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In this paper the realization of arbitrary invariant factors or
cyclic components of the closed-loop system matrix is dis­
cussed. It is' shown that the use of time-varying feedback
strategies enables one to realize arbitrary invariant factors in
contrast with time-invariant feedback control.
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1. Introduction

One of the most celebrated and famous results
in the theory of linear time-invariant feedback
control systems is the pole assignment property: if
a linear time-invariant control system of dimen­
sion n is controllable, then for any given symmet­
ric set S of n complex numbers there is a time-in­
variant linear state feedback control strategy such
that S is the set of eigenvalues of the closed-loop
system matrix [1]. A related interesting result has
been reported. by Rosenbrock [2, p. 190] and
Kucera [3]: if the set S requires coinciding eigen­
values, then the multiplicity of these eigenvalues as
zeros of the minimal polynomial cannot arbitrarily
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be assigned. In other words, there are limitations
on the sizes of the cyclic components (the blocks
in the Jordan canonical form) of the closed-loop
system matrix or on its invariant factors.

In this note it is investigated whether the limita­
tions cannot be relaxed by means of time-varying
feedback strategies. In particular periodic strate­
gies are considered; then the concept of system
eigenvalues still makes sense, namely the eigenval­
ues of the transition matrix computed over one
period [4]. The main result is that for discrete-time
systems periodic feedback control leads' to a com­
pletely unrestricted assignment of the eigenvalues
and the invariant factors; some partial but incom­
plete results are obtained for continuous-time sys­
tems.

2. Problem statement and preliminary results

Consider the linear time-invariant discrete-time
system (t E Z)

(1)

where Xl E IR n is the state of the system, u, E IR m

the input, and A and B constant matrices of
appropriate dimension. The system (1) is assumed
to be controllable; the (trivial) case that B has
linearly dependent columns is excluded. Controlla­
bility ensures that pole assignment is possible; for
any prescribed symmetric set of n complex num­
bers {Ai} (such that {Ai) = {AT}), there exists a
real feedback matrix K such that the spectrum
a(A + BK) of the closed-loop system matrix is
equal to the given set {Ai}. However [2,3] there
are restrictions on the sizes of the cyclic compo­
nents or the invariant factors of A + BK that can
be achieved; these limitations can explicitly be
expressed in terms of the controllability indices of
(1). These limitations can obviously not be over­
come by means of linear time-invariant dynamic
state feedback.
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The use of time-varying periodic feedback
strategies makes it possible to overcome the re­
strictions. This is illustrated by the use of the
periodic dynamic feedback strategy

the present state, that is static feedback. This
would lead to a straightforward generalization of
the classical pole-assignment result.

Therefore the periodic feedback

(2) (6)

with k E 71., m E 71., 0 ~ m ~ n - 1. The system
equation yields

with k E 71., m E 71., 0 ~ m ~ n - 1, is considered.
Then

(3)

where

X(k+l)n = <p(n)xk n

with

(7)

cf> := An + An-1BKo+ An- 2BK
1

+ ... +ABKn_2+BKn_l •

Equation (3) corresponds to a linear time-invariant
closed-loop system with a sampling interval equal
to n times the sampling interval of the original
system and with system and input matrices

ep(n):= (A + BKn_I)(A + BKn- 2 )

... (A + BK1)(A + BKo) .

Equation (7) governs the state at times kn, k E 71..
It can be viewed as having resulted from the
system

It is clear from the classical poleassignment result
that the spectrum of cf>,can arbitrarily be assigned
by suitable choice of the feedback matrices
Ko, K I, ... ,Kn- 1 . Moreover, since the matrix B I
has rank n, all controllability indices of the pair
(AI' B1 ) are equal to 1. Hence not only the cyclic
components or the invariant factors can arbitrarily
be assigned, but even any transition matrix <p can
be obtained.

AI:=An,

BI := [An-IB An- 2B ... 'AB B].

