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Abstract. The convergence of multilocus systems under viability selec-
tion with constant fitnesses is investigated. Generations are discrete
and nonoverlapping; the monoecious population mates at random.
The number of multiallelic loci, the linkage map, dominance, and
epistasis are arbitrary. It is proved that if epistasis or selection is
sufficiently weak (and satisfies a certain nondegeneracy assumption
whose genericity we establish), then there is always convergence to
some equilibrium point. In particular, cycling cannot occur. The behav-
ior of the mean fitness and some other aspects of the dynamics are also
analyzed.
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1 Introduction

In a recent paper (Nagylaki 1993), the evolution of multilocus systems
under selection was discussed and the case of weak selection was
analyzed. In this paper, we shall focus on one interesting aspect of
multilocus dynamics: the (non)existence of cycling. The existence of
stable cycling in two-locus models of selection was established for
continuous time in Akin (1979, 1982, 1983, 1987) and Hofbauer (1985),
and for discrete time in Hastings (1981) and Hofbauer and Iooss (1984).
Here, we shall prove for an arbitrary number of loci that if epistasis or



selection is sufficiently weak (and satisfies a certain nondegeneracy
assumption whose genericity we establish), then there is always conver-
gence to some equilibrium point. For weak epistasis, the proof is based
on perturbation results for the set of chain-recurrent points, which we
show to coincide with the set of equilibria. In the case of weak selection,
the proof comprises two steps: The theory of normally hyperbolic
manifolds implies the existence of a quasi-linkage-equilibrium manifold
that attracts all solutions of the system; and on that invariant manifold,
the dynamics is a small perturbation of a system that possesses
a Lyapunov function, i.e., the mean fitness increases ‘almost’ every-
where on that manifold.

We assume that generations are discrete and nonoverlapping; the
monoecious population mates at random. The number of multiallellic
loci, the linkage map, dominance, and epistasis are arbitrary. There are
no fertility differences, and the viabilities are constant. Essentially, we
follow Nagylaki’s (1993) description and notation.

Suppose there are n loci and m
k

alleles A(k)
ik

(with i
k
"1,2, m

k
) at

locus k. We use the multi-index i"(i
1
,2, i

n
) as an abbreviation for the

gamete A(1)
i1

A(2)
i2 2A(n)

in
, whose frequency we denote by p

i
. Collectively,

these form the vector p, a probability vector in the simplex S
m1

2mn
. The

frequency of A(k)
ik

in gametes is

p(k)
ik
"+

i

(k) p
i
, (1.1)

where the sum runs over all multi-indices i with the k-th com-
ponent fixed as i

k
. Let q"( p(1), p(2),2, p(n))3S

m1
]2]S

mn
rep-

resent the (m
1
#m

2
#2#m

n
)-dimensional vector of all the gene

frequencies.
We signify the fitness of genotype ij by ¼

ij
(¼

ij
"¼

ji
), which we

assume to be nonnegative and constant; the fitness of gamete i by

¼
i
( p)"+

j

¼
ij
p
j
; (1.2)

and the mean fitness of the population by

¼1 ( p)"+
i,j

¼
ij
p
i
p
j
. (1.3)

Let I, J be a nontrivial decomposition of the set of loci
N"M1,2,2, nN, i.e., IXJ"N and IWJ"0, normalized by 13I. We
designate by c

I
the probability of reassociation of the genes at the loci

in I, inherited from one parent, with the genes at the loci in J, inherited
from the other.
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The gametic frequencies in the next generation are determined by
the recurrence relation

p@
i
"p

i

¼
i

¼1
!D

i
, (1.4)

where

D
i
"

1
¼1

+
j

+
I

c
I
(¼

ij
p
i
p
j
!¼

iIjJ,jIiJ
p
iIjJ

p
jIiJ

) (1.5)

represents a measure of the linkage disequilibrium in gamete i. (Here,
i
I
j
J

signifies the vector with k-th component i
k
if k3I and j

k
if k3J.)

To demonstrate that the simplex S
m1

2mn
is forward invariant, sum

(1.4) over i and use (1.2), (1.3), and (1.5). This yields immediately

+
i

p@
i
"1. (1.6)

Let
c
505
"+

I

c
I

(1.7)

denote the total recombination frequency. Then

c
N
"1!c

505
(1.8)

is the probability that there is no recombination. Invoking (1.2), (1.5),
(1.7), and (1.8), we cast (1.4) into the form

p@
i
"c

N
p
i

¼
i

¼1
#

1
¼1

+
j

+
I

c
I
¼

iIjJ,jIiJ
p
iIjJ

p
jIiJ

. (1.9)

Therefore, if p
i
70 for every i, then p@

i
70 for every i. If all the fitnesses

are positive (¼
ij
'0 for every i and j), then the interior of the simplex is

also forward invariant: if p
i
'0 for every i, then p@

i
'0 for every i.

The gene frequencies in the next generation are

p(k){
ik

"p(k)
ik
¼(k)

ik
/¼1 , (1.10)

where the fitness ¼(k)
ik

of the allele A(k)
ik

is defined by

p(k)
ik
¼(k)

ik
"+

i

(k) p
i
¼

i
. (1.11)

The linkage-equilibrium manifold (also called the Wright manifold;
see Akin 1979; Shahshahani 1979) is defined as

K
0
"M p: p

i
"p(1)

i1
p(2)
i2 2p(n)

in
for every iN. (1.12)

Linkage equilibrium is sometimes called Robbins equilibrium. This
manifold is diffeomorphic to S

m1
]2]S

mn
. A point p on K

0
is
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uniquely determined by the vector of gene frequencies q. If

¼
ij
"¼

iIjJ,jIiJ
(1.13)

for every i, j, and I, we say that there is no position effect. In this case,
D

i
"0 for every i for every p3K

0
, so

K
0
-Mp: D"0N,D

0
, (1.14)

where D is the vector with components D
i
.

Let c
kl

designate the recombination frequency between loci k and l,
ordered so that k(l. To express c

kl
in terms of the linkage map Mc

I
N,

define the set of sets of loci

N
kl
"MI: k3I and l3J, or k3J and l3IN. (1.15)

Then we have

c
kl
" +

I:I|Nkl

c
I
. (1.16)

An important parameter is the smallest two-locus recombination
frequency

c
.*/

"min c
kl
, (1.17)

in which the minimum is over every k, l3N such that k(l. If c
kl
"0

for some k and l, then we combine loci k and l. Therefore, without loss
of generality, we assume henceforth that c

.*/
'0.

If there is no selection, we may choose ¼
ij
"1 for every i and j.

Then not only does (1.13) hold trivially, but also K
0
"D

0
. To see this,

note first that, by (1.4), if p3D
0
, then p is an equilibrium. Consequently,

p3K
0

(Lyubich 1992, Theorem 6.3.1), whence D
0
-K

0
. Because of

(1.14), we conclude that K
0
"D

0
.

2 Weak epistasis

Weak epistasis means that the fitness scheme has the form

¼
ij
"

n
+
k/1

a(k)
ikjk

#er
ij
, (2.1)

where e, the strength of epistasis, is sufficiently small. We assume
a(k)
ikjk

'0. See Hastings (1985, 1986) for some investigations under this
hypothesis.

If e"0 in (2.1), then there is no (additive) epistasis. We start with
a review and analysis of that case. Note that (1.13) and therefore (1.14)
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hold. The mean fitness is the sum of its one-locus contributions:

¼1 "+
i,j

+
k

a(k)
ikjk

p
i
p
j
"+

k

+
ik,jk

a(k)
ikjk

p(k)
ik

p(k)
jk
"+

k

a6 (k), (2.2)

where
a6 (k)"+

ik,jk

a(k)
ikjk

p(k)
ik

p(k)
jk

(2.3)

denotes the contribution of locus k to the mean fitness.

Lemma 2.1. In the case of no epistasis, a point p is an equilibrium point
of (1.4) if and only if it is both a selection equilibrium for each locus and it
is in linkage equilibrium.

