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1. Introduction 

In [1] a method of computation of all solutions of a system of polynomial 
equations is proposed. The method of [-1] belongs to the class of homotopy 
methods: it solves the problem by imbedding it into a family of problems de- 
pending on a parameter t which for some value t o of the parameter can be 
solved simply. A curve representing the solution as a function of the parameter 
emanates from the solution for t o and eventually leads to the solution of the 
original problem. Of course there are various reasons for which this procedure 
may fail. However, in [1] the authors prove that if the homotopy is chosen 
properly then all isolated zeros of the system of polynomials are obtained in 
this way - in some sense with probability one. 

Let us now recall briefly the results of [1]: The polynomial map P: ff~"-~ff~" 
(~ being the complex plane) defining the system of equations 

P(z)=O (I) 

to be solved is imbedded into a family of maps H: q~"x [0; i] x ~"x ~.2_~. 
defined by 

Hk(Z, t, a, b) = t Pk(Z) +(1 -- t) Qk(Zk, bk) + t (1  -- t) Rk(Z , a), (2) 

where Hk, Pk, Zk, Qk, Rk, bk stand for the k-th component of H, P, z, Q, R, b, 
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respectively, and 
Qk(Zk, bk) = Z~k ', -- bk, 

dk Rk(z, a) = L, a j k Z j  ' 
j=l  

where d R stands for the degree of PR and ajk for the (j,k)-th component  of a, 
respectively. It is proved in [1] that for almost all choices of b, a (either in the 
topological or measure-theoretical sense) there is a family of smooth disjoint 

curves emanating from the D =  ~Idk  zeros of the polynomial H( . ,O ,a ,b )  
k = l  

= Q ( z , b )  which exist for te l0 ,  1) and each isolated zero of P is the limit point 
of a curve of this family for t approaching 1. 

In this paper we modify the homotopy method of [1] in two ways. Using 
the method of [1] one cannot exclude the possibility that some of the curves 
escape to infinity for t approaching 1. From the computational point of view it 
is difficult to distinguish an escaping path from a one ending in a distant root 
of the original system. This is the main reason why we have to follow such a 
path "far enough". However, following such a path far enough could be nu- 
merically difficult. The first modification of the homotopy method allows to 
keep the path in a ball centred at the origin with a radius prescribed in ad- 
vance. This is achieved by working in ~n+1 instead of C n. The degree argu- 
ment of [.1] is used to prove that each isolated zero of the extended zero set in 
the complex projective n-space IP n contains a limit point of at least one path 
generated by the method, i.e. as in [1] we "find" each isolated zero by our 
homotopy  (the extended zero set is the set of zeros of P completed by its 
improper zeros). 

In addition we prove that the method works for all b (with b k =1=0 for all k 
= 1 . . . .  , n) and almost all (a, r) (a, b, r-auxiliary parameters of our homotopy) in 
a stronger than in [.1] sense: for a fixed b the set of "bad"  (a,r) appears to be a 
stratified set of codimension greater or equal to 1. For this we employ some 
results of the theory of semialgebraic sets. The terminology and results needed 
for the understanding of the proofs are summarized in the Appendix. 

Since [1] does not include any numerical examples we cannot make de- 
finite statements as to which of the methods is less time consuming or more 
reliable. Still we believe that the extra computations due to our modification 
are by far outweighted by the fact that all the paths are uniformly bounded on 
[0; 1] by a bound we can prescribe in advance. The numerical experiments we 
have carried out by a program realizing our method (Sect. 4) indicate that it is 
reliable and fairly effective for small problems. The total computing time de- 
pends strongly on the size of the system and on the degree of the polynomials 
in the system being solved. 

It can be easily shown (even in the 1-dimensional case) that the method of 
[1] does not work if one restricts the choice of the parameters a, b to the reals. 
Still it would be much more convenient if for P real one could design a meth- 
od in which Q and R would be also real. For, in this case, one could decrease 
computational  complexity by using real arithmetic in case one follows a real 



Solving Systems of Polynomial Equations by Bounded and Real Homotopy 399 

path and following only one half of the imaginary paths (since they occur in 
conjugate pairs). In Sect. 3, which deals with the second modification, we show 
that at least theoretically this is possible if one allows the paths to intersect for 
some t~(0;1]. Again we believe that in most cases there are not too many 
intersections of paths and hence not too many computations are needed to go 
through them. So far the implementation of an algorithm based on these ideas 
has not been finished and hence no numerical results can be presented. 

2. Bounded Homotopy 

First we introduce some useful notations. For the k-th component  of the given 
polynomial mapping P: ~ " ~ "  the notation 

ra k 

e (x) = E P,k xc'k 
i = 1  

�9 " - ,  C 1 n will be used, where pik~ff~ ( k = l  . . . .  , n, i=1 ,  mR>l  ) and clk= (ik, . . . ,Clk) is a 
multiindex with all C{k being nonnegative integers. The symbol x "k, where 
xEC", stands for the term 

1 2 n 
x C i k  �9 x C i k  Ctk 

1 2 " ' "  X n  " 

We denote the degree of the polynomial function Pk by d k. It is obvious that d k 
= max I%1, where Ic,,l=c~k +... +c,",,. We suppose here d k > l  for each k 

l < i < m  = = k 

= 1 . . . . .  n. The n-vector d = ( d l , . . . , d , )  will be referred to as the degree of the 
mapping P. We introduce further two quantities which are connected with the 
degree of the mapping P, namely 

" i D = I ~ d k  and ~ =  d k. 
k = l  k = l  

Let us now recall that a scalar polynomial Pk: C " ~ n  is said to be homo- 
geneous if dk=lClkl for each i = 1  .. . .  ,mk. A polynomial mapping will be called 
homogeneous if each of its components is a homogeneous polynomial (we do 
not require that its components are of the same degree). 

Given P: C " ~ r  polynomial, we associate with it two homogeneous poly- 
+ 

nomials P: r  and P: r  which we shall call the (+) -  and ( - ) -  
homogenization of P, respectively, as follows: 

d- m k  

Xo)= Z 
i = l  

IcM = dk 
+ 

It is clear that if P itself is homogenous, P does not depend on x 0 and we have 
+ 

P = P =fi ,  
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+ 

where P is understood as a mapping tE"~112" obtained in a natural way. Let us 
now list some useful obvious facts which relate the homogenizations intro- 
duced above to a polynomial mapping F: 

(HI)  For  any homogeneous polynomial mapping F: II?m~C" the set F - l (0 )  
contains together with each element z also all its complex multiples (i.e. 
z e F -  1 (0) implies Line z ~ F - 1 (0), where Line z = {2 z l 2 e C }). 

+ 

(H2) x e F - l ( 0 )  implies (x, 1)eF-l(0).  
+ 

(H3) If (X, Xo)eF-l(O) and x04=0 then (1/Xo).xeF-l(O). 

(H4) (x,0)eF-~(0) implies x~F-~(0). 

Remark I. With every subset N of ~E "+ t having the homogenity property (H 1) 
(i.e. x e N  implies 2 x e N  for each 2eC) we can associate a subset PN of the 
complex projective n-space IP" by 

xePN if and only if p-a(x)~N,  

where p is the natural projection of r  onto IP" associating with each 
(x o . . . . .  x,)4=0 the equivalence class x it defines under the equivalence 
(x o ... .  ,x,),~(y o . . . . .  y,) if y~=2x i for i=0 , . . . ,n ,04=2eC.  For F polynomial, the 

+ 

set P(F-~(0)) is considered as the extended zero set of F. The (proper) zeros of 

+ + 

F appear as points x of P(F-~(0)) with Xo4=0, if XEP(F-I(0)) and Xo=0, x is 

considered to be an improper zero of F. 