(4)

(5) where Al and B I are defined by (4) and (5), by
applying the control

H'ence

Remark 1. The period of the feedback strategy can
be reduced to r sampling intervals, with r the
largest controllability index of the original- system
(1). The limitations on the cyclic components be­
come monotonically weaker if the period grows
from 1 sampling interval (time-invariant feedback)
to r sampling intervals.

3. Main result

In the previous section it was shown that the
eigenvalues as well as the invariant factors can
arbitrarily be assigned by a periodic feedback of
the state at the beginning of the period. This
corresponds to a dynamic control strategy. The
question then arises whether or not the same result
can be achieved using only periodic feedback of
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with

Ki = Kiep(i), (8)

ep(i):= (A + BKi_I)(A + BKi- 2 ) · •• (A + BKo)

for i = 1, 2, ... ,n - 1, and ep(O) the identity matrix.
As pointed out in the previous section it is

possible to select the Ki such that the matrix
Al + B I K has any symmetric set of eigenvalues
and any compatible set of invariant factors. How­
ever it is not obvious that the same can be achieved
by means of the matrices K; Indeed (8) may not
be solvable with respect to the matrices K; It can
occur that for some} the solutions K o' K 1 , ••• ,Kj

of (8) yield a singular ep(} + 1); then a solution
K j + 1 may not exist. This is even true when the
desired <p( n) has no zero eigenvalues. The issue is
settled by means of the following theorem.
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Theorem 1. If the pair (A, B) is controllable, then
there exists a feedback strategy (6) such that the
closed-loop system matrix ep( n) has a given symmet­
ric set of eigenvalues and a prescribed compatible set
of invariant factors.

where

(10)

Proof. Since system (1) is controllable, a pre­
Iiminary time-invariant feedback exists such that
all eigenvalues of the closed-loop system matrix
are zero and the matrix is cyclic.

Since the closed-loop system is cyclic and con­
trollable' it is controllable from a single input
channel of (1). Assume that the closed-loop system
is' transformed to the standard controllable form
[4] with respect to such single input u;, where no
further input is applied to the other input chan­
nels. If the transformed state is denoted by x;, the
system equation becomes

For this system the above defined matrices Al and
B 1 are respectively the null matrix and the identity
matrix of order n.

Let M be a real matrix having the desired
eigenvalues and invariant factors. Denote its rank
by r. Suppose that by means of a similarity trans­
formation, which does .not alter the eigenvalues
and the invariant factors, the matrix M is trans­
formed to M' whose r leading principal minors are
non-zero. This can be achieved by the algorithm
discussed in the appendix. It is shown below that
there exists a periodic feedback control u; such
that ep (n) is equal to M'.

Let the periodic feedback be

o 1
o 0

o
o

o
o

o
1

o
o

o

o x;+

1

o

o
o

o
1

u;. (9)

K;-1

for i = 1, 0 •• .n - 1, with qk a row vector with zero
entries except for the k-th entry which is equal to
one.

Since the r leading principal minors of M' do
not vanish, the matrices Ql' .. . , Qr-l are nonsingu­
Iar; hence the equations (10) can be solved for
K~, K~, ... ,K;_I. This concludes the analysis if
none of the desired eigenvalues is zero, since then
r = n. If there are zero eigenvalues, and hence
r < n, the equations for K;,K;+l' ... ,K~-l can
also be solved, since the rows K;, K;+1'.· .,K~-l
of M' are linearly dependent on the preceding
rows K~, K;, ...,K;-I; the latter being rows of
Qr' Qr+l,···,Qn-l as well. '

This concludes the proof of Theorem 1 since
the sum of the preliminary linear time-invariant
feedback and the designed linear .pe!iodic feed­
back yields obviously a. linear periodic feedback.
o

Remark 2. Theorem 1 proves that any invariant
factors can be assigned to the closed-loop system
matrix ep(n). However this does not mean that an
arbitrary cf;> ( n) can be realized; the reason is that a
similarity transformation on the desired closed­
loop system matrix had to be introduced in the
proof of the theorem. This remark is illustrated by
the following example. Let the system data, be

This system is controllable. Let the desired closed­
loop system matrix be

and let the rows of M' be denoted by K;:
A=[~ ~], B=[~].