Proof. If p is an equilibrium, then p3K
0

(Lyubich 1992, Theorem
9.6.13). We show that on K

0
equilibrium is equivalent to

p(k)
ik
"0 or a(k)

ik
"a6 (k) (2.4)

for every k and i
k
, where

a(k)
ik
"+

jk

a(k)
ikjk

p(k)
jk

. (2.5)

From Nagylaki (1989a, Eq. 23) we have

p(k)
ik
¼(k)

ik
"a(k)

ik
p(k)
ik
# +

l: lEk

+
il

a(l)
il
p(kl)
ikil

, (2.6)

where p(kl)
ikil

is the frequency of the gamete A(k)
ik

A(l)
il
. Since p3K

0
, therefore

p(kl)
ikil

"p(k)
ik

p(l)
il
, so (2.6) becomes

¼(k)
ik
"a(k)

ik
# +

l> l9k

a6 (l) if p(k)
ik
90. (2.7)

Since the gene frequencies do not change at equilibrium, from (1.10)
we obtain (Ewens 1976; Ewens and Thomson 1977; Nagylaki 1989a,
Eq. 16)

p(k)
ik
"0 or ¼(k)

ik
"¼1 . (2.8)

From (2.2) and (2.7) we see that on K
0

(2.8) is equivalent to (2.4). K

Ewens (1969a,b) has demonstrated that the mean fitness ¼1 is
nondecreasing if there is no epistasis. (The reason is that, by (2.2) and
(2.3), ¼1 depends only on the gene-frequency vector q. Given the
gametic frequencies p, the gene frequencies q@ in the next generation do
not depend on the recombination frequencies c

I
. Hence, we can

compute ¼1 @ as if there were no recombination.) Therefore, D¼1 ,
¼1 @!¼1 70, with equality if and only if

p
i
(¼

i
!¼1 )"0 for every i (2.9)
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(Lyubich 1992, Theorem 9.5.4). Let F denote the set of points p that
satisfy (2.9). At these points, the selection part of (1.4) is in equilibrium,
and the mean fitness is the same in the next generation.

Hence (by what is sometimes called the LaSalle invariance prin-
ciple, Theorem C(a), stated below), every limit point of a trajectory of
(1.4) is contained in F. Using properties of the entropy (see (2.21) and
(2.22) below), Kun and Lyubich (1979, 1980; see also Lyubich 1992)
show further that every limit point is an equilibrium. Our objective is
to extend this statement to the case of weak epistasis. However, limit
sets need not change continuously under small perturbations of the
dynamics: they can ‘explode’. What has good behavior under perturba-
tions is the set of chain-recurrent1 points, introduced by Conley (1978),
which contains the limit sets of all orbits. Therefore, we have to
strengthen the convergence result of Kun and Lyubich for e"0 to
a statement on the chain-recurrent set (see Lemma 2.2 below).

Before doing so, we discuss the structure of the setF in more detail.
In general, points in F are not isolated, because det¼"0 for
nonepistatic selection. This follows at once from the observation that
(Lyubich 1992, p. 332)

¼
ij
#¼

kj
"¼

iIkJ,j
#¼

kIiJ,j
, (2.10)

i.e., the sum of the row vectors on the left equals that of those on the
right. In fact, either (2.9) has no internal (p

i
'0 for every i) solution or

it has uncountably many (Hughes and Seneta 1975).
From (1.2), (2.1), (1.1), and (2.5) we obtain

¼
i
"+

k

a(k)
ik

; (2.11)

combining this with (2.2) yields

¼
i
!¼1 "+

k

(a(k)
ik
!a6 (k)). (2.12)

Since p
i
6p(k)

ik
for every i and k, we infer from (2.12) that (2.4) implies

(2.9), i.e., p3F. Thus, if each locus is at equilibrium under selection,
then Dp(k)

ik
"0 by (1.10) and (1.11), and D¼1 "0. Of course, (2.9) does

not imply that the gametic frequencies p are at equilibrium; this holds
only if additionally p3K

0
.

—————
1Let X be a compact set with a metric d and let f : XPX be a continuous map. A
point x3X is called chain recurrent (with respect to f ) if, for every d'0, there exists
a finite sequence x

0
"x, x

1
,2,x

r~1
, x

r
"x (often called a d-pseudo-orbit) such that

d( f (x
m
), x

m`1
)(d for m"0,1,2, r!1.
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We proceed to discuss the forward-invariance properties of F. By
Lemma 2.1 and the last paragraph, for every equilibrium p̂, the set

G( q̂)"Mp: q"q̂N (2.13)

satisfies G( q̂)-F and is forward invariant. Therefore,

C,Z
q̂

G( q̂)-F, (2.14)

and C is forward invariant. Since, by (2.2) and (2.3), the mean fitness
depends only on q, it is constant on each set G(q̂).

Next, we show that the subset of F in the interior of the simplex,

F*,FW intS
m1

2mn
"Mp : p3F and p

i
'0 for every iN, (2.15)

is forward invariant. For p3F, from (1.10), (1.11), and (2.9) we con-
clude that

q@"q. (2.16)

Then (2.11), (2.5), (2.2), and (2.3) give

¼@
i
"¼

i
and ¼1 @"¼1 (2.17)

for every i. But (2.9) informs us that ¼
i
"¼1 for every i if p3F*.

Consequently, ¼@
i
"¼1 @ for every i, so p@3F. In Sect. 1, we proved

that intS
m1

2mn
is forward invariant, which demonstrates that p@3F*.

We now establish that

F*-C. (2.18)

Suppose p*3F* and consider the solution p(t)3F* (t"0,1,2,2) of
(1.4) such that p(0)"p*. From (2.16) we infer

lim
t?=

q(t)"q*, (2.19)

and hence q* must satisfy the gene-frequency equilibrium condition
(2.4), which proves that

p*3G(q*)-C. (2.20)

In the highly symmetric example in Remark 2.4 below, F is
forward invariant. Together with the forward invariance of C, this
might suggest that F is always forward invariant. The example in
Remark 2.5 disposes of this idea.

Lemma 2.2. In the case of no epistasis, the only chain-recurrent points of
(1.4) are its equilibria.
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Proof. On F, the mean fitness ¼1 takes only finitely many values. This
follows from the well-known facts that for one-locus systems, the
equilibria are either isolated or a part of linear manifolds, and that the
mean fitness is constant along such continua of equilibria (see, e.g.,
Lyubich 1992, Sect. 9.1).

By Theorem C(b),2 this implies that not only the u-limit set of each
orbit, but even each chain-recurrent point is contained in F.

It remains to consider the dynamics on F. From (2.16) we have
q@"q for p3F. This implies that Lemma 9.6.8 and Theorem 9.6.10 of
Lyubich (1992) on the behavior of the entropy H( p)"!+

i
p
i
log p

i
remain valid for p3F:

if p3F, then H( p@)7H( p), (2.21)

and equality holds if and only if p is an equilibrium point of (1.4), i.e.,

if p3F, then H( p@)"H( p)Q p3K
0
. (2.22)

To conclude the proof, it suffices to show that the maximal invari-
ant set in F (which obviously contains the set of chain-recurrent
points) coincides with the set of equilibria FWK

0
.3 Suppose it does

not. Then there exists a full orbit Mp(t): t3ZN such that p(t)3F, p(t) is
mapped under (1.4) to p(t#1), and H( p(t#1))'H( p(t)) for each
integer t60. Consider a-limit and u-limit points p

~
and p

`
of this

orbit. Since F is closed, we have p
~

, p
`
3F, and from Theorem C(a) it

follows that H( p@
~

)"H( p
~

) and H( p@̀ )"H( p
`
). By (2.22), both

p
~

and p
`

are equilibria, and are therefore contained in K
0
. By (2.16),

the gene frequencies are constant along the orbit, including the limiting
points, so we conclude that p

~
"p

`
, which contradicts the inequalities

H( p
~

)(H( p(0))(H( p
`

). K

Theorem 2.3. If for e"0, each equilibrium of (1.4) is hyperbolic, then for
sufficiently small e, each trajectory of (1.4) converges to an equilibrium
point.

—————
2Theorem C. ¸et the continuous function »: XPR be a Lyapunov function for the
map f : XPX, i.e., »( f (x))5»(x) for all x3X. Consider the set F"Mx: »( f (x))"
»(x)N.

