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1 Uvod

Natura non facit saltum.

.....

zof a ucenec, autor Monadoldgie, Gottfried Wilhelm Leibniz. Azda presnejsie chcel
povedat’, ze priroda nerada robi skoky, vyjadrujic tym svoju vieru v robustnost’ a
stabilitu fyzikdlnych systémov vystavovanych rozlicnym porucham a vychylkam zo
stabilného stavu. Bezpochyby je mozné viest’ polemiku o Leibnizovom vyroku. Ved’
priroda predsa len robi skoky a prudké zmeny v spravani sa fyzikalnych systémov
su vd’aénym objektom vyskumu v najrozmanitejsich oblastiach badania. Takéto
zmeny sa Casto vysvetluju na zdklade matematickych modelov odrazajicich real-
itu prostrednictvom obycajnych alebo parcidlnych diferencidlnych rovnic s malym
parametrom. Néhle zmeny charakteru rieSeni singuldrne perturbovanych difer-
encidlnych rovnic vystihuji vznik pohraniénej a vnitornej vrstvy. Casto si potom
vychodiskom pre interpreticiu réoznych ocakavanych a zelanych vysledkov - poénic
Zeeman-Hackenovou synergetikou az po nemenej odvazne pokusy L. Kvasza o mode-
lovanie a vysvetlovanie epistomologickych ruptir vedeckych paradigiem ([Kvasz99]).

Teérie singularnych perturbacii a asymptotickych metéd malého parametra
skimaju vzt'ahy perturbovanych a neperturbovanych systémov. Vo vacsine pripadov
je ich hlavnym cielom ukazat, Ze v blizkosti rieSenia neperturbovaného systému
rovnic sa nachddza rieSenie mélo perturbovaného systému. Pritom rieSenia neper-
turbovaného systému mozu pozostavat’ z niekolkych casti, ktoré predstavuju po-
malé resp. rychle useky, zavisiac od toho aké sa pouzilo skdlovanie. Cielom tejto
prace je poukazat’ na vyuzitie technik malého parametra v singularne perturbo-
vanych a degenerovanych diferencidlnych rovniciach ako i v bifurka¢nej analyze
nelinedarnych systémov. V praci sa autor pokusa priniest’ niekol’ko réznorodych
pohladov na vyuzitie asymptotickych a regularizacnych technik v troch oblastiach
aplikdcii, ktorymi sa autor v ostatnom c¢ase zaoberal. Hoci sa jednd o Specidlne
problémy, autor sa nazdava, ze poskytnu ¢itatelovi pohl'ad na vyuzitie tychto metod
v roznych aplikaciach, ktorych spoloénym menovatelom je préave maly parameter a
jeho vyuzitie pri analyze skiumanych modelov. Na tomto mieste je nevyhnutné
podotknut’, ze nasledovné kapitoly obsahuji zdmerne zjednodusSené verzie tvrdeni



2 Uvod

a ich predpokladov tak, aby sa nenarusila plynuld citatelnost’ predkladanej prace.
Citatel’ sa moze s presnymi formulaciami a vysledkami obozndmit’ v Prilohe, ktord
je zostavena z troch dvojic autorovych ¢lankov.

Maly parameter a tedria singularnych perturbacii. Tak znie nazov prvej
Casti préace, ktord poukazuje na moznost’ vyuzitia tedrie singuldrnych perturbacii
pre systémy evoluénych parcidlnych diferencidlnych rovnic. Ako fyzikdlny model
je uvazovana tzv. neinercidlna limita pre Johnson-Sagelman-Oldroydov model
Poisseuleho pridenia vazkopruznej kvapaliny. V tomto pripade maly parameter
reprezentuje realnu fyzikdlnu veli¢inu - podiel Reynoldsovho a Deborahovho cisla.
Ukazuje sa, ze kvalitativne vlastnosti rieSen{ neinercidlnej limity, t.j. systému,
v ktorom sa straca maly parameter, si blizke vlastnostiam rieSeni plného, t.j.
perturbovaného systému rovnic s hoci nenulovym ale dostatoéne malym ”malym
parametrom”.

Maly parameter a regularizdcia degenerovanych diferencialnych rovnic.
Druhad cast’ prace tvori intermezzo medzi dvoma fyzikalnymi aplikdciami a prindsa
pohlad na moznosti regulariza¢nych technik pri stidiu tzv. degenerovanych tloh.
Maly parameter teraz predstavuje mieru regularizacie povodného degenerovaného
problému. Ako modelovy priklad regularizacnych technik sa v tejto praci uvazuje
problém pohybu rovinnych kriviek resp. fazovych rozhrani, kde rychlost’ pohybu je
mocninovou funkciou od krivosti pohybujticej sa krivky.

Maly parameter a slabo nelinearna analyza fyzikalnych modelov.
Zaverecna tretia Cast’ prindSa pohlad na dnes uz klasickd tedriu slabo nelinedrnej
analyzy fyzikalnych modelov. V tomto pripade maly parameter vystupuje latentne
a je skryty za tzv. rozvijajici parameter, podla ktorého sa rozvijaju poruchy,
t.j. vychylky zo stabilného stavu, vSetkych Studovanych veli¢cin systému. Slabo
nelinedrna analyza spociva v rozvinuti rieSenia do Taylorovho radu podla malého
parametra a nasledného porovnania koeficientov rozvoja. Ako modelovy problém
pre aplikéaciu slabo nelinearnej analyzy je studovany model magnetokonvekcie v ro-
tujucej vrstve.

Tres facet collegium.

August 2000

Daniel Sevcovic



2 Maly parameter
a teoria singularnych perturbacii

Cielom tejto kapitoly je poukédzat’ na moznosti vyuzitia metéd malého parametra
pri studiu limitného spravania sa systému inercidlnych variet pre polotoky, ktoré
su generované systémom singularne perturbovanych diferencidlnych rovnic v Ba-
nachovych priestoroch. Inercidlne variety su konStruované ako grafy nad Bana-
chovym priestorom a majui vlastnost’ pritahovania kazdého riesenia daného systému
rovnic. Hlavnou tlohou je ukazat’ vSeobecny vysledok o tom, Ze pre malé hodnoty
singuldrneho parametra je inercidlna varieta a sucCasne aj systém jej dotykovych
priestorov v blizkosti inercidlnej variety, ktord zodpovedd redukovanému systému
rovnic. V zdvere prvej Casti tejto kapitoly aplikujeme ziskané vysledky na Johnson-
Segalman-Oldroydov parabolicko-hyperbolicky systém parcidlnych diferencidlnych
rovnic, ktory modeluje planarne pridenie ne-Newtonovskej kvapaliny. V druhej
casti tejto kapitoly aplikujeme ziskané abstraktné vysledky za tcelom konstrukcie
disipativnej spétnej vazby, ktord stabilizuje zadany vystupny funkciondl. Tento
vysledok je potom aplikovany opéat’ na singuldrnej perturbovany Johnson-Sagelman-
Oldroyd model smykového pohybu piestovo riadeného toku ne-Newtonovskej kva-
paliny.

Vysledky casti 2.1 a 2.2 st népliiou autorovho ¢lanku [Sevco97a] (pozri Prilohu
6.1.1) pojednavajicom o hladkosti singuldrnej limity invariantnych variet singuldrne
perturbovanych systémov evolu¢nych rovnic. Vysledky cast{ 2.3 a 2.4 st obsiahnuté
v d’alsom autorovom ¢lanku [Sevco97b] (pozri Prilohu 6.1.2) o existencii disipativne;j
spatnej vazby pre singuldrne perturbované systémy.



4 Abstraktny vysledok o blizkosti inercialnych variet

2.1 Abstraktny vysledok o blizkosti
inercialnych variet

V priacach [Sevco94, Sevco95, Sevco97a, Sevco97b] sa autor zaoberal otdzkou
blizkosti inercidlnych variet pre systémy evoluénych diferencidlnych rovnic, ktoré
majui Struktiru

Ut - GE(U, S)

(2.1.1)
eS; + AS = F.(U, S)

kde € > 0 je maly parameter, X, Y st Banachove priestory, A je sektoridlny operétor
Y, F.: XxY*—=Y:G.: XxY* — X; st dostatocne hladké nelinearity definované
na zlomkovych priestoroch, a € [0,1), pricom F. — Fy, G — Gg ked ¢ — 0F.

Pripomeiime znamy vysledok o tom, Ze systém (2.1.1) generuje C' polotok
vo fazovom priestore X x Y* pre kazdé pevne zvolené ¢ > 0 (pozri Henry
[Henry81]). Podla prace Marion [Marion89] tento polotok ma invariantni expo-
nencidlne rychlo pritahujicu varietu M. (inercidlnu varietu) za predpokladu, ze
Lipschitzova konstanta zobrazenia F. je dostatotne malad. Pripustame aj situdcie,
v ktorych M. nekoneénorozmernd Banachova varieta ([Marion89]). Naviac tato va-
rieta moze byt konStruovana ako graf nad Banachovym priestorom X, t.j. M. =
{(U,®.(U)),U € X} (pozri [Marion89]). Naviac Chow & Lu [Chow88] ukézali, ze
M, je vskutku C* varieta za predpokladu, ze F' and G si C* hladké ohrani¢ené
funkcie.

V ramci geometrickej tedrie singuldrnych perturbécii bolo vynalozené znacné
usilie na dokaz spojitosti singuldrnej limity € — 0% pre abstraktné systémy typu
(2.1.1). Dobrt referenciu poskytuje kniha P.Bates [Bates98] venovand problematike
stability invariantnych variet singuldrne perturbovanych tloh, resp. kniha Mis-
chenko et al. [Mish94] ako i praca Sviridyuk & Sukacheva [Svir90] a mnohé d’alsie.

Hlavnym cielom predkladanej prace je ukazat’, ze pre malé hodnoty singularneho
parametra € > 0 je inercidlna varieta M. je C! blizko k variete My = {(U, S), AS =
Fy(U, S)} zodpovedajicej rieseniam kvazi-dynamickej ilohy U; = Go(U, S) s vézbou
AS = Fy(U,S). Poznamenajme, 7e C stabilita inercidlnych variet, resp. centro-
nestabilnych variet je uzitotnd vlastnost’ s vyuzitim v teérii Morse-Smaleovych vek-
torovych poli. (pozri pracu Mora & Sola-Morales [Mora89]).

TVRDENIE 2.1. [Sevco97a, Theorem 3.9] Predpokladajme, Ze tloha (2.1.1) vyhovuge
predpokladom sformulovanygch v hypotéze (H) z élanku [Sevco97a], Prilohu 6.2.1.
Potom existugii konstanty § > 0 a g9 > 0 také, Ze ak |DsF.||pyey) < 6, tak
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potom pre kazdé € € [0,e0] ezistuje invariantnd varieta M. pre polotok generovany
systémom (2.1.1),

M, ={(U,®.(U)),U € X} kde ®. € Ol (X, YY),

d. — &y ked ¢ — 0" wpriestore Cpyy(B,Y*)

pre kaZdi ohraniceni otvoreni podmnozinu B C X. Ak dim(X) = oo, tak M.
je mekoneéno rozmernd Banachova podvarieta vo fazovom priestore X x Y. Ak
dim(Y') = oo, tak codim(M.) = co. Ak naviac plati, Ze rezolventnsj operdtor A=1 :
Y — Y je kompaking, tak varieta M., € (0,e0], exponencidlne rychlo pritahuje
kaZdi ohranicentd mmnoZinu pociatocnych podmienok z X x Y.

2.2 Aplikacia na JSO model prudenia tlakovo
riadeného toku ne-Newtonovskej kvapaliny

V tejto casti budeme aplikovat’ ziskany abstraktny vysledok na problém nein-
ercidlnej limity pre Johnson-Segalman-Oldroyd model pridenia ne-Newtonovskej
kvapaliny. Pre jednoduchost’ budeme uvazovat’ iba planarne Poisseuleho pridenie
ne-Newtonovskej kvapaliny, ktorou moéze napriklad byt vysoko elasticky a vel'mi
viskézny polymér. Kandl je rozsireny pozdlz y osi, naprie¢ medzi x € [—1,1]. Tok
kvapaliny uvazujeme symetricky vzhladom x = 0 a kvapalina vyhovuje predpokladu
o jednoduchom strihovom rezime. Premenné si nezavislé od y a teda v = (0,v(¢, z))
(pozri Obr. 2.1).

v.(0,8) =0

N
v

—_—m

—_—

v(1,t) =0

Obr. 2.1

Tenzor extra napatia je ur¢eny na zaklade Johnson-Segalman-Oldroyd konstitu¢ného
zédkona (pozri [Malkus91]). Na zdklade prace Malkus, Nohel and Plohr [Malkus91]
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potom pohyb takejto kvapaliny moze opisany bezrozmernym systémom parabolicko-
hyperbolickych rovnic

EVy — VUpy =05 + f
op=—0c+ (1+2)v, (x,t) €(0,1) x (0,00) (2.2.1)

2t =— 2 — OUy

v.(0,t) =v(0,t) =0(0,t) =0 pre kazdé t > 0

kde v = v(x,t), je skalar rychlosti, o je tzv. extra strihové napitie, z je rozdiel
normélovych napati. Okrajové podmienky zodpovedaju predpokladu o neklzavosti
kvapaliny na stendch z = +1 a symetri¢nosti vzhladom na os x = 0 (pozri Obr.
2.1). V pripade tlakovo riadeného pohybu je tlakovy gradient f vopred zadany.

Maly parameter € > 0 je v tomto modeli proporcionalny podielu Reynoldsovho a
Deborahovho (Weissenbergovho) ¢isla. Dolezité je upozornit’, ze na zaklade reolog-
ickych experimentov Vinogradova et. al. [Vinog72] je toto ¢islo vel'mi malé, rédovo
O(107'2). Tento poznatok ddva moznost’ tivahe o tzv. neinercidlnej aprozimdcii
e = 0. Na zdklade tejto uvahy boli Malkus, Nohel a Plohr [Malkus91] schopni
vysvetlit’ vel'a dolezitych a v experimentoch pozorovanych fenoménov akymi st napr.
prietrz toku, hysterézia, tvarova pamat’ a ¢i latencia.

Hoci vysledky dosiahnuté pre redukovany systém rovnic (2.2.1) s ¢ = 0 poskytli
uspokojivé odpovede na otazky reolégov, napriek tomu stile ostdvala otvorena
otdzka o opravnenosti neinercidlnej aproximécie systému (2.2.1). V élanku [No-
hel93] sa Nohel a Pego pokusili dokdzat® spravnost’ neinercidlnej aproximécie
prostrednictvom Morse-Conleyho tedrie. Dokézali, ze pre e — 0 rieSenia konverguju
bodovo k rieSeniu neinercidlnej aproximdcie systému (2.2.1). Cielom tejto kapi-
toly je poskytnut’ alternativny pohlad na tito problematiku. V nasom pristupe sa
budeme opierat’ o abstraktny vysledok dosiahnuty v ¢asti 2.1. Aplikdciou Tvrdenie
2.1 dostavame

TVRDENIE 2.2. [Sevco97a, Theorem 3.11] Pre kazdé dostatoéne malé ¢ > 0 ne-
linedarny systém rovnic (2.1.1), modelujici strihovy pohyb Poisseuleho plandrneho
pridenia Johnson-Segalman-Oldroydovej kvapaliny,

i) md nekonecno rozmerni nekonecéno ko-rozmerni lokdlnu invariantni varietu
M., ktord exponencidlne rijchlo pritahuje vsetky riesenia systému (2.1.1).
it) Existuje Ry > 1 také, Ze kazdé riesenie systému (2.1.1) po istom c¢ase vstipi do
gule o polomere Ry vo fdzovom priestore (Lo (0,1))? x WEl;/Q(O, 1);
iii) M. = {(U,Z,‘PE(U, Z))>(07 Z) € BR0}7 . € Cl}dd(BRmWé,Q(Ov 1)) kde BRO =
{(0,2) € (Lo (0,1))%, N[l + 1|21 < Ro}s
i) ®. — 0 ked’e — 07 v topoldygii priestoru Cl,,(Br,, Wé’z(o, 1)).
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Dokaz tvrdenia sa nachadza v Prilohe 6.1.2. Z hl'adiska odovodnenia spravnosti nein-
ercialnej aproximaécie za najdolezitejsiu cast’ predoslého tvrdenia mézeme povazovat’
bod iv), ktorého zmysel tkvie v tom, ze asymptotické spravanie sa rieseni systému
(2.1.1) s € > 0 velmi malym je blizke asymptotickému spravaniu sa rieSeni reduko-
vaného systému rovnic, v ktorom ¢ = 0.

2.3 Existencia disipativnej spatnej vazby

V tejto casti prace budeme Studovat’ Specificky problém stabilizacie rieSeni singularne
perturbovaného systému rovnic v Banachovych priestoroch. Cielom je dokéazat’ ex-
istenciu a skumat’ kvalitativne vlastnosti disipativnej spatnej vézby, ktord stabi-
lizuje zadany vystupny funkciondl. Abstraktny vysledok bude potom aplikovany v
nasledujtcej casti na Johnson-Sagelman-Oldroyd model piestovo riadeného pohybu
ne-Newtonovskej kvapaliny.

Studovat’ budeme singuldrne perturbovany systém evoluénych rovnic

z =G, (l‘, Y, Z)

(2.3.1)
ey + By =F.(z,y, 2)

kde 0 < ¢ <« 1 je maly parameter, x € X,y € Y, X a Y st Banachove priestory, B je
sektorialny operator v Y. Skimat’ budeme Specificky spéatno vézobny mechanizmus,
ktory moze byt’ vyjadreny prostrednictvom funkcie spatnej vazby

()

kde = je hladka funkcia z X do iného Banachoveho priestoru Z. Inymi slovami
povedané, pozadujeme, aby spétnd vézba z = E(x) zdvisela iba od tzv. pomalej
premennej z.

Vyznam spéatnej vazby tkvie v nasledovnom pozorovani. V mnohych aplikovanych
pripadoch totizto struktira redukovaného systému rovnic (2.3.1) s € = 0 umoziuje
explicitne najst’ syntézu z = Zy(z) s vlastnost'ou, ze zadany vystupny funkcional Qg
sa asymptoticky stabilizuje na nule, t.j. Qo(z(t),y(t))) — 0 ked’ t — oo. Takyto
priklad konstrukcie moze Citatel’ najst’ v nasledovnej kapitole.

Problém teraz spoc¢iva v zodpovedani otazky, ¢i sa tato vlastnost’ da preniest’ aj na
plny systém singuldrne perturbovanych rovnic, v ktorom maly parameter je vskutku
maly ale nenulovy. Riesit’ teda mé zmysel otdzku existencie spatnej vizby = = =,
stabilizujicej vystupny funkciondl Q). pozdlz trajektérii plného systému singuldrne
perturbovanych rovnic (2.3.1). Zaroven je zmysluplné sa pytat’, ¢i spatna vézba

[1]

z =
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—_

= = =, je blizko spéatnej vazby = = =y redukovaného systému. Hlavny vysledok
autorovho ¢lanku [Sevco97b| (pozri Prilohu 6.1.2) riesi tento problém nasledovnym
sposobom.

TVRDENIE 2.3. [Sevco97b, Theorem 1.1] Predpokladajme, Ze si splnené predpoklady
(H1)-(H4), (5.1) z ¢ldnku [Sevco97b], Priloha 6.1.2. Potom pre kaZdé dostatocne
malé € > 0
a) systém (2.8.1) pripista disipativnu spitni vizbu =. € Cly (B, Z)NCY%Y(X, Z)
pricom
b) lim, g+ Ec = Eg v Clyy(B, Z) pre kazdi otvoremi ohranicentd podmnoZinu B C
X. Naviac
¢) spdtnd vazba z = Z.(x) stabilizuje zadany vystupny funkciondl Qc, t.j.
lim; o0 Qe ((t),y(t)) = 0 pre kazdé riesenie (x(.),y(.)) systému (2.3.1).
d) Polotok generovany rieseniami systému (2.3.1) je asymptoticky Q. - asymp-
toticky obmedzensj na C* hladki inercidlnu varietu M.. Tdto varieta M, je C*
blizko k variete My redukovaného systému pre dostatocne malé € > 0.

2.4 Aplikacia na JSO model prudenia piestovo
riadeného toku ne-Newtonovskej kvapaliny

V tejto cCasti sa budeme zaoberat’ aplikiaciou Tvrdenia 2.3 v tedrii prudenia
ne-Newtonovskych kvapalin. Podobne ako v casti 2.2 budeme ako fyzikalny
model opéat’ uvazovat’ Johnson-Segalman-Oldroydov model prudenia kvapaliny.
ktory bol s ispechom pouzity na opis prietokovych nestabilit objavujicich sa pri
analyze pridenia ne-Newtonovskej kvapaliny (Malkus, Nohel, Plohr and Tzavaras
Malkus91], [Nohel90], Grob [Grob94]), Aarts, Van de Ven [Aarts95]). Tato cast’
prace bola motivovand najma reologickymi experimentami Lima & Schowaltera
[Lim89]. Ich experimentalne data poskytli evidenciu o vzniku oscilatorického rezimu
pre tlakovy gradient v pripade, ze objemovy prietok presiahne istu kriticki hranicu.
V praci [Malkus93] Malkus, Nohel & Plohr vyvinuli matematicki teériu schopni
vysvetlit' tento jav prave na zdklade JSO modelu, v ktorom tlakovy gradient je
funkciou strihovych napéti. Isty nedostatok ich pristupu spoc¢ival v tom, ze (podobne
ako uz bolo spomenuté v kapitole 2.2) sa uvazovala iba tzv. neinercidlna aproximécia
problému, kde € = 0. Cielom nasledovnych riadkov je poskytnut’ tvrdenie o exis-
tencii a stabilite disipativnej spatnej vazby aj v pripade, ze € > 0 je dostato¢ne maly
parameter.