M ' - ·_0

K~-1

~(n)=[~ ~].
For this example the set of equations (8) is

Then the equations. (8) are Ko=[O 1],
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Obviously this set of equations has no solution.

Theorem 1 only states that in the orbit of any
matrix with respect to the similarity transforma-

-tion, the closed-loop system matrix can be as..
signed to at least one element. The eigenvalues and
the invariant factors are clearly invariant on such
orbit.

Remark 3. The preceding remark points out an
essential difference between what can be achieved

. by means' of periodic feedback of the present state
and by means of periodic feedback. of, the state at
the beginning of each period. The limitations for
the former case are discussed in Remark 2. The
analysis of Section 2 shows that in the latter case
any closed-loop system matrix can be obtained by
the feedback strategy (2).

Remark 4. The feedback strategy used in the proof
of Theorem 1 consists of a time-invariant feedback
in all input channels and an additional periodic
feedback' in a single input channel. Any input
channel can be used for this time-varying feed­
back. The period is n. Itis readily checked that the
period can be reduced if time-varying feedback is
used in more than one input channel.

with

ep{T):= exp{AT)

+exp[A{T - T)] (BKo+ ABK1

+ ... + An-1BKn _ 1)·

Since the matrix exponential is nonsingular, the
eigenvalues and the invariant factors of ep(T) can
arbi trarily be assigned" as discussed in Section 2.
The impulsive controls can then be replaced by an
equivalent smooth periodic feedback control
strategy, as in [5].

A different approach consists of converting the
continuous-time system into a discrete-time system
by sampling and considering constant inputs be­
tween sampling times. If the sampling interval is
suitably chosen, the obtained discrete-time system
is controllable. Both algorithms discussed in Sec­
tions 2 and 3' can then be applied to assign the
invariant factors. This yields a state feedback which
is not impulsive, but a finite gain feedback of
either the state at the beginning of the period or .
the state at the sampling times; the control inputs
then remain constant between sampling times.

The question that' remains unanswered is what
can be achieved by time-varying feedback of the
instantaneous state, i.e. by inputs of the form

u{t) = K{t)x{t). (13)

4. Continuous-time systems

The next question considered, is whether the
same results can be derived for the controllable
continuous-time system described by the differen­
tial equation

x(t ) = Ax(t ) + Bu (t). (II)

The feedback strategy using the state at the begin­
ning of each period can also be applied here; .
consider the impulsive periodic control, whose
period is denoted by T, which in (kT, kT + T),
k E 71.., is given by .

u{t) = Kox(kT)Oo{t - kT- 7')

+,K1x(kT) 01(t - kT - 7')

+ ... +Kn_1x(kT)on_l{t-kT-7') (12)

with 0 < 7' < T, where 00 denotes the Dirac impulse
and O. its i-th derivative. From (11) one obtains

I

x{kT+ T) = ep{T)x{kT)
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Compared to the discrete-time case, the pole as­
signment problem for the transition matrix epK(T)
of the system

x{t) = [A + BK{t)] x{t)

for some fixed positive T has an obvious intrinsic
restriction: Liouville's theorem shows that the
product of the eigenvalues of epK{T) equals

det cf>K(T) = exp{faTtr[A + BK(t)] dt}

and is positive; the question remains whether for
any (n X n )-matrix M with positive determinant
there' exists a feedback matrix K( t) such that
epK (T) is similar to M.

One way to construct a periodic feedback ma­
trix was suggested by Brunovsky [5] for theprob­
lem of pole assignmentfor controllable linearperi­
odic systems. In that paper the feedback control
consists of impulsive feedbacks of the instanta­
neous state at n suitably chosen times within a



period, where n is the dimension of the state
vector. The limitations of that approach for the
present problem are discussed by means of an
illustrative example. The second-order system
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x(t ) = Ax ( t ) + bu ( t )

with
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b= [~],

is considered. Let the period T be equal to 2'IT. We
try to find a periodic feedback strategy such that
epK (T) is on the similarity orbit of - I. However,
this orbit consistsonly of - I. For t1 < t 2 in (0, T)
and the feedback control in that period

u ( t ) = [k180 ( t - t1) + k 280 ( t - t2)] X ( t ) , (15)

we obtain [5]

epK(T) = exp(AT)exp( -At2)exp(bk 2 )

. exp( At2 ~ At1 )exp( bk ;)exp( At1 ) .