(a) ¹hen F contains all u-limit points and a-limit points of orbits in X.
(b) If » takes only finitely many values on the set F, then every chain—recurrent point

is contained in F.

Part (a) is due to LaSalle; part (b) is a special case of Conley (1978, Theorem
II.6.4.C), or in discrete time rather of Akin (1993, Theorem 3.16).
3 If there are only finitely many equilibria, then we can again use Theorem C(b), now
with the Lyapunov function H.
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Proof. By Lemma 2.2, for e"0, the chain-recurrent set consists of
finitely many hyperbolic equilibria. This property is robust against
small C1 perturbations of the dynamics (see, e.g., Akin 1993, p. 244).
Indeed, as an immediate consequence of the definition of chain recur-
rence, it follows that the chain-recurrent set of (1.4) changes in an upper
semicontinuous way with e. In particular, the chain-recurrent set for
e'0 is contained in the union of the d-neighborhoods of the equilibria
for e"0, with dP0 for eP0. By the implicit function theorem and the
openness of hyperbolicity (Hartman—Grobman theorem), if e'0 is
small, then the maximal invariant sets in those neighborhoods are
hyperbolic equilibria. Hence, for small e, the chain-recurrent set con-
sists only of finitely many equilibria, which implies convergence of all
trajetories. K

Remark 2.1. Lemma 2.2 implies that each orbit has its u-limit in K
0
.

But it says more, viz., that the orbits can be of three types only:
(i) equilibria;
(ii) complete orbits p(t), defined for all times !R(t(R;
(iii) incomplete orbits p(t), which cannot be defined for all times

because some of their points have no pre-image p(t!1) with all
non-negative components.

From Theorem C(b) and the proof of Lemma 2.2, it follows that
orbits of type (ii) converge to equilibria for both tPR and tP!R,
and that the mean fitnesses at those two equilibria are different. In
particular, homoclinic orbits are excluded. An orbit of type (ii) exists if
(1.4) admits at least one unstable equilibrium.

Remark 2.2. In Appendix A, we establish the genericity of the hypothe-
sis in Theorem 2.3, i.e., we prove that for almost all nonepistatic fitness
matrices ¼"(¼

ij
), each equilibrium of (1.4) is hyperbolic. For inter-

nal equilibria, we use the eigenvalues derived by Karlin and Liberman
(1979); for boundary equilibria, we evaluate all the eigenvalues in terms
of the linkage map and the eigenvalues for selection at each locus (see
(A44)). The eigenvalues at the boundary equilibria are of independent
interest because they determine whether new mutants spread or are
lost.

Remark 2.3. Suppose each equilibrium of (1.4) is hyperbolic for e"0.
Then for e'0, each equilibrium of (1.4) is within O(e) of the corre-
sponding equilibrium with e"0 and has the same stability properties.
In particular, at equilibrium, D"O(e) and ¼1 differs by O(e) from its
value without epistasis.

This is an immediate consequence of the inverse function theorem
and the Hartman—Grobman theorem. One must prove only that the
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equilibria remain feasible (i.e., nonnegative) when epistasis is switched on
(which need not be true when recombination is switched on). This
follows from the explicit characterization (2.4) of the equilibria for e"0:
For some equilibrium p, let I

k
"Mi

k
: p(k)

ik
'0N denote the set of alleles

present at locus k. The face of S
m1

2mn
determined by p

i
"0 for iN<

k
I
k
is

invariant under (1.4) (for each value of e), and hence the equilibrium p,
which is hyperbolic for e"0, persists in this face for e'0.

See Hastings (1985, 1986) for some perturbation calculations.

Remark 2.4. Here, we discuss the behavior of the mean fitness ¼1 for
weak epistasis.

As we saw above, if there is no epistasis, then the continuous
function D¼1 ( p)70, with equality if and only if p3F. Therefore, we
conclude that D¼1 '0 for weak epistasis if p is bounded away from the
set F. For p in or close to F, however, D¼1 (0 can occur for
arbitrarily small e'0, as illustrated by the following example.

We examine two diallelic loci, in the usual simplified notation (see,
e.g., Nagylaki 1992, p. 185). Let the alleles be A and a at the first locus
and B and b at the second. We denote the frequencies of the gametes
AB, Ab, aB, and ab by p

1
, p

2
, p

3
, and p

4
, respectively. Then

¼
i
"

4
+
j/1

¼
ij
p
j
, ¼1 "

4
+

i,j/1

¼
ij
p
i
p
j
. (2.23)

The recurrence relations (1.4) reduce to

p@
i
"

1
¼1

(¼
i
p
i
!g

i
cD), (2.24)

where c (06c61
2
) designates the recombination rate; g

1
"g

4
"1 and

g
2
"g

3
"!1; and

D"¼
14

p
1
p
4
!¼

23
p
2
p
3

(2.25)

signifies the linkage disequilibrium.
We now take c"1

2
(unlinked loci) and

¼"A
0 1!e 1!e 2

1!e 0 2 1!e
1!e 2 0 1!e

2 1!e 1!e 0 B , (2.26)

where 06e61. Since ¼
14
"¼

23
, there is no position effect. If e"0,

homozygous loci do not contribute to ¼ and each heterozygous locus
contributes 1. We choose

p
2
"p

3
"i, p

1
"p

4
"1

2
!i, (2.27)
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with 06i61
2
. (This is a subset of F for this example; its complement

in F consists of equilibria with at most one locus segregating.) An easy
calculation gives p@

i
"1

4
for every i and

D¼1 "!1
2
e(4i!1)260, (2.28)

with equality if and only if e"0 (no epistasis) or i"1
4

(equilibrium).

Remark 2.5. We end this section by exhibiting the forward-invariant
and -noninvariant subsets of F in an example. Consider two diallelic
loci without epistasis, in the notation of Remark 2.4. Suppose AA, Aa,
aa, BB, Bb, and bb contribute 0, 1, 0, 2, 3, and 0 to fitness, respectively,
so that

¼"A
2 3 3 4
3 0 4 1
3 4 2 3
4 1 3 0B . (2.29)

Then at equilibrium, the frequencies of A and B are 1
2

and 3
4
, respec-

tively. We assume that 0(c61
2
.

From (2.9) we deduce

F"HXC, (2.30)

where

H"(0, 1
3
, 2
3
, 0)X(2

3
, 0, 0,1

3
), (2.31a)

C"M(k, 1
2
!k, 3

4
!k, k!1

4
) : 1

4
6k61

2
N

X(0, 0, 3
4
, 1
4
)X (0,1

2
, 0, 1

2
)X(1

2
, 0, 1

2
, 0)X(3

4
, 1
4
, 0, 0,)

X(1, 0, 0, 0)X (0, 1, 0, 0)X(0, 0, 1, 0)X(0, 0, 0, 1). (2.31b)

At the two points in H, both loci are polymorphic and D90. This
subset is not forward invariant: if p3H, then p@NF. The first subset
displayed in C is a line; for 1

4
(k(1

2
, this is the forward-invariant set

F*. Both loci are polymorphic even if k"1
4

or 1
2
. The second line in

(2.31b) comprises four equilibrium points, each with a single polymor-
phic locus; the third line comprises four equilibria, at each of which
a single gamete is fixed.

3 Weak selection

Now let ¼
ij
"1#sr

ij
, with Dr

ij
D61, so that s is a measure of the

selection intensity. If s is small compared with c
.*/

, where c
.*/

'0
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denotes the smallest two-locus recombination frequency (see (1.17)),
then we speak of weak selection, or loose linkage.