Definition (of the bounded homotopy mapping). For a given polynomial map- 
ping P: C"~IU" with degree of its k-th component equal to d k we define an 
associate mapping 

H: ~" x �9 x [0; 1] x ~"("+l)  x C" x R +  ~ r  x ~  

(IR is the set of all real numbers, R + = { Z e ~ 1 2 > 0 } ,  lR0={2eF,.124=0 } and, 
analogically, ~ o =  {2eC124=0}) as follows: For k=  1 . . . . .  n we define 

+ 

Hk(Cc, t,a,b,r)=tPk(cC ) + ( 1 - t ) Q k ( x , b  ) +t(1-- t)Rk(~,a) ,  

where 

(3) 

(4) 

(5) 

Qk(~,b)--Ydk h ~dk (bk:#0), 
- -  ~ k  - -  V k  ~ 0  

Rk ( SC, a) ~ x d~ "~- a i k  i 
i = 0  

~=(xT,  Xo)reC "+1, re[0;  1], a e C  "t"+l), b e ~  ". The last component H.+I  of H 
is real-valued and defined by 

H.+ l (~ , t , a ,b , r )=N(x , r )=  ~ x i~ i - (1  +r) 2 (6) 
i = 0  

with r e R  + and xi being the complex conjugate to xl. 



Solving Systems of Polynomial Equations by Bounded and Real Homotopy 401 

We shall refer to H as to the bounded homotopy mapping and to the 
parameters t, (a, b, r) as to the homotopy and auxiliary paramaters, respectively. 
Further we shall call the condition H,+ 1 =0  the norm condition. The column 
vector of the complex components H1 . . . . .  H,  of H we denote by /-), so H 
=(ITtT, N)T, where T stands for the transposition. 

The restriction of a mapping obtained by fixing some variable ~ will be 
denoted by the corresponding subscript, e.g. H(~, .)=Hr Further, D f  will 
denote the differential of a function or a mapping f and Dxf, Dtf  etc. will 
denote the partial differential of f with respect to x, t etc., respectively. Some- 
times complex mappings with complex values and complex variables will be 
regarded as real mappings of real variables (each complex variable z = x  + i y  
will be replaced by (x,y) T, each complex component F k will be replaced by 
(ReFk(X,y),ImFk(X,y))T). In this case complex mappings will be denoted by 
capital letters and the corresponding real mappings by the corresponding lower 
case letters. Correspondingly, to distinguish complex and real kernel, dimen- 
sion and rank we shall use the notations Ker, Dim, Rank, ker, dim, rank for 
complex kernel, complex dimension, complex rank, real kernel, real dimension 
and real rank, respectively. Further we shall use the same notations for a complex 
vector (v 1 . . . . .  Vm) and the corresponding real vector (ReVl , Imv 1 . . . . .  Rev.,, 
Imv,,). It will be allways clear from the context in which sense the vector 
should be understood. 

Remark 2. Unlike /4t,,,b,r the norm component N, is not a polynomial function 
in the complex variables x o,x 1 . . . . .  x,. 

Lemma 1. Let M be an r x s complex matrix. Then the associated real 2r x 2s 
matrix m which represents the mapping N2r ~ N 2 s  generated by M satisfies 

dim ker m = 2 Dim Ker M (7) 

and, if r = s, also 

det m= [det M] 2 ~0. (8) 

Proof The equality (8) is proven in [1, Lemma3.1]. From (8) it follows easily 
that rank m = 2 Rank M. Q.E.D. 

It may be useful to recall here the relation between m and M from [1]. If 
the (k,j)-th entry of M is the complex number Wkj= Ukj "[-i Vkj then m can be 
written in a block form as an r by s array of two by two blocks, where the 
(k,j)-th block of m is the real matrix 

blkj -- Vkj). 
Vkj Ukjl 

Proposit ionl.  Let b e l l  2n be a fixed vector and let Uc]REn(2n+2)• +, 
Vc~.2n+2\{0} be open semialgebraic sets. The set S o U  of those (a,r), for 
which the matrices 

D [ia, b,,(x,t ) and D ha, b,,(x,t ) 
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are of fuU rank for all (x,t) from M=h2,~,,(O)c~{(x,t)lte(O; 1), xeV}  contains 
an open dense subset of U. 

Remark 3. The formulation of the Proposition 1 may look strange for it follows 
trivially from the case V=R2"+2\{0} ,  U=F,2"(2"+2)xF, +. This formulation 
we have chosen in order to make further reference easier. Following carefully 
the proof  of Proposition 1 it can be easily seen that all that is needed to be 
known about H there is that D,r(x,a) has full rank on V x U. 

Remark 4. Note that S = S(b) may depend on b. Also note that the set of (a, b, r) 
for which the rank property of Proposition 1 holds true contains an open dense 
subset of F. 2"(2"+ 3)+ 1 

Proof. Denote M={(x,t,a,r)[hb(x,t,a,r)=O, t~(0; 1), x~V, (a,r)~U, 
rank D h.,b,.(x, t) < 2 n}. The condition rank D h.,b,,(~, t)_<_ 2 n can be equiva- 
lently expressed by "all  subdeterminants of D ho, b,r(x,t ) of order 2 n + l  are 
zero". This, as well as the condition hb(~,t,a,r)=O, is an algebraic equality so 
{(x, t, a, r)[hb(x, t, a, r) = 0, rank D hb(x , t, a, r)_<_ 2 n} is a semialgebraic set. Since 
V,(0; 1), U are semialgebraic, so is V x (0; 1)x U and we have M a semialge- 
braic set. Denote by n the natural projection (x,t,a,r)~--~(a,r) and by C the set 

C={(x,t ,a,r),O<t<l,L~_oXi~i-(l  +r) 2 <~, x~V,(a,r)~U} 

for some e>0.  Obviously C is open and nlc~c is proper, where cl denotes the 
closure. By A3 there is a one-one stratification (sr of n[ c such that d is 
compatible with the family {M, C\M}. This implies that d M = { A e d t A c ~ M  
4:0} and NM={Be~IBcan(M)4=O } are locally finite partitions into differen- 
tiable submanifolds of M, n(M), respectively and for each AesCu, n(A)eMu, nlA 
is differentiable, rank nla=dimn(A) and nla is one-one as soon as dimrt(A) 
= d i m A .  We have S =  U\n(M) and we prove that 

c o d i m B > 0  for all Beg~ u.  

Suppose the contrary. Then some B e ~  u would be open in U. Let A e M  be 
such that rc(A)=B. 