Obrazok 2.2 poskytuje technologicky pohlad na piestovo riadeny tok ne-
Newtonovskej kvapaliny.
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Obr. 2.2

V préci [Sevco97b] sa autor zaoberal JSO modelom tlakovo riadeného pridenia
ne-Newtonovskej kvapaliny

EVy — Vg = Oy + f
or+o= (142, (z,t) € (0,1) x (0,00) (2.4.1)

2t +2=—00;
v.(0,t) =v(0,t) =0(0,t) =0 pret >0

kde vyznam jednotlivych veli¢in je ten isty ako v ¢asti 2.2. Ulohu malého parametra
opat’ zohrava podiel Reynoldsovho a Deborahovho éisla € > 0, ktory je rddovo
O(10712). Na rozdiel od modelu tlakovo riadeného pohybu budeme teraz uvazovat’
piestovo riadeny model, v ktorom tlakovy gradient nie je vopred zadany moze byt’
vo vSeobecnosti funkciou Casu, resp. veli¢in o, z. Tok kvapaliny méa vSak v tomto
pripade d’alsie obmedzenie v predpisanom prietoku, t.j. Q(t) = fol v(t,z)dr ma
byt’ rovné predpisanej hodnote Q.. Pre redukovany systém rovnic Malkus et al.
odvodili, ze tlakovy gradient je nelokdlnou funkciou prietokovych premennych

1
f=E0(0,2) =3Q iz — 3/ xo(x)dx
0

(pozri [Malkus93, (FB)]). Rozsiahle numerické simuldcie z ¢lanku [Malkus93] ukazali,
ze tento tvar vézby je schopny vysvetlit' zaujimavy jav oscilatorického rezimu
priebehu tlakového gradientu f = f(t), ktory sa skuto¢ne podarilo experimentédlne
zachytit’ v reologickych experimentoch Lima & Showaltera [Lim89].

Hlavnym vysledkom tejto Casti je tvrdenie o existencii a stabilite disipativnej
spatnej véazby v pripade, ze € > 0 je dostatotne maly parameter. Volne povedané,
toto tvrdenie hovori, ze pre kazdé dostatotne malé 0 < € < 1 existuje spatna vézba
systému (2.4.1), vyjadrena skrze tlakovy gradient f = f.(o,z2), ktord stabilizuje
objemovy prietok na zadanej hodnote @)y;,. Naviac zobrazenie f. je C* blizko k
funkciondlu fo = Z¢(0, z) skonstruovaného Malkusom et al. v [Malkus93].

Presnd formuldcia tvrdenia a predpokladov sa nachddzaji vo vysledku [Sevco97b,
Theorem 6.3] (pozri Prilohu 6.1.2). Dokaz sa opiera o abstraktny vysledok z kapitoly
2.3.



3 Maly parameter
a regularizacia degenerovanych
diferencialnych rovnic

V tejto kapitole sa sustredime na d’alsi aspekt vyuzitia metéd malého parametra.
Cielom je poukézat’ na jeho vyuzitie v regularizacii degenerovanych parabolickych
rovnic. Metdda regularizacie je uzitoénym nastrojom nielen z uhla pohl'adu analyt-
ickych dokazov existencie rieSenia, ale poskytuje aj navod na konstrukciu stabilnych
numerickych schém riesenia degenerovanych tloh. Regularizacné techniky zavede-
nia malého parametra pouzijeme na problém dokazu existencie rieSenia opisujiceho
pohyb rovinnych kriviek. Analyza pohybu rovinnych kriviek podla krivosti je vel'mi
uzitotnd pre lepsie pochopenie dynamiky pohybu fazovych rozhrani. Obsah tejto
kapitoly je detailne rozpracovany v autorovych ¢lankoch [Mik00, Mik99] (Prilohy
6.2.1 a 6.2.2), ktoré si spoloénym dielom s K.Mikulom.

3.1 Analyza pohybu rovinnych kriviek
podl’a nelinearnej funkcie krivosti

Studovat’ budeme pohyb rovinnych kriviek spliajicich geometrickd rovnicu

v =p(k,v) (3.1)

kde v je normalova rychlost’ pohybu, & je krivost’ krivky a v je dotykovy uhol (pozri
Obr. 3.1).

V poslednych rokoch geometrické rovnice tvaru (3.1) pritiahli mnoho pozornosti
ako z teoretického, tak aj z praktického pohladu ich vyuzitia. Aplikéacie rovnice
(3.1) vznikaju v rozlicnych fyzikdlnych modeloch, najcastejsie opisujicich problém
fazovych rozhrani. V tomto pripade rovnica (3.1) zodpoveda Gibbs-Thomsonovmu
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zdkonu krystalického rastu podchladeného krystédlu (pozri [Gurtin93, Schm96,
Benes98]). 'V sérii clankov [Angen89, Angen94, Angen96] Angenent a Gurtin
Studovali pohyb fazovych rozhrani podla zdkona

p(v,v)v = h(v)k —g

kde p je kinematicky koeficient a velic¢iny h, g maji povod v konstituénych zakonoch
opisu fazovej hranice. Zavislost’ normalovej rychlosti v na krivosti k je dand skrze
povrchové napétie. Na druhej strane zavislost’ na uhle v (orientécia rozhrania)
vnasa anizotropické efekty do modelu. Vo vSeobecnosti kinematicky koeficient
1 moze samotny zavisiet’ od rychlosti. Tento fakt dava opravnenie na Studium
vSeobecnej zdvislosti rychlosti v = ((k,v) na krivosti k a uhle v. Linedrny pripad
ked’ B(k,v) zavisi linedrne na krivosti k£ bol detailne analyzovany v précach [Gage86,
Abresch86, Angen9la, Gray87|. Numerické aspekty rieSenia zase boli skimané v
pracach [Dziuk94, Deck97, Mik96, Osher88, Mik99, Schm96, Mik96, Mik97, Gi-
rao95, Girao94, Ush00, Kim94, Kim97, Moiss98, Seth90, Seth96, Hand198, Cagin90,
Elliot96, Benes98|.
T
(% i 4

k<0

Obr. 3.1.

S rovnicami typu (3.1) sa mézeme stretnut’ aj tedrii spracovania obrazu, kde
sa s uspechom pouziva tzv. afinna skalovacia funkcia, ktord zodpoveda vyberu
v = B(k) = k'/3. Tieto modely boli studované najma v pracach Sapiro and Tan-
nenbaum ([Sap94|) a Alvarez, Guichard, Lions and Morel ([Alvarez93, Alvarez94])
a inych autorov (pozri napr. [Alvarez93, Sap94, Angen98|). Anizotropické mod-
ely boli analyzované v pracach ([Kass87, Casse97]). Dobri referenciu na vyuzitie
geometrickej rovnice (3.1) v rozmanitych oblastiach pouzitia poskytuje prehladnd
kniha Sethiana [Seth96].

V tejto casti sa budeme zaoberat’ predovSetkym pripadom, ked’

Bk, v) =v(v) k[ k (3.2)

kde y(v) > 0 je dand funkcia anizotropie prostredia m > 0. Z analytického uhla
pohladu je cielom ukazat’ lokalnu existenciu reguldrnej triedy rovinnych kriviek
vyhovujicich rovnici (3.1) pre oba pripady 0 < m < 1 akoi 1 < m < 2. Pripad
rychlej difuzie je rozsirenim vysledku Angenent, Sapiro and Tannenbaum [Angen98],
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ktory analyzuje iba pripad k& = 1/3. V pripade pomalej degenerovanej diftzie 1 <
m < 2 budeme potrebovat’ dodatoény geometricky predpoklad na pociatoént krivku.
Poznamenajme, Zze hodnota exponentu m = 2 sa javi byt’ kritickou nielen kvoli nasim
vysledkom, ale aj z dovodu vysledkov Andrewsa [Andr98], ktory ukézal, ze hodnota
m = 2 je kritickd v zmysle, Zze pre vysSie mocniny uz nemusi existovat’ klasické
rieSenie.

Pripomenime, Ze predpoklady na zdklade ktorych Angenent v sérii clankov
[Angen90a, Angen90b] dokazal lokélnu existenciu klasického rieSenia sa nedaji
bezprostredne aplikovat’ na degenerovany pripad (3.2), m # 1. Zhruba povedané,
klicovy predpoklad jeho tedrie je

0< A < Bk, v) < Ay < o0, (3.3)
kde AL > 0 si konstanty. V dalsom ¢lanku Angenent, Sapiro a Tannenbaum

[Angen98| ukdzali lokdlnu existenciu klasického riesenia aj pre singuldrny pripad
B(k) = k/3. Ich argument je zalozeny na regularizacii funkcie 5(k, v) = v(v)|k|™ 'k

B B
tak, aby regularizovana funkcia 3¢ vyhovovala predpokladu (3.3) a naviac aby 5 —

B ked ¢ — 0. Maly parameter teda hri tlohu regularizacného parametra. V
praci uvazujeme $pecifickd regularizdciu mocninovej funkcie (3.2) v tvare

m—1

k
8% (k,v) = m’y(u)/0 (2 + €577 de ak 0 <m <1;

B°(k,v) = B(k,v) +ek  ak m>1

Myslienka metédy dalej spociva v tom, ze prostrednictvom a-priérnych odhadov
nezavisiacich na malom regularizatnom parametri ¢ sa da ukazat’ existencia
reguldrnej limity rieSenia pre € — 0%. Tieto odhady s zalozené na Nash-Moserovej
iteracnej metéde na ziskanie L odhadu pre gradient normélovej rychlosti. Dalej v
tejto kapitole ukazujeme moznost’ rozsirenia vysledku Angenenta et al. [Angen98]
pre k = 1/3 aj na pripad 0 < m < 1 ako i 1 < m < 2. Hlavny vysledok sa d&
zhrntt’ do nasledovného tvrdenia 3.1. Presna formulécia sa d& najst’ v Prilohe 6.2.1.
Je urcitou zaujimavost'ou, ze ako dolezity geometricky predpoklad v pripade degen-
erovanej pomalej difizie 1 < m < 2 sa ukazala poziadavka, aby kazdy inflexny bod
pociatoénej krivky I'° (ak nejaké inflexné body vobec m4) mal nanajvys 2 + ﬁ
rad kontaktu so svojou doty¢nicou. Prikladom takéhoto inflexného bodu je pociatok
Bernoulliho lemniskaty (z2 4+ 3?)? = 4zy. V tomto priklade je uvedens geometricka
podmienka splnend vtedy a len vtedy ak 0 < m < 2.
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TVRDENIE 3.1. [Mik00, Theorem 6.3] Predpokladajme, Ze (B(k,v) = v(v)|k|" 1k
kde 0 <m <2, v a % = Image(z®) vyhovuji predpokladom [Mik00, Theorem 6.3].
Potom ezistuje T > 0 a systém rovinnych kriviek T'* = Image(z(.,t)),t € [0,T],
taky, Ze

a) z,0,z € (C(Qr))?, 02z, Oz, 0,0:r € (L(Qr))? kde Q7 = (0,1) x (0,T);

b) tok T = Image(z(.,t)),t € [0,T) requldrnych rovinnijch kriviek spliia geomet-

rickid rovnicu
8753: = ﬁ]\_f + Oéf s

kde ]V,f st normdlovy, resp. tangencidlny vektor ku krivke T, 8 = B(k,v) a
a je tangencidlna rychlost’ zachovdvajica relativnu dl’Zku

0wz (u, )] [0uz® (u)]
It = 7,0

pre kazdé (u,t) € Qr kde L' je celkovd dl%ka krivky T'.

Vysledky analytickej Casti si potom aplikované za tcelom konstrukcie efektivnej
numerickej schémy na riesenie geometrickej rovnice (3.1). Na zdver tejto kapitoly
prindsame ukézky numerickych simuldcii. Dalsie priklady si moze itatel pozriet’ v
¢lankoch [Mik99, Mik00], ktoré tvoria Prilohy 6.2.1 a 6.2.2.

Obr. 3.2. (k) = k Obr. 3.3. B(k) = k'/3
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Na obréazku 3.3 je zretelné, ze limitnym profilom krivky je elipsa. Toto pozorovanie je
plne v silade s tedriou o afinnom skédlovani pochddzajicej od Sapira a Tannenbauma
[Sap94]. Podla tychto vysledkov je pre pripad & = 1/3 a generickej pociatoénej
krivky limitnym profilom vzdy elipsa. Poznamenajme, Ze tvrdenie sa da rozsirit’
aj na iné hodnoty parametra m vystupujiceho v funkcii B(k) = |k|™ 1k (pozri
Ushijima a Yazaki [Ush00]), pricom kritickymi st hodnoty v tvare m = 1/(n? — 1).

Poznamenajme, ze predoslé obrazky boli po¢itané pomocou numerickej schémy,
ktora vyuzivala netrividlnu tangencidlnu zlozku rychlosti . Hoci tangenciilna
rychlost’ z analytického hl'adiska nemeni geometricky tvar kriviek, jej vyznam spociva
v numerickej implementacii. Mnoho autorov uskuto¢nilo vypocty pohybu kriviek
bez uvazovania tangencialnej rychlosti. Vysledky vSak viedli k roznym numerickym
nestabilitam spésobenym nerovnomernym zahustovanim numerickych bodov. Na
Obr. 3.4 a 3.5 mozeme vidiet' ako numerickda schéma pouzivajica nulovid tan-
gencialnu rychlost’ vedie k nestabilitdm, hoci poc¢iatoénd krivka a normalova rychlost’
0 su tie isté ako v experimentoch na Obr. 3.2 resp. Obr. 3.3.

Obr. 3.4. (k) = k, nulovd tan- Obr. 3.5. F(k) = k'3, nulovéd tan-
gencialna rychlost’ gencialna rychlost’



4 Maly parameter
a slabo nelinearna analyza
fyzikalnych modelov

Cielom zaverecnej kapitoly je poukéazat’ na d’alsie dolezité vyuzitie technik malého
parametra v aplikovanych problémoch. Naplinou kapitoly je slabo nelinearna metéda
analyza nelinedrnych fyzikdlnych problémov. Tazisko tejto metédy spoéiva v rozv-
inuti vSetkych veli¢cin modelu do Taylorovho radu podl'a mocnin malého parametra,
dosadenim tychto rozvojov do fyzikdlneho modelu a néasledného porovnania koefi-
cientov pri rovnakych mocnindch malého parametra. Rozvijané veli¢iny sa chépu
ako poruchy od stabilného stavu fyzikalneho systému. Vysledkom porovnania koe-
ficientov rozvoja su potom napr. amplitidové rovnice, normélne formy pre Studium
roznych bifurkécii, resp. Ginzburg-Landauove modula¢né rovnice. 7 matemat-
ického hladiska slabo nelinearna analyza sa d& interpretovat’ ako lokalna bifurkaéna
analyza a maly parameter zodpoveda rozvijajucemu alebo bifurkaénému parametru.
Konkrétne sa budeme zaoberat’ aplikdciou metdédy slabo nelinedrnej analyzy na
model magnetokonvekcie, ktord podrobnejsie diskutovana v Prilohach 6.3.1 a 6.3.2.
Obsah tychto kapitol tvoria spoloéné clanky s M.Revallom. J.Brestenskym a
S.Sevéikom [Reval97, Reval99].

4.1 Slabo nelinearna analyza modelu rotujucej
magnetokonvekcie

Vyznam §tidia modelov rotujicej magnetokonvekcie tkvie najmé v naplneni dl-
hodobej snahy vedcov o vysvetlenie vzniku a dlhodobej existencie zemského magne-
tizmu a efektu zemského dynama. Magnetokonvekcia v rotujicej vrstve, tak ako ju
popisal Taylor [Taylor63] a d’alej skimali Soward [Sow79, Sow86], Skinner [Skin88,
Skin91|, Fearn a Proctor [Fearn94a, Fearn94b|, sa stala sice velmi zjednodusenym
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no predsa len vychodiskovym modelom pre stddium vzniku oscilacnych nestabilit.
Prave oscila¢né nestability su povazované za jedny z moznych vychodisk pre vysvetle-
nie dlhodobo udrziavaného magnetického pola nasej planéty - Zemského dynama.
Podl'a Cowlingovej tedrie by sa totizto jednoduché magnetické polia Zeme (Eisto
poloidalne, resp. ¢isto toroidalne) exponencidlne rychlo utlmili a jedind Sanca na
vznik dynama je netrividlna kombindcia oboch tychto zloziek poli. Nie je vSak
cielom tejto kapitoly pojednavat’ o tychto Sirsich suvislostiach a preto sa v d’alsom
obmedzime iba na stidium Taylorovho modelu rotujicej magnetokonvekcie v hori-
zontalnej vrstve.

Meto6du slabo nelinearnej analyzy vyuzijeme pri stidiu modelu magnetokonvekcie
v rotujicej horizontalnej cylindrickej vrstve naplnenej vodivou kvapalinou. O vrstve
predpokladame, ze je na spodnej ¢asti zahrievand a nerovnomerne stratifikovana, ¢o
znamend, ze tepelny gradient nie je konstantny pozdlz sirky vrstvy. Dalej sa o
vrstve predpoklada, ze je preniknutd azimutalnym magnetickym polom. Pri vybere
zodpovedajiceho fyzikalneho systému rovnic sme vychddzali z modelu opisujuceho
tzv. Ekmanovu vrstvu, ktord sa rozprestiera pozdlz horizontalnych mechanickych
hranic. V tomto modeli jedinu nelinearitu predstavuje tzv. modifikovanad Taylorova
podmienka, ktora bola odvodena J.B. Taylorom v praci [Taylor63].

z
Q
b
d Ekman layer
0 ¢
‘—// S

Obr. 4.1 Rotujujica vrstva v azimutdlnom magnetickom poli

Zakladné polia su reprezentované nulovym rychlostnym rychlostnym polom, az-
imutalnym magnetickym polom a nehomogénne stratifikovanym teplotnym polom
s parabolickym profilom stratifikacie, t.j.

S - z z—d
Uy=0 By = By — To=T,-AT-[1— —— .
0 ) 0 qub) 0 ! d( 22}’(\4—d>

Respektujuc cylindrickd geometriu modelu budeme vsetky veli¢iny vyjadrovat’ v
cylindrickych siradniciach - vyska z € (0,d), polomer s € (0,s,) a azimutdlny
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uhol ¢ € (0,27). Jednotkové vektory budi oznacené ako Z, s, é. Vychylky poli od
zakladného stavu oznacime ako u, b, 0.

Pri odvodzovani modelu sme dalej uvazovali Bussinesqueovu neinercidlnu
aproximaciu a Ekmanovu neviskéznu limitu. Prvy predpoklad vedie na staticku
rovnicu zachovania linedrneho momentu a druhy zase k zanedbaniu viskézneho ¢lena
v hlavnom objeme kvapaliny. Pri druhom predpoklade je nutné poznamenat’, ze
viskozita hra tlohu prave v pohrani¢nej tzv. Ekmanovej vrstve. Efekt viskozity
(Ekmanovo nasdvanie) sa vSak premietne do rovnic prave vd’aka modifikovanej Tay-
lorovej podmienke (pozri nizsie). Systém riadiacich rovnic pre malé vychylky w, b,
od zakladného stavu sa potom skladéd so statickej rovnice rovnovahy Lorentzovej,
Coriolisovej a gravitacnej sily, indukénej rovnice a tepelnej rovnice

Exu=—-Vp+A[(Vxsd)xb+(Vxb)xsd+ROz
OHb—Vx(sQpxb)=Vx(uxsp)+ Vb (4.1)
q (8t9~+(8§2<£-V)«§) — —w-VT,+ V2
a podmienok solenoidalnosti poli
V-b=0, V-u=0.

Hraniéné podmienky zodpovedaji pevnym mechanickym, perfektne elektrickym a
tepelne vodivym horizontdlnym vrstvam

o _
0z

u,=0=>b,=0,%x 0 prez=0,d.
Uvedeny systém je uz v bezrozmernom tvare, pricom R reprezentuje modifikované
Rayleghovo ¢islo, A Elsasserovo ¢islo, £ Ekmanovo ¢islo, ¢ Robertsovo éislo.

Ako uz bolo spomenuté, jedinou nelinearitou vstupujicou do systému riadiacich
rovnic je tzv. modifikovana Taylorova podmienka udavajica vzt'ah medzi vychylkou
magnetického pol'a b a uhlovou rychlostou 2 geostrofického toku. Této zavislost’
moze byt’ vyjadrend skrze

A d 27

t.j. Q je imerna vertikdlnemu a azimutalnemu priemeru azimutalnej zlozky Lorent-
zovej sily.

Dalsf postup pri analyze systému (3.1) spociva v dvoch krokoch:
1) analyza linearizovaného problému
2) slabo nelinedrnej analyze
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1) Linearizovany problém zodpovedd systému rovnic (4.1), v ktorom je uhlova
rychlost’ €2 nulova. Riesenie linearizovaného systému rovnic mozno hl'adat’ metédou
separacie premennych v tvare

f(z,s,qb,t) = Re {A(%t) f(2)Jm(ks)exp (im¢ + \t)},

kde symbol f reprezentuje kazdd z hladanych funkeif w, b, 6. Dalej m predstavuje
azimutédlne vinové ¢islo, k radidlne vinové ¢islo, A = io je komplexnd frekvencia, A je
komplexna amplitida, J,, je Besselova funkcia prvého druhu m-tého radu, € je maly
rozvijajuci parameter, ktorého vyznam bude zrejmy z nasledovnej slabo nelinearnej
analyzy. Linearizovany problém sa potom d& struc¢ne zapisat’ v operatorovom tvare

Lri ¥V =0 (4.2)

kde vektor ¥ = (u,b, é) a Lp i, je nesamoadjungovany diferencialny operdtor
druhého radu v premennej z.

Stidiom riesen{ linearizovaného problému sa zaoberal Sevéik v praci [Sev-
cik89]. Vysledkom tejto analyzy bolo stanovenie vlastnej funkcie ¥y ako i krit-
ickych hodnoét bifurkaénych parametrov R, k., A. pre roézne hodnoty fyzikdlnych
parametrov A, ¢, m. Nasledovné obrazky zavislosti kritického Rayleghovho ¢isla na
Elssaserovom ¢isle su prebraté s autorovho clanku [Reval99] a ich podrobnejsi opis
sa da najst’ v Prilohe 6.3.1.