We first review the known results in the case of no selection, s"0.
Here, the map (1.4) simplifies to

p@
i
"p

i
!D

i
. (3.1)

Now D
i
tends to zero at a geometric rate (Nagylaki 1993, pp. 634—635

and references therein). Hence, the linkage-equilibrium manifold

K
0
"Mp : p

i
"p(1)

i1
p(2)
i2
2p(n)

in
for every iN"Mp : D"0N (3.2)

is invariant and globally attracting at a uniform geometric rate. All
points on K

0
are fixed points under (3.1). The rates of approach, i.e., the

eigenvalues transverse to K
0
, were evaluated explicitly by Lyubich

(1971; 1992, pp. 252—255). One can derive them easily by linearizing
Eq. (*) of Nagylaki (1993, p. 634) and reading the eigenvalues off
recursively, starting with two loci. They are given by the 2n!n!1
numbers c

Q
, where Q denotes a subset with at least two elements of the

set N of loci, and c
Q

designates the probability that there is no
recombination in Q. In terms of the linkage map c

I
, we have

c
Q
"1!c(Q)

505
, in which

c(Q)
505

" +
I> 09IWQ9Q

c
I

(3.3)

represents the total probability of recombination among the loci in Q.
These eigenvalues must also be a special case of (A3). Hence, for generic
initial conditions, the rate of approach, i.e., the largest eigenvalue, is
given by max c

Q
"1!c

.*/
.

For weak selection, the theory of normally hyperbolic manifolds
(see Fenichel 1971; or Hirsch et al. 1977) implies the existence of
a smooth invariant manifold K

s
close to K

0
, which is globally attract-

ing at a geometric rate for (1.4).4
For small s, this manifold K

s
is characterized by equations of the

form

D
i
"st

i
(q, s), (3.4)

where the t
i
are smooth functions of the vector of gene frequencies q.

Thus, on K
s
, and more generally, for any initial values, after a long

time, the linkage disequilibria D
i

are O(s). (For a direct proof, see

—————
4 In the continuous-time model, this observation is due to Charles Conley (see Shah-
shahani 1979, p. 29). See also Passekov (1984).
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Nagylaki 1993, pp. 634—635.) This implies that the recursion relations
for the gene frequencies on the invariant manifold K

s
can be written as

(Nagylaki 1993, Eq. 56)

p(m)@
im

"F(m)
im

(q)#O(s2). (3.5)

The leading term in (3.5), the weak—selection approximation, is given by
the map qÂF(q): S

m1
]2]S

mn
PS

m1
]2]S

mn
(see Nagylaki 1989b,

1993)

p(m)@
im

"F(m)
im

(q)"p(m)
im

+
i

(m) +
j

¼
ijA <

k: k9m

p(k)
ik B A<

l

p(l)
jl BN¼1 , (3.6)

with

¼M "+
i,j

¼
ij A<

k

p(k)
ik B A<

l

p(l)
jl B . (3.7)

Denote wN (q)"¼1 ( p) for p3K
0
. Then (3.6) can be expressed also in

the form

p(m)@
im

"

p(m)
im

2wN
LwN

Lp(m)
im

"

1
2

p(m)
im

L
Lp(m)

im

logw6 ,

which is equivalent to Wright’s (1935; 1937; 1969, pp. 65—66) and
Barton and Turelli’s (1987) expressions for gene-frequency change.
From (3.7) we see that w6 (q) is homogeneous and quadratic in the gene
frequencies p(m) at each locus, so

+
im

p(m)
im

LwN
Lp(m)

im

"2wN

by Euler’s theorem on homogeneous functions. Therefore, we can
recast our recursion relation to exhibit the normalization of the gene
frequencies:

p(m)@
im

"p(m)
im

LwN
Lp(m)

im
N+

jm

p(m)
jm

LwN
Lp(m)

jm

. (3.8)

Baum and Eagon’s (1967) theorem implies that the mean fitness w6 is
nondecreasing for (3.8). More precisely, for (3.8) we have (Nagylaki
1989b, p. 236)

w6 (q@)'w6 (q) unless q@"q. (3.9)

This shows that the approximate dynamics (3.8) on the linkage-
equilibrium manifold K

0
is gradient-like. We wish to extend this result

here to the exact system (1.4), which has the form (3.5) on K
s
.
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Since ¼
ij
"1#sr

ij
, (3.5) can be rewritten as

p(m)@
im

"p(m)
im

#sp(m)
im

u(m)
im

(q)
w6 (q)

#O(s2), (3.10)

where we have defined

r
i
"+

j

r
ijA<

k

p(k)
jk B, r(m)

im
"+

i

(m) r
iA <

k: k9m

p(k)
ik B , (3.11)

rN"+
i

r
iA<

k

p(k)
ik B, u(m)

im
"r(m)

im
!rN . (3.12)

Thus, u(m)
im

depends only on r
ij
, but not on s. Note that (3.10) holds not

only on K
s
but in an O(s) neighborhood of K

0
(Nagylaki 1993, Eq. 56).

Rescaling time t ("0, 1, 2,2) in generations as q"st, we see at least
formally that as sP0, the difference equation (3.10) approaches the
differential equation

pR (m)
im

"p(m)
im

u(m)
im

(q) (3.13)

on S
m1

]2]S
mn

, where the superior dot signifies L/Lq. Note that the
fixed points of (3.10) coincide with the equilibria of (3.13). We shall refer
to (3.13) as the weak-selection limit of (1.4). As we shall see below, the
continuous-time system (3.13) may be more convenient for describing
the dynamics for small s than the discrete-time system (3.6).

Comparison with (3.8) shows that (3.13) is the Shahshahani gradi-
ent vector field of the potential function rN . In particular, and in analogy
to (3.9), rN increases strictly along nonconstant solutions of (3.13):

rN Q"2+
k

+
ik

p(k)
ik

[u(k)
ik

(q)]270. (3.14)

Now we posit hyperbolicity for the weak-selection limit (3.13):

all equilibria of (3.13) are hyperbolic. (H)

Since (3.13) is a gradient system, all eigenvalues of the Jacobian are
real. Hence, (H) is equivalent to regularity (nondegeneracy) of all
equilibria of (3.13), i.e., 0 must not be an eigenvalue. Obviously, the
eigenvalues j of (3.13) correspond to the eigenvalues 1#sj

wNK
of (3.10), in

which w6K is evaluated at equilibrium. Therefore, (H) is equivalent to the
hypothesis that (3.10) has no fixed point with an eigenvalue 1, or to the
hyperbolicity of fixed points of (3.5) or (3.6) for small s.

Now we can formulate our main result, which shows that there
is no cycling or more complicated dynamics possible under weak
selection.
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Theorem 3.1. If s is sufficiently small and the hyperbolicity condition
(H) is satisfied, then each solution p(t) of (1.4) converges to a fixed point
of (1.4) as tPR.

Proof. Since solutions are in phase with solutions on the invariant
manifold K

s
(see Fenichel 1971; or Hirsch et al. 1977), it is sufficient to

prove convergence for initial conditions p3K
s
. The estimate (3.5)

implies that (1.4) restricted to K
s
, and expressed in the coordinates

q3S
m1

]2]S
mn

, behaves like a first-order numerical discretization
procedure for the differential equation (3.13), with step size s, whereas
(3.6) or (3.10) is essentially the Euler scheme for (3.13). Hence, we can
apply general results from the qualitative theory of numerical approxi-
mations (see, e.g., Garay 1993, 1996) to relate the dynamical behavior
of (3.5) and (3.6) to that of (3.13). Under assumption (H), the weak-
selection limit (3.13) has only finitely many equilibria, all of which are
hyperbolic. By Corollary 2.3 of Garay (1993), which is an extension of
the Hartman—Grobman theorem, there exists a d'0 such that for
sufficiently small s, the recursion relation (3.5) has a single hyperbolic
fixed point as the only invariant set in the d-neighborhood of each of
the equilibria of (3.13). Since (3.13) is gradient-like by (3.14), its chain-
recurrent set (Conley 1978; Akin 1993) consists only of these finitely
many equilibria. As shown in Garay and Hofbauer (1997), the robust-
ness argument of the proof of Theorem 2.3 extends to the singular
d-perturbation of (3.13) to either (3.10) or (3.5). K

Remark 3.1. The fact that the chain-recurrent set of (3.5) is contained in
neighborhoods of the set of equilibria of (3.13) follows essentially from
the result that the Lyapunov function rN for (3.13) is also a Lyapunov
function for (3.5) outside these neighborhoods of the equilibria. To
verify this explicitly in our case, we first define

v(m)
im

"p(m)
im

u(m)
im

/w6 . (3.15)

On K
s
, we obtain from (3.5), (3.6), (3.10), (3.12), and (3.15)

rN (q@)"rN (q#s�#O(s2))

"rN (q)#s� ) LqrN#O(s2)

"rN (q)#2s+
k

+
ik

p(k)
ik

[u(k)
ik

(q)]2#O(s2). (3.16)

Therefore, rN (q@)'rN (q) for sufficiently small s whenever q is bounded
away from the equilibria of (3.13). The same result holds for w6 "1#srN .