Since rank n l a = r a n k  B for each (x*, t*,a*, r*)eA from the implicit function 
theorem we easily obtain that there exists a submanifold U* of A of real dimen- 
sion 2 n(2 n + 2 ) +  1 such that V*=n(U*)  is a neighbourhood of (a*,r*) and 
rclv. is a diffeomorphism. This means that there are smooth maps x=~(a , r ) ,  t 
=z(a , r )  on V* such that x*=~(a*,r*), t*=z(a*,r*) and (~(a,r),z(a,r),a,r)eA 
for all (a, r)eV*. Thus we have 

hb(~(a, r), z(a, r), a, r) = 0 (9) 
and 

rank D h b( ~ (a, r), z (a, r), a, r) < 2 n + 1 (10) 

for (a,r)eV*. Differentiating (9) with respect to a and r we obtain 

D h b " D a ~ + D  r h b �9 D a z +D o h b = 0 (11) 
D h b.D~+D th b.D,z+D~h b=O 
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(in (11) and in the rest of the proof we skip the arguments (a,r) and understand 
(a,r)eV*). Since DtN=O, (11) can be written as 

Dx~b. Da~ -FDthb. Da z= -Dahb, (12) 

D N.D,~=O, (13) 

D ~b. Dr~ +Dthb.Drz=O , (14) 

D N.D,~= -2 (1  +r). (15) 

Since rankDt[i~.D,z<l, rankDa[ib=2n on V • 2 1 5  and, by Lemmal ,  
rankD ~b<2n implies rankD ~b<2n--2, (12) can be satisfied only if 
rank D/~b = 2 n. Thus D t/~b is a linear combination of the columns of D/~b and 
we have from (12-15) 

0 
2n+l=rankD""hb=rank (D; ~b - 2 ( r  +1)) 

=rank  ( o ~ b ' o " ~  +Dthb'oaz D~b'Or~ +Dt~b'OrZ) 
D N.D,~  D N.D,~ 

= rank [ ( D :  ~bN D;[lb) "(Da~\D a z D'~]ID, z ] J 

<rank  h i= rank  = r a n k D  h b 
- \DeN ! 

which contradicts (10). Q.E.D. 

Remark 5. For the bounded homotopy we will always assume the choice of the 
sets U and V from Proposition 1 as follows: U is the unit ball in IR 2n(2"+2) and 
l /=R2n+2\{0}.  Then the conclusion of the Proposition l holds with M 
= h2,~.,(0). 

Corollary l .L For each ber (a,r)eS the set fi2,~,,(O ) is a 3-dimensional sub- 
manifold of N 2"+a, h2,~,r(0 ) is a 2-dimensional submanifold of N2,+3, both mani- 
folds intersecting each plane t = const < 1 transversally; htS ~ b,,(O) is a 1-dimen- 
sional submanifold of 1t 2"+2 for t< 1. 

A connected component of h~,~,,(0) is obviously closed. Since 
h2,~,,(O)r~{(x,t)lte[O;1]} is bounded, the set of those t * e [ 0 ; l ]  for which a 
given component of h2,~,,(0 ) intersects the plane t=t* is closed as well. By 
Corollary 1.1 for (a,r)sS this set is open in [0; 1) as well. Thus we have 

Corollary 1.2. Let beC~o, (a,r)sS. Then, any connected component K of h~l,(O) 
has a non-empty intersection with each plane t=cons t~[0 ;  1]. 

This corollary means that for almost all (a, r) each connected component of 
ht]2b,,(O ) for rE(0; 1) can be continued both sides (for t increasing and de- 
creasing) within the set h~,~,,(0) until the limits of the interval [0; 1]. 

-1 Proposition 2. Let b* e~,~o, (a*, r*)eS, t ' s (0 ;  1) be fixed. Then the set ht.,,, b. ,.(0) 
consists of exactly D disjoint circles all centred at 0 with radius (1 +r*). 
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Proof. For each te(0;1) fixed, /4t,~,b,, is a homogeneous polynomial mapping 
C.+ 1 __,r which by virtue of Propositition 1 and Remark 3 has the matrix 
D trIt,.,b,, of full rank on (E"+~\{0}. This implies that /4t.~b,.(0) consists of 
isolated complex lines of roots Line z, where ze/4t7~b,,(0 ). 

From B6zout's theorem for homogeneous systems of polynomial equations 
in a complete algebraic field it follows that there are exactly D 1-dimensional 
complex subspaces of roots for such a system (including multiplicity) having 
only the zero-vector in common. It is easy to see that restricting the roots of 

I~It, a,.b,.r.(~27) ~-0 
by the norm equation to 

- 1  - 1  - 1  h,.,~.,b.,,.(O)=[it.,~.,b.,~.(O)c~N,. (0) 

one obtains exactly D (including multiplicity) circles of radius (1 +r*) centred 
at 0. Each two of these circles are either identical or disjoint. For  b ~ ,  
ho, l~.b.,.(O) consists of exactly D disjoint circles and D h..b.,,.(sc, t ) has full 
rank on h~;,k,,**(0)c~ {(~,t)[t~[0; 1)}. We can continue these circles according 
to Corollary l.2; by Corollary l.1 no two circles can merge for any 
t~[0; 1). Q.E.D. 

Proposition3. Let (a,b,r)c~ ~(~+1) x ~  x ~  +, 0 ~ Z O < Z l ~ l  and let K be a con- 
nected component of h~,~,,(0)c~ {(x, t)[te[Zo; zl) } such that for all t*e[Zo; zl) one 
has Kc~{(w,t)l t=t*}~(~. Assume that K is a manifold of dimension 2. Then 
c l K \ K = K  o x {zl} , where K o is a circle of radius (1 +r) centred at O. 

Remark 6. Due to Corollary 1.2, in the context of bounded homotopy, Proposi- 
tion 3 will be used merely for z~ = 1. Its more general form will be needed in 
Sect. 3. 

Proof. The set h~,~,,(0) and, consequently, also K and cl K are algebraic sets. By 
A3, cl K has a finite stratification ~r compatible with the family {K, cl K \ K } .  
Since K has dimension 2, so has ~1. Since each Ae~r such that A ~ c l K \ K  
satisfies A ~ c l B  for some Be~',  B c K ,  we have by Corollary 1.1 

dim A <d im  B =<2. (16) 

Obviously K 0 is compact. We prove now that it is connected. 
Assume that it is not. Then K o = K  1 u K  2, where K 1, K 2 are compact and 

there is an t/> 0 such that their distance is not less than t/. Denote by G the set 
of those x for which ][xl[2=(1 +r) (1[" 112 being the standard Euclidean norm in 
real or complex vector space) and the distance of which to both K 1 and K 2 is 
not less than 1/3 t/. The set G is non-empty and compact. Let acl~K 1, x2~K 2. 

Then there are sequences of points {(~r * co t/)}k= 1 from K such that 

(~. t~.~-----~ (x, ,~,)  

for i=1 ,2 .  There is a path in Kc~{(a:,t)lt between k k k k q ,  t2} connecting QCl,q) 
with Qr @. Since for large k we have [1~r <--1/3 t/, this path has to con- 

k k and ~k~G. Passing to a sub- tain a point (xk, tk) such that t k is between t 1, t 2 
sequence we have X k ~ : ,  t k~Z  1 for some ~eG, so Gc~Ko~eO which is im- 
possible. 
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Because of (H2) htS~b,,(0 ) contains with each x also the entire circle 
{ X [  II ~I[ 2 = l--~-r} c~Line x. Hence K o contains at least one entire circle with 
radius (1 + r )  centred at 0. Since K 0 is connected and, due to (16), 1-dimen- 
sional, it consists of exactly one such circle. Q.E.D. 