10* I 10* ¢
103 + 103 *
¢ ¢ 1
1 1 T
102 T 102 =+ +T
L b T
10t 1 10t 102 103 107 1 10 107 10°
A A

Obr. 4.2. Kritické hodnoty R. te- Obr. 4.3. Kritické hodnoty R. te-
pelného, mag. vychodného a zdpadné-  pelného a mag. vychodného médu pre
ho médu pre m = 1,q = 0.005 m=1,¢=0.5

2) Slabo nelinedrna analyza je zamerand na Stidium rieseni v blizkosti staciondrneho
rieSenia pre hodnoty parametrov R,k, A blizkym kritickym hodnotam R., k., A..
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Podobne ako v pripade linearizovaného problému (4.2), v ktorom Q = 0, tak aj
plne nelinedrny systém rovnic (4.1) sa d& zapisat’ v abstraktnom tvare

Lrxa¥ = N(A(1), A(1),¥) , (4.4)

kde 7 = 2, A = d%A a vyraz N obsahuje vSetky nelinearity systému (4.1). Ako
sme uz skor naznacili, postup slabo nelinearnej analyzy spoc¢iva v hladani rieSenia
systému (4.4) v tvare radu

U =0, +eWy + V3 + ..., A(T) = €Ay (1) + 2 Aa(1) + 2 A3(T) .
Podobne sa aj parametre R, k, A sa rozvini do Taylorovho radu
R=R,+eR +’Ry+ ..., A=Ae+eN +2Na + ... .

Dosadenim tychto rozvojov do systému (4.4) a néslednym porovnanim koeficien-
tov pri rovnakych mocninach ¢ dostavame vzt'ahy medzi jednotlivymi koeficientami
rozvoja. V prvom rade ¢! sa vlastne jednd o linearizovant rovnicu (4.2). V druhom
rade ziskame podmienky, ktoré implikuju, ze Ry = Ay = 0, ¥y = 0. Tento fakt sa da
nahliadnut’ aj vd’aka Z, symetrii problému (4.1). Rozhodujicou je preto podmienka
v tretom rade, kde dostdvame obyc¢ajnu diferencidlnu rovnicu pre amplitudu

G A = (R~ RIAET) ~ AAEHPAE) (45)
Kvadrat malého parametra ¢ sa d4 interpretovat’ ako rozdiel Rayleghovho ¢isla
a kritického Rayleghovho &fsla R,, t.j. €2 ~ (R — R.). Koeficienty «, 3 sa daji
analyticky uréit’s podmienok riesitelnosti testovanim s vlastnou funkciou ¥+ adjun-
govaného problému k (4.2). Detaily tohto postupu sa daji najst’ v pracach [Brest97,
Reval97, Reval99].

Vyznam amplitidovej rovnice (4.5) spoiva v moznosti analyzovat’ vznik os-
cila¢nych nestabilit pre hodnoty R > R.. Této rovnica predstavuje normalnu formu
pre Hopfovu bifurkaciu periodickej orbity. Na Obr. 4.2 a 4.3 st znazornené vysledky
tejto analyzy. Symbol 4 resp. — oznacuje zénu super resp. sub kritickej Hopfovej
bifurkédcie. Horné a dolné sipky symbolizuji narast resp. pokles vo frekvencii ne-
linedrnych oscilacii. Viac o fyzikalnych dosledkoch tejto analyza sa moze citatel
dozvediet’ v pracach [Brest97, Reval97, Reval99)].



5 Literatura

[Aarts95]
[Abresch86]
[Alvarez93]
[Alvarez94]
[Andr98]

[Angen89]

[Angen90a)
[Angen90b)]
[Angen9la]

[Angen94]

[Angen96]
[Angen98]
[Bates98]

[Benes9s8]

[Bodag8|

[Brest94]

A. Aarts, A. Van de Ven, Transient behaviour and instability points of the Poiseuille
flow of a KBKZ fluid, J. of Engineering Mathematics 29 (1995), 371-392.
U.Abresch, J.Langer, The normalized curve shortening flow and homothetic solutions,
J. Diff. Geom. 23 (1986), 175-196.

L.Alvarez, F.Guichard, P.L.Lions, J.M.Morel, Azioms and Fundamental Equations of
Image Processing, Archive for Rat.Mech.Anal. 123 (1993), 200-257.

L.Alvarez, J.M.Morel, Formalization and computational aspects of image analysis,
Acta Numerica (1994), 1-59.

B. Andrews, Evolving convez curves, Calc. Var. Partial Differ. Equ. 7 (1998), 315—
371.

S.B.Angenent, M.E.Gurtin, Multiphase thermomechanics with an interfacial structure
2. Ewvolution of an isothermal interface, Arch. Rat. Mech. Anal. 108 (1989), 323—
391.

S.B.Angenent, Parabolic equations for curves on surfaces I: Curves with p-integrable
curvature., Annals of Mathematics 132, No.3 (1990), 451-483.

S.B. Angenent, Nonlinear analytic semiflows, Proc. R. Soc. Edinb., Sect. A 115
(1990), 91-107.

S.B.Angenent, On the formation of singularities in the curve shortening flow, J. Diff.
Geom. 33 (1991), 601-633.

S.B.Angenent, M.E.Gurtin, Anisotropic motion of a phase interface. Well-Posedness
of the initial value problem and qualitative properties of the interface, J. Reine Angew.
Math. 446 (1994), 1-47.

S.B.Angenent, M.E.Gurtin, General contact angle conditions with and without kinet-
ics, Quarterly of Appl. Math. 54 (1996), 557-569.

S. B. Angenent, G. Sapiro, A. Tannenbaum, On affine heat equation for non-convex
curves, Journal of the Amer. Math. Soc. 11 (1998), 601-634.

P. Batesm Kening Lu, Chongchum Zeng, Ezistence and persistence of invariant man-
ifolds for semiflows in Banach spaces, Memoirs of AMS, No. 645, 1998.

M. Benes, K. Mikula, Simulations of anisotropic motion by mean curvature — com-
parison of phase field and sharp interface approaches, Acta Math. Univ. Comenianae
67 (1998), 17-42.

Boda J., Thermal and magnetically driven instabilities in a non-constantly stratified
fluid layer, Geophys. Astrophys. Fluid Dynamics 44 (1988), 77-90.

Brestensky J., Seviik S., Mean electromotive force due to magneto- convection in
rotating horizontal layer with rigid boundaries, Geophys. Astrophys. Fluid Dynamics
77 (1994), 191-208.



5 Literatura 21

[Brest97]

[Brun94]

[Cagin90]
[Casse97]
[Chow88]
[Deck97]

[Dziuk94]
[Dziuk99]

[Elliot96]

[Fearn94a)|

[Fearn94b]

[Foias88]
[Gage86]

[Girao94]

[Girao95]
[Gray87]
[Grob94]
[Gurtin93]

[Handl198]

[Henry81]
[Kass87]
[Kim94]

[Kim97]

Brestensky J., Revallo M., Sevcovié D., Finite amplitude magnetoconvection deter-
mined by modified Taylor’s constraint, Acta Astron. et Geophys. Univ. Comenianae
18 (1997), 1-18.

P. Brunovsky, D. Sevéovie, Ezplanation of spurt for a non-Newtonian fluid by a
diffusion term, Quarterly of Appl. Math. 52 (1994), 401-426.

G. Caginalp, The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw,
and Cahn-Hilliard models as asymptotic limits, IMA J. Appl. Math. 44 (1990), 77-94.
V. Caselles, R. Kimmel, G. Sapiro, C. Sbert, Minimal surfaces based object segmen-
tation, IEEE Trans. Pattern Analysis and Machine Intelligence 19 (1997), 394-398.
S.-N.Chow, K.Lu, Invariant manifolds for flows in Banach spaces, J. of Differential
Equations 74 (1988), 285-317.

K. Deckelnick, Weak solutions of the curve shortening flow, Calc. Var. Partial Dif-
fer. Equ. 5 (1997), 489-510.

G.Dziuk, Convergence of a semi discrete scheme for the curve shortening flow, M3AS
4, No. 4 (1994), 589-606.

G. Dziuk, Discrete anisotropic curve shortening flow, SIAM J. Numer. Anal. 36
(1999), 1808-1830.

C. M. Elliott, M. Paolini, R. Schétzle, Interface estimates for the fully anisotropic
Allen—Cahn equation and anisotropic mean curvature flow, Mathematicals Models
and Methods in Applied Sciences 6 (1996), 1103-1118.

Fearn D.R. (1994), Nonlinear Planetary Dynamos, M.R.E. Proctor and A.D. Gilbert
eds. Lectures on Solar and Planetary Dynamos, Cambridge University Press.

Fearn D.R., Proctor M.R.E., Sellar C.C., Nonlinear magnetoconvection in a rapidly
rotating sphere and Taylor’s constraint, Geophys. Astrophys. Fluid Dynamics 77
(1994), 111-132.

C.Foias, G.R. Sell, R. Temam, Inertial manifolds for nonlinear evolutionary equations,
J. of Differential Equations 73 (1988), 309-353.

M.Gage, R.S.Hamilton, The heat equation shrinking convex plane curves, J. Diff.
Geom. 23 (1986), 285-314.

P. M. Girao, R. V. Kohn, Convergence of a crystalline algorithm for the heat equation
in one dimension and for the motion of a graph by weighted curvature, Numer. Math.
67 (1994), 41-70.

P. M. Girao, Convergence of a crystalline algorithm for the motion of a simple closed
convez curve by weighted curvature, SIAM J. Numer. Anal. 32 (1995), 886-899.
M.Grayson, The heat equation shrinks embedded plane curves to round points, J. Diff.
Geom 26 (1987), 285-314.

M. Grob, Flow instabilities in a polymer extrusion process, PhD theses, Eidhoven
Institute of Technology, 1994.

M. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, Clarendon
Press, Oxford, 1993.

A. Handlovicové, K. Mikula, A. Sarti, Numerical solution of parabolic equations re-
lated to level set formulation of mean curvature flow, Computing and Visualization
in Science 1 (1998), 179-182.

D.Henry, Geometric theory of semilinear parabolic equations. Lecture Notes in Math.
840, Springer Verlag, Berlin, New York, Heidelberg, 1981.

M.Kass, A.Witkin, D.Terzopoulos, Snakes: active contours models, Proc. First Inter-
national Computer Vision Conference (1987), 259-269.

M. Kimura, Accurate numerical scheme for the flow by curvature, Appl. Math. Letters
7 (1994), 69-73.

M. Kimura, Numerical analysis for moving boundary problems using the boundary
tracking method, Japan J. Indust. Appl. Math. 14 (1997), 373-398.



22

Literatura

[Kvasz99]
[Lim89]

[Malkus91]

[Malkus93]

[Marion89)]
[Mik96]
[Mik97]
[Mik99]
[Mik00]
[Mish94]
[Moiss98]
[Morag9]

[Nohel90]

[Nohel93]
[Osher88]

[Reval97]

[Reval99]

[Sap94]
[Schm96]

[Sevcik89]

[Sevco91]
[Sevco94]

[Sevco95]

L. Kvasz, Gramatika zmeny, Chronos, Bratislava, 1999.

F.J. Lim, W.R. Schowalter, Wall slip of narrow molecular weight distribution polybu-
tadienes, J. of Rheology 33 (1989), 1359-1382.

D.S. Malkus, J.A. Nohel, B.J. Plohr, Analysis of new phenomena in shear flow of
non-Newtonian fluids, STAM J. Appl. Math. 51 (1991), 899-929.

D.S. Malkus, J.A. Nohel, B.J. Plohr, Approzimation of piston-driven flows of a non-
Newtonian fluid, Control Theory, Dynamical Systems, and Geometry of Dynamics.
Elworthy, Everitt, and Lee, Eds., Marcel Dekker (1993), 173—-192.

M.Marion, Inertial manifolds associated to partly dissipative reaction - diffusion sys-
tems, J. of Math. Anal. Appl. 143 (1989), 295-326.

K.Mikula, J.Kacur, Evolution of convex plane curves describing anisotropic motions
of phase interfaces, SIAM J. Sci. Comput. 17, No. 6 (1996).

K.Mikula, Solution of nonlinear curvature driven evolution of plane convex curves,
Applied Numerical Mathematics 21 (1997), 1-14.

K. Mikula, D. Sevéovi¢, Solution of nonlinearly curvature driven evolution of plane
curves, Applied Numerical Mathematics 31 (1999), 191-207.

K. Mikula, D. Sevéovi¢, Evolution of plane curves driven by a nonlinear function of
curvature and anisotrophy, STAM J. Appl. Math., to appear.

Mishchenko E.F., Kolesov Yu.,S., Kolesov A.,Yu., Rozov N.K., Asymptotic methods
in singularly perturbed systems, Consultants Bureau, New York & London, 1994.

L. Moissan, Affine plane curve evolution: A fully consistent scheme, IEEE Transac-
tions on Image Processing 7 (1998), 411-420.

X.Mora, J.Sola-Morales,, The singular limit dynamics of semilinear damped wave
equation, J. of Differential Equations 78 (1989), 262—-307.

J.A. Nohel, R.L. Pego, A.E. Tzavaras, Stability of discontinuous steady states in
shearing motion of a non-newtonian fluid, Proc. of the Royal Society of Edinburgh
115A (1990), 39-59.

J.A. Nohel, R.L. Pego,, Nonlinear stability and asymptotic behavior of shearing mo-
tions of a non-Newtonian fluid, SIAM J. of Math. Anal. 24 (1993), 911-942.
S.Osher, J.Sethian, Fronts propagating with curvature dependent speed: algorithm
based on Hamilton-Jacobi formulation, J. Comput. Phys. 79 (1988), 12—-49.

Revallo M., Sevcovic D., Brestensky J., Analysis of the model of magnetoconvection
with nonlinearity due to modified Taylor’s constraint, Acta Astron. et Geophys. Univ.
Comenianae 19 (1997), 317-335.

Revallo M., Sevcovi¢ D., Brestensky J, S.Sevéik, Viscously controlled nonlinear mag-
netoconvection in a mon-uniformly stratified horizontal fluid layer, Physics of the
Earth and Planetary interiors 111 (1999), 83-92.

G.Sapiro, A.Tannenbaum, On affine plane curve evolution, J.Funct.Anal. 119, No.
1 (1994), 79-120.

A.Schmidt, Computation of three dimensional dendrites with finite elements, J. Com-
put. Phys. 125, No. 2 (1996), 293-312.

Sevéik S., Thermal and magnetically driven instabilities in a non-constantly stratified
rapidly rotating fluid layer with azimuthal magnetic field, Geophys. Astrophys. Fluid
Dynamics 49 (1989), 195-211.

D. Sevéovie, Limiting behavior of global attractors for singularly perturbed beam equa-
tions, Comment. Math. Univ. Carolinae 32 (1991), 45-60.

D. Sevéovi¢, Limiting behaviour of invariant manifolds for a system of singularly
perturbed evolution equations, Math. Methods in the Appl. Sci. 17 (1994), 643-666.
D. Sevéovie, The C stability of slow manifolds for a system of singularly perturbed
evolution equations, Comment. Math. Univ. Carolinae 36 (1995), 89-107.



5 Literatura 23

[Sevco9T7a)

[Sevco9Tb]

[Sevco99]
[Seth90]
[Seth96]
[Skin8s]
[Skin91]
[Sow79]
[Sow86]
[Stam99]
[Svir90]
[Taylor63]

[Ush00]

[Vander87]

[VinogT2]

D. Sevcovie, Smoothness of the singular limit of inertial manifolds of singularly per-
turbed evolution equations, Nonlinear Analysis: TMA. 26 (1997), 199-215.

D. Sevcovic, Dissipative feedback synthesis for a singularly perturbed model of a piston
driven flow of a non-Newtonian fluid, Math. Methods in the Appl. Sci. 20 (1997),
79-94.

D. Sevéovic, Analysis of the free boundary for the Black-Scholes equation, to appear
in: Euro Journal of Applied Mathematics.

J. Sethian, Numerical algorithm for propagating interfaces: Hamilton-Jacobi equa-
tions and conservation laws, J. Differential. Geom. 31 (1990), 131-161.

J. Sethian, Level Set Methods. Evolving Interfaces in Geometry, Fluid Mechanics,
Computer Vision, and Material Science, Cambridge University Press, 1996.

Skinner P.H., A.M. Soward A.M., Convection in a rotating magnetic system and
Taylor’s constraint, Geophys. Astrophys. Fluid Dynamics 44 (1988), 91-116.
Skinner P.H., Soward A.M., Convection in a rotating magnetic system and Taylor’s
constraint II, Geophys. Astrophys. Fluid Dynamics 60 (1991), 335-356.

Soward A.M., Thermal and magnetically driven convection in a rapidly rotating fluid
layer, J. Fluid Mech. 90 (1979), 669-684.

Soward A.M., Non-linear marginal convection in a rotating magnetic system, Geo-
phys. Astrophys. Fluid Dynamics 35 (1986), 329-371.

R. Stamicar, D. Sevéovi¢, J. Chadam, The early ezercise boundary for the American
put near expiry: numerical approzimation, submitted (1999).

G.A.Sviridyuk, T.G.Sukacheva, Cauchy problem for a class of semilinear equations
of Sobolev type, Sibirskii Matem. Zhurnal 31 (1990), 120-127.

Taylor J.B., The magnetohydrodynamics of a rotating fluid and the Earth’s dynamo
problem, Proc. R. Soc. London A274 (1963), 274-283.

T. Ushijima, S. Yazaki, Convergence of a crystalline algorithm for the motion of a
closed convexr curve by a power of curvature V. = K<, SIAM J. Numer. Anal. 37
(2000), 500-522.

A.Vanderbauwhede, S.A.Van Gils, Center manifolds and contraction on a scale of
Banach spaces, J. of Funct. Analysis 72 (1987), 209—-224.

G.Vinogradov, A.Malkin, Yu.Yanovskii, E.Borisenkova, B.Yarlykov and G.Berezhna-
ya, Viscoelastic properties and flow of narrow distribution polybutadienes and poly-
isoprenes, J. Polymer Sci., Part A-2 10 (1972), 1061-1084.






6 Prilohy






Priloha 6.1.1

Reprint prace:

D. Sevéovic: Smoothness of the singular limit of inertial manifolds of singularly
perturbed evolution equations. Nonlinear Analysis: TMA, 28 (1997), 199-215.






Nonlinear Analysis, Theory, Methods & Applications, Vol. 28, No. 1, pp. 199-215, 1997

Copyright © 1996 Elsevier Science Ltd

Pergamon Printed in Great Britain. All rights reserved
0362-546X/96 $15.00+0.00

0362-546X(95)00139-5

SMOOTHNESS OF THE SINGULAR LIMIT OF
INERTIAL MANIFOLDS OF SINGULARLY
PERTURBED EVOLUTION EQUATIONS

DANIEL SEVCOVIC
Institute of Applied Mathematics, Comenius University, Mlynska dolina, 842 15, Bratislava, Slovak Republic

(Received 23 May 1994; received for publication 7 July 1995)

Key words and phrases: Inertial manifolds, smoothness of the singular limit, constitutive models of
shearing motions.

1. INTRODUCTION

The aim of this paper is to investigate the singular limit behavior of inertial manifolds of the
following singularly perturbed system of evolution equations in Banach spaces

Ut = Gs(Uy S)
SSI + AS = F;(U, S);

(1.1)

where ¢ = 0 is a small parameter, X, Y are Banach spaces, A is a sectorial operator in a Banach
space Y, Y“ is the fractional power space and F,: X X Y* = Y; G,: X X Y* — X; are smooth
bounded functions, « € [0, 1), F, = Fy, G, = G, as € = 0. It is well known that the above
system of equations generates a C' semi-flow $, in the phase-space X x Y* for any & > 0
(cf. Henry [1]). According to Marion [2] the semi-flow 8, possesses an invariant attracting
manifold I, (inertial manifold) provided that the Lipschitz constant of F, is sufficiently small.
This manifold can be constructed as a Lipschitz continuous graph over the Banach space X,
i.e. M, = {(U, ®,(U)), U € X} (see [2]). From the results due to Chow and Lu [3] it follows
that O, is a C* manifold whenever F and G are C* bounded functions. Notice that, in
contrast to the usual definition of an inertial manifold (see, e.g. [4]), we allow I, to be an
infinite dimensional Banach manifold.

In the geometric singular perturbation theory much effort is being spent in order to justify
the continuity of the singular limit € tends to 0* (see, e.g. Sviridyuk and Sukacheva [5]). The
purpose of this paper is to examine the smoothness of the singular limit behavior of inertial
manifolds M, as ¢ — 0. The main goal is to show that, for small values of ¢ > 0, the inertial
manifold 9, is C' close to the manifold 9, = {(U, S), AS = Fy(U, S)} corresponding to
the quasi-dynamic problem U, = Gy(U, S) with the constraint AS = Fy(U, S). Notice that the
C! stability of inertial or centre unstable manifolds is a useful tool in the theory of
Morse-Smale vector fields (cf. Mora and Sola-Morales [6]). We hope that C? stability result
can be also applied in the theory of linearization at a steady state like, e.g. extension of the
Hartman-Grobman lemma from the reduced problem, ¢ = 0 to the perturbed system with ¢ > 0
small enough. Neverthless, such applications of the results obtained are not discussed here.

The idea of construction of an inertial manifold for (1.1) is based on the well-known
Lyapunov-Perron method of integral equations. This method is combined with a nonlocal
approach using the graph transform which is applied to solutions of the singularly perturbed
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equation in (1.1). We then seek an inertial manifold as the union of all solutions of (1.1)
growing exponentially at —oo, By contrast to the usual functional space setting (see, e.g. Chow
and Lu [3], Foias et al. [4] or Miklav{i¢ [7]) an essential rdle is played by better smoothing
properties of integral kernels enabling us to operate with Holderian spaces of curves instead of
usual continuous ones. We first study the singularly perturbed equation &S, + AS = F,(U, S)
and prove that there is a solution operator S = ¢,.(U) in the space of globally defined
solutions. It, however, turns out that the derivative of this mapping becomes continuous at
& = 0 only when the mapping ¢, operates on the space of Holder continuous curves growing
exponentially at —c (see lemma 3.2). To construct an attractive invariant manifold 9, as a
C' graph of ®,: X » Y* we then apply the method of integral equations to the equation
U, = G,(U, ¢.(U)). In order to prove that M, is C' close to M, for 0 < & < 1 we make use of
the two parameter contraction principle due to Mora and Sola-Morales [6, theorem 5.1]
covering differentiability and continuity of a family of nonlinear mappings operating between
a pair of Banach spaces.