Remark 3.2. In Appendix B, we show that the hyperbolicity assump-
tion (H) is a generic property, i.e., that for almost every fitness matrix
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¼"(¼
ij
) the elements of which are sufficiently close to 1, i.e., for

almost all matrices R"(r
ij
), all the equilibria of the selection equation

(3.13) are hyperbolic.

Remark 3.3. Without the nondegeneracy hypotheses, Theorem 3.1
would be a consequence of Theorem 2.3 because neutrality (s"0) is
trivially nonepistatic. The nondegeneracy hypotheses make the results
different, though. Indeed, neutrality is obviously degenerate for the
purpose of Theorem 2.3, and therefore the latter does not apply. In
fact, the nondegeneracy hypotheses of Theorems 2.3 and 3.1 differ in
character. In Theorem 2.3, the hypothesis is imposed on the unpertur-
bed system. Since the unperturbed system is always degenerate in
Theorem 3.1, nondegeneracy can be introduced only by the perturba-
tion. Therefore, in this case, the nondegeneracy hypothesis refers to the
perturbation.

Remark 3.4. The hyperbolicity condition (H) could be weakened: It is
sufficient to assume that if an eigenvalue 0 occurs at any equilibrium of
(3.13), it has algebraic multiplicity 1. Then a reduction to the resulting
one-dimensional center manifolds yields the same convergence result
as above. Only if the weak-selection limit (3.13) has at least a doubly
degenerate fixed point, might cycling occur in the exact dynamics (1.4)
for arbitrarily small s. It would be interesting to construct such
examples.

Remark 3.5. If, in addition to the above hyperbolicity condition (H),
the usual transversality condition, i.e., that the stable and unstable
manifolds of any two fixed points intersect transversally, is satisfied for
the weak-selection limit (3.13), then the dynamics of (3.13) is struc-
turally stable. By another result of Garay (1995), this structural stabil-
ity extends to the discrete-time systems (3.5) and (3.6). Hence, for small
s, the phase portrait of the exact equations (1.4) on the quasi-linkage
manifold and that of the weak-selection approximation (3.6) are both
the same as that of the time-s map of (3.13). Therefore, under these
assumptions, it is sufficient to analyse the weak-selection limit (3.13).
However, in contrast to (H), these transversality conditions often
cannot be checked in practice. If the transversality conditions are not
satisfied, then the basins of attraction of the fixed points of (3.13), (3.6),
and (3.5) might differ drastically. We expect that this occurs only for
nongeneric sets of fitness parameters.

Remark 3.6. Theorem 3.1 holds also for the continuous—time version of
the multilocus selection equation. The proof is much easier, since it
does not require the reference to discretization procedures.
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Remark 3.7. Here, we discuss the behavior of the mean fitness ¼1 for
weak selection. The mean fitness may decrease during the short period, of
order log(1/s) generations, of approach to the quasi-linkage-equilib-
rium manifold K

s
(Moran 1964; Kimura 1965; Nagylaki 1977, 1993).

The mean fitness may also decrease close to equilibrium, generically
after a long time of order 1/s generations (Nagylaki 1977, 1993). For
intermediate times, ¼1 must increase. More precisely, we prove below
that ¼1 increases for sufficiently small s if q is bounded away from the
equilibria of (3.13) on K

0
and if p is within O(s2) of K

s
.

First, we prove that our assumptions imply (cf. Nagylaki 1993,
Eq. (70))

DD,D@!D"O(s2). (3.17)

Writing the exact recurrence relation for D as

D@"u(q, D, s), (3.18)

where u is a smooth function of q and D, from (3.4) we infer that

sw(q@, s)"u[q, sw(q, s), s]. (3.19)

By assumption, we have

D"sw(q, s)#O(s2). (3.20)

Appealing successively to (3.18) and (3.20); Taylor’s theorem; (3.19);
Taylor’s theorem again and (3.10); and (3.4), we obtain

D@"u[q, sw(q, s)#O(s2), s]

"u[q, sw(q, s), s]#O(s2)

"sw(q@, s)#O(s2)

"sw(q, s)#O(s2)

"D#O(s2), (3.21)

which establishes (3.17).
Now the mean fitness is given by

¼1 ( p)"1#sR1 (q, D), (3.22)

where

R1 (q, D)"+
i,j

r
ij
p
i
p
j
. (3.23)
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We complete our proof by invoking successively (3.5), (3.10), (3.15),
and (3.21); Taylor’s theorem; again Taylor’s theorem and (3.20); and
(3.16):

R1 (q@, D@)"R1 [q#s�#O(s2), D#O(s2)]

"R1 (q, D)#s� · LqR1 (q, D)#O(s2)

"R1 (q, D)#s� · LqR1 (q, 0)#O(s2)

"R1 (q, D)#2s +
k

+
ik

p(k)
ik

[u(k)
ik

]2#O(s2). (3.24)

In fact, our conclusion can be strengthened. If p is within o(s) of K
s
,

the error terms in (3.17), (3.20), (3.21), and (3.24) become o(s), but ¼1 ( p)
must still increase for sufficiently small s when q is bounded away from
the equilibria of (3.13) on K

0
.

Appendix A. Generic hyperbolicity for nonepistatic selection

Let W represent the set of all nonepistatic fitness matrices ¼"(¼
ij
).

We shall prove that hyperbolicity of equilibria is generic in W. We
treat internal and boundary equilibria separately.

A.1. Internal equilibria

The eigenvalues of the linearization at an interior equilibrium of (1.4)
for nonepistatic selection (e"0) have been computed explicitly by
Karlin and Liberman (1978, p. 208, for two loci; 1979, p. 367, for n loci).
Let q denote the gene frequencies at an equilibrium (see (2.4)), and for
each k"1,2, n, let j

k,ik
(i
k
"1,2, m

k
) designate the eigenvalues of

the positive matrix (p(k)
ik

a(k)
ikjk

/a6 (k))
16ik,jk6mk

. These eigenvalues are real
(Kingman 1961) because this matrix is similar to a symmetric matrix.
The maximal eigenvalue is obviously j

k,1
"1, and hence, by the

Perron—Frobenius theorem, Dj
k,ik

D(1 for i
k
"2,2, m

k
. The eigen-

values of the corresponding one—locus selection dynamics close to
p(k) are given by 1#j

k,ik
for i

k
"2,2, m

k
. In the full system (1.4)

without epistasis, these give rise to the +n
k/1

(m
k
!1) positive eigen-

values

1#j
k,ik

a6 (k)
¼1

for i
k
"2,2,m

k
, (A1)
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with eigendirections tangent to K
0
. The remaining <n

k/1
m

k
!+n

k/1
m

k
#n!1 eigenvalues, corresponding to eigendirections parallel to

the linear invariant manifold G(q) (and hence transverse to K
0
), are

given by

1
¼1

((1!c)¼1 #c(j
1,i1

aN (1)#j
2,i2

aN (2))), i
1
, i

2
72, (A2)

for two loci with recombination fraction c, and in the general case by

1
¼1 AcN¼1 # +

I: I¤N

n
+
k/1

c
I
aN (k)C

k,i
(I)B, (A3)

where i denotes a multi—index with at least two components i
k

not
equal to 1, and C

k,i
(I)"0,1, or j

k,ik
. For each i, there exist k and I such

that C
k,i

(I)"0. The eigenvalues (A2) are all positive.
Because of (1.7), (1.8) and (2.2), each transverse eigenvalue (A3) is

a weighted average of numbers in (!1,1], and hence is itself in (!1,1),
exhibiting the geometric rate of convergence in G(q) toward K

0
. The

eigenvalues (A1) are different from 1 if and only if each j
k,ik

90.
Therefore, an interior equilibrium of (1.4) with no epistasis is hyper-
bolic if and only if it is hyperbolic in each one-locus system. For
one-locus systems, hyperbolicity can be characterized explicitly by
well-known determinant conditions. These conditions are obviously
satisfied for generic ("an open, dense set of full measure of ) fitness
schemes (Lyubich 1992, Theorem 9.4.15).