+ 
Remark 7. By continuity,  the limit circle K o for r 1 = 1 consists of roots of  P(x) 
which by (H2), (H3) correspond to a unique root  of P (proper,  if Xo4:0, and 
improper ,  if X o = 0  ). Proposi t ion  3 improves  the correspondent  result of  [1] in 
that  it asserts that  K o is uniquely defined even if the root  is not  isolated. 

Summariz ing  Proposi t ions  1-3 we have 

Theorem 1. Given b~ffJ~, there exists an open dense subset S of  ]R 2n(2n+2) x]R + 
such that for all (a,r)6S and each ~r 1(0) there exists a uniquely defined con- 
nected component K(~r of  h~.~,,(O)c~{(x,t)[t~[O;1)} which has the following 
properties: 

1. KQc)c~{(x,t)]tc(O;1)} is a (real) analytic submanifold of  ~.2n+z•  
with (real) dimension two. 

2. K(~r intersects each plane t = c o n s t ~ [ 0 ;  1) transversally in a circle of ra- 
dius (1 +r)  centred at 0 which lies in Line x for some x O E  "+ x 

3. The sets Ko, K 1 defined by K o • {0} = KQr r~ {(x, t) lt = 0} and K l x { 1} 
= cl K(~)  n {(x, t) lt = 1} are circles such that K o ~ Line ~, and K 1 c Line x for 

+ 

some x ~ P -  1(0). 
4. The manifolds K(~r do not intersect in {(x,t)]t  < 1} for different y s .  

Essentially, a pa th  following a lgor i thm consists in numerical  integrat ion of 
an ordinary  differential equat ion the t rajectory of which is a curve joining a 
root  of the auxiliary equat ion Q(x)=O with a root  of the equat ion to be solved 
P ( x ) = 0 .  

T h e o r e m  1 asserts the existence of a tube with constant  d iameter  joining the 
circle K o of the norm restricted roots  of the ( + ) -homogenisa t ion  of Q with a 

+ 
similar circle for P. To  separate  a pa th  f rom this "cyl inder"  that  could be 
numerical ly  followed we have to define a vector  field on KQr the integral 
curves of which would lead f rom K o to K 1. Of  course, there are var ious ways 
to define such a vector  field. A natural  way to do so is to define a vector  field 
v: K(~r TKQc)(TKQr being the tangent  bundle to KQr which has the prop-  
erty that  for each (x,  t)~KQr v(x ,  t) has the maximal  t - componen t  a m o n g  all 
vectors of  Tt~,,)KQr ) with the same length. This is obviously the vector  or thog-  
onal to the tangent  vector  to the circle K ( y ) c ~ { C " + l x  {t}} which is (gx,0).  
Thus,  v can be defined by setting its t - componen t  equal to 1 and choosing its 
x - c o m p o n e n t  w to satisfy the condit ions 

(w(x, t) ,  1) ~ T(~., ,)K(y)=kerDh.,b,~(x,t) ,  (17) 

(w(x,  t), 1) _1_ (i x, 0). (18) 

Now (17), (18) mean  

D ha, b,r(x, t)" W(x, t) +D, ha, b,r(ac , t) = 0 ,  

((, x,0), (w(x, t), 1))=0, 
(19) 
(20) 
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respectively (here i x  is unders tood as the real vector  ( - I m x o ,  R e x  o . . . . .  
-Imx.,Rex.) and ( . , . )  stands for the real inner product.  Since 
( ix ,0 )eT( , , , )K(g)  (19), (20) are independent  and one has 

w ( x ' t ) =  (D*h~'b"(x ' t))- l"  ( g zc r 0 t)). (21) 

Note  that the definition (21) of  w can be extended from K(~)  to its neigh- 
bourhood.  Moreover ,  since (17) holds for (a:,t)sKQr K(y)  is an invariant set 
for the ordinary differential equat ion 

d x  
dt = w(x,  t). (22) 

Thus we have 

Theorem2.  Let bet17"o, (a,r)eS. For each ~eQg*(O) any solution q~(t,~}) of (22) 
satisfying ~o(0,~)=~ for some ~ELine  g, ll~H2 = 1 +r, satisfies llq~(t,~)ll 2 = 1 + r  
for t e l0 ;1 ) .  Further, the limit set a(N) of q~(t,~) for t - + l ,  A(g) 
= (-] cl {(t, q~(t, ~ ) ) [ t -  e < t < 1 }, is contained in a single circle K1 c Line x with 

a>O + 

radius 1 +r centred at 0, where ~eP-t(O). 

For  a given point  a:ell2 "+t,  denote C(x)={2xl2e t lT ,  121=1}. The following 
+ 

theorem asserts that for each isolated zero xeP(P-~(0))  (proper or improper  - 
cf. Remark  1.) there exists a curve of zeros of H starting at some zero of Qb for 
t = 0  that ends up in C(p- l (x ) )  for t = l .  

+ 

Theorem 3. Assume that Rank DxP(~c) is not everywhere less than n. Let b~C"o, 
+ 

(a,r)eS and let ~'o be an isolated zero of the extended zero set P(P-I(0)). Let 
Xoep-l(~o),  I lXol l2=r+l .  Then, there exists an N~Q~-I(0) such that A(N)={1} 
x C(xo) , where A is as in Theorem 2 and p is as in Remark 1. 

Proof Let  Xoep-l ( io)  be such that IlXollz=r +1. The set of those (a~, x)ell22"+2 
for which 

det (D,P(oc)] 
\ Z:  1 = 0  

+ 

is an algebraic variety V in 1122"+2. Since Rank Do, P(a~ ) is not everywhere less 
than n, 1122"+ 2 \  V:t=0, so t172"+z\v is open dense in 1122"+2. It follows that in 
every ne ighbourhood  of x o there exists a x~ such that 

+ 

det I23, 

In part icular  ~ can be chosen so close to x o that it is not  or thogonal  to 
Line Xo (or, equivalently, each hyperplane ,71 r x = c  intersects Line ~o transver- 
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sally in a single point). As in [1] we obtain from (23) 

\\~1 X l  

where U is a neighbourhood of ~o in ~_2n+2 with cl U compact. Since ~1 is not 
orthogonal to Line Xo, x o is the unique zero of the system of equations 

+ 

P ( x ) = 0  (24) 

~,~ x = ~ ~o. 

By the degree argument of [1] (cf. [7]), for each t < l  sufficiently close to 1 
there exists an y(t)~U such that 

/~o,b,,(~(t), t)=0, 
~ ~,(t) = ~" Zo 

and ~( t )~x  o for t ~ l .  The point x*(t)=(1 +r) ~(t) satisfies ~*(t)eH~,~,r,t(O ) 

and, l imx*( t )=~ 0. Thus, for t < l ,  each point x*(t) must belong to A(~r for 
t ~ l  

some g~Q{-I(0). The statement of the proposition now follows from the fact 
that Q~-~(0) is finite. Q.E.D. 

Remark. One can easily see that the rank assumption of Theorem 3 is weaker 
than the condition in [1] which says that Rank D~P(x) is not everywhere less 
than n. This allows us to find complex 1-dimensional components of roots of 
a homogeneous map P: C " ~ "  which correspond to isolated improper roots 
of P. 

3. Real Homotopy 

In this section we propose a homotopy method (to be called real homotopy) 
for solving a system of real polynomial equations using the bounded homotopy 
map H of Sect. 2 with a, b real. 

