells of type I 

passed by & in this order before reaching 4. Denote by T%(X) the times for which 
& enters Si, i = I,..., r. It follows from B that 7i are well defined and C1 on 
S and so are ~,JT~(x)). 

Since the controls U, satisfy Pontrjagin’s maximum principle, we have 

for each 4 E E(x) and u E U. The proof will be finished if we prove 

co1 -1, - ( 
aL -&- (4) E w 6412) 

since then (All) means (Al). 
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We prove that if $ E E(x) then &, # 0 and for every h E R” 

where # = (I/+, , $I ,..., $,), 4’ = (4, ,..., &,). We have then 

for every h E R*, which implies (aL’/ax(x))* = &‘$‘. Since by the maximum 
principle #a < 0, it follows from El 

A (4, - g ~~1) = coi(-i, -+;jb’) = -+q+ E E(~), 

which proves (A12). 
Denote TiE = T~(X + rh) for i = I,..., Y. For E > 0 sufficiently small x + Eh E S 

and ma(ri’, Ti”} < min($+l, $+r} for i = O,..., Y, where TV’ = 0, T:+~ = 
T(x + eh). For such l we define di = [m(Tif, TAO}, min{ri+, , T!+,}], i = O,..., y, 
d: = [min{Tt’, Tie}, max{Tif, Tie}], i = 0 ,..,, Y + 1. By induction we obtain from 
the C1 dependence assumptions in B that &.+&t), I,+,*, Ti, i = O,..., r + 1, 
are Cl functions of E, uniformly in t. Consequently, if we denote P I= &.+,l , 
Id’ = %+rh , Ts = T(x + chh), we have 1 3(t) - 5?(t)l = O(E), 1 US(L) - uO(t)l = 
O(E), 1 Tc - To 1 = O(E), 1 7ic - T: 1 = O(c), i = 0 ,..., Y + 1, uniformly in t. 

Let first Tc > To. Since X( Tc) = x0( To) = 2 we have 

= 90 [ Jb” fO(x’P>a W) dt - joTo f”@o(4, u”(t)) dt] 

= $0 [JOT f”W>~ u’(t)> dt - ~oTofo(fi(f)t WI) df] 

+ W( TO), x’( To)> - (4’, x + ch? - (($‘( To), i) 
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To -I K - 
0 

$4(t), q) - ($(t), -qp) + (T, qq - w)] dt 

+ s” <#(T0),&‘(4, u’(O)> cft + (4, Eh) TO 
= I =O [fqw, w, W)) - w%(~), qq, $wl dt 

0 

From the maximum principle it follows that 

f++(t), u’(t), W)) - Wdt), U”P)l W) G 0 for t E [0, TO], 

H(xO(TO), U’(P), #(TO)) = <~(~“),P(~(~o), uVo))> =G 0, 

from which we obtain 

gv, 4 = ww, u’(t), w>> - fqx0(9, w>, $w>) 

- g ww, 40, w))(w> - qt)) 

= ww), u’(t), W) - fwv), u”(t), W) 

<I@-O), j(q), u’(t))> = <~(~“)LfpvO)~ WON) 

+ ($qTo),f(:(x’(~“, U’(TO)) -f(XO(TOh U’(TO)D 

+ GP(T”),f(x’(t), u’(Q) - fbvO), u’(TO)D < Ok) 
614) 

provided E is so small that x’(TO) E S, . 
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From (A14) we have 

For t E Ai, i = O,..., r we have 

1 g (x0(t), mv SW) - g (x”(t), u”(t), W))l = O(E) 

and, consequently, from (A13) 

g(t, 4 d 44; G-W 

for t E Ai we have obviously 

dt, 4 < Ok) W7) 

From (A15)-(A17) we obtain 

F(c) G %go 44 + z; 1; Ok) + 44 = 44 

from which we obtain 

~o(v(x + eh) - V(x) d 4#‘, h) + ok). (Al@ 

Now, let Tc < To. Then, we obtain, as in the case To < TF, 

#o(Q + 4 - w9) 
TE = s [ wqt), qt)> W)) 

0 

and 

<W”% f&V), u’(t))> B Ok): 

so (A18) holds also in this case. 
Therefore we have 

$0 g w + 4,=0 f +I’, A: 
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for all h E R” and, consequently, 

for all h E R”. 
If #,, = 0, we have (#‘, h) = 0 for all h E Rn, so # = 0 which violates 

4 E E(x). Therefore, z,& # 0, which completes the proof. 
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