A.2. Boundary equilibria

Consider a boundary equilibrium p̂ with mL
k

(6m
k
) alleles present at

locus k. Without loss of generality, we suppose

pL (k)
ik
'0 for i

k
"1,2,2,mL

k
; (A4a)

pL (k)
ik
"0 for i

k
"mL

k
#1,2, m

k
. (A4b)

We choose a subset of loci K-N and analyze locally the frequencies
p
i
of gametes i that satisfy

i
k
6m̂

k
if k3K, and i

k
'mL

k
if kNK. (A5)

Our analysis will establish and use the block triangular structure of the
Jacobian matrix. Our main result is (A44). We separate the three cases
(i) K"N, (ii) K"0, and (iii) K90,N.
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If K"N, we assume that no rare alleles are present: for every k, we
take p(k)

jk
"0 if j

k
'mL

k
. Then we have simply the interior problem in

Subsect. A.1 with m
k
replaced by mL

k
. Therefore, the

A
n
<
k/1

mL
kB!1 (A6)

eigenvalues corresponding to eigenvectors parallel to the boundary at
p̂ are given by (A1) and (A3) with carets on m

k
, a6 (k), and ¼M .

Henceforth, we consider only gametes that carry at least one rare
allele: KLN. In that case, linearizing the first term in (1.9) yields

p@
i
&c

N
p
i

¼K
i

¼1ª
#G

i
, (A7a)

where

G
i
"

1
¼1

+
j

+
I

c
I
¼

iIjJ,jIiJ
p
iIjJ

p
jIiJ

, (A7b)

and the notation (&) in (A7a) signifies the omission of higher-order
terms in the small gametic frequencies. In the absence of epistasis, from
(2.11), (2.2), (2.5), and (2.3) we obtain

¼K
i
"

n
+
k/1

aL (k)
ik

, ¼1ª "
n
+
k/1

aNK (k) , (A8a)

aL (k)
ik
"

mˆ k
+

jk/1

a(k)
ikjk

pL (k)
jk

, aNK (k)"
mˆ k
+

ik/1

mˆ k
+

jk/1

a(k)
ikjk

pL (k)
ik

pL (k)
jk

. (A8b)

If the gamete i carries only rare alleles, i.e., K"0, then (A7b) shows
that G

i
is second order, so for arbitrary fitnesses ¼

ij
, (A7a) yields the

eigenvalues
l
i
"c

N
¼K

i
/¼1ª . (A9)

The interpretation of (A9) is that if A(k)
ik

is rare for every k, then (to first
order) recombination can eliminate but not produce gamete i, so the
growth rate ¼K

i
/¼1ª is reduced by a fraction c

505
.

That the positive eigenvalues l
i

differ generically from 1 is clear
because the linkage and selection factors (c

N
and ¼K

i
/¼1ª , respectively)

are mutually independent. Furthermore, ¼K
i

depends on a(k)
ikjk

with
i
k
'mL

k
for every k, whereas ¼1ª does not.

Evidently, there are
n
<
k/1

(m
k
!mL

k
) (A10)

eigenvalues of the form (A9).
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Now we turn to the much more difficult case K90, N. First, we
simplify G

i
for additive loci. Substituting

¼
iIjJ,jIiJ

"¼
ij
"+

k

a(k)
ikjk

(A11)

into (A7b) gives

G
i
"

1
¼1

+
k
A +
I: k|I

# +
I> k|J

B+
j

c
I
a(k)
ikjk

p
iIjJ

p
jIiJ

. (A12)

We introduce complementary subsets S and ¹ such that S-N and
¹"N!S. Then the gametic frequencies for loci in S are

p(S)
iS
"+

iT

p
i
. (A13)

Using (A13) in (A12), we find

G
i
"

1
¼1

+
k
A +
I: k|I

+
jk

c
I
a(k)
ikjk

p(I)
iI

p(k,J)
jkiJ

# +
I: k|J

+
jk

c
I
a(k)
ikjk

p(k,I)
jkiI

p(J)
iJ B. (A14)

Recall that I90, N and 13I. We define S without the last condition:
SO0, N, but 13S or 13¹. Since c

S
"c

T
, we reduce (A14) to

G
i
"

1
¼1

n
+
k/1

+
S: k|S

mk

+
jk/1

c
S
a(k)
ikjk

p(S)
iS

p(k,T)
jkiT

. (A15)

Next, we linearize (A15). The contribution of locus k to G
i
is second

order unless either S-K, or j
k
6m̂

k
and ¹-K, so

G
i
&GI

i
"

1

¼1ª
+
k
A +
S: k|SfK

mk

+
jk/1

c
S
a(k)
ikjk

pL (S)
iS

p(k,T)
jkiT

# +
S: k|S,TfK

mˆ k
+

jk/1

c
S
a(k)
ikjk

p(S)
iS

pL (k,T)
jkiT B. (A16)

By Lemma 2.1,

pL (S)
iS
" <

k: k|S

pL (k)
ik

; (A17)

in particular, pL (k,T)
jkiT

"pL (k)
jk

pL (T)
iT

, and with the aid of (A8b), this enables us
to sum over j

k
in the second term in (A16). We now assume that there

are no rare alleles at loci in K, i.e., for every k3K, we take p(k)
jk
"0 if

j
k
'mL

k
. This restriction replaces the upper summation limit m

k
in the

first term in (A16) by mL
k
. Therefore, we have the linear approximation

GI
i
"

1

¼1ª
n
+
k/1
A +

S: k|SfK

mL k
+

jk/1

c
S
a(k)
ikjk

pL (S)
iS

p(k,T)
jkiT

# +
S: k|S, TfK

c
S
aL (k)
ik

pL (T)
iT

p(S)
iS B.
(A18)
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Let ¸"N!K. The only allelic summation in (A18) is over j
k
for

k3K. Hence, i
L
is fixed in (A18), which we can study by varying only i

K
,

so that i
k
"1,2, mL

k
for every k3K. We suppress i

L
and write

x(K)
iK

"p
i
"p

iKiL
. (A19)

In the first sum in (A18), since k3S-K, we get

¹"N!S"KX¸!S"(K!S)X¸, (A20)
whence

p(k,T)
jkiT

"p(k,T)
jkiK~SiL

"x(k,K~S)
jkiK~S

. (A21)

From (A13) we see that

x(k,K~S)
jkiK~S

" +
iS~MkN

x(K)
jkiK~M

k
N. (A22)

In the second sum in (A18), k3S and ¹-K, which implies

S"N!¹"KX¸!¹"(K!¹)X¸, (A23)
whence

p(S)
iS
"p(S)

iK~TiL
"x(K~T)

iK~T
. (A24)

Now (A13) reveals that

x(K~T)
iK~T

"+
iT

x(K)
iK

. (A25)

Inserting (A21) and (A24) into (A18) yields

GI
i
"

1

¼1ª
n
+
k/1
A +

S: k|SfK

mˆ k
+

jk/1

c
S
a(k)
ikjk

pL (S)
iS

x(k,K~S)
jkiK~S

# +
S: k|S, TfK

c
S
aL (k)
ik

pL (T)
iT

x(K~T)
iK~T B.