For  a given polynomial mapping P: R " ~ I R "  (which of course can be con- 
sidered as a mapping ~"~lI~" satisfying P(x)=P('Y)) we consider the mapping 
H defined by (3), (5), (6) and with Qk defined by 

dk 

Qk(X, b) = [I (xk- bki" Xo) (25) 
i = 1  

instead of (4), where throughout the entire section we assume the parameters 
b e R  e to satisfy 

bki+bkj for all k = l , . . . , n  and i:~j; i,j~{1,...,dk}. (26) 
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However, unlike in Sect. 2, we consider H as a mapping 

H: IU" x C x 1U x ~"~"+ t) x ~ x ~ +  ~lI~" x R ,  

where 1U={ue l l2 [0<Reu<l ,  ]Imul<t/} for some r />0 (i.e. we take a,b real 
and we allow the homotopy parameter to be complex from some neigh- 
bourhood of the real interval [0; 1]). In order to keep the intuitive meaning of 
t we shall use the letter u for the complex variable corresponding to t and 
reserve the letter t for its real part Re u. 

Proposition4. Let b ~  ~ be fixed, V c ~  2n+2 and W c ~ " ( " + ~ ) x ~  + be open 
semialgebraic sets. The set G c W  of those (a,r) for which D ,ha,b,r(w,u ) and 
D,u~a,b,r(~,U ) are of full rank for all (x,u)Ehz~,,(O)c~{(x,u)lO<t<l, ~6V} 
contains an open dense set in IV.. 

Remark& As in Remark3 it is sufficient for R to satisfy: D,r(x,a) has full 
rank on V • W. As in Remark 5 we assume for the real homotopy H given by 
(3), (5), (6), (25) the choice of the sets V and W as follows: 

V=R2"+2\{0},  W=un i t  ball in ~ " ( " + l ) x R + .  

Proof Let b e R  ~ satisfying (26) be fixed. Denote 

Z= {(~,u,a,r)lO<t < l, hh(~,u,a,r)=O, rank D~,,ha,b,,(~,u)< 2n}. 

As in the proof of Proposition 1 we conclude that Z is a semialgebraic set and 
so is G = W \ n ( Z ) .  Following the argument of Proposition 1 we further find 
that if dim n(Z)=n(n +1)+1  then there exists an open set W * c  W and smooth 
mappings x=~(a,r), u=a(a,r) on W* such that 

and 
hb( ~ (a, r), a(a, r), a, r) = 0 (27) 

(28) rank Dx,. h(~ (a, r), a(a, r), a, r) =< 2 n 

for all (a, r) from W*. 
Differentiating with respect to a, r we obtain (the arguments (a, r) skipped) 

Dx~b'Var +Du~b.D,a +D,/~b =0,  (29) 

D~N'Dor (30) 

D ~b. Dr~+D,~b. Dra=O, (31) 

D N.Dr~ +2(r +1)=0.  (32) 

As the complex subspace of ~;" generated by the columns of Da/1 b for 
(x ,u ,a ,r )eVx (1U\{0, 1})x W is the entire space I12", for each yO12" there exists 
a vector q~"~"+  ~) such that 

D, IYtb. q = y. 
Using (29) we obtain 

y = ( - O  IYtb.O.~-O.ITIb. D.a)q = - o  ,IYIb . [D~r 
' \ D ~  a .  ql 

which implies that Rank D,~/4b = n. 
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Now, it follows that (28) is possible only if D u N = ( D N ,  O) is a linear 
combination of the rows of D,u/~b" By (29) and (32) this means that there is a 
real2n-vector w s u c h t h a t  w r .D  ~b=D N a n d w  r.Du~b=0. Using (29-32) we 
obtain 

wT( -- Da fzb, O) = wr(D fz b �9 D~ ~ +D~ ~b" D~ cr, D fz b �9 Dr ~ +Dufi b . D~ a) 

(Oa~ Or ~ (Da~ Or~ 
=wr(D~hb,Du~b) �9 

\DoG Orff] =(OzN'O)" \Oa~ Orff] 

=(D N.Da~,D N . D ~ O = ( O , - 2 ( r + I ) )  

which is impossible for r>0.  This completes the proof. Q.E.D. 

Corollary 4.1. For each b as in Proposition 4 and (a,r)~G fixed the intersection 
of the sets 2=~s and Z=h~,~,,(0) with the set {(x,u)10<t<l}  considered 
as the subsets of the (:c,u)-space are 4- and 3-dimensional real analytic sub- 
manifolds of ~,2n+4, respectively. Alternatively, 2 can be considered as the 2- 
dimensional complex submanifold IZI~,~,~(O) of ~2 "+2. 

We shall call a point (:c,u)~Z singular if Rank DxtTIb(:c,u)<n, and regular 
otherwise. Obviously if (:c, u) is singular (regular) then also Line :c • {u} con- 
sists of singular (regular, respectively) points only. Hence passing to H we can 
speak about singular and regular circles in a natural way. 

Proposition 5. Let Z o a connected component of Z and let (:cO, u0)~Z0 be singu- 
lar, 0 < t ~  Then one has the following alternative: 

(a) u=u ~ for each (:c,u)~Zo, 

(b) the singular circle C(:c~176 :c o x {u ~ c~ xi~i= 1 +r is 

isolated (i.e. there is a neighbourhood of C(x~ ~ in the (:c,u)-space such that 
any singular point from this neighbourhood lies on Line :co x {u~ 

Proof. There is a neighbourhood V 1 of (:c~176 such that 2c~vl=2oC~Vl. 
Therefore all singular points of ;~ in 1/1 are contained in Zo c~ V 1. Take any 1- 
dimensional complex analytic submanifold M of Z o through (:c~176 that is 
transversal to Line :co x {u~ i.e. such that (x ~ u~ and 

T(~o, uo)M +Line :co x {u ~ = T(xo, uo)Z o. (33) 

There is a neighbourhood V2cV 1 such that (33) remains valid with (:c~176 
replaced by any (x, u)e V 2 c~ M. For e >0  sufficiently small the set V 3 = {(c :c, u)[1 

- ~ < I cl < 1 +e, c e~,  (:c, u) E M ~ V 2} is a neighbourhood of (:c~ u~ in Z o. This 
follows immediately from (33) by the inverse function theorem. Since with 
(:c,u) singular all points (c:c,u) with c sC  are singular in order to prove the 
proposition, it suffices to prove the following alternative: 

(a') u is constant over M 
(b') there is a neighbourhood V 4 of (:c~176 such that the only singular 

point of Mc~V 4 is (:c~176 
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Assume (b') does not hold. Then there is a sequence of singular points 
(x k, uk)eM such that (x k, u k) 4=(x ~ u ~ and (x k, u k) ~ ( x  ~ u ~ for k ~ oe. In other 
words, all subdeterminants of order n of D IZla,b, ~ vanish at (x k, uk). Since these 
subdeterminants are analytic functions on M they have to vanish everywhere 
in M. 

Let (M o, ~o) be a complex analytic coordinate neighbourhood of (x ~ u ~ in 
M, i.e. ~0 is an analytic diffeomorphism of M o with an open subset of I~. This 
means that M o can be analytically parametrized by a complex parameter ~, i.e. 
one has (x ,u)~M o if and only if x=~v(~), u=u(~). Since I2I,,,b.r(X,u)=O for 
(x, u)eM o, differentiating with respect to r we obtain 

du 
D Oa, b,,(x(~), U(r (~) +D,/4, ,  b,,(x(~), u(~))" ~ ( ~ )  = 0. (34) 

Since Rank D I~Ia, b,r(;27(~), U(~)) < Rank D ,  u I~Ia, b,~.(ff~(~), U(~)) (34) is possible 
only if du/dr162 which implies u(~)=const or u=u ~ on M o. Q.E.D. 