(1.1) is a semilinear equation U, + BU = G(U, §) and the nonlinearity F only depends on the
U-variable. The last assumption makes the analysis of the singularly perturbed equation
considerably easier. The results obtained in [8] are not capable to cover some applied problems
like, e.g. a flow of viscous media governed by a constitutive equation of differential type.
Such an application is discussed in Section 4 of this paper.

The paper is organized as follows. In Section 2 we recall some useful results regarding
properties of functional spaces of Holder continuous curves growing exponentially at —oco.
In Section 3 we prove that ®, = @, in the C' topology as ¢ = 0*. The main result of this
paper is contained in theorem 3.9. Section 4 is devoted to an application of the results obtained
to a singular perturbation problem arising in the study of the so-called Johnson-Segalman-
Oldroyd model of shearing motions of a non-Newtonian fluid. Following the paper by Malkus
et al. [9] the motions of the channel Poisseule flow of a highly elastic and very viscous fluid
(like, e.g. a polymer) can be described, in a satisfactory manner, by a system of parabolic-
hyperbolic equations of the form

&V — Uy, =0, + f
g,=-0+ (1 + v, (1.2)
gy = —Z — OUy,

where v = v(¢, x), x € [0, 1], is the velocity of the channel flow between two parallel plates,
o is the extra shear stress, z is the difference of normal stresses, fis the pressure gradient driving
the flow. The number £ > 0 is proportional to the ratio of the Reynolds number and Deborah
number and according to rheological experiments due to Vinogradov ef a/. [10] this number is
very small, of the order of magnitude O(107'2). It gives rise to the inertialess approximation
& = 0. Based on such an approximation, Malkus ef al. [9] were able to explain several striking
phenomena like spurt, hysteresis, shape memory and latency observed in rheological experi-
ments (see also [11, 12]). Using the new variable S := v, + o + fx, S is the total stress tensor,
system (1.2) can be rewritten in the general form (1.1) with F, = O(¢) as ¢ — 0*. In [13],
Nohel and Pego have justified the inertialess approximation by a clever application of the
Morse-Conley theory. They proved that any solution of (1.2) converges pointwise for x € [0, 1]
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to a solution of the inertialess approximation as ¢ = 0%, The purpose of Section 4 is to give
another justification of the inertialess approximation by means of C' closeness of infinite
dimensional inertial manifolds. It is hoped that the C! stability result of inertial manifolds
can be also applied to the problem of a piston driven flow studied recently by Malkus
et al. [11]. Based on careful numerical simulations, their results indicate the Hopf bifurcation
phenomenon in a piston driven Johnson-Segalman-Oldroyd fluid. Any information about C
stability can be a useful tool in order to prove that the Hopf bifurcation extends to the full
system of governing equations with ¢ > 0 sufficiently small.

2. PRELIMINARIES

As usual, for Banach spaces E,, E, and 7 € (0, 1] we denote Cf,;(E;, E,) the Banach space
consisting of the mappings F: E, — E, which are k-times Fréchet differentiable and such
that F,...,D'F are bounded and uniformly continuous, the norm being given by [|F|, :=

-0 supID F|. CEHNE,, E,) will denote the Banach space consisting of the mappings
F € ded(El, E,) such that D*F is n-Halder continuous, the norm being given by

DFF(x) — D*F
1Pl im [Flle + sup H2F) = DFO

x#y [lx — y||”
x,yekE,

Let % be a Banach space and u € R. Following the notation of [3, 6, 7] we denote
C.(X) = {M : C((=, 0], X), and [[u]l ¢ (o) := sup e [u@)ily < °°} .
<0

The linear space C, () endowed with the norm |- ”c () 1s a Banach space. If u < v then the
embedding operator J, ,: C,(X) = C, (X) is continuous and I, = 1.
For any p € (0, 1], a € (0 1] and u = 0, we furthermore denote

() — =Ry . p
lle*u(t) — e u{ )||<

(X) = Jue CAX); {ul =

Cipa pop.a it We
he(,al
Let
||u||c‘ LX) = ||u||C‘(sr) + [ul,, .0 for any u € C, , ,(X).
The space C,,.(X) endowed with the norm ||-]c- , is a Banach space continuously

embedded into C, (X) with an embedding constant equal to 1. Furthermore, the space
C, p.a(X) i contmuously embedded into C, , (%) for any 0 <= p =<v and p € (0, 1],
embedding constant being less or equal to max{l, (v — g)a' ™} (see [8]).
Let F,, E, be Banach spaces and F:E, = E, be a bounded and Lipschitz continuous
mapping, E,, E, be Banach spaces. Denote

FiC (E) ~ C(Ey)

a mapping defined as Fu)) := F(u(r)) for any 1 <0 and u € C,_(E,). By [6, lemma 5.1],
for every u = 0, the mapping F is bounded and Lipschitzian w1th sup|F| < sup|F| and
Lip(F) < Lip(F). If F: E, = E, is Fréchet differentiable then F C,(E) — C, (E;) need not be
necessarily differentiable. Nevertheless, the following result holds.
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Lemma 2.1 [8, lemma 2.8, 14, lemma 35). If F:E, — E, is Fréchet differentiable with
DF:E\ — L(E, E;) bounded and uniformly continuous, then, for every v>u, v> 0,
the mapping F: C.(E) - C(E) F:c wo.aE) = C (Ey) is Fréchet differentiable, its
derlvatlve being glven by DEwh = DF(u( Yh(-) and DE: C,(E) — L(C,(E), C,(Ey)
(DF: C o ED) > L(C, , (E)), C,(E,))) is bounded and unlformly continuous.

Throughout Sections 2 and 3 we adopt the following hypothesis

X, Y are real Banach spaces:
A is a sectorial operator in Y, Reg(4) > w > 0;

(H) there exist « € [0, 1) and 7 € (0, 1) such that
G, e Chu(X XY*; X), F, € CLil(X x Y, Y) for any ¢ € [0, &;
F,— Fy, G, = Ggas ¢ ~ 0" in the respective topologies.

We refer to [1, Chapter 1] for the definition of a sectorial operator, fractional power spaces
Y*, a = 0, and their basic properties. We denote ||- ||, the norm in Y * given by [[u[, = [A%ul,
ueY®=DA%.

By a globally defined solution of (1.1), ¢ > 0, with initial data (U,, Sp) € X X Y* we mean
a function (U(+), S(*)) € C([0, T X xY*)N C'((0, T); X x Y*) for any 7 > 0 such that
(U(Q), S(O)) = (U, Sp); U(@), S(1)) € X x D(A) for t > 0 and (U(+), S(-)) satisfies (1.1) for any
t > 0. The global existence and uniqueness of solutions of (1.1), for initial data belonging to the
phase-space X x Y follow from [1, theorems 3.3.3 and 3.3.4].

In case the function Fy satisfies the condition |DgFy|[|A*7Y| < 1 the set M, = {(U, S),
AS = Fy(U, S)} is an embedded Banach manifold in X X Y*. More precisely, there is a
C}aa-function ®,: X — Y such that

N, = (U, DU e X xY* Ue X|J. (2.1)

By a solution of (1.1), ¢ = 0, we mean a function U e C([0, T]; X) N C((0, 7); X) for any
T > 0, U(0) = U, and U(") satisfies the equation U, = Gy(U, ®o(U)). Since G, is assumed to
be Lipschitz continuous the globai existence and uniqueness of solutions to (1.1) with & = 0 is
again assured by the above references to Henry’s lecture notes.

In summary, we have shown that the system (1.1),, € > 0 generates a semi-flow $,(¢), £ = 0;
$.()(Uy, Sp) = (U(2), S(2)), on the phase-space X X Y. The system (1.1), defines a semi-flow
So(f), t = 0, SN Uy, ®(Up)) = (U(2), ®p(U(2))), on the embedded manifold My C X X Y.

3. EXISTENCE AND SMOOTHNESS OF THE SINGULAR LIMIT
OF INVARIANT MANIFOLDS

Before proving the existence and smoothness of the singular limit of inertial manifolds of
(1.1) we need several auxiliary lemmas. First, let us examine solutions of the following linear
equation

&S+ AS = f (3.1,
belonging to the space C,, ,(¥'*). We will also study the limiting case of (3.1), when ¢ = 0, i.e.
AS =f 3.1),

and examine behavior of solutions when ¢ — 0.
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Denote by X, and &«
bounded linear operators

X, =LICX),C X)), X, ,=LC,,. (1), CT%). (3.2)

wpr V>0, 0<p=<1, ae(0,1] the following Banach spaces of

LeMMA 3.1 [8, lemma 3.1]. Assume that the operator A4 fulfils the hypothesis (H). Then, for any
ee0,g)], 0<v<we!, and fe C, (Y) there is the unique solution S € C, (Y*) of (3.1),
given by S = L, f, where

t
L.f@) = % S exp(—A(l — 8)/e)f(s)ds, (€>0);  Lof(t) = Af(t) (¢=0).

for ¢t < 0. The linear operator L, belongs to the space &, as well as to X, ,, 0 <p =<1,
and there is a K, > 0 such that ILllx, , = ILclly, < Ko(w — vegg)*~! for any ¢ € [0, g,
0 < vgy < w. Moreover, L, —>L0ass*O*lnthespacefryp,0<p< 1.
LeMma 3.2. Let 0< (1 + Pu=<k <wg', 0<p=1and 0<a=<1. Assume that there
is a 0 <1 such that |[L,[ly |DsF(U, S)||L(Ya n <06forany Ue X, SeY* and ¢ € [0, &)].
Then, for any U e C,(X) there is the unique solution S = ¢,(U) € C,; (Y®) of the equation
S =L,F,U,S). Moreover there exists a K; > 0 such that, for any ¢ € [0, g(],

@ 16:0) - 6, Ul g, < I IEIL — 81Uy = Ualeg, :

(i) lim, o+ #,(U) = ¢o(VU) in C (Y"‘) uniformly w.r. to U € @, where ® is an arbitrary
bounded subset of C, , ,(X);

(i) ¢, € Cpaa(C, (X) C(Y"), lé.ll; = K, and there is a d¢, € L(C, (X), C,(Y")) with
the property D¢, = J, «d%., ldeell < Lol 15N, = )7

(iv) lim, 4+ ¢, = d)o in Clya(®, CI(Y®)) for any bounded and open subset & of C, , ,(X).

Remark 3.3. It follows from the proof of [8, lemma 3.1] that ||L, — LOHQC = O(e') as
¢ = 0% for any 0 < r < 1. The author was able to prove neither C' dlfferentlablhty nor
Lipschitz continuity of L, with respect to € at ¢ = 0.

Remark 3.4. We remind ourselves that in the case ¢ = 0 the mapping ®, defined in (2.1)
coincides with ¢, in the sense that ¢o(U)(¢) = ®y(U(?)) for any U € C, (X) and ¢ < 0.

Proof of lemma 3.2. Under the assumption | L, Hm |DsF,ll1cy=,y, = 8 < 1 the existence of
the solution operator S = ¢,(U) as well as its LlpSChltZ continuity (i) follows from the
parameterized contraction principle.

To prove (ii), we first find an estimate of the norm of I|¢O(U)||C ,a(ve in terms of
Ue C, , .(X). To this end, we put S(t) = ¢o(U)?). Then, for any ¢ < 0, % € (0, a], we have

e*S(t) — e* U PS(t — h) = (e — e*""MAF(U(®), S(t))
+ "D ATV EF(U(), S(t) — Fy(Ult — h), S(t — h))).
Notice that, for any t <= 0, h € (0, al,
W)y - Wit - Wl < e e W) — e*“™PW(t — W)l + (1 — e™*MHIWE - B)lg
< Ky e Wz, o, (3.3)
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where E stands either for X or Y and K, = K,(¢) > 0. Thus,
le's) - e*“™PS(t — Wly- < K Ulle, 00 h”
+ A Ds FlIS@) = SEE = Bl yee ™.

Since Sz =< (A% IFllo and [ILolly, [ DsFoll <= 6 < 1 the above inequality yields the
estimate

u¢o(U)“c—, G = K+ “U“C’V L0 (3.4

Arguing similarly as above one can show |Fy(U, S)IIC- o = Ka o+ ||U||C a0
IS¢, ,cre)- Hence,

IF(U, do(UD e, 000 = Ki(1 + [Ulles, 00)- (3.5)
As ¢,(U) = L,F,(U, ¢,(U)) we obtain
(1 = Blie, (V) = ¢o(Wllcz vy = 1L = Lollx, ,IF(U, do(ONles, 0
+ LM, IF (U, ¢o(U)) — Fo(U, So(UN ey -
By lemma 3.1, (H) and (3.5) we obtain lim,_, o+ ¢,(U) = ¢4(U) in C, (Y*) uniformly w.r. to
U € ® where ® is arbitrary bounded subset of C, , ,(X).
(iii) For any U, W € C, (X) we denote
Do (U)W := [ = L,DsF(U(+), 6,(U)(- N 'L Dy F,(U(), ¢, (U DW. (3.6)
A straightforward calculation yields
¢.(U+ W) = ¢,(U) = Do ()W = B, [F,(U+ W, ¢, (1) — F(U, ¢.(U)) = DyF (U, ¢.(U)W]
+ B[F(U + W,¢,(U+ W) - F(U+ W, ¢,(U))

— DgF AU, ¢, (XU +W) — ¢ (UD] =1, + L,
where
B, := [I — L DsF(U(), ¢(U)(- D] "'L,.

Obviously, 1B,y = (1 — )7 '|L|y, for v =u or v =, €€ [0, &]. Furthermore, by
lemma 2.1, we have 4]l e- ey = o WIIC o) as |[W| — 0. On the other hand, as F, € Cpqf
and 0 < (1 + n)u < k we have

IBlleqgrey = OUW I + [6,(U + W) = 8L, + W) = 6.(Dlle;
— o(lWllc.).

Hence, ¢, € ded(C X), C (Y*); Do, (YW = J, do (U)W, where the mapping W~
d¢, (U)W is defined by the right-hand side of (3.6) and 50 [|d¢,ll < IILEI{XMHEEHI(I -9
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Finally, we prove the assertion (iv). Let 8 C C, , ,(X) be an arbitrary bounded set. With
regard to (ii) it is sufficient to show the uniform convergence D¢, (U) — D¢y(U) as ¢ — 0* for
Ue ®. Forany Ue C,_, ,(X) we have

Do (U) — Dpo(U) = (B, — Bo)DyFy(U, ¢o(U))
+ B [DyF.(U, $,(U) — DyFy(U, $o(U))].
Now one can readily verify that
B, ~ By = B, [DsF,(U, $.(U)) — DsFo(U, ¢o(U)1B,
+ I — L, DsF(U, $,(UN1 "ML, — L) + DsFo(U, éo(1))Bo).
Furthermore,
DsF.(U, ¢.(U)) — DsFy(U, $o(U)) = Ds[F,(U, ¢.(U)) — Fo(U, ¢.())]
+ Dg[Fy(U, ¢.(U)) — Fo(U, ¢o(U))].
Thus,
D5 F,(U2), ¢ (U)®) — Ds Fo(U(1), ool Lv=, v,
< |F, - Fl, + "F0||1+7,”¢8(U)(t) — do(O| 3=
Since 0 < (1 + n)u < k, we obtain
| Ds F,(U, ¢,(U)) — DgFy(U, ¢0(U))HL(C,;(Y“),C,;(H)
< |F, - R, + "FOHI+1;”¢s(U) - ¢0(U)“?:;(Y“)-

However, the right-hand side of the above inequality tends to 0 as ¢ = 0" uniformly w.r. to
u € ®. Similarly, one has

[DyF(U, ¢,(U)) — Dy Fy(U, o(U))l L oo.coay 0 ase > 0"
uniformly w.r. to U € &. Now we notice that | By Dy, Fy(U, ¢0(U))||L(C;(X),c,;(Yﬂ)) < K, and
I + DgFo(U, o(U))BolDy Fy(U, ¢0(U))”L(C‘

Ly 2

00, €, = Ki(1+ “U”?:,;p,,,(X))-
Indeed, let us denote
A(t) := I + DgFo(U(1), o(UYDNBolDy Fy(U(1), $o(UN1)), 1= 0.
Then, by (3.3) and (3.4),
lA@) — At - M. vy = K (IU@ — Ut = D% + ldg(UNE) — do(UE ~ %)
= Ky e™h(1 + |UIE;, o)

As 0 < (1 + mu = x we obtain [ACIW ¢, on = KllWlc;, o0 + IUIE;, o) for any
WeC,

.0.a(X). According to lemma 3.2 it is now obvious that D¢, (U) = Doy(U) as ¢ = 0*
uniformly w.r. to U € 8. The proof of lemma 3.2 is complete. W

We will construct an inertial manifold 9, for the semi-flow 8, as the union of all Hélder
continuous curves growing exponentially at —oo, i.e.

M, ={(Y(0), 1€ R, YeC, , (XXY), (U(-), S§(*)) = Y(*) solves (1.1)} (3.7
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for some > 0, p e (0,1) and @ € (0, 1]. The invariance property of 9, under the semi-
flow 8,(7), t = 0, generated by system (1.1) is obvious. According to lemmas 3.1 and 3.2
(UC), 8¢) e C,, (X xY?*) is a solution of (1.1) if and only if it satisfies the following

integral equation
t

Ut)y=x+ E G, (U(s), o, (UY)) ds =: T.(x, U)¥) foranyt < 0 (3.89)
0

for some x € X. Using the invariance property of 9l{, we can write the set M, as
M, =[x, 6, (U)O), x € X, U = T,(x, U) € C, o,(X)}. 3.9

In what follows we will investigate the existence and the limiting behavior of fixed points of the
two parameter family of mappings

7;()(, ) Cp,_,p,a(X) - Cu_,p,a(X)’ €€ [0: 80]’ X e X: (310)

defined by the right-hand side of (3.8). We are going to prove that T,(x, -) is a uniform
contraction. If ||, IlmuHDngH < 8§ < 1 then by lemma 3.2(i), we have

HGe(UU (bt:(Ul)) - GE(U2’ ¢£(U2))”C‘:(X)
= |GILA + Kol Fll (0 = ueg)*™'(1 = ) DU = Usllcz ey (3.11)

where K, > 0 is a constant independent of 0 < u < we;'. Assume that 0 < p < 1 and v > 0.
Then the linear operator

r

4
Jigw~ g(S) ds, 3: C,,_(X) - Cv?p,a(X)
0

Y

is bounded its norm being estimated by

< | N

(3.12)

“3 ”L(CV‘(X),C,;,,’H(X)) =

provided that ¢ = a(v) > 0 sufficiently small (c.f. [8, lemma 3.2,c]).
By the next lemma 3.5 we will show that under an additional assumption on DgF; the
following hypotheses are fulfilled

(1) there is 8 < 1 with the property | 7,(x, U}) — T.(x, Up)llo, = 8|U, — U, |4 for
any x € &, U, U, € U and ¢ € [0, g];

(2) there is a Q < « such that [ T,(x;, U) — T,(x;, U]l = Qllx; — x,llx for any
(T) X, X €X, UeUand ¢ e [0, g);

(3) for any bounded open subset B C X,
sup; ¢ | 72 G, Up) — Tolx, Upxllqy = 06 = 07
where U,(x), x e X, ¢ € [0, &], is the unique fixed point of 7;(x, U)=Uin U

on the Banach spaces
U:= C, , (X)), U= C7,X), 0<+ nNu<k<wg', (3.13)

where 0 < p < 1 is fixed and a € (0, 1] is such that the estimate (3.12) holds for both values
v=puaswellasv = k.
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LeEmMa 3.5. Assume that the hypotheses (H) are fulfilled. Then there is a positive number 6 > 0
such that if |DgFyll v« y, < & for any ¢ € [0, &] then there exists an invariant manifold 9,
e € [0, g], for the semi-flow 8, generated by the system of equations (1.1). This manifold
is a graph, 9, = {(x, ®,(x)), x € X}, where ®,: X —» Y* is a bounded Lipschitz continuous
function. Moreover, for any bounded subset B C X, lim,_ o+ ®,(x) = ®y(x) uniformly w.r. to
x € B.

If, in addition, the operator A4 has a compact resolvent A~': ¥ — Y then the manifold 9, is
also exponentially attractive, i.e. there is a 4 > 0 such that dist((U(1), S(#)), M) = O(e™"
when ¢ — o for any solution (U(*), S(-)) of (1.1), € € (0, &y].

Proof. According to lemma 3.2, for any u > 0, we can choose an &, = &(u) < 1 such that
||L£||x“ < Kp(w — uey)™™ ' < Ky(w/2)** for any ¢ € [0, gy(u)]. Let 0 < § < 1 be such that
Ko(w/2)*~'6 < 1. Now, if we suppose |DgF,|| < 4, € € [0, &), we obtain the estimate (3.11)
for the Lipschitz constant of the mapping C, (X) 3 U ~ G,(U, ¢,(U)) € C, (X) with some
6 = Ky(w/2)* 16 < 1. With regard to (3.12) one can furthermore choose u > 1 large enough
and such that the mapping T,(x, +): U — U fulfils the hypothesis (7). The Lipschitz constant
O of the mapping x — T.(x, U) is equal to 1. Let U, = Uy(x) be the unique fixed point of
U, = Tyx, Up). Then, for any bounded and open subset B C X, we have [|Uy(x)]ly < [x]x +
HSHL(C[(X),‘U)”GOHO < K,(B) for every x € B. Moreover,

HTe(xs Up(x)) — Tilx, Uo(x))”‘u = HSHNGe(Uo, ¢.(Up)) — Go(Up, ¢0(Uo))”C‘[(X)
< /WG, |¢.(Uy — %(UO)HC,;(X) + O(IG, — Gyl

Due to lemma 3.3(ii), we know that ||¢,(Uy(x)) ~ ¢o(Us(Dllc; vy — 0 as & = 0* uniformly
w.r. to x € B and so the hypothesis (T), is also satisfied.

Define ®,(x) : = ¢,(U,(x))(0). According to (3.9) we have that the set O, is a graph over the
Banach space X, i.e. M, = {(x, ®,(x)), x € X} and moreover, as the mapping x = U, (x) and ¢,
are Lipschitz continuous, ®, is Lipschitz continuous as well. Hence, 9, is an invariant
Lipschitz manifold for the semi-flow S, generated by (1.1), € € (0, &. Since [[Lollx, = 4% Y
we have |47 ||| DgFy| < 8 < 1 and so, by definition of a solution of (1.1), & = 0, the set M,
defined by (2.1) is an invariant manifold for the semi-flow §,. With regard to remark 3.4, we
again have ®@y(x) = ¢(Uy(x))(0).