(A26)

Guided by the work of Karlin and Liberman (1979), we are now
prepared to find the desired eigenvalues. For each locus k, we define the
elements of the positive matrix B(k) by (cf. Subsect. A.1)

b(k)
ikjk

"pL (k)
ik

a(k)
ikjk

/aNK (k), (A27)

where i
k
, j

k
"1,2,2, mL

k
. By (2.4), the maximal eigenvalue of B(k) is 1,

and the corresponding right and left eigenvectors are p̂(k) and 1(k),
respectively, where 1(k)T"(1,1,2, 1) has mL

k
components:

1(k)TB(k)"1(k)T, B(k)p̂(k)"p̂(k). (A28)

Consequently, the other mL
k
!1 eigenvalues j

k
and right eigenvectors

n(k) satisfy Dj
k
D(1 and

1(k) · n(k)"0, B(k)n(k)"j
k
n(k). (A29)

Recall that the eigenvalues j
k
are real (Kingman 1961).
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Let K*-K; we allow K*"0 and put K**"K!K*. We
demonstrate that x(K), with components

x(K)
iK

"A <
l: l|K*

pL (l)
il B A <

r: r|K**
m(r)
ir B , (A30)

is an eigenvector of the matrix defined by (A26). In the first sum in
(A26), from (A22), (A30), and (A29) we see that

x(k,K~S)
jkiK~S

"0 unless S!MkN-K*. (A31a)

Similarly, in the second sum,

x(K~T)
iK~T

"0 unless ¹-K*. (A31b)

We introduce the indicator function

hMk|K*N"G
1 if k3K*,

0 if kNK*.
(A32)

Using (A31), (A32), (A17), and (A27) in (A26) leads to

GI
i
"

1

¼1ª
+
k

+
S: k3S-K,
S~MkN-K*

c
S
aNK (k) b(k)

ikjk
pL (S~MkN)
iS~MkN

(hMk|K*NpL (k)jk
#hMk|K**Nm(k)

jk
)y

i,S

# +
S: k|S, TfK*

c
S
aL (k)
ik

pL (T)
iT

y
i,T

, (A33a)

where

y
i,S

"A <
q: q|K*W(K~S)

pL (q)
iq B A <

r: r|K
**W(K~S)

m(r)
ir B. (A33b)

We now invoke (A28) to (A30) and simplify:

GI
i
"

1

¼1ª G+k +
S: k3S-K,
S~MkN-K*

c
S
aNK k)(hMk|K*N#j

k
hMk|K**N)

# +
S: k|S, TfK*

c
S
aL (k)
ik H x(K)

iK
. (A34)

Recalling (A7a), we obtain the eigenvalues

l(L)
iL
"

1

¼1ª AcN¼K i
# +

k: k|K*

+
S: k|SfK*

c
S
aNK (k)# +

k: k|K**
+

S: k|SfK*XMkN
c
S
aNK (k)j

k

#

n
+
k/1

+
S: k|S, TfK*

c
S
aL (k)
ik B. (A35)
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To reduce (A35), note first from (2.4) that

aL (k)
ik
"aNK (k) if k3K. (A36)

Hence, we can rewrite the sum of the first, second, and fourth terms in
the parentheses as

p
iL
"c

N
¼K

i
#

n
+
k/1
A +

S: k|SfK*

# +
S: k|S, TfK* Bc

S
aL (k)
ik

"c
N
¼K

i
#

n
+
k/1
A +

S: k|S

! +
S: k|S§ S,T¶K* BcSaL (k)ik

. (A37)

By (1.7),

c
505
" +

S: k|S

c
S

(A38)

for each k; together with (A8a), this shows that the second term in (A37)
is c

505
¼K

i
. Appealing to (1.8), we find

p
iL
"¼K

i
!

n
+
k/1

a
k
aL (k)
ik

, (A39a)

where
a
k
" +

S: k|S§ S,T¶K*

c
S
. (A39b)

Now relabel (A39b) by interchanging S and ¹; since c
S
"c

T
, we get

a
k
" +

S: k|T§ S,T¶K*

c
S
. (A40)

Adding (A40) to (A39b) gives

2a
k
" +

S: S,T¶K*

c
S
, (A41)

whence (13I)
a
k
" +

I: I,J¶K*

c
I
, (A42)

independent of k. Consequently, (A39a) becomes

p
iL
"¼K

iA1! +
I: I,J¶K*

c
IB, (A43)

and substituting this into (A35) yields our main result, the eigenvalues

l(L)
iL

"

1

¼1ª CA1! +
I: I,J¶K*

c
IB¼K i

# +
k: k|K**

+
S: k|SfK*XMkN

c
S
a6ª (k)j

kD. (A44)

That l(L)
iL

is really independent of i
K

follows from (A8a) and (A36).
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There are

+
K: K90,N

C <
k: k|K

mL
kDC <

l: l|L

(ml!mL l)D (A45)

eigenvalues of the form (A44). Adding (A6) and (A10) to (A45) leads to
precisely the required number of eigenvalues:

+
K
C <

k: k|K

mL
kD C <

l: l|L

(ml!mL l)D!1"<
k

[mL
k
#(m

k
!mL

k
)]!1

"A
n
<
k/1

m
kB!1. (A46)

To establish generic hyperbolicity, fix the recombination frequen-
cies c

S
. Then the double sum in (A44) depends only on the fitnesses

a(k)
ikjk

with i
k
,j
k
6mL

k
for every k. Since ¸90, there exists some l3¸; the

coefficient of aL (l)
il

in ¼K
i
depends only on Mc

S
N and is at least as great as

c
N
'0. Therefore, if a (real) eigenvalue l(L)

iL
happens to be $1, it can be

shifted away from that value by perturbing a(l)
iljl

for il'mL l and jl6mL l.
(Of course, such a perturbation does not change the location of the
equilibrium.)

In the following remarks, we discuss special cases of (A44) that are
instructive and provide checks.

Remark A.1. Although we derived (A44) under the assumption that
K90, setting K"0 immediately reduces (A44) to (A9).

Remark A.2. For each K90,N and i
L
, the maximal eigenvalue is

obtained by setting K*"K because that corresponds to a positive
eigenvector p̂(K). This reduces (A44) to

l(L)
iL
"

¼K
i

¼1ª A1! +
I: I,J¶K

c
IB. (A47)

Remark A.3. The eigenvalues at a corner equilibrium can be derived
for arbitrary fitnesses ¼

ij
. Choose the corner at i"uT"(1, 1,2, 1),

where u has n components. If the gametes are ordered lexicographi-
cally, the Jacobian matrix turns out to be upper triangular; its diagonal
elements are the eigenvalues

¼ui

¼uuA1! +
I: I,J¶K

c
IB, (A48)

in which K is defined by (A5) with mL
k
"1 for every k. Thus, for

nonepistatic selection, (A47) is a generalization of (A48).
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Remark A.4. The eigenvalues associated with gene-frequency change
can be calculated ab initio from the following lemmas.

a) Suppose that (i) p(k)
ik

a(k)
ik
"p(k)

ik
a6 (k) for every i

k
and every k9l, for

some l, and that (ii) p3K
0
. Then (i) p(k){"p(k) for every k9l and

(ii) p@3K
0
, i.e., every locus except l is at equilibrium, and linkage

equilibrium is preserved.
To prove result i, we use successively (2.6), assumptions (ii) and (i),

and (2.2):

p(k)
ik

¼(k)
ik
"p(k)

ik Aa(k)
ik
# +

m: m9k

a6 (m)B (A49)

"p(k)
ik

+
m

a6 (m)"p(k)
ik
¼1 , (A50)

where (A50) holds for every i
k
and every k9l. The conclusion follows

from (1.10) and (A50).
To prove result (ii), define

q
i
"<

k

p(k)
ik

, d
i
"p

i
!q

i
. (A51)

Now invoke successively (A51), (1.4), assumption (ii), (1.14), (1.10),
result (i), (A51), (2.11), (A49), and assumption (i):

d@
i
"q

i

¼
i

¼1
!p(l)

il
¼(l)

il
¼1

<
k: k9l

p(k)
ik

"

q
i

¼1
(¼

i
!¼(l)

il
)

"

q
i

¼1 A+
k

a(k)
ik
!a(l)

il
! +

k: k9l

a6 (k)B
"

q
i

¼1
+

k: k9l

(a(k)
ik
!a6 (k))"0.

b) Under the assumptions in part a, we can posit that p3K
0

and
p(k)"p̂(k) for every k9l. Then

p(l){
il

"p(l)
il

a(l)*
il

/a6 (l)*, (A52a)

where the effective fitnesses at locus l are

a(l)*
iljl

"a(l)
iljl

# +
k: k9l

a6ª (k). (A52b)
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Result b follows immediately from (1.10), (A49), and (2.2). This
result leads to an easy proof of (A1).

c) Suppose now that p(l)
il
"0 at equilibrium for some l and il. Then

(A52) demonstrates at once that the eigenvalue corresponding to A(l)
il

is

aL (l)*
il

a6ª (l)*
"

1

¼1ª AaL (l)il
# +

k: k9l

a6ª (k)B. (A53)

Setting K"N!MlN in (A47) yields ¼K
i
/¼1ª , in agreement with (A53).