We will use the real homotopy in the following way to construct an algo- 
rithm. Each connected component KQr of Z QceQ;-I(0)) can be partitioned 
into two subsets: 

K'(gr = ((x, u)l(x, u)regular point of KQr 

KS(~r = {(~v, u)l(x, u) singular point of KQr 

where KrQr is obviously open in KQr and KsQr closed in KQr As in Sect. 2 
we can conclude that for (x ,u)eK'(~)  there is a unique weC "§ satisfying 

(w, 1) e T~,u) K'Qc)=kerDha,~,,(x,u), (35) 

(w, 1)L(g x,0), (36) 

(note that in (35), (36) 1 and 0 are understood as complex constants). The 
solution of (22), (21) yields a path in KrQr with u real that can be parame- 
trized by t. This means that while we are in KrQr the homotopy solution curve 
can be followed as in the case of bounded homotopy. The problem is how to 
continue a curve once we have reached a singular point. In order to propose 
such a continuation algorithm we need some more information about the local 
behaviour of the solution curves near a singular point. 

Let (x  ~ t~162 then by Proposition 5 it has to be a point from an isolat- 
ed singular circle. Since (x~ ~ t ~ we have 

[ oz'ulSIa'b'r(ccO' to)) = rl q- 1 
Rank \ (xo, o) 

and the set 

F =  {(x, u)l~o,~,,(x, u)=0, ((~~ U))c = 0} 

(where ( . , . ) c  is the complex inner product) can be parametrised by a variable 
x i, say x n. So 

F = {(q~o(Xn), ..., ~o,_ l(x~), Xn, ~ (Xn))l ~00 . . . . .  ~0,_ 1, ~b (37) 

are analytic functions of Xn with O'(x ~ = 0} 
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Because of the fact that on the entire connected component K(~r u is constant 
only on the unique circle in Line x x {u} where (x,u)EK(~r O has in its expan- 
sion into Taylor series at least one non-zero coefficient, i.e. one has 

O(x,) = t o + 1  Ok(X" _ xO)t +O(X, -- xO), (38) 

where Ok 4 = 0. 
In analogy to bifurcation theory one could expect generically k = 2 but we 

have not been able to prove it. Therefore, we have to deal with arbitrary k. 
The homotopy can be continued after having reached (x ~ t ~ if we find a 

point of F near (x ~ t ~ with u = t real, t > t ~ By (37), to find such points one 
has to solve the equation 

Im 0(x.) = 0. (39) 

The following proposition gives the structure of the solution set of (39). It can 
be obtained by using the classical degenerate implicit function theorems (cf. 
[8]). Nevertheless, since it is perhaps shorter to prove it directly, we give an 
outline of its proof. 

Proposition 6. All solutions of (39) are locally at (x ~ t ~ given by 

x . = x  ~ +s(zj+gj(s)), - 3 < s < 6 ,  3>0,  j = 0  .. . .  , 2 k - l ,  (40) 

where gj are analytic, g j(0)=0 and 

z j=exp ( i l ( - -  ArgOk +jrt)) . 

Moreover, t is increasing along (40) for j even and decreasing for j odd. 

Outline of Proof. The numbers zj are obviously all the solutions of 

Im (OkZ~) = 0 (41) 
of modulus 1. 

The functions gj are obtained by the (non-degenerate) implicit function 
theorem for the system of equations 

Im ((zj +g~)k +O(S)) = 0 
(42) 

Re zj. Re gj + Im zj. Im g~ = 0 

at the point s=0 ,  g j=0 .  The first equation of (42) is obtained from (39) by 
substituting for x, from (40), the second equation is added to make the cor- 
rection term gi orthogonal to zj. From the unicity part of the implicit function 
theorem it follows that locally the solutions given by (40) are the unique so- 
lutions of (39) in the sectors [Arg ( x , - x  ~  Arg z~l < e for some e > 0. Therefore, 
should (40) not represent all solutions of (39), there would be a sequence 

v 0 for v ~  satisfying (39) such that (x.-x~176 Substituting Xn'-'~X n 

into (39) and passing to the limit one immediately sees that z would have to 
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solve (41) which is impossible. We have 

~(x  ~ +s(z i +g~(s))) = t o +s k. [~bk]. eJ ' i§  o(s k) 

which proves that t increases for j even and decreases for j odd. 

Remark 9. Note that the vectors z o . . . . .  Z2k_~ are located counterlockwise on 
the unit circle forming angles folk. According to Proposition 6 they are tangent 
to the x,-components of the solution curves of the system of equations 

Ha, b,,(~,u)=O 

((,~o, 0), (~, u)) c = 0 (43) 

I m u = 0  

at x , = x  ~ The tangents to the solution curves of (43) are given by ~(z)  
=(q~(0)zj, ..., tp',_ 1(0)zi, z~, 0), j = 0 ,  1 . . . .  , 2 k - 1 ;  for j increasing curves with 
t increasing and decreasing alternate. 

Proposition 6 indicates how one could continue the homotopy form a sin- 
gular point (x ~ t~ 

Let us assume that we have a "starting" procedure S=S(z)  that works as 
follows: 

Given a unit vector z ~  it finds a point different from (x~ ~ on the so- 
lution curve of (43) tangent to tb(z) if there is such a curve. We also assume 
that S is reliable enough to allow us to conclude that there is no solution curve 
tangent to ~(z) if S(z) is not successful. 

If we have reached (~v ~ t ~ by following a homotopy path we know one of 
the vectors zj (denote it by z*) but we do not know k (we assume that F 
admits a parametrisation (37)). 

If (x ~ t ~ has not been visited before by following another homotopy curve, 
for k=2 ,  3, 4,.. .  do S(z) consecutively for z = e x p ( i n / k ) . z *  until S becomes 
successful and its resulting point has t > t  ~ Then, S(z) must yield such points 
also for all z =e xp ( i ( 2 j  +l)n/k) .  z* for j =  1 , 2 , . . . , k - 1 .  Consequently, we can 
start k solution curves from (x ~ t~ 

If (~v~ ~ has been visited before, denote kl , z*  the k and z* from our last 
visit of ( o ,  to). We first check whether z* =z* .  exp(i 2jn/k) for some j = 1,..., k 
- 1 .  If yes, we stop and start another homotopy curve from t=0 .  If no, we 
proceed as in the case of first visit with k running over all prime number 
multiples of k r 

Let us note that we always start more than one homotopy curve from a 
singular point coming in with one curve. Hence, we may reach all roots of P 
without having to start all homotopy solution curves from t--0. 

The proposed continuation procedure becomes rather complicated with k 
increasing. However, although we have not been able to prove that generically 
k = 2, one can expect that singular points with k large do not appear too often. 