Let B C X be a bounded subset. From (T), and (T), it follows that U,(x) = Uy(x) as ¢ = 0"
uniformly w.r. to x € B. Then by lemma 3.2(i),(ii), we have ®,(x) = ®y(x) in Y* as ¢ — 0t
uniformly w.r. to x € B.

The proof of exponential attractivity of MM, , & € (0, & is similar, in spirit, to that of the paper
by Chow and Lu [3, theorem 5.1]. In fact, it follows the lines of known proofs of existence
of stable invariant foliation to a centre-unstable manifold. Let ¢ € (0, g] be fixed. Given a
solution (T, S) of (1.1) we want to find a solution (U*, $*) € 9, with the property (U, S) €
C (X x Y*) for some u > 0 where U= U* - U, S = §* - Sand C,! is the Banach space

ClXXY®):= {fe CR*, X xY), || fllc; = sup e*|l fOlxxy= < w} .
tz0
Obviously, the existence of such a solution would imply that the 9, manifold has the exponen-
tial tracking property and as a consequence we would have dist((U(?), S(¥)), M,) = Ok ™)
when ¢ = o, i.e. M, is an exponentially attractive invariant manifold.
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Now, one easily verifies that (U, S) belongs to C,, # > | G,|,, if and only if the following
integral equations are satisfied

t

U@y = j G (U(s) + Us), Ss) + S(s) — G(ULs), Ss)) ds =: FYUU, S)2)

S() = exp(~Al/e)¢ + é j’ A C D
0

~ F(U(s),8(s))]ds  forany ¢t =0

for some ¢ € Y. The operator ¥ defined by the right-hand side of the first equation in
(3.14) is well posed on the space C,/ (X x Y*) with values in C,} (X). Moreover, the mapping
U~ FYU, S) is a uniform contraction in C, (X) provided that u > ||G,|/,. More precisely,
one has

”3:U(U1,S) - EFU(Uzwg)“c;(,\’) = “nglll_IHUl - Uz”c;()()
and, similarly,

IFYU, S) - FUW, Sz)”c;(X) < |Gl e7'IIS - Sz”c;(yu)-

By the parameterized contraction principle there is a mapping 4: C,/(Y®) = C, (X) such
that, forany § € C;(Y), U € C,/ (X) is a solution of U = FY(U, S)iff U = A(S). The Lipshitz
constant of the mapping 4 can be estimated as

(A

hS) — (S croy = ——
” 1) ( 2 ||C” [ 9] u _ ”Gslll

”S1 - Sz”c;(y"‘)- (3-15)

It means that (U, §) € C,’ is a solution of (3.14) iff U = h(S) and S solves the equation

!

S(2) = exp(—At/e)¢ + % S exp(—A(t — 5)/e)f(SHs)ds = F(E, S)
0

for any ¢ = 0, where £(S)(s) := F,(U(s) + A(S)(s), S(s) + S(s)) — F,(U(s), S(s)). Since
1/ = fS)llcr oy = IENNIAS) = Al er oy + IDsFIIS, ~ Sallcp vey
= (”E:“l”Gs”l(.U - ”05”1)—1 + ”DSFé”)Hsl - Sz”c,f(ya)

the mapping S — F5(&, S) is a uniform contraction on C,(Y*) with respect to ¢ € Y'*, provided
that 4 > 1 is large enough and |DgF,|| < & < 1 is sufficiently small for ¢ € (0, &), & < 1.

For a given & € Y*, we denote S¢ e C;(Y") the unique fixed point of § = F5(, S). Again,
due to the parameterized contraction principle the mapping £ — S* is Lipschitzian and, hence,
the mapping Y* » & = (U%, §%) e CJ (X x Y*), U* := h(S%), is Lipschitz continuous as well.
Finally, if we denote

g = 0©0) + U0), ¢evY®,
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then the mapping g: Y* — X is also Lipschitz continuous. We recall that (U*(0), $*(0)) € I,
iff S*(0) = ®,(U*(0)). However, the last condition is satisfied if and only if

E=S5*0) - S(0)e Y™
is a solution of

D, (2(£)) — S(0) = ¢&. (3.16)

Now, if we suppose that 4 ': Y — Y is a compact linear operator than, by [1, chapter 1]
the embedding Y*® -~ Y* is compact whenever a < 8. We then claim that the mapping
X2 x+~ ®,(x) e Y has a compact range. Indeed, by lemmas 3.2 and 3.3 we know that

0

1
D, (x) = . exp(As/)F, (U, (x)(s), ¢, (U, (x))(s)) ds.

o

This yields the estimate

0
1@ )llys < Kol Filloe™ { (—s/e) P et ds =1 Ko(f) < o foranyxe X

—o0

for any o < 8 < 1. Then the mapping Y* 3 ¢ — ®,(g(¢)) — S(0) € Y* is compact and Lipschitz
continuous. Moreover, it takes a ball B(0, R) C Y into itself, R = Ky(a) + [|$(0)||y«. Due to
the Schauder fixed point theorem there is a solution ¢ € Y* of (3.16). In other words, there
exists a (U*(0), $*(0)) € M,, U*©0) = g(&), $*(0) = S(0) + &, such that |U(t) — U*@)|x +
1S(t) ~ S*(®)|ly« = O(e ") when ¢ — co. It completes the proof of lemma 3.5. W

Remark 3.6. In case the Lipschitz constants of ®, and g are less than 1, equation (3.16) can
be solved by means of the Banach fixed point theorem (see, [3, theorem 5.1]). Since we
have provided no bounds on the Lipschitz constant of ®, we cannot apply a contraction
principle here. This is why we have to turn to Schauder’s fixed point principle and therefore
the compactness of 4! is needed in our proof.

In the following we will show that this family of fixed points U,(x) and their derivatives
D, U, (x) depend continuously on & > 0 when ¢ tends to 0* uniformly w.r. to x € B, where
B C X is an arbitrary bounded subset.

The proof uses abstract results due to Mora and Sola-Morales [6] regarding the limiting
behavior of fixed points of a two-parameter family of nonlinear mappings. The main difficulty
is that the mapping (U, S) - (G,(U, S), F.(U, S)) from the space C, , (X xY®) into
C, ,(X xY) need not be generally C! differentiable and, therefore, 7,(x, *): C, (X))~
C, (X) need not be C' as well. According to lemma 3.1 one can, however, expect that it
becomes differentiable after composition with an embedding operator J, , for some
0 < u < k. This is why we need a version of a contraction theorem covering the case in which
differentiability involves a pair of Banach spaces.

Consider a two parameter family of mappings T,(x, -): U — U, & € [0, &), x € X, where X
is a Banach space. We assume that the Banach space U is continuously embedded into a
Banach space U through a linear embedding operator J. We also denote 7, := JT, and
U,(x) := JU,(x).

Now a slightly modified version of [6, theorem 5.1] reads as follows.
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THEOREM 3.7 [8, theorem 3.6]. Besides the hypothesis (T) we assume also that the mappings
T: X XU~ U, ¢ € [0, &) satisfy the following conditions:

(1) for any ¢ € [0, &), 7, is Fréchet differentiable with DT,: X x U — L(X x U, U) bounded
and uniformly continuous and there exist mappings

dyT; XX U= LA, U, dyT: XxU— LU, W); d,T: XX U~ LX, W)
such that
DyT,(x, U) = JdyT,(x, U) = dy T,(x, U)J, D, T,(x, U) = Jd, T,(x, U)
ldy T (x, U)”L(‘u,‘u) =46, ldy T, (x, U)”L('ﬁ,fﬁ) =4, ld, T2 (x, U)”L(X,‘u) =qQ;

(2) for any B bounded and open subset of X, DT, (x, U) = DTy(x, U) as ¢ = 0" uniformly
for (x, U) € {(x, U,(x)), x € B, ¢ € [0, g]}.

Then the mappings U,: X — U have the following properties:

(@) for any &€ [0,¢&); U.: X — U is Fréchet differentiable, with DU,: X — L(X, U)
bounded and uniformly continuous,

(b) for any B bounded and open subset of X, DU, (x) = DUy(x) as ¢ = 0* uniformly with
respect to x € B.

In order to apply theorem 3.7 we choose the Banach spaces defined in (3.13). The space U
is continuously embedded into U through the linear embedding operator
J=J,,:C L X)=U~C., . (X)="1U

If we suppose that the assumptions of lemma 3.2 are satisfied then the mapping ¢, is well
defined and, hence, we can introduce the mapping G,: U — C:(X )

G.(U)Xs) := G, (U(s), ¢, (UX$)) forany Ue U and s < 0. 3.17)
Now assume that B C X is a bounded subset and define the set
®Bp = {U,(x), x € B, ¢ € [0, g]}.
Since U, (x) = T, (x, U, (x)) = x + 3G, (U,(x)) and both G, and J are bounded, we obtain
®p is a bounded subset of U. (3.18)
Lemmas 2.1 and 3.2 enables us to conclude that
Ge '= 1ok Gs € Coaa(W, C7 (X)), €€ 0, &) (3.19)
and there exists a mapping dG,: U = L(U, C, (X)) such that DG, = J,.xdGes
dG (YW = DyG(U(:), ¢ (U)(-NDW + Ds G (U(+), ¢(U)(-)dob (U)W

We also remind ourselves that U < C,/(X) and so ¢£eC,,1dd(‘u,C(}+,,)u(Y")), Do, =

gy, (1m0, (see lemma 3.2(iii)).
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LeMMa 3.8. DG, (U) = DGo(U) as ¢ = 0" uniformly with respect to U € ®p.

Proof. First observe that
DG (YW = J, DyG(U(+), o (NYCWW + Ji11mp e Ds Go(U(), ¢ (UX() Db (LYW

for any U € ®5 and W € U. By lemma 3.2(ii), we know that llme_.0+(U ¢£(U)) = (U, ¢o(U))
in C,/ (X X Y®) uniformly w.r. to U € ®p. According to lemma 2.1, G, e CL(C. (X xY9),
C, (X)) for v=yu or v=(1+nu and DG,(U, o.(U)) — DGO(U oo(U)) as ¢ 07
uniformly w.r. to U € ®5. Now the proof of lemma follows from the fact that DG, (U, S) =
L.DG.(U,S). 1

Now we are in a position to apply theorem 3.7 to the family of operators {7;}. To do so we
define the following operators

dyTy: X XU = LU, U), 4T XxU->LX,U, duT: XxU— LA, W)
as follows
dyT,(x, U) := 3dG,(U);  d,T(nu):=1Iy  dyT(x, U):= 3dG.(U),
where the linear operators 3 € L(C,(X), W) and 3 € L(C(X), U) were introduced in (3.12),
v = porv = k, respectively. Furthermore, if we denote
TL:=J, :XxU->U and 0O,w:=J UK

then we obtain from (3.18), (3.19) and lemma 3.5,
T.e Clag(X XU, U)  and lim DT, (x, U) = DTy(x, U)
e~0*

uniformly for (x, U) € {(x, U.(x)), x € B, ¢ € [0, &]}. Under the assumptions of lemma 3.5 we
also know that the mappings d,T,, d, T, and d; T, satisfy all the hypotheses of theorem 3.7
with some 0 < # < 1 and Q = 1, provided that ¢ > 1 is large enough.

Finally, we recall that the mapping ®, was defined as ®@,(x) = ¢,(U,(x))(0) (see lemma 3.5),
With regard to theorem 3.7 and lemma 3.2(iii), (iv); the mapping X 5 x = ¢,(U,(x)) € C;(Y*)
becomes Cp,, differentiable, for some g > «, and ¢, (U, (x)) = ¢o(Ug(x)), x € B,as € — 0+ i
the respective topology. Hence, ®, = ®; as¢ — 0% in ded(B Y*®) where B C X is arbitrary
bounded open subset.

Summarizing all the preceding results we can state the main result of this paper.

THEOREM 3.9. Assume that the hypothesis (H) is fulfilled. Then there are constants § > 0 and
0 < g < g, such that if | DgF| =y, < 6 for any ¢ € [0, &,] then there exists an invariant
manifold I, for the semi-flow §, generated by the system of evolutionary equations (1.1),

={(U, ®,(U),Ue X}, where ®, € Ciya(X,Y"),
®,—® ase— 0" in Clyu(B, Y9

for any bounded open subset B C X.
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If dim(X) = « then 9N, is infinite dimensional Banach submanifold of the phase-space
X xY* If dim(Y) = o then codim(M,) = .

If, in addition, the resolvent operator A~':Y — Y is compact then the manifold M,
¢ € (0, g,] is also exponentially attractive, i.e. M, attracts exponentially any bounded subset
of X xY*.

Remark 3.10. One may ask whether the assumption that the F, and G, are globally bounded
in the respective topologies is not too much restrictive from the point of view of possible applica-
tions of the results obtained in theorem 3.9. In case of dissipative semi-flows one can, however,
prepare the nonlinearities F,, G, in such a way that they are vanishing far from the vicinity of a
globally attracting set (see, €.g. [4, 6, 8]). In Section 4 we present an example of such a modifica-
tion of the governing equations. Let us also emphasize that having modified the nonlinearities in
(1.1) by their truncation we are afterwards dealing with local invariant manifolds only.

4. AN APPLICATION TO THE JOHNSON-SEGALMAN-OLDROYD MODEL OF
SHEARING MOTIONS OF A PRESSURE DRIVEN NON-NEWTONIAN FLUID

Many striking phenomena like spurt or hysteresis were apparently observed in rheological
experiments involving the channel flow of highly elastic and very viscous non-Newtonian fluid
like some synthesized polymers. The interested reader is referred to the paper by Vinogradov
et al. [10] for details. Much effort has been spent to explain such and related phenomena
mathematically. In [9, 12, 13] Nohel et a/. have considered the Johnson-Segalman-Oldroyd
model of shearing motions of the planar Poisseule flow within a thin channel. The channel is
aligned along the y axis and extends between x € [—1, 1]. The flow is assumed to be symmetric
with respect to x = 0 and the fluid undergoes the simple shearing. Therefore, we can restrict
ourselves to the interval x € [0, 1]. Moreover, the flow variables (velocity and stresses) are
independent of y so v = (0, v(?, x)). In order to determine extra stress tensor as a functional of
the rate of deformation tensor we consider the Johnson-Segalman-Oldroyd constitutive law
(see [9]). In nondimensional units the system of partial differential equations governing the
motion of such a fluid is a system of parabolic-hyperbolic equations

g,=-0+ (1 + v,
3, =—2 — ovU, 4.1)
eV, = Uy + 0, + f

subject to boundary and initial conditions

v, (6,0 =v(t, 1) =0(,00=0 forany t = 0 2
(0, x) = vy(x), a(0, x) = gy(x), 2(0, x) = z4(x) for x € [0, 1]. ‘

We omit here the complete derivation of the initial-boundary value problem (4.1)-(4.2)
by referring to [9]. We only remind ourselves that ¢ is the extra stress, z is the difference of
normal stresses, f € R is a constant pressure gradient driving the flow. The parameter ¢ > 0 is
proportional to the ratio of the Reynolds number to the Deborah number and is very small
compared to other constants in (4.1), ¢ = O(107'%) (see [9]). It gives rise to treating 0 < & < 1
as a small parameter and investigating the singular limiting behavior of inertial manifolds of
system (4.1)-(4.2) when ¢ — 0*.
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For the purpose of the analysis, let us introduce the total stress function S = v, + ¢ + fx,
x € [0, 1]. Since the flow is assumed to be symmetric about the centerline the extra shear stress
function must be an odd function, i.e. o(¢,0) = 0. System (4.1)-(4.2) can, therefore, be
rewritten as

-0+ (1 +2)(S -0 - fx)

ag;
z,=—-2—-0(S~a—fx) 4.3),
&S, =Sy =e(—a+ 1 +2US — g — fX)
subject to boundary and initial conditions

S¢0)=S.¢1H=0 foranyr =0
(4.4)

S0, x) = Sy(x), a(0, x) = ay(x), z(0, x) = zZy(x) for x € [0, 1].

Denote AS = -8, the selfadjoint operator in Y = L,(0, 1) its domain being the Sobolev space
D(A) = {S e W>2(0, 1), S(0) = S'(1) = 0}. The operator A is sectorial in Y, Re ¢(4) > 1 and
A™':Y - Y is compact. Moreover, Y2 = W% = {§ e W20, 1), S(0) = 0}. Let us consider
the Banach space X = (L.(0, 1))’. The problem (4.3)-(4.4) can be viewed as an abstract
problem (1.1) where the nonlinear functions G(U, S), F,(U, S), U = (g, z) are defined by the
right-hand side of (4.3), i.e. G(U,8) =[-6+ (1 + 2)(S — 6 — fx), -z — (S — o — )T
and F,(U,S) = &f—0 + (1 + 2)(S — ¢ — fx)]. Nohel et al. [12] proved global existence and
uniqueness of solutions of the initial-boundary problem (4.3)-(4.4) in the phase-space X x Y72
(cf. [12]). The inertialess approximation of system (4.3), when ¢ = 0 yields S = 0 and, hence,
(4.3), becomes a system of ordinary differential equations in the Banach space X = (L.(0, 1))*

g, =—-0- (1 + 2 + X
4.3),

z; = -2+ oo + fx)

extensively studied by Nohel e al. [9, 11, 13].

Let us emphasize that nonlinear functions F,, G do not satisfy the assumptions of the
hypothesis (H). In fact they are not smoothly bounded functions. Nevertheless, as is usual in
similar circumstances (see, e.g. [6]) we will smoothly modify the functions F,, G far from the
vicinity of some globally attracting bounded set. In what follows, we will seek a bounded
attracting set in X x Y2 independent of ¢ € [0, &,]. To do so, let us first multiply the first
equation in (4.3) by o and the second one by 1 + z. Their summation then leads to the estimate

sup (6%, x) + (1 + z(t, X)) = 1 + e sup (65(x) + (1 + Zo(x))?).
xe[0,1] x€[0,1]
We willlet Ky = Ko(|| 0l + 1zollw + |1So,]l,) denote any positive constant increasingly depending
on its argument. By C > 0 we will denote any generic constant independent of ¢ € [0, ¢] and
initial conditions. From the above inequality it should be obvious that a ball in X of the
radius 2 is an attracting set, i.e. for any (g,, 2y, So) € X X Y2 there is T = T(a,, Z,) > 0 such
that |o(t, ). + l1z(t, *)||l < 2 for every t = T. Now we observe that

-6+ 0 +2)S-—0c—-/,<Cd+Kye A + [|SI,) fort=0.
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Taking the inner product in L,(0, 1) of the third equation in (4.3) with —S,, we obtain

e d
2 SIS + ISl < ell—0 + (1 + 26 = & = A1l

< Ce(l + Koe ™)1 + [ISIDISel, = Ce1 + 1S, )3

for any ¢ = Ky(gy, z,). Since ||S|, = IS,/ < [|S.|, for any S € D(A) we obtain ed/d¢| S, |13 +
[S,13 = Ce provided that ¢ € [0, &) and &, is small enough. Then

1St I3 < [S,(T, )| exp((T - t)/e) + Ce  for any ¢t > T.

Furthermore, as the growth of the third equation in (4.3), is only linear in S one can easily
prove that the time-one map (a,, 25, Sp) — (o(1, *), z(1, ), S(1, -)) takes bounded sets into
bounded sets of the phase-space X x Y'2. This and the above estimates yield bounded
dissipativity of the semiflow generated by (4.3)-(4.4). More precisely, there is a constant Ry, > 0
independent of ¢ € [0,¢] and such that, for any bounded set of initial conditions
® C XxYY* thereisa T = T(e, B) > 0 with the property

latt, HIIZ + llzt, N2 + 1S, ), < Ry

for any (gy, 29, Sp) € ® and ¢ = T.
Let 8 € CZ;(R*, RY) be a smooth cut-off function with the property 8 = 1 on [0, 2R,],
0 = 0 on [3R,, ») and define the modified functions G?, ng as follows

GP(U, S)(x) := 0(lo()|* + |z00))* + |SI%1.GU, S)(x)
FAU, $)) = 0(a))? + |z)* + IS5 9F(U, S)(x)

for a.e. x€[0,1]. Here U = (0,2) € X = (Lo(0, 1))> and S € Y'? = W,’*(0, 1). Note that
W42 is a Hilbert space its norm squared being two times continuously differentiable and
Wi < Lo(0, 1). Recall also that the Nemitzky operator is C> smooth when considered as a
function from L0, 1) into itself. Thus

FPeChu(XxYV2Y) and  G®e Cly(XxY'? X).
For the norm of DgF? we have an estimate ||[DgF?| = O(e) as ¢ = 0*. Since
My, = (U, $),AS = F(U, S) = 0} = {(U,0), Ue X}

we have @, = 0. Now we can apply theorem 3.9 to obtain the following theorem.

THEOREM 3.11. There exists an g, > 0 such that, for any ¢ € (0, &) the nonlinear system of
equations (4.3)-(4.4) governing shearing motions of a Poisseule planar flow of the Johnson-
Segalman-Oldroyd fluid:

(i) possesses an infinite dimensional local invariant manifold 9, attracting any solution of
(4.3),~(4.4);

(ii) there is an R, > 1 such that any solution of (4.3),~(4.4) enters a ball of the radius R, in
the space (L(0, 1))* x W3*(0, 1);

(111) me = {(O', <y (DS(O', Z)), (O', Z) € BRO]’ (De € Cl;dd(BRos Wl;’z(os 1))s where BR0 = {(G’ z) €
(L0, DY, [ol2 + [1z]2 < Ry);

(iv) @, — 0 as ¢ = 0* in the topology of the space C j4q(Bg,, Wa%(0, 1)).
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The limiting behaviour of solutions of a system of singularly perturbed equations is studied. The goal is to
construct a dissipative feedback control synthesis that stabilizes the prescribed output functional along
trajectories of solutions. The results are applied to a singularly perturbed Johnson-Sagelman—Oldroyd
model of shearing motions of a piston driven flow of a non-Newtonian fluid.