Remark A.5. If K*"0, then (A44) immediately reduces to

l(L)
iL
"

1

¼1ª AcN¼K i# +
k: k|K

cMkNa6ª (k)jkB. (A54)

Remark A.6. Finally, consider two multiallelic loci with recombination
frequency c. If K"0, then (A9) gives the eigenvalues

l
i
"(1!c)C

aL (1)
i1

#aL (2)
i2

a6ª (1)#a6ª (2) D . (A55)

Now suppose K"M1N. If K*"K, from (A47) we obtain

l(2)
i2
"

a6ª (1)#aL (2)
i2

a6ª (1)#a6ª (2)
. (A56)

If K*"0, then (A54) yields

l(2)
i2

"

(1!c)(a6ª (1)#aL (2)
i2

)#ca6ª (1)j
1

a6ª (1)#a6ª (2)
. (A57)

Since j
1
'!1 and c61

2
, we see at once that all the two-locus

boundary eigenvalues are positive, as we noted for the two-locus
internal eigenvalues.

If both loci are diallelic, the gametes AB and aB are segregating at
equilibrium, and the allele b is introduced, then (A56) and (A57) can be
simplified to

l(2)
2

"

a6ª (1)#a(2)
12

a6ª (1)#a(2)
11

(A58a)

and

l(2)
2
"

a6ª (1)#a(2)
12

!c(a(1)
12
#a(2)

12
)

a6ª (1)#a(2)
11

, (A58b)

respectively. The eigenvalues (A58) can also be deduced from Sect. 7 of
Bodmer and Felsenstein (1967).
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Appendix B. Generic hyperbolicity for weak selection

We denote by R the set of all matrices R"(r
ij
) of scaled selection

coefficients. We prove that the hyperbolicity assumption that

all equilibria of (3.13) are hyperbolic (H)

is generic in R.
As usual, by saying that (H) is generic we understand that the set of

those R satisfying (H) contains a residual subset of R (and, conse-
quently, is dense in R). Sometimes a generic property is said to hold
almost everywhere in a topological sense. In this context, we endow the
vector space R by its natural Euclidean metric.

As discussed in section 3 above, (H) holds if and only if 0 is
a regular value of the vector field qÂU(R, q) defined by

[U(R, q)](m)
im

"p(m)
im

u(m)
im

, (B1)

i.e., (3.13), on S
m1

]2]S
mn

.
By the parametric Sard theorem (Chow and Hale 1982, Corollary

10.4), to prove that the set of those elements of R for which 0 is
a regular value of U(R, · ) is residual, it suffices to show that if q̂ is an
equilibrium, i.e., U(RK , q̂)"0 for some selection-coefficient matrix RK ,
then

Range L
R
U(RK , q̂)"¹(S

m1
]2]S

mn
),

where ¹ denotes the tangent space, or, equivalently, that

q · L
R
U(RK , q̂)"0 implies q3(S

m1
]2]S

mn
)M. (B2)

In order to prove (B2), we perturb the matrix RK by considering
selection—coefficient matrices of the form R"RK #A, where A is from
the (m

1
#2#m

n
)-dimensional subspace of nonepistatic and under-

dominant selection—coefficient matrices with elements A
ij

defined by

A
ij
"

n
+
k/1

b(k)
ik

d
ikjk

.

We complete the proof by showing that if

q · (L/Lb(k)kk
)U(RK , q̂)"0 (B3)

for each k"1,2, n and k
k
"1,2, m

k
, then qoS

m1
]2]S

mn
, i.e.,

q(k)
1
"q(k)

2
"2"q(k)

mk
(B4)

for all k"1,2, n. Without loss of generality, we may assume that
0(p(k)

ik
(1 for all k"1,2, n, i

k
"1,2,m

k
: a similar argument holds
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for all the faces of S
m1

]2]S
mn

, and a finite intersection of residual
sets is residual. Since

rN (q)"rL M#
n
+
k/1

mk

+
kk/1

b(k)kk
[p(k)kk

]2, (B5)

we have

U(m)
im

(R, q)"U(m)
im

(RK , q)#p(m)
im Cb(m)

im
p(m)
im

!+
km

b(m)km
[p(m)km

]2D. (B6)

This implies

L
Lb(k)kk

U(m)
im

(R, q)"[p(m)
im

]2d
mk

d
imkk

!d
mk

p(m)
im

[p(m)km
]2

"d
mk

[p(k)kk
]2[d

imkk
!p(m)

im
]. (B7)

Consequently, if q satisfies (B3), we have

+
ik

q(k)
ik

(d
ikkk

!p(k)
ik

)"0, (B8)

whence
q(k)kk

"+
ik

q(k)
ik

p(k)
ik

(B9)

for all k
k
"1,2, m

k
. This implies (B4) and completes the proof.

For an interested reader, we note that (H) is generic in a stronger
sense: the set of fitness matrices for which it is satisfied is not only
residual, but open dense, and even has full measure. This stronger
result is a consequence of the fact that the equalities and inequalities
characterizing a fitness matrix not satisfying (H) are algebraic. Using
arguments similar to those in the proof of Proposition 1 in Brunovský
and Meravý (1984), one can show that the set of fitness matrices not
satisfying (H) is contained in a finite union of smooth manifolds of
nonzero codimension, and therefore its complement contains an open
dense subset of full measure of R. As in our residuality proof, it is
condition (B2) that has to be checked.

Acknowledgements. This work was begun during the visit of P.B. and T.N. to the
Erwin Schrödinger Institute in Vienna. The authors express their gratitude to ESI and
Karl Sigmund for the opportunity to collaborate in a pleasant and stimulating
atmosphere. T.N. would also like to thank Reinhard Bürger and the Institute for
Mathematics, University of Vienna, for their hospitality. The authors thank R. Bürger
and P. Polác\ ik for useful comments during the preparation of this paper. T.N. is most
grateful to Mitzi Nakatsuka for the superb typing of innumerable revisions and the
solution of several transmission and compatibility problems. P.B.’s research was partly
supported by the VEGA grants Nos. 1/1492/94 and 1/4190/97. T.N. was supported by
National Science Foundation grant DEB-9706912.

Convergence of multilocus systems 131



References

Akin, E.: The Geometry of Population Genetics. (Lecture Notes in Biomathematics,
vol. 31) Berlin: Springer 1979

Akin, E.: Cycling in simple genetic systems. J. Math. Biol. 13, 305—324 (1982)
Akin, E.: Hopf bifurcation in the two—locus genetic model. Mem. Amer. Math. Soc.,

vol. 44, No. 284, 1983
Akin, E.: Cycling in simple genetic systems: II. The symmetric cases. In:

Kurzhansky, A., Sigmund, K. (eds.) Dynamical Systems. (Lecture Notes Economics
and Mathematical Systems, vol. 287, pp. 139—153) Berlin: Springer 1987

Akin, E.: The General Topology of Dynamical Systems. Providence, R.I.: Amer. Math.
Soc. 1993

Barton, N. H., Turelli, M.: Adaptive landscapes, genetic distance and the evolution of
quantitative characters. Genet. Res. 49, 157—173 (1987)

Baum, L. E., Eagon, J. A.: An inequality with applications to statistical estimation for
probabilistic functions of a Markov process and to a model in ecology. Bull. Amer.
Math. Soc. 73, 360—363 (1967)

Bodmer, W. F., Felsenstein, J.: Linkage and selection: theoretical analysis of the
deterministic two locus random mating model. Genetics 57, 237—265 (1967)
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