We do not present numerical results of computation by the real homotopy 
method. The reason is that we have so far not been able to work out a reliable 
program realization of the starting procedure S. Still, we decided to present the 
idea of the method, since it seems to be interesting and the problem of re- 
alization of the procedure S is a well defined independent problem. 
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4. Numerical Results 

The first step of the algorithm for finding all solutions (more precisely all iso- 
lated solutions and at least one point from some other connected components of 

+ 

roots of P(x)=0) based on the theory of Sect. 2 is the choice (at random) of the 
auxiliary parameters a, b, r. Then for each ~r we solve the equation 
(22), (21) with the initial condition 

x(0)=~r (44) 
+ 

By solving (21), (22), (44) on the interval [0; 1] we obtain a point x(1)~P-1(0) 
and using (H3) and (H4) we obtain either a proper or an improper root of P(z) 
=0. Proposition 1 states that with probability one we shall not have to change 
our choice of (a, r) because of singularity of Dxha, b. r during computing all paths 
given by (21), (22), (44). 

The most important problem to solve in the implementation process is the 
construction of a reliable and effective procedure which solves (21), (22), (44). 
The use of simple procedure was not successful because jumps to proximate 
components of zeros of the bounded homotopy occurred. Therefore we decided 
to solve the implicit modification of (21), (22) 

(D h.,b,,(x,t)] dx  + dt 
i x  r ]" ds (D'h"'o'(X't))'ds=O" (45) 

At first we used the D E R P A R  procedure form [5]. This procedure chooses 
the most appropriate component of (x,t)  as the independent variable s. After 
some experience we completely modified the D E R P A R  procedure keeping 
other subprocedures without any extensive changes. 

Our experience shows that the method requires a very reliable procedure 
for solving (44), (45). Because of the great number of paths to be followed the 
procedure has to be also very effective. 

We have run our program on several test problems and six of them are 
listed here. Problems 1-5 were run on the EC 1010 computer and the problem 
6 on the SIEMENS4004/150 in double real and double complex precision. In 
the following formulations of the test problems we present also the results of 
the computer runs. All real roots are presented as real (n+l)- tuples 
(x 1 . . . . .  x,,Xo) and complex roots as complex (n +l)-tuples (Rex  1 + i  Imx  1 . . . . .  
Rex o +/ Imxo) .  The results are denoted by BHM and the known exact so- 
lution by ES. ENS is the exact number of solutions and ENPS, ENIS is the 
exact number of proper or improper solutions (components of solutions), re- 
spectively. Proper roots were scaled to x0= 1. 

Problem 1. 
x 1 +10x2=20  

x 1 + 1 0 x 2 = - 2 0  

E N S = I ,  E N I S = I ,  E S = ( 1 0 , - 1 , 0 ) ,  BHM = (1.68985 - /  0.08936, -0.16898 
+i0.00893,0 +i0). 
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Problems 2-4 are obtained from three well-known test problems for global 
optimisation ([2]). The polynomial system represents in these cases the sta- 
tionarity equation: gradient of the optimised function equal to zero. 

Problem 2. 
2xl(x ~-x2)  +2(x~ - 1)=0 

X 2 --X21 = 0  

(obtained from the simplified Rosenbrock function in [2]) ENS =2, ENIS = 1, 
ENPS = 1, ES = {(1, 1, 1), (0,1,0)}, 
BHM = {( 0.99998-/0.00014, 0.99997-/0.00040, 1 +i0), 

( -0 .0688 - ,0 .2956,  1.10951-,'1.259, -0 .0414- i0 .0167) ,  
( -0 .0324 +i0.2153, 1.6841 - , 0 . 0 9 0 9 , - 0 . 0 2 7 - i 0 . 0 0 9 6 ) ,  
( 0.1315 - ,0 .2355,  -1.6714 - i0 .175,  0.025 +i0.031), 
( -0 .1908 +i0.324, -1.5919 +i0.4572, 0.021 +r 
( 0.1724 +i0.3045, -1.6569 - i0 .137,  0.0344-/0.0649)} 

Problem 3. 
2ax~ +4bx~ + 6 c x ~ - x  2=0 

2dx 2 +4ex 3 - x  1=0 

where a =  - 2 ,  b =  1.05, c =  - 1/6, d =  - 1, e = 0  (obtained from the "three hump 
camel-back function" in [2]). E N S = 5 ,  ENPS =5  (all 5 solutions are real), 
BHM = { ( -  1.74743 +i0.00011, 0.87371 - /0.00005,  1 +i0), 

( 1.07053 +i0.00001, - 0 . 5 3 5 2 6 - i 0 ,  1 +i0), 
( -  1.07052 +i0.00002, 0.53526-i0.00001, 1 +i0), 
( 1.74752 +i0,  -0.8737 +i0,  1 +i0), 
( 0 +i0,  0 +i0,  1 +/0)} 

Problem 4. The equations are as in Problem 3 for the following values of the 
parameters: a = - 4 ,  b=2.1, c = -  1/3, d=4 ,  e = - 4 .  This problem was obtained 
from the "six hump camel-back function" in [2]. E N S =  15, E N P S =  15, (all 15 
solutions are real), 
BHM={( -1 .70411+/0 .00021 ,  

( -0 .08984 +i0,  
( -1 .23022 +i0,  
( 1.60715 +/0,  
( 1.23018+/0.00001, 
( 1.70360 +i0,  
( 1.29607 +i0,  
( -1 .63806 +i0,  
( 0 +i0,  
( -1.12253+/0.00713,  

( 1.63808 +i0,  

0.79614-i0.00007, 
0.71265 +r 

-0.16233 +i0,  1 
0.56858 +i0.00004, 1 
0.16233+i0, 1 

-0.79608 +i0,  
0.60508+i0, 

-0.22867 +/0,  

1 +io),  
1 +io),  

+io), 
+i0), 
+io), 

1 +io),  
1 +i0), 
1 +go), 

+io), 
+io), 
+io), 

0 +i0,  1 
0.75822 +i0.00103, 1 
0.22867 +i0.00002, 1 
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( 1.10920 +i0,  -0.76826 +/0,  1 +i0) ,  

( -  1.60710 +i0,  -0.56865 +i0,  1 +i0), 

( 0.08984 +i0,  -0.71265 +r 1 +i0), 
( -  1.29606-g0.00001, -0.60508 +r 1 +i0)} 

Problem 5. 
4x3-3xl-x2=O 

X 2 -  X 2 = 0  

This is the Problem 2 from [-6]. ENS=4,  ENPS=3,  E N I S = I ,  
ES= {(1, 1, 1), (0,0, 1), (-0.75,0.5625, 1), (0, 1,0)}, 
BHM = {(0,0, 1), (-0.75,0.5625, 1), 

( 0.99995 +i0.00001, 0.99969 +i0.0003, 1 +i0), 

(-0.04171 +g0.01696, 1.672 -i0.30847, 0.00071-i0.00045), 

( 0.00259-i0.03256, 1.6598 -/0.36898, -0.00033-i0.00017), 

( 0.03984 +g0.01108, 1.45203-i0.88389, 0.0004 +i0.00077)} 

+a,x~ +,,2x~ +a3x~x3 +,,,x,x~ +as,clx~ 
§ ~ § § 

1000~2(&,-2)/221 +a,x~x2 +blX~ +b2x2x~ +b~x2x4 ~ +b,x~: ,~ =0 

1000~(2~1- 2)/23~ +e~x~ +asx2x~ +a.x,x~ +a~x~x~, +<~ 
+b2x~x3 +c2x3x~ +c4xlx~=O 

1000x4(222-2)/222 § +d,x34 +b3x2x4 +c2x~x 4 +d2x,x3x4=O 

where the values of the parameters and the obtained roots are given in Table 1. 
This problem is obtained by substituting truncated power series into the yon 
K~trmhn equation describing the buckling of a square plate simply supported 
at the boundary, taking into account the geometric nonlinearities. The B6zout 
number D for this problem is 81 but it was not necessary to run all the 81 
paths. From a simple sign analysis of the original polynomial system it follows 
that with each root (xl, x2, x3, x4) the vectors 

(-~1,-,~2,X3,3~4), ( - - X I , X 2 , - - X 3 , X 4 )  , (X1,- -X2,X3,X4)  , ( X I , X 2 , X 3 , - - X 4 )  (46) 

are roots of this system as well. Hence having a root we may write up to 15 
other roots. The computer runs were stopped after all D=81 different roots 
have been obtained by (46) from the roots corresponding to the computed 
endpoints of the paths. In this way we had to follow only 62 from the 81 paths. 
Table 1 shows only one root from each group of roots obtained from it by (46). 
All roots were proper so in the table we omit the homogeneous variable x o = 1. 
NDR denotes the number of different roots obtained from the corresponding 
root by (46). 