1. Introduction

The aim of this paper is to construct a dissipative feedback control synthesis that
stabilizes a given output functional along solutions of the following system of singu-
larly perturbed evolution equations

Xt = GE(X7 y’ Z)!
' (1.1)
ey, + By = E(x, ), 2),

where 0 < ¢ < 1 is a small parameter, xe X, ye Y, X and Y are Banach spaces, B is
a sectorial operator in Y. In this paper we consider a specific feedback control
mechanism of the form

z=E(x),

where Z is a smooth function from X into another Banach space Z. In other words,
a synthesis z = Z(x) should only depend on the slow variable x. It is well-known that
the Cauchy problem for the full system of equations, ¢ > 0,
X, = Gi(x, y, E(x)),
’ _ (1.2)
Eyt + By = F;(X, ,V» ‘:‘(x))

generates a globally defined semi-flow %,(t), t > 0, on a phase-space 2 = X x Y?#,
provided that the nonlinearities G,, F, and Z satisfy certain regularity and growth
conditions (cf. [6]). Furthermore, under a suitable assumption on a function F,
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system (1.2) generates a semi-flow % (t),t > 0, on a phase-space .#, which is a Banach
submanifold of Z".

Typically, the structure of the reduced system of equations (1.1), ¢ = 0, allows us to
construct a feedback law z = Ey(x) with the property that a prescribed output
functional Q, asymptotically vanishes along all solutions of (1.2), i.e. Qo (¥, (t)(xo, Vo)) = 0
as t »oo. We discuss an example of such a reduced dynamics in section 6. Under
assumptions made in sections 2 and 3, our goal in this work is to find a feedback
synthesis E = E, stabilizing the given output functional Q, along trajectories of the full
system of equations (1.2) whenever ¢ > 0 is sufficiently small. It should be noted that
an explicit construction of such a synthesis is not obvious, in many cases, and this is
why we have to turn to functional analytic methods in order to prove the existence of
a stabilizing feedback law and to examine the limiting behavior of =, when ¢ » 07,

Before stating our main result we need several definitions.

Definition 1.1. Let ¥ (t), t > 0, be a semi-flow on a metric space (2, d). Let .# be an
attracting invariant set for ., i.e. & (t).# = .# for any t > 0 and dist (¥ (t)u, #)— 0
ast—oo foranyueZ. Let Q: % — E be a prescribed output functional, E is a metric
space. We say that the semi-flow & (t) is asymptotically Q-constrained on 4 if Q(u) = 0
for any ue. ..

Remark 1.1. Notice that, if Q: 2 — E is continuous then any Q-asymptotically con-
strained semi-flow #(t) on the attracting invariant set .#, has the property
0(Z(t)u) » 0 as t »oo for any ue Z. Clearly, if a functional Q vanishes on Z then any
semi-flow on % is Q-asymptotically constrained on the whole phase-space %"

Definition 1.2. Let ¢€[0, ¢ ] be fixed. Let Q,: 2 — E be a continuous mapping, Z is
the phase-space for (1.1). We say that system of equations (1.1) admits a dissipative
feedback synthesis Z:X — Z if the semi-flow %,(t) generated by solutions of (1.2)
possesses an attracting invariant manifold .#, and the semi-flow ¥ () is Q,-asymp-
totically constrained on .#,.

We also recall the notion of an inertial manifold.

Definition 1.3. Let & (), t = 0, be a semi-flow in the Banach space #. We say that
a Banach submanifold .# < % is an inertial manifold. for semi-flow .% if:
(a) it is an invariant, i.e. & (t).# = ./ for any t > 0; and
(b) .4 attracts exponentially all solutions, i.e. there is pu > 0 such that dist
(L O)ug, M) =0 ") as t >0 for any uye .

In contrast to the classical definition of an inertial manifold due to Foias et al. [4],
we allow the exponentially attractive invariant manifold to be an infinite-dimensional
Banach submanifold of the phase-space Z. (see e.g. [8]).

Given a family of output functionals Q,, ¢ = 0, the main result can be stated as
follows:

Theorem 1.1. Assume hypotheses (H1)—(H4) and the structural condition (5.1) below.
Then, for any ¢ > 0 small enough,
(a) system (1.1) admits a dissipative feedback synthesis Z,€ Cp0(B, Z)NnC* (X, Z)
and, moreover,
(b) lim, &, = Z¢ in Ciaa(B, Z) for any B bounded and open subset of X.
(c) The feedback law z = E,(x) stabilizes the prescribed output functional Q.. This
means that lim,_, , Q, (x(¢), y(t)) = 0 for any solution (x(.), y(.)) of (1.2).
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(d) The semi-flow &, generated by solutions of system (1.2) is Q,asymptotically
constrained on a C' smooth inertial manifold #,. The manifold 4, is C* close to
My for ¢ > 0 sufficiently small.

The idea of the proof and the organization of the paper is as follows. In section 3 we
find a synthesis z = 0,(x, y) depending on the both slow and fast variables. Under
suitable assumptions (see (H3)) such a function 6, can be uniquely determined from the
governing equations and the condition that ed/dtQ.(x(¢), y(t)) + Q.(x(¢), y(t)) = 0, i.e.
[0.(x(t), y(®))|| = O(e""*) as t — + co for any solution of system (1.1) with z = 0,(x, y).
Incorporating the feedback law z = 0,(x, y) into system (1.1) we then construct an
inertial manifold .#, for (1.1) as a smooth graph .#, = {(x, ®,(x)), xe X }. To this end
we make use of the abstract singular perturbation theorem proved in [14]. We recall
this result in section 4. Roughly speaking, the existence of such an inertial manifold .Z,
means that the fast variable y is governed by the slow variable x when restricted on the
manifold .#,. This enables us to construct E as a composite function E,(x) =
0.(x, ®,(x)).

In section 6 we are concerned with the problem of the existence of a feedback
control law stabilizing a given output of solutions for a system of singularly perturbed
equations arising from the non-Newtonian fluid dynamics. Several authors have
considered various constitutive models of a non-Newtonian fluid in order to describe
flow instability phenomena like e.g. spurt, hysteresis loop under cyclic load for
pressure driven flows of a Johnson-Segalman—Oldroyd (JSO) fluid [9, 11, 5], or
KBKZ fluid (see [ 1, 5]). In this paper we consider the JSO model and research which
has been motivated by recent rheological experiments due to Lim and Schowalter [7].
Their experimental data suggests that a nearly periodic regime bifurcates from
a steady state when the volumetric flow rate was gradually loaded beyond a critical
value. In [10] Malkus et al. developed a mathematical theory capable of describing
bifurcation phenomena in a piston driven flow of shearing motions of a non-Newto-
nian fluid. They considered the Johnson—Segalman—Oldroyd model of a shear flow of
a non-Newtonian fluid leading to a system of three parabolic-hyperbolic equations.

& — Ve = 0: + f,
o, +0=(1+nv:, (tEe[0,00)x[0,1], (1.3)
n,+n=—ovg,

where v is directional velocity of a planar shear flow, o is the extra shear stress and n is
the normal stress difference. The dimensionless number ¢ > 0 is proportional to the
ratio of the Reynolds number to Deborah number and, in practice, ¢ is very small
compared to other the terms in (1.3), ¢ = O(10~'?). This gives rise to treating
0 <& < 1 as a small parameter and to study a reduced system of equations (1.3) in
which ¢ =0. The problem to be considered here consists in the construction of
a driving pressure gradient f as a function of the flow variables o, n in such a way that
the output of the volumetric flow rate per unit cross-section, Q() = | (1) v(t, £)d¢ is fixed
at the prescribed value Qy;,. It turns out that f has the form of a non-local functional
of o, f = Ep(0) = 3n0Qsix — 3j(1)§a(é) dé (see, [10, (FB)]). Numerical simulations per-
formed in [10] showed that such a quasi-dynamic approximation of the full system
(1.3) is capable of capturing an interesting phenomenon of the existence of nearly
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periodic oscillations in the pressure gradient [ observed recently in rheological
experiments due to Lim and Showalter [7].

We apply Theorem 1.1 in order to show that, for small values of & > 0, there exists
a real valued dissipative feedback synthesis f = f,(o, n) for the pressure gradient such
that Q(t) —» Qyi, as t - oo along solutions of the full system of equations (1.3). More-
over, there exists an infinite-dimensional inertial manifold .#, for system (1.3),
0 < ¢ < 1, and the volumetric flow rate Q of a solution belonging to .#, is fixed at the
prescribed value Q. These results are summarized in Theorem 6.3. The vector field
governing the motion on the invariant manifold .#, is compared to that of the reduced
problem. It is shown that they are locally C* close for small values of the singular
parameter.

2. Preliminaries

Let E{, E, be Banach spaces and n€(0, 1]. By L(E{, E,) we denote the Banach
space of all linear bounded operators from E; to E,. For an open subset 4 < E,,
C*(%, E,) denotes the vector space of all k-times continuously Frechet differentiable
mappings F:24 — E,. By C*!(4%, E,) we denote the vector space consisting of all
FeCH4, E,) such that all derivatives D'F, i =0, 1, ...,k are globally Lipschitz
continuous. Cj4(%, E,) denotes the Banach space consisting of the mappings
FeC!(4, E,) which are Frechet differentiable and such that F, DF are bounded and
uniformly continuous, the norm being given by | F|7:= (sup|F|)*> + (sup |DF|)>.
Finally, Ci4"(%, E,) will denote the Banach space consisting of the mappings
FeCiu(%, E,) such that DF is y-Holder continuous, the norm being given by
|F L= F [ + sups,, | DF(x) = DF(y)]| | x — y|| "

Throughout the paper we will assume that

X, Y, Z are real Banach spaces;
(H1) B is a sectorial operator in X;
Reo(B)>w >0 and B !:Y - Y is compact.

It follows from the theory of sectorial operators that — B generates the exponenti-
ally decaying analytic semigroup of linear operators exp(— Bt), t = 0, on Y. Moreover,
there is a constant M > 1 such that

|exp(—Bt)|lys < Mt Pe™" for any t >0 and B = 0. (2.1)

By Y# BeR we have denoted a fractional power space with respect to the sectorial
operator B, Y? =[D(B*)], | yllys=|Bfyly. Furthermore, |B’ !| < Mo’ !
(cf [6, chapter 17).

3. Construction of an (x, y)-dependent dissipative feedback synthesis

In this section we give a partial answer to the problem of the existence of
a dissipative feedback synthesis that stabilizes a given output functional Q,(x, y). We
present a constructive method on how to obtain a feedback law of the form
z = 0,(x, y) from the governing equations. In contrast to the required form of the
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synthesis z = E,(x) we allow the variable z to be a functional of both the x and
y variables. The idea is rather simple and a function 0,: X x Y# — Z is constructed in
such a way that the E-valued functional t — Q,(x(t), y(t)) decays exponentially along
any solution (x(t), y(t)) of system (1.1). Obviously, such an asymptotic behaviour is
justified in the case when

d

& Qex(®), y(1) + KQ(x(1), (1)) =0, >0 (3.1)

for any solution (x(.), y(.)) of (1.1). Here x > 0 is a fixed positive constant. Let us
assume that G, and F, are X and Y valued functions, respectively. Using the chain rule
the equation for z = 6,(x, y) can be deduced from equation (3.1), i.e.

Ho(x,y,2) =0, (3.2)
where x = x(t), y = y(t), t > 0, z = 0,(x, y) and
Ho(x, y, 2) = eD Q,(x, y) G,(x, y, 2) + Dy Q,(x, y) [F(x, y, 2) — By]
+ KQ.(x, y). (3.3)
Suppose that there are constants fe[0, 1), n€(0, 1] such that, for any ¢€[0, &,],
(H2) 0.,eC*Y (X xY# 1 E), E is a real Banach space.

The function #,: X x Y# x Z — E is well-defined because F,(x, y, z) — Bye Y# 1 for
any (x,y,z)eX x Y#xZ and D,Q,e L(Y’~', E).
For any bounded and open subset 4 = X x Y* there is a function
0,€ Cpi (B, Z)NnC* (X x Y, Z) such that
Hy(x,y,z) =0 iff z=0,(x,y) for any (x, y)e X x Y#, and
0,—0, as e>0" in C,;/(%, Z)

If, in addition to (H2), hypothesis (H3) is fulfilled then by (3.1) we have

(H3)

Q.(x(t), y®)) = 0(e ") ast o0 for 0 <& < g 9
Qo(x(t), y(t)) =0 for any t = 0. (3:4)

Henceforth, the property
lim ¢, = ¢po in Cpaa(%, E>) for any bounded and open subset # — E,
e—>0"

will be referred to as local C! closeness of ¢, and ¢,.

Up to this point we did not make any precise assumptions on smoothness of
non-linearities G, and F, appearing in (1.1) as right-hand sides. Henceforth, we will
assume that G, and F, are such that

GeCraaX x Y, X), FeCpli"(Xx YL Y),
H4) % =%l + |7, — Folli = O(e) as £ >0%,
where %(x, y):= G,(x, y, 0,(x, y)), Z(x, y):= F(x, , 0,(x, )).

We remark that G,(F,) need not be necessarily a function from X x Y# x Z into
X(Y). We only require that the composite function %,(Z%,) takes X x Y* into X (Y).
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According to the theory of abstract parabolic equations due to Henry [6, Theo-
rems 3.3.3, 3.3.4], the initial value problem for the system of equations

xt = %:(xa y)a (3 5)
ey, + By = Z,(x, y)

possesses global-in-time strong solutions and system (3.5) generates a global Ct
semiflow %, t = 0, on the phase-space

X =XxY"

By a global strong solution of (3.5) with an initial condition (xq, yo)€Z we mean
a function (x, y) € Cioo([0, 00); Z)NC (0, 00); Z) such that (x(¢), y(t)) € X x D(B) for
any t > 0, and (x(*), y(*)) solves system (3.5) on (0, o0).

Let us denote

5(FO>00) = sup HDng(xy y)”a Where 970(36, y): FO(x> Vs 00(x> y)) (36)

(x,y)

If 5(F,, 0p) < w! ~?/M then we have
IB=*DyFo(x, )|l Lye, yny < | BP~|sup|| DyFo || < M =16 < 1.

By the implicit function theorem there exists a Cpgq function ®: X — Y* such that
By = Zy(x, y) iff y = ®qy(x). By a global strong solution of (3.5), ¢ = 0, with an initial
condition x, € X we mean a function x € C,.([0, 0); X)NC (0, c0); X ) such that x(-)
solves the equation x, = %, (x, ®y(x)) on R*. Again due to the above references to
Henry’s lecture notes this equation generates a global semi-flow Folt), t =0, on X.
The semi-flow %, can be naturally extended to a semi-flow .7, acting on the Banach
submanifold

Mo ={(x, Dy (x)), xe X} = & (3.7)

by 90A(t)(x, Dy (x)):= Fo(t)x for any x € X. In what follows, we will identify the semi-
flow ¥, with .%,.

4. Abstract singular perturbation theorem

This section is focused on the C' singular limiting behaviour of inertial manifolds
M, for semiflows ., generated by solutions of the e-parameterized system of equations
(3.5). We recall an abstract result on limiting behaviour of inertial manifolds for
a singularly perturbed system of evolution equations (3.5). The theorem below ensures
both the existence of .#, as well as C* closeness of .#, and .4 for ¢ > 0 small enough.

Theorem 4.1. ([14, Theorem 3.9]). Assume that hypotheses (H1) and (H4) hold. Then
there are constants do > 0 and 0 < &; < &g such that if sup ) [|DyZ:(x, V) Lye, v) <
O¢ then, for any e€[0, &(], there exists an inertial manifold M, for the semi-flow &,
generated by the system of evolution equations (3.5) and, moreover,
(a) M, = {(x,D,(x)), x€ X}, where ®,e Cpaa(X, YP);
(b) ®, > Dy as ¢ > 0" in Cpya(B, Y?) for any bounded open subset B < X.

If dim(X) = oo then 4, is an infinite-dimensional Banach submanifold of the phase-
space X = X x Y*. If dim(Y) = oo then codim(.#,) = co.
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5. Construction of an x-dependent dissipative feedback synthesis.
Proof of Theorem 1.1

Now we are in a position to prove the existence of a dissipative feedback synthesis
of the required form z = E,(x). We assume that hypotheses (H1)-(H4) hold and,
moreover,

0(Fo, 0o) < do, (5.1)

where 6o > 0 is the constant of Theorem 4.1. Then sup, ,, | D, Z.(x, y)|| < d, for any
e€[0,e0], &0 > 0 small enough. As an immediate consequence of Theorem 4.1 we
obtain the existence of an inertial manifold

My ={(x, D,(x)), xeX} =X (5.2)
for the semi-flow .7, generated by system (3.5). Moreover, ®, € Cp(X, Y*) and
O, >D, as ¢—-0" in Cpu(%, YF) (5.3)

for any bounded and open subset Z < X. Let us define the feedback law E,: X — Z as
follows:

E(x):= 0,(x, Dy(x)) xeX. (5.4)

Since we have assumed 0,e CL,1 (%, Z)nC* (%, Z) and 0, — 0, in Cpu(%, Z) as
& — 07 for any bounded and open subset # = & = X x Y*# we infer from Theorem 4.1
that

Z.eCOVX, Z2)NChaa(B, Z), B, —>Zyin Cpu(B,Z)ase—0", (5.5)

where 4 is an arbitrary bounded and open subset of X. Again due to Henry’s theory
the system

x, = G,(x, y, B (x)), (5.6)
Syt + By = Fs(xa ya Ef(x))

generates a global semiflow %, on & for 0 <& <& and ¥, on .#,, respectively.
Furthermore, we observe that the right-hand side of system (5.6) and that of system
(3.5), i.e.

X = Gs(x’ Vs Ha(x, y))7

(5.7)
gyt + By = Fs(x: y: Qe(xa y))

coincide on the set .#,,e€[0,&;]. Thus Z,(t)(xo, Vo) = Z(t)(x0, o) for any
(xo, yo)€-#,and t = 0. Since .#, is invariant for the semi-flow .%, we conclude that the
set ./, is an invariant manifold for the semi-flow .%, as well. Notice that %, and %, are
defined on .#, and they are equal. Although the set .Z, is an attractive invariant
manifold (inertial manifold) for ., it should be emphasized that it is not obvious that
My s an attractive set for .#,. The reason is that governing systems (5.6) and (5.7) may

differ outside the set .#,. Nevertheless, we will show that the semi-flows %, and ., are
exponentially asymptotically equivalent.
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Lemma 5.1. There exists a constant > 0 such that for any (xq, yo)€Z there is
(x¥, v&) e, with the property

1700, o) = LT, y5) .o = O ™) as t >c0. (5.8)

Proof. This is just the proof of [3, Theorem 5.1] and it follows the lines of the proof of
the existence of exponential tracking to a centre-unstable manifold. A slightly modi-
fied version of this proof is also contained in [14, Lemma 3.5]. This version utilizes
compactness of the operator B!,

The idea is as follows. Let us ﬁx 0 < ¢ < g;. Given a solution (x(*), y(*)) = Z.(*)
(X0, yo) of (5.6) we will prove the existence of an 1n1t1al condition (xo, )€ A, with the
o (t

property (u(-), v())eC, (Z), where (u(t), v(t)) = L,(t)(x5, y5) — Lu(t)(xo. yo) and
C, is the Banach space

Cy (@)= 1{feC([0,0), Z), | [lc; =supe|f(t)],<co}.
120
Obviously, the existence of such an initial condition (x§, y&) implies statement (5.8).
Let us choose u > 0. Taking into account the decay estimate (2.1) for the semigroup
exp(—Bt) we have that (u, v) belongs to C,, if and only if it is a solution of the
following pair of integral equations:

u(t) = j gl s, o) ds

t

v(t) = exp(—Bt/e)¢ + %f exp(—B(t — s)/e) f (s, u(s), v(s))ds, t=0,

0

for some ée Y# where
g(s, u, v) = Go(x*(s), y*(s), O:(x*(s), y*(5))) — Ge(x*(s) — u, y*(s)
— U, Bo(x*(s) — u),
S s, u,0) = F(x*(s), y*(s), 0.(x*(s), y*(s)) — Fo(x*(s) — u, y*(s)
— 0, B (x*(s) — u)).

Since .#, is invariant for %, we have y*(s) = ®,(x*(s)) and hence 0,(x*(s), y*(s)) =
E.(x*(s)) for any s = 0. Thus, || {(s,u, v)||x < C(||u|l x + |[v] y#) where { stands either
for g or f and C > 0 is a positive constant depending only on the Lipschitz constants
of the mappings G,, F,, 0,, ®,. Notice that the constant C > 0 can be chosen to be
independent of ¢€(0, ¢;]. The rest of the proof is essentially the same as that of
[3, Theorem 5.1] or [14, Lemma 3.5] and therefore is omitted. We only remind
ourselves that, using the integral equations (5.9), the main idea is to set-up a suitable
fixed point equation for e Y by requiring that (x§, y&) = (xo — u(0), yo — &) must
be an element of the manifold .#, = Graph(®,). To solve such a fixed point equation
u > 0 must be chosen large enough. O

Lemma 5.2. The output functional Q, vanishes on M, i.e. Q.(xq,yo) =0 for any
(XOa yO) € ’%}:‘

Proof. The proof utilizes a simple invariance argument. Let (xo, yo) € .#; be fixed.
Since .#, is invariant for the semi-flow .%,, for any t > 0, there is (x_,, y_,) € .#, such
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that Z,()(x -, y-1) = (xo, yo). Clearly, xo = x—, + [ %,(7.(s)(x-, y-)) ds. Hence,
Ixo — x—¢|| <1%.|ot. Furthermore, as (x_,, y_,) €.#, we have y_, = ®,(x_,) and so
| v=ill < |D;llo- Solving the linear homogeneous equation (3.1) we obtain Q,(xq, yo)
= Q. (Z()(x_(, V1) = Qu(x_,, y_,)e " t > 0. We remind ourselves that the output
functional is assumed to be globally Lipschitz continuous and this is why

10:(x0, yo) 1€ — 1) = [ Qulx—1, y—1) — Qulx0, ¥o) |
< Iip(Q)(llx—¢ — Xxollx + Y- — Yo lly?) <Tip(Qe)2 [ @ llo + % ]l00)-

Comparing the growth in t > 0 of the left- and right-hand sides of the above inequality
we conclude Q,(xo, vo) = 0. Since (x¢, yo) € .#, was arbitrary the proof of the lemma
follows. U

Proof of Theorem 1.1. Under hypotheses (H1)-(H4) and assumption (5.1) we have
established the existence of a dissipative feedback synthesis Z, (see (5.4) and
Lemma 5.2). The regularity and convergence properties of Z, were shown in (5.5).
Since, Q, is globally Lipschitz continuous the statement c) of Theorem 1.1 follows from
Lemmas 5.1 and 5.2. Again with regard to Lemma 5.1, the manifold ./, is an inertial
manifold for the semi-flow .%, generated by system (5.6). By (5.2) .#, is a C! graph over
the space X and the convergence property ®, - ®, as ¢ —» 0" follows from (5.3).