The question is whether t., t 2 , k 1 and k 2 can be
chosen such that epK (T) is equal to - I. Using

exp(bki) = 1+ l/;(kib )bki

where

l/;(y):=[exp(y)-I]jy fory*O

and

l/; (0) := 1,

Since

equation (17) shows that k1h1 should satisfy

k 1h1l/;(k1h1 ) = -2.

This is impossible for the function l/; defined above.
The obtained result is a special case of a general
solvability condition derived by Brunovsky [5].
Hence the impulsive state feedback strategy can­
not realize a matrix <PK (T) in the similarity orbit
of the matrix - I. On the other hand the linear
time-invariant feedback strategy

yields the closed-loop system equations

x(t) = [_~ ~ ]x(t)

and hence

is hence equivalent to

h1k 1l/; ( k 1h1 ) + ah2 k 2 l/; ( k 2h2 ) = -21

with

one readily obtains

with, for i = 1, 2,

hi := exp(-Ati)b,

The condition

k i:= k, exp(Ati)·

(16)

This example shows that the type of periodic
feedback strategies used by Brunovsky [5] does not
exhaust all possibilities of the periodic feedback
for the assignment of invariant factors and that a
new idea for constructing suitable periodic feed­
back controls still has to be found, The problem
whether or not the invariant factors can arbitrarily
be assigned (provided det <PK(T) > 0).has not been
completely solved.

5. Conclusion

ex = [1 + k 2 h2 l/; (k 2 h2 )] - 1

where t 2 and k 2 should be such that

1 + k 2 h2 l/; (k 2 h2 ) * 0.

It has been. shown in this paper that linear
time-varying state feedback for linear time-in­
variant discrete-time systems enables one to realize
not only arbitrary eigenvalue assignment, but also
assignment of arbitrary invariant factors. Partial
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results are discussed for the same problem for
continuous-time systems.

,Appendix

Lemma 1. For any real square matrix A of order n
and rank r, there exists a real nonsingular matrix T
of the same order, such that the first r leading
principal minors of T- 1AT are non-zero.

The proof of this lemma is a direct consequence
of. the following two propositions and the induc­
tion argument.

Proposition 1. There exists a similarity transforma­
tion such that, for any k ~ r, the k-th leading prin­
cipal minor is non-zero.

Proof. (i) There exists a similarity transformation
involving only elementary row and corresponding
column operations such that the first k rows of the
transformed matrix. A' are linearly independent.
Let A' be partitioned as follows:

A l 2
]

A 22 '

with

where I denotes the identity matrix of order m.m

Then

1
[

t, 0]M- -
- -N I

n
-

k
•

The leading principal minor of order k of M-IA'M
is the determinant of All + A I 2N, which does not
vanish. 0

Proposition 2. If the m-th leading principal minor of
a square matrix is non-zero, then there exists a
similarity transformation such that the (m - 1)-th
leading principal minor is non-zero, and such that
the m-th, (m + 1)-th, ... , leading principal minors
are not affected.

Proof. Let A m be the upper left (m X m) submatrix
of A; this submatrix is nonsingular. Apply Pro­
position 1 to Am for k == m - 1, and denote by Tm
the resulting transformation matrix. Then the ma­
trix

defines the required similarity transformation for
A. 0

Thus

rank] All A 12 ] = k.

(ii) There exists a matrix N E lR(n-k)xk

that A I I + A l 2N is non-singular.
(iii) Let M be defined by

M:= [I~' 0]
N I n - k

A
21

E jR(n-k)Xk,

A
l 2

E IR kX(n-k),

A
22

E iR (n-k)X(n-k)

such
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