Problem 6. 
1000xl(211-2)/211 
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Table I. Constants and results to Problem 6 

BHM 

P. Brunovsk~ and P. Merav~ 

x I x 2 x 3 x 4 NDR 

0-i28.192 94.338+/0 0+/77.358 0 +i0 4 
- 19.094 +/14.452 -4.81 +/14.164 24.201 +/30.207 43.634 +/10.935 16 
14.412-i15.332 0 + i 0  72.724+i8.22 0 + i 0  4 
- 15.197 +i0 0 +i0 33.9 +i0 0 +i29.085 4 
11.616-i6.136 24.027-/3.932 47.901 +/13.056 0 +i0 8 
0-i5.575 0-i19.046 0-g28.7 48.792+r 8 
0 +i0 0-/24.434 O+i0 45.35 +g0 4 
- 18.939 -/15.879 0 +i0 22.815-/33.44 42.035-g7.958 8 
0+i8.504 0 + i 0  0+/37.666 46.068+i0 4 
7.669+i0 0+/30.21 -48.088 +i0  -35.156 +i0 8 
0 0 0 0 1 
11.803 0 -34.845 0 2 
-20.213 - 26.937 -14.453 0 4 
0 0 0 13.811 2 
0 - 51.57 0 0 2 
11.803 0 34.845 0 2 

a1=3.9314884 b1=0.64674841 d1=0.3276746 
a2=-0.10265241 b2=0.43085621 d2=0.4312049 
a 3 = - -  2.0073028 b 3 = 1.0240673 2= 17n 2 
a4=2.6326882 b4=0.2911508 211 =4~ 2 
a5=1.2427438 c1=0.16362693 221=25n2/4 
a6=0.93419692 c2=0.30115442 231 = 100~2/9 
a 7 =0.1455754 c 3 = -0.66910093 2zz=16n2 
a s =0.21560245 c4=-0.30795742 

O u r  expe r i ence  shows  tha t  t he  m e t h o d  based  on  the  b o u n d e d  h o m o t o p y  is 

useful  for  sma l l  p r o b l e m s  (in size - n u m b e r  o f  e q u a t i o n s  - a n d  in the  degree  o f  
the  po lynomia l s ) .  O n  the  o t h e r  h a n d  it  is r e l i ab le  in f ind ing  all c o m p l e x  so- 

lu t ions  to any  sys tem of  p o l y n o m i a l s .  
T h e  o n l y  c o m p u t e r  p r o g r a m  o f  a p a t h  fo l l owing  a l g o r i t h m  for the  so lu t i on  

o f  p o l y n o m i a l  e q u a t i o n s  we k n o w  of  is r e p o r t e d  in [6] .  Th is  p r o g r a m  is based  
on  the  a l g o r i t h m  p r e s e n t e d  in [3] .  T o  c o m p a r e  o u r  a l g o r i t h m  to tha t  o f  [6, 3] 

n o t e  t ha t :  
- we d id  n o t  t ry  a n y t h i n g  l ike its " h e u r i s t i c  m o d e  of  a l g o r i t h m "  (which  gives  

no  t h e o r e t i c a l  g u a r a n t e e  to  f ind al l  so lu t ions) ,  
- w e  fo l low o n l y  D pa th s  c o m p a r e d  to (dx+l) . (dz+l) . . . (d ,+l )  pa ths  in 

[6 ,3 ] ,  
- pa th s  to be  fo l l owed  by  o u r  m e t h o d  a re  all  b o u n d e d  un l ike  in [3] ,  w h e r e  at  

least  (d 1 + 1 ) . . .  (d, + I ) - D  pa th s  espace  to  inf in i ty  at  t =  1. 

Appendix 

A 1. Stratifications 

Le t  M be  a (C  r, l < r < o o ;  rea l  ana ly t i c )  m a n i f o l d ,  A ~ M .  By a (Cr;  rea l  ana -  

lytic) s t r a t i f i ca t ion  5 p o f  A we u n d e r s t a n d  a loca l ly  f ini te  p a r t i t i o n  o f  A in to  
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connected (Cr; real analytic respectively) manifolds (called strata) with the fol- 
lowing property: If P, Q~5r P # Q ,  P c ~ c l Q + 0 ,  then P c c l Q  and 
dim P < dim Q. 

By the dimension of a stratification we understand the maximum of the 
dimensions of its strata. 

A collection 5 a of subsets of M will be said to be compatible with A ~ M ,  if 
for each S c 5 a either S c A  or S c~A =0 ;  5 e will be said to be compatible with 
a collection d of subsets of M if it is compatible with each A ~ d .  

Let M, N be differentiable manifolds, A ~ M ,  f:  A ~ N  be differentiable. By 
a stratification of f we understand a pair of stratifications ( ~  ~-) of A, N 
respectively such that for each S~6 e we have f (S)~J-  and rank f l s=d imf (S ) .  
Also, this stratification is said to be one-one if f is one-one on each S such that 
dim S = dim f(S). 

A2. Semialgebraic Sets 

A subset A ~IR" that can be defined by a finite number of algebraic equalities 
and inequalities is called semialgebraic. That is, A can be expressed as 

A = {x ~]R" [P/(x) = 0, Qj(x) < O, i = 1 . . . . .  p, j = 1 . . . . .  q}, 

where P~, Q~ are polynomials. 
The class of semialgebraic sets has the following important properties: 
1. The closure, interior and boundary of a semialgebraic set is semialge- 

braic. 
2. Difference, finite union and finite intersection of semialgebraic sets is semi- 

algebraic. 
3. Let A c ~ "  be semialgebraic, P: I R ' ~ " ,  Q: ~ " ~ p  polynomial. Then, 

P-I(A),  Q(A) are semialgebraic (Tarski-Seidenberg theorem). 
The important  (well known) property of semialgebraic sets we frequently 

use in the paper is the following one: A semialgebraic subset of ~ "  admits a 
finite analytic stratification. 

A3. A Theorem of Hardt 

A less known theorem strengthening considerably the stratification result of A2 
has been proved by Hardt  [4]:  

Let P: ~,."--,F,," be polynomial and let cg, @ be finite collection of semi- 
algebraic subsets of F,.', R"  respectively. Then, there exists a finite analytic 
one-one stratification ( ~  Y )  of P such that ~ J are compatible with ~,  
respectively. 
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