Hence, the statement (d) also holds. O

6. An application to the Johnson—Segalman—Oldroyd model of shearing motions
of a piston driven non-Newtonian fluid

6.1. Governing equations

In order to examine the behaviour of a piston driven flow of a non-Newtonian fluid
we consider the Johnson—-Segalman—Oldroyd constitutive model of shearing motions
of a planar Poiseuille flow within a thin channel. The channel is aligned along the
y-axis and extends between xe[ —1, 1]. The flow is assumed to be symmetric with
respect to x = 0 and the fluid undergoes simple shearing. Therefore, we can restrict
ourselves to the interval x € [0, 1]. Moreover, the flow variables (velocity and stresses)
are independent of y so ¥ = (0, v(t, x)). To determine the extra stress tensor as
a functional of the rate of a deformation tensor we consider the Johnson—Segal-
man—Oldroyd constitutive law (see [9] for details). In non-dimensional units the
system of partial differential equations governing the motion of such a fluid is a system
of parabolic—hyperbolic equations:

g, =—0o+ (1 +nv,,
n, = —n — ovy, (6.1)
&0 = Noxx + 0x + f,
(t, x)€[0, o0) x [0, 1], subject to boundary and initial conditions
v.(t,0)=0v(t, 1) =0(t,0) =0 foranyt =0
v(0, x) = vy(x), 6(0, x) = ay(x), n(0, x) = ne(x) for xe[O0, 1]. (6.2)
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Here o is the extra shear stress, n is the normal stress difference. It should be noted that
in the case of a pressure driven flow studied in [9, 11, 15] the pressure gradient f € R is
fixed. On the other hand, in the case of a piston driven flow (see [ 10] or [5, chapter 3])
the pressure gradient f is assumed to vary with respect to time. The parameters & > 0
and 7 > 0 are proportional to the ratio of the Reynolds number to the Deborah
number and the Newtonian viscosity to shear viscosity, respectively. In rheological
experiments the number ¢ is very small compared to other terms in (6.1), ¢ = O(10~'?)
(see [9]). This gives rise to treating 0 < ¢ < 1 as a small parameter and investigate the
singular limiting behavior of system (6.1)—(6.2) when ¢ — 0*. We refer to [9] for the
complete derivation of a system of governing equations.

For the purpose of this analysis, let us introduce the following change of variables:

1
(o,n,0) = (X, n,u), X(x)= — J a(&)dé, u=nv + X. (6.3)
In terms of the new variables (X, n, u) system (6.1) has the form
3, =G%,
n, =G, (6.4)

Uy — NUxx = l’lf + ‘SG(E):

where the non-linear functions G®, G® are defined as

G”=@Wamm=—2—%fu+n@mua—zﬁn&,

| (6.5)
G"” =G"E,nu=—n—-3[u,—Z,.].
n
The corresponding boundary conditions are
u(t,0) =u(t, 1) =2,(,0)=%(t,1) =0 for any ¢t > 0. (6.6)

Let Qf€R be a prescribed value of the volumetric flow rate. If Q denotes the
variation in the volumetric flow rate of a planar flow per unit cross-section, i.c.
0=f év(é)dc’f — Qyix then Q can be rewritten in terms of X and u as

Q@»0=;J [u(&) — 2(E)1dé — Ory. (6.7

The feedback law f = 0,((%, n), u) can be then readily deduced from equation (3.2). In
our application (3.1) and (3.2) become
¢D30°G® + D,Q°[eG® + nf + nu]
e (! 1! K (1
= =2 [ 640 [ bt s oo™+ [ pute) - 2eae

nJo 0 0
— KQpix = 0.

Thus, for any ¢ > 0, we obtain

f=m2w=—wm—;f[mo—2@n@+x@w (638)
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Remark 6.1. Tt should be noted that in the case of the reduced problem (¢ = 0) one can
calculate that u(x) = (1 — x?)f/2. Taking into account (6.8) one has f = 35Qy;, +
3 éZ(é)df. In terms of the flow variable ¢ it means that

1
f=MQm—3ffd@dé
0

which is, up to rescaling, the same formula for the driving pressure gradient as that
obtained in [10], formulae (FB).

Incorporating the feedback law f = 6(Z, u) into system (6.4) we can rewrite the
system of governing equations (6.4) in an abstract form

Zt = G(Z)(Z, n, l/i),
nt = G(Vl)(Z’ n, U), (69)
8”1 + Bu = ‘9/78(27 n, u)a

where B is a linear operator, Bu(x) = —nqu,(x) + nu.(1) + Kjéu(é) d¢, xe[0, 1], and
1
A ) = [ Qs+ 0GP 0 (610
0
and the non-linearities G®, G™ are as defined in (6.5). Notice that the derivative D, %,
vanishes for ¢ = 0.

6.2. Function space and operator setting

Let Y denote the real Hilbert space L?(0, 1) of square integrable functions; || u||3 =
j(l) |u|?. For fixed positive real numbers #, k > 0, we denote by B the linear operator
Bu = —nu,, + nu,(1) + Kjéu(f)dé its domain being the Sobolev space D(B) =
{ue H*(0, 1), u,(0) = u(1) = 0}. B is a non self-adjoint nonlocal operator. In what
follows, we will show that B is a sectorial operator in Y, and, moreover, Re a(B) > 0.
To this end, we decompose the operator B as B =% + ¥ where Lu = nu.(1) +
Kj(l)u(«f)df and & is a self-adjoint operator in Y, $u = —nu,, for any ue D(%) =
D(B). The operator 4 is sectorial in Y and Re ¢(%) > nn?/4 > 0 (see [6, chapter 1]).
Since the embedding [D(%#*)] G C4.(0, 1) is continuous for any f > 3/4 we have
| Luly < C|#*ull for any ue D(#) and f > 2. According to [6, Corollary 1.4.5 and
Example 11, p. 28] we conclude that the sum B = %4 + % is a sectorial operator in
Y as well. Moreover, the norm in the fractional power space [D(B*)] is equivalent to
that of [D(#*)]. It remains to estimate the spectrum of B from below. First we notice
that the operator B™':Y — Y exists and is given by B~'g = [} K(., ¢)g(¢) d&, where
K is a Green function.

I—x)— > (1—x)(1—-&) 0<i<x<l,
4n

—+—(1—x2)—%(1—x2)(1—52), O0<x<{i<L

Since, the kernel K is bounded the operator B~ ! is compact and therefore the
spectrum ¢ (B) consists of eigenvalues, i.e. 6(B) = op(B). Let A€ (B) be an eigenvalue
and u # 0 be the corresponding eigenfunction. Then — #u,,(x) + nu(1) + x| éu(f)df =
Au(x), xe[0, 1]. Integrating this equation over [0, 1] and taking into account the



90 D. Sevéovié

boundary condition u,(0) = 0 we obtain (k — A) j u = 0. Then either A =k >0 or
i ou = 0. The latter implies —nu.(x) + r]ux(l) = Au(x) By taking the inner product in
a complexification of Y with @ we obtain [ |u.* = n [ |u.l* + nuy(1)[ i = A]] ul>.
Hence A is a real number and, moreover, 4 > inf, _ o1 | u||?/[|u||* = nn/4. Summar1z-
ing we have shown the following proposition.

Lemma 6.2. Let n, k be any positive constants. Then the linear operator Bu = —nu., +
nu,(1) + Kj(l)u(f)dﬁ, D(B) = {ue H*(0,1), u,(0)=u(1)=0}, is sectorial in
Y = L*(0, 1). Furthermore, a(B) = [w, c0) where o = min{k, nn*/4} > 0. The frac-
tional power space YP = [D(#*)] is imbeded into the Sobolev—Slobodeckii space
H?$(0,1) for 1 > B > 3/4. The resolvent operator B~1:Y — Y is compact.

Let X be the Banach space X := {(Z, n) € Cpg4(0, 1) x Cpya(0, 1), Z,(0) = Z(1) = 0}.
With regard to the continuity of the imbedding Y* & Cy4y(0, 1) for f > 3, we conclude
that the nonlinearities G:= (G®, G™): X x Y# 5 X and Z,: X x Y# - Y are locally
Lipschitz continuous. Thus local solvability in = X x Y*,3 < < 1, of system (6.9)
follows from [6, Theorem 3.3.3]. To prove global-in-time solvability of solutions we
have to find a priori estimates of any solution of (6.9).

6.3. A priori estimates of solutions, dissipativeness of a semi-flow,
modification of governing equations

If (X, n, u) is a local solution of (6.9) in the phase space Z then (g, n,v),0 = X, v =
(u — Z)/n is a local solution of (6.1) in Cygy(0, 1) {7, 3(0) = 0} x Cpga(0, 1) x Y%, Let us
multiply the first equation in (6.1) by ¢ and the second one by (1 + n). Their
summation leads to the identity (d/df)(c* + (1 + n)?) + 2(c® + (1 + n)n) = 0. As
62 + (1 +n)*> <2(6* + n(1 + n)) + 1 we obtain for  and n the estimate

IZ@E )T+ 11+ 0I5 <2+ 27 ([Z0]7 + 11+ n0l3). (6.11)

To obtain a bound of a solution u we take the inner productin Y = L?(0, 1) of the
equation
1
Uy — Ny + Nu(1) + KJ u=7, (6.12)

0

with 3xu — nu,,. Since u.(1) = j(l]uxx for any ue D(B) we have

(3KHMH2 + o ucl?) +nGrllucl® + nlluc]?)

N ™
Q|Q

+<ﬂx f u+ nug(1)//3 ) =3 Pl + (F, 3kt — i)y

Cleaﬂy,sn | (D)7 =507 [ §etty < 54/3en (e || * + 1| uy|?). Notice that 5,/3k < 1
iff x> 355. Furthermore, as HuHY luglly < |uyxly for any ueD(B) we have
I35t — nu || < max {6, 27} (3xc | ux || + 1 |uc[?). Assuming x >3%7 and ap-

plying Schwartz’s inequality to the inner product (#,, 3ku — nu,,)y one can show the
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existence of positive constants d, C > 0 independent of ¢ > 0, such that the following
Lyapunov-type inequality is satisfied

2, (6.13)

ed
Ea(%l\ul\z + 7 llux | ?) + 0Bk luy | + 1 uw|?) < C| 7|

Henceforth, C, ¢ will denote any generic positive constant independent of ¢ > 0 and
initial conditions. Now, it follows from the definition of G® and %, that

17y < [ Z:llo < CAL+ [ ZIT + [n]8) (A + elluglly)- (6.14)

Then differential inequality (6.13) implies that
du 4 4
SE+5U<C(1+ 1211+ IInlg)l + &U), (6.15)

where U(t):== 3« | u(t,-)|# + 1| us(t, )| 3. To obtain a bound for |u,|y we differen-
tiate equation (6.12) with respect to time. Denoting w = u,, w is a solution of

1
d
ew; — nWy, + wi (1) + x j w=—%Z, (6.16)
o dt
subject to the boundary conditions w(t, 0) = w(t, 1) = 0. Since,
d ! 1!
a7 [ mere (==t 00— 2 4 - 20)
0 x

and
IZdlo < CA+IZNT + [nl3 + lucll?)
20 S CA+ T+ [nl8 + 11+ nlolud-, X))
(-, 01 < CA+ [ ZIT + [0l d + IZ 1 lux, X))

for a.e. xe[0, 1], we have
‘ d _ < ‘ d
Y

_/ J—

dt™ °© dt
Now one can proceed similarly as in the proof of inequality (6.15). By taking the inner
product in Y of (6.16) with 3kw — nyw,, we obtain a differential inequality

SCA+ZNT+ InI)A + [ully +elwely).  (6.17)
0

T
T

dw
=g, TOW SCU+IZIT+[nlo)1+ U +eW), (6.18)
where W (t):= 3ic||w(t,-) | § + nllws(t,-)|| . Now it follows from the evolution equa-
tion for u that ||u||y: = |Buly < ellu|ly + | Z.|ly. Since Re a(B) > 0 the norm || u | y»,
3/4 < < 1isdominated by || Bu||y. Taking into account estimates (6.11), (6.14), (6.15)
and (6.18) and using a simple Gronwall’s lemma argument we obtain a priori estimate

12 )1 + (e ) o + [u(t,-)[lyr < const  for any €(0, Tinay),

where T,,., is the maximal time of existence of a solution (X(t,-), n(t,-), u(t,-)). Hence,
Tmax =00 and the global-in-time existence of solutions in the phase space
Z =XxYF 3/4 <p<1,is established.
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In what follows, we will prove the existence of a ball in the phase-space 2 that
dissipates any solution of (6.9). Let (X, ng, uo) € Z be an initial condition. With regard
to (6.11) there exists time Ty = T;(Zq, no) > 0 such that

L+ |Z]% + [nll5 <1995 foranyt>T, p=4,8.

One can choose 0 < ¢, < 1 such that 1995C¢, < ¢ where constants C, é > 0 appear in
inequalities (6.15) and (6.18). Then

dU(r)
— <
N +0U(1) < C,
dW (1)
dt

€ + oW (@) < C(1 +U?%t) foranyt= Ty,

where C,0 > 0 are constants independent of ¢€[0,¢,] and the initial condition
(29, ng, ug). It should be noted that the first differential inequality does not involve W.
Then solving the above differential inequalities one can show the existence of a time
T =T (Zg,ng,ug) =T, such that U(t)+ W(t) < C for any t > T. Recall that
llu(t, )| 3< W (t) and | Z, |y can be estimated in terms of U(¢) for t = T (see (6.15)).
Thus, || Bu(t,-)|ly < C for t > T. In summary, we have shown the existence of a con-
stant gy > 0 independent of ¢ €[0, ¢y ] and initial data, such that

lu(t, )13 + [ (), n(t,) | X < @0 for any t = T (o, no, tio)- (6.19)

This means that the ball in X x Y of radius o¢'* is a dissipative set for solutions of
(6.9), i.e. any solution enters this ball after a certain amount of time. In other words,
the long-time behavior of solutions takes place inside this ball.

As is usual, we will modify the governing equation outside the ball of radius oj'%.
Let (e Cru(RT, RY) by any smooth cut-off function with the property { =1 on
[0,200], (=0 on [309,0). We define the modified functions
G=G®G":XxY?>Xand Z,: X xY*? > Y as follows:

GO, nu)(x):= LIZM)P + [Z) P + [0 + [ul §2)GOE, n, u)(x),
Fo(Zon,u)(x):= CIZ)1? + 21 + [n()1? + [l §0) 70 (Z, n, u)(x)

for xe[0, 1], i stands either for ¥ or n. We remind ourselves that the mapping
u+— |u|3sis a twice continuously Frechet differentiable function from Y# to R. The
modified functions 4 and %, obey hypothesis (H4). With regard to the definitions of
Q and 0 (see (6.7), (6.8)) it is easy to verify that hypotheses (H2) and (H3) are also
fulfilled. Since #, does not depend on u, the structural condition (5.1) is satisfied for
any J, > 0. Taking into account Lemma 6.2 and (6.3) we have shown that all the
conclusions of Theorem 1.1 hold for system (6.9) except for the statement that .#, is an
invariant manifold for the semi-flow generated by solutions of (6.9). This is due to the
fact that we have modified the governing equations far from the vicinity of a dissi-
pative ball of the radius o;/?. Hence, .#, need not be invariant outside this ball. On the
other hand, it should be emphasized that the long-time behaviour of solutions of (6.9)
takes place inside this ball as it was shown in (6.19). Henceforth, we will therefore refer
to .4, as a local invariant manifold for solutions of (6.9).
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Now we can rewrite the feedback law in terms of the flow variables o, n, v as follows:
f= f.(a,n) where f.(o,n) =E,(Z, n). For the velocity field on the manifold .#, we
obtain the expression v =¥, (0,n) =u — X)/n = (0,(X, n) — X)/n where Z(x)=
— [1o(¢)dé. We infer from the continuity of the imbedding Y* & Cyu(0, 1), 2 < B,
(see Lemma 6.2) that

W, : Chaa(0, 1) {0, 3(0) = 0} X Cpaa(0, 1) > Cpaa(0, 1)
is C! smooth and W, is locally C! close to ¥,. Similarly, one has
f2: Chaa0, ) {0, 3(0) = 0} x Cpga(0, 1) > R
is C! smooth and f, is locally C* close to ¥,. Furthermore, with regard to Remark 6.1

we have an explicit formula for f, and ¥,

1

fo = 30p + 3 f (&) de

0

o(x) = Pola, m)(x) = ((1 ) fo2 4 f o(é)dé>.

X

Summarizing the results of section 6 we can state the following theorem.

Theorem 6.3. There exists 0 <&y <1 such that, for any e¢€[0, o], the system of
equations governing the Poiseuille flow of the Johnson—Segalman—Oldroyd fluid
(6.1)—(6.2) admits a dissipative feedback synthesis of the pressure gradient

f = fs(o—an)a a, necl(y)dd(oa 1)
that stabilizes the volumetric flow rate at the prescribed value Qgy. The mapping
fo: Cpaa(0, 1) {a, 3(0) = 0} X Cpaa(0, 1) > R is C'-smooth and f, is locally C* close to

fo whenever ¢ >0 is small enough. The feedback law f, for the reduced system of
equations has the form

Foloum) = 30 — 3 f fo(E)de.

The initial-value problem (6.1)—(6.2) with f= f,(o, n) possesses an infinite dimensional
locally invariant attractive manifold .#,. T he volumetric flow rate for solutions belonging
to M, is fixed at the prescribed value Q. The manifold M, is a C' smooth graph,

%5 = {(Ga n, U)a v= \Ps(aa I’l), a, necl?dd(oa 1)9 H O-H% + HnH(Z) < QO}:

where W,: Cpaa(0, 1)n{a, (0) = 0} x Cpsa(0, 1) = Cp44(0, 1) is @ C* function which is
locally C* close to P,

1 1
Wolo,n)(x) = p ((1 —x?) fola,n)/2 + J 6(5)d5>, xe [0, 1].
Finally, the flow when restricted to the manifold M/, is governed by the following system
of functional differential equations:
g=—0c+ (1 +nV¥,(o,n),,

(FDE)
n=—n-— O-\Ps(o-a n)xa
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(t, x)€[0, o0) x [0, 1], subject to boundary and initial conditions (6.2). For small values of
& > 0, the vector field defined by the right-hand side of (FDE) is locally C* close to that of
the reduced system of equations

o =—0+ (1 +n)(T —a)n,

(QFDE)
n=-—n-— O-(T - 0)/’/]:
where T = — fy(o,n)x.
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EVOLUTION OF PLANE CURVES DRIVEN BY A NONLINEAR
FUNCTION OF CURVATURE AND ANISOTROPY*
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Abstract. In this paper we study evolution of plane curves satisfying a geometric equation
v = B(k,v), where v is the normal velocity and k and v are the curvature and tangential angle of a
plane curve I We follow the direct approach and we analyze the so-called intrinsic heat equation
governing the motion of plane curves obeying such a geometric equation. The intrinsic heat equation
is modified to include an appropriate nontrivial tangential velocity functional . We show how the
presence of a nontrivial tangential velocity can prevent numerical solutions from forming various
instabilities. From an analytical point of view we present some new results on short time existence
of a regular family of evolving curves in the degenerate case when 8(k,v) = y(v)k™, 0 < m < 2, and
the governing system of equations includes a nontrivial tangential velocity functional.

Key words. nonlinear curve evolution, intrinsic heat equation, degenerate parabolic equations,
tangential velocity, numerical solution
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1. Introduction. The goal of this paper is to study curvature-driven evolution
of a family of closed smooth plane curves. We consider the case when the normal
velocity v of an evolving family of plane curves I'* : S* — R2,t € (0,T), is a function
of the curvature k and the tangential angle v:

(1.1) v = B(k,v).

In past years, geometric equations of the form (1.1) have attracted a lot of attention
from both the theoretical and the practical point of view. There is a wide range of
possible applications of geometric equations of the form (1.1). They arise from various
applied problems in mathematical modeling and scientific computing, and they can
be investigated in a purely mathematical context.

In the theory of phase interfaces separating solid and liquid phases, (1.1) cor-
responds to the so-called Gibbs—Thomson law governing the crystal growth in an
undercooled liquid [25, 39, 13]. In the series of papers [9, 10, 11] Angenent and
Gurtin studied motion of phase interfaces. They proposed to study the equation of
the form p(v,v)v = h(v)k — g, where u is the kinetic coefficient and quantities h, g
arise from constitutive description of the phase boundary. The dependence of the nor-
mal velocity v on the curvature k is related to surface tension effects on the interface,
whereas the dependence on v (orientation of interface) introduces anisotropic effects
into the model. In general, the kinetic coefficient ;1 may also depend on the velocity
v itself giving rise to a nonlinear dependence of the function v = S(k,v) on k and
v. If the motion of an interface is very slow, then G(k,v) is linear in k (cf. [9]) and
(1.1) corresponds to the classical mean curvature flow studied extensively from both
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the mathematical (see, e.g., [21, 1, 5, 24]) and the numerical point of view (see, e.g.,
[18, 16, 31, 35, 36]).

In the image processing the so-called morphological image and shape multiscale
analysis is often used because of its contrast and affine invariance properties. It has
been introduced by Sapiro and Tannenbaum [38] and Alvarez et al. [2, 3]. Analysis
of image silhouettes (boundaries of distinguished shapes) leads to an equation of the
form (1.1) without anisotropic part. Among various choices of a function §(k) the
so-called affine invariant scale space has special conceptual meaning and importance.
In this case the velocity v is given by v = (k) = k/3 [2, 38, 12]. In the context of
image segmentation, various anisotropic models with v = §(k, v) have been studied
just recently [27, 30, 15]. For a comprehensive overview of applications of (1.1) in
other applied problems, we refer to [42].

The analytical methods for mathematical treatment of (1.1) are strongly related
to numerical techniques for computing curve evolutions. In the direct approach one
seeks for a parameterization of the evolving family of curves. By solving the so-called
intrinsic heat equation one can directly find a position vector of a curve (see, e.g.,
[17, 18, 19, 33, 39, 40]). There are also other direct methods based on solution of a
porous medium-like equation for curvature of a curve [31, 32], a crystalline curvature
approximation [22, 23, 44], special finite difference schemes [28, 29], and a method
based on erosion of polygons in the affine invariant scale case [34]. By contrast to
the direct approach, level set methods are based on introducing an auxiliary function
whose zero level sets represent an evolving family of planar curves undergoing the
geometric equation (1.1) (see, e.g., [36, 41, 42, 43, 26]). The other indirect method
is based on the phase-field formulations (see, e.g., [14, 35, 20, 13]). The level set ap-
proach handles implicitly the curvature-driven motion, passing the problem to higher
dimensional space. One can deal with splitting and/or merging of evolving curves in
a robust way. However, from the computational point of view, level set methods are
much more expensive than methods based on the direct approach.

In this paper we are concerned with the direct approach only. We consider the
power-like function B(k,v) = ~(v)|k|™ 'k, where vy(r) > 0 is a given anisotropy
function and m > 0. From the analytical perspective, the main purpose is to establish
short time existence of a family of regular smooth plane curves satisfying the geometric
equation (1.1). A short time existence result was obtained for the singular case in
which 0 < m < 1 as well as for the degenerate case in which 1 < m < 2. Let us
emphasize that we needed additional geometric assumptions made on an initial curve
in the degenerate case 1 < m < 2. Cases with higher powers of m do not seem to
be treatable by our techniques. On the other hand, recent results due to Andrews
[4] show that the value m = 2 is critical in the sense that, for higher powers of m, a
solution need not necessarily be classical in points where the curvature vanishes.

In our approach, a family of evolving curves is represented by their position vector
x satisfying the geometric equation

(1.2) dyx = B(k,v)N + aT.

Notice that the presence of an arbitrary tangential velocity functional o has no effect
on the shape of evolving curves. The usual choice is therefore &« = 0. From the numer-
ical point of view, such a choice of o may lead to computational instabilities caused by
merging of numerical grid points representing a discrete curve or by formation of the
so-called swallow tails. In this paper we present an appropriate choice of a nontrivial
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tangential velocity a. It turns out that if « is a solution of the nonlocal equation

Oa

(1.3) o — Kk, v) - ﬁ /F kB (k, v) ds

then material points are uniformly redistributed along the evolved curve. This choice
of a results in a powerful numerical scheme having the property of uniform-in-time
redistribution of grid points and preventing the computed numerical solution from
forming the above-mentioned instabilities. Note that (1.2) can be transformed into a
one-dimensional intrinsic heat equation (see (2.2)), and the functional « can be easily
resolved from (1.3). In each time step we have to solve several linear tridiagonal
systems in order to obtain a new position of the curve.

The outline of the paper is as follows. In section 2 we present the governing system
of PDEs. Evolution of plane curves is parameterized by solutions of an intrinsic heat
equation. We discuss the effect of a nontrivial tangential velocity on numerically
computed solutions. Section 3 is focused on the analysis of the system of governing
equations. The aim is to set up a closed system of parabolic equations solutions which
include the curvature, the tangent angle, and the local length of a plane curve. The
basic theory on short time existence of classical solutions is given in section 4. Here
we consider only the case when (), is nondegenerate. We follow the abstract theory
due to Angenent slightly modified for the case when a nontrivial tangential velocity
functional is involved in the system of governing PDEs. Section 5 is devoted to the
study of the singular case when 3(k,v) = vy(v)|k|™ 1k, m # 1. We extend the result
due to Angenent, Sapiro, and Tannenbaum obtained for the power m = 1/3 to the
general fast diffusion powers 0 < m < 1 as well as for degenerate slow diffusion cases
where 1 < m < 2. In section 6 we present a suitable choice of a tangential velocity
leading to a powerful numerical scheme. We show how to construct a nontrivial
tangential velocity as a nonlocal curve functional in such a way that relative local
length (defined as the ratio of the local length to the total length of a curve) is
constant along the evolution. A numerical scheme for full space-time discretization of
the governing intrinsic heat equation is presented in section 7. We derive this scheme
by using the method of so-called flowing finite volumes. In section 8 we show several
numerical solutions of the governing system of equations and we make a comparison
between results obtained by considering the trivial and nontrivial tangential velocities,
respectively. One can observe the importance of the presence of a suitable nontrivial
tangential velocity functional in the governing system of equations for stability of
numerical computations.

2. Preliminaries. Consider an embedded regular plane curve I' that can be
parameterized by a C? smooth function x : S — R? such that ' = Image(z) =
{z(u),u € [0,1]} and |0,x| > 0. One can define the unit tangent vector T=0 x/|8 x|
and the unit normal vector N in such a way that T A N = 1, where @ A b is the
determinant of the 2 x 2 matrix with column vectors a, b. Henceforth7 we will denote
@.b as the Euclidean inner product of two vectors. By |@| = (a@.&)"/2 we denote the
Euclidean norm of a vector @. The derivative of a function f = f(£) with respect
to £ will be denoted by 0¢ f. The arc-length parameterization will be denoted by s.
Clearly, ds = |0y x|du. By k we denote the signed curvature of the curve I' = Image(x)
defined as

Oy N 02z

2.1 = 2p = U2 T,
(2.1) k= 0sx ANOsx EXE
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then Frenet’s formulae read as follows: 837: = kN , 831\7 = —kT. The angle v of the
tangential vector is given by v = arg(f), i.e., (cosv,sinv) = 9sx. To describe the
time evolution {I''},t € [0,T) of an initial curve I' = 'Y = Image(z°), we adopt
the notation I'" = {z(u,t),u € [0,1]}, t € [0,T), where x € C?*(Qr,R?) and Q1 =
S1x[0,T). We will frequently identify Q7 with [0, 1] x [0, T') and the space C*(Qr, R?)
with the space of C! differentiable functions defined on [0, 1] and satisfying periodic
boundary conditions. The main idea in describing a family of evolving plane curves
It t > 0, satisfying the geometric equation (1.1) is to parameterize I'* by a solution

z € C%(Qr,R?) of the so-called intrinsic heat equation

ox 10 (10x
(22) ot 9183(0263)’ 2(-0) =27(),
where 601, 05 are geometric quantities for the curve I'" = Image(z(.,t)), i.e., functions
whose definition is independent of particular parameterization of I'" and such that

2.3 016> = .
( ) 1V2 ﬁ(k7 V)
By using (2.3) and Frenet’s formulae, (2.2) can be rewritten in the following equivalent
form:

Ox o - 0
(2.4) i BN + T, xz(.,0)=2z"(.),
where 8 = ((k,v) is the normal velocity of the evolving curve and « is the tangential
velocity given by

10 /1
2.5 =——|=—].
(2:5) = 9, 05 (92>
The normal component v of the velocity 0,x is therefore equal to B(k,v). By [12,
Lemma 4.1] the family I" = Image(x(.,t)) parameterized by a solution x of the

geometric equation (2.4) can be converted into a solution of d,x = ﬂ]\7 + aT for any
continuous function & by changing the space parameterization of the original curve.
In particular, it means that one can take @ = 0 without changing the shape of evolving
curves. On the other hand, as can be observed from our numerical simulations, the
presence of a suitable tangential velocity term oT is necessary for construction of a
numerical scheme capable of suitable redistribution of numerical grid points along a
computed curve.

In [33] the authors studied the intrinsic heat equation (2.2) with 81 = 6 =
(k/B(k))*2. In this case, (2.2) has the form 0,z = 02z, where d5 = 6;ds. Using
this particular choice of 01,05 we were able to simulate the evolution of plane convex
and nonconvex curves for the case where v = |k|™ 'k. Satisfactory results were
obtained only for 0 < m < 1, whereas various numerical instabilities appeared for
the case m > 1. The mathematical explanation for such a behavior is very simple. If
61 = 02 = k|7, then, by (2.5), a = =L |k[™3kd,k = 18,(|k|™1). In the case
m > 1 numerical grid points were driven by the tangential velocity oT toward pieces
of the curve with the increasing curvature. It may lead to serious computational
troubles. The effect of « is just the opposite when 0 < m < 1.

Another possible choice of a nontrivial tangential velocity was studied by Deck-
elnick in [16] for the case S(k) = k. He proposed a governing PDE in the form
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Ox = 02x/|0yx|?. In this case a = —0,(|0,x|™"), and thus 6 = 67,0, = [D,x|.
This algorithm also has the property of a suitable redistribution of grid points along
the computed curve. Notice that 6,60 are not geometric quantities because of their
dependence on a particular parameterization.

Note that the arc-length parameterization s occurring in the intrinsic equation
(2.2) depends on time ¢ and its initial position v at ¢ = 0 via ds = |0,x|du. We can
therefore rewrite (2.2) into the following Eulerian form:

(2.6)

oz 1 8( 1 Oz

—_— — — = O
9t~ 61]0uz] 0u 92|aux|au>’ 2,0 =a7() (ut) € Qr.

(2.6) seems to be a parabolic PDE for © = z(u,t). However, as 3 may depend on
the curvature, the right-hand side of (2.6) may eventually contain the third-order
derivative term 932. In the next section we will show how to overcome this difficulty
by embedding (2.6) into a complete system of nonlinear parabolic equations.

3. Equations for geometric quantities. The goal of this section is to derive a
system of PDEs governing the evolution of the curvature k of I'* = Image(xz(.,t)),t €
[0,T), and some other geometric quantities where the family of regular plane curves
where x = z(u,t) is a solution to the intrinsic heat equation (2.2). These equations
will be used in order to derive a priori estimates of solutions. Notice that such an
equation for the curvature is well known for the case when a = 0, and it reads as
follows: 0,k = 028 + k*8, where 3 = B(k,v) (cf. [21, 9]). Here we present a brief
sketch of the derivation of the corresponding equations for the case of a nontrivial
tangential velocity o.

Let us denote p'= 0,z. Then, by using Frenet’s formulae, one has

0 = |0u| (08 + ak) N + (—Bk + 0,0)T),
(3.1) P00 = |0yx| T .0 = |0uz|* (= Bk + dsa),
DA OF = 0| T A0 = |0uz]? (0s5 + ak),
P N Ouf = —|0ux|0u]0u| (0s3 + ak) + |0z |® (—Bk + Dsr),

because p, = 02z = 9,(|0yz| T) = 9,4]0uz| T + k|8yz|2 N. Since 8, (5 A 0,7) =
OuP N0 D+ PO,y p, we have A, O:p = Oy (PAOLD) + Ot DAOuD. As k = (PADLD) |3
(see (2.1)), we obtain

Ok = —3[p|~* (9. 0:D) (5 A 9up) + [D] % (0 A Qud) + (5 8, 01P))
= —3k[p] 72 (7. 0p) + 2[p] > (040 A 0u) + |1 >0 (BN 0.

Finally, by applying identities (3.1), we end up with the second-order nonlinear
parabolic PDE, the equation for the curvature:

(3.2) Ok = 028 + adyk + K28,  k(.,0) = K°(.).

Similarly, as in (2.6), the above equation can be rewritten into the Eulerian form

ok 1 9 (1 8 1 Ok
(3.3) (

g _ o 1 d 1 Ok )
ot |Ouz| Ou \ |0y ] 8uﬂ<k’ V)) + a\@ux\ ou + k*B(k,v),
K.0) = K0,
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where (u,t) € Qr. The identities (3.1) can be used in order to derive an evolu-
tionary equation for the local length |0,x|. Indeed, |0,z|: = (Oyzx.0y0wx)/|0yz| =
(7. 0up)/|Ouz|. By (3.1) we have the local length equation

Ja
ou’
where (u,t) € Qr. In other words, Oids = (—kB + Osa)ds. By integrating (3.4)

over the interval [0,1] and taking into account that « satisfies periodic boundary
conditions, we obtain the total length equation

(3.5) gmﬂﬁ/thmwza
Ft

0
(3-4) ¢/ 0utl = —|0uz| kB + |0uz(.,0)] = [0.2°()],

dt

where L' = L(I') is the total length of the curve I'*, L' = [, ds = fol |0 (u, t)| du.
If kB(k,v) > 0, then the evolution of plane curves parameterized by a solution of (2.2)
represents a curve shortening flow, i.e., L?? < Lt < L° for any 0 <t; <ty <T. The
condition k3(k,v) > 0 is obviously satisfied in the case 3(k,v) = v(v)|k|™ 'k, where
m > 0 and ~ is a nonnegative anisotropy function.

The area enclosed by an embedded non-self-intersecting curve I' = Image(x) can
be computed as A = %fol z A Oyz du. Applying the identities (3.1) and taking into
account that 0 = fol Ou(z A Opx) du = fol (PN O + o A Oyp) du, where § = O,x, we
obtain the area equation

(3.6) iAt + [ B(k,v)ds = 0.
dt It

If 5(k, v) is nonnegative along the evolution, then the area is a nonincreasing function
of the time.
Denote by [0;,ds] the commutator of the differential operators 9; and s, i.e.,

[0, 0s] = 0:0s — O50;. Since ds = |9yx|du it follows from the local length equation
(3.4) that the commutation relation

(3.7) [0, 0s) = (Bk — Dsx)Os.

Recall that the tangential vector v to a curve I' = Image(x) is given by v = arg(f),
ie., (cosy,sinv) = Osxz. From (3.7) we obtain O = 9sx A 0;0sx = sz A 0504z +
(Bk — 0s) (D52 AN Osz). Applying Frenet’s formulae and (2.4), we obtain the tangential
vector equation

(3.8) O = 0,6 +ak, v(.,0)=1).
Clearly,
(3.9 s = Oz N 0% = k.

Differentiating the curvature equation (3.2) with respect to ¢ and taking into
account (3.8) yield an equation for the normal velocity v = B(k,v), i.e., the normal
velocity equation

(3.10) v = B, (02v + adsk + k*v) + B, (sv + ak)
v(.,0) = 0°(.) = B(K°(), v°()),
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where (), and 3], are partial derivatives of the function § = §(k,v) with respect to k
and v, respectively. Next we derive an equation for the gradient of the normal velocity
w = 0sv = 0,0(k, v). Using the commutation relation (3.7) we have

Orw = 0;05v = 050w + (vk — Dsa)Dsv
= 05 (B, (0sw + adsk + k*0)) + Bl (w + ak) + (vk — dsa)w.
Since
(311) w = asﬁ(kvy) :ﬁl/cask"’_ﬂ;/asl/:ﬁ]/gask""ﬂz//ka
we end up with an equation for the gradient w of the velocity v:
(3.12) Oyw = 0s (81,05w) + adsw + Dy (B,’Ckzv + BLw) + kvw,
w(.,0) = w’(.) = 952°(.).

Now we are in a position to derive a closed system of governing equations for
the geometric motion satisfying (1.2). It follows from (3.9) and (3.11) that ;v =
B1.02v + k(a+ (3,). Denoting g = |9,x|, we can rewrite (3.3), (3.4), and (3.8) into the
following closed form governing equations

ok 10 (10 adk |,

oy _ Gk 0 (100 /
(3.13) i g 9u\gou + k(a+ 6, (k,v)),
dg oa

a = _gkﬁ(k7l/) + %a

(u,t) € [0,1] x (0,T). A solution to (3.13) is subject to the initial conditions
(3.14) B,0) =K%, u(,0) =20, g(.,0) = ¢°

and periodic boundary conditions. Notice that the initial conditions for k°,1°, ¢" are
related through the identity

(3.15) 0’ = gkO.

In general, the function a = a(k, v, g) is a nonlinear function that will be determined
later. In section 6 of this paper we present the choice of a leading to a powerful
numerical algorithm preserving relative local length between numerical grid points.

4. Short time existence of solutions in the nondegenerate case. In this
section we prove short time existence of a classical solution of the governing system
of equations (3.13) by using the abstract result due to Angenent (cf. [8]).

Denote ® = (k,v,g)”. Then (3.13) can be rewritten as a fully nonlinear PDE of
the form

(4.1) 0@ = f(P), ®(0) = 9°,

where f(®) = F(®,a(®)) and F(®, a) is the right-hand side of (3.13). Suppose that
B = B(k,v) is a C? smooth function such that

(4.2) 0< A <B(k,v) <Ay <oo forany k,v,
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where Ay > 0 are constants and [}, is a partial derivative of 3 with respect to k.
Given 0 < o < 1, we denote by Ey, Ey /5, E1 the following Banach spaces:

Ey =7 (SY) x ¢7(S1) x et (sh),
E1/2 — cl+o(51) X Cl+a(51) X Cl+0(51),
(4.3) By = c*T7(SY) x 2T(SY) x M o(sh,

where 7 k = 0,1,2, is the little Hélder space, i.e., the closure of C>°(S') in the
topology of the Hélder space C*+9(S1) (see [6]). Let O; C E; be an open subset in
E; such that g > 0 for any (k,v,¢)T € Oy, i = %, 1. If we assume

(44) a € 01(01/2,C2+0(Sl)),

then the mapping f is a smooth mapping from O; C E; into Ej.

If the Fréchet derivative df(®) € L(E;, Ey) belongs to the maximal regularity
class M1 (Ey, E;) for any ® € Oy, then by [8, Theorem 2.7], (4.1) has a unique
solution ® € YT = C([0,T], E1) N C*([0,T], Ey) on some small enough interval [0, 7.
Recall that the class M;(Ey, E1) C L(E1, Ey) consists of those generators of analytic
semigroups A : D(A) = E; C Ey — Ej for which the linear equation 9,® = A®+h(t),
0<t<1, &0) = ®° has a unique solution ® € Y* for any h € C([0,1], Eg) and
®° € F;. In other words, (Ey, E1) is a maximal parabolic regularity pair.

THEOREM 4.1. Assume that (k°,1°,¢°)T € Oy C E;, where k° is the curva-
ture, 1° is the tangential vector, and ¢g° = [0,2°| > 0 is the local length element
of the initial reqular curve T° = Image(z®). If B = B(k,v) is a C® smooth func-
tion satisfying (4.2) and « obeys (4.4), then there exists a unique classical solution
® = (k,v,9)T € C([0,T),E1) N CH[0,T], Eq) of the governing system of equations
(3.13) defined on some small time interval [0,T]. Moreover, if ® is a mazimal solu-
tion defined on [0, Trax) and Tmax < 00, then max |k(.,t)] — 00 as t — Thax-

Proof. Let ®° € O; where O; C E; is an open and bounded subset of E;, g > 0,
for any (k,v,g)T € Oy. The linearization of f at ® = (k,7,3)" € O; has the form

df (®) = de F(®,a) + do F(®, @) dpa(P), where & = a(®) and
de F(®,a)® = 0,(D9,®) + B9, ® + CP,
doF(®,a)a = (ag‘laul_c, ak, 8ua)T;

D = diag(Dll,Dgg,O), Dll = DQQ = 6]/6(]_?,17)?]72 € ClJrU(Sl), and B,C’ are 3 X 3
matrices with C7(S') smooth coefficients, Bs; = 0,Cs; € C'T7. By (3.9) we have
g 0.8k, v) = g7 3.0,k + Bk, and so the principal part is indeed a diagonal one.
The linear operator A; = 9,,(D9,®), D(A;) = Ej, is a generator of an analytic semi-
group on Ep, and moreover A; € M (Ep, E1) (cf. [8]). Notice that d,F(®, &) belongs
to L(C?**7(S1), E1/2) and this is why we can write dgf(®) as the sum A; + A,
where Ay € L(Eyj2, Eo), [A2®]g, < C|®|p,, < Cle|4 @] is a relatively
bounded linear perturbation of A; with zero relative bound (cf. [8]). Since the
class M; is closed with respect to such perturbations (see [8, Lemma 2.5]), we have
do f(®) € My(Ey, E1). The proof of the short time existence of a solution ® now
follows from [8, Theorem 2.7].

Finally, we will show that the maximal curvature becomes unbounded as t —
Tmax < 00. Suppose to the contrary that maxre |k(.,t)] < M < oo for any t €
[0, Tmax)- According to [6, Theorem 3.1], there exists a unique maximal solution
I:0,T,,.) — QR?) satisfying I'(0) = I'° and the geometric equation (1.1). Recall

) max
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that Q(R?) is the space of C'! regular curves in the plane (cf. [6]). Moreover, I'(t) is
a C'* smooth curve for any ¢ € (0,7}, ,,) and the maximum of the absolute value of
the curvature tends to infinity as ¢ — T ,.. Thus Tphax < TI’nax and therefore the
curvature and, subsequently, ¥ remain bounded in the C%t°" norm on the interval
[0, Tinax] for any o’ € (0,1). Applying compactness arguments one sees that the limit
limy_, 7, ®(.,t) exists and remains bounded in the space F; and one can continue
the solution ® beyond Ti,.x, which is a contradiction. |

Next we will show how to construct a classical solution @ = x(u, t) of the intrinsic
heat equation (2.2). Suppose that b = (l~c7 7,3)T is a classical solution of the system
(3.13) existing on the time interval [0,7]. Let us construct a flow of plane curves
I'* = Image(z(.,t)),t € [0,T], as follows:

(4.5) w(u,t) = 2°(u) + /O (3N + aT) dr,

where N = (—sin,cos )T, T = (cos 7, sin )T, B = B(k,7), and & = ok, 7, §
claim that x(u,t) is a classical solution of (2.2).

THEOREM 4.2. Assume 8 and o satisfy assumptions of Theorem 4.1. Let & =
(k,,§)" be a classical solution of (3.13) such that the quantities k,[3, and §~'0,a

are bounded. Then x = x(u,t) given by (4.5) satisfies [Oyz| = g, k = k,v=n,

&
Z

N = N T = T where k, v, N T represent the curvature, the tangent angle, and the
unit normal and tangent vectors of the curve I'' = Image(z(.,t)). Moreover, © €
C([0,T); (C**2(S1))?) N CH([0,T); (C7(SY))?) is a classical solution of the intrinsic
heat equation (2.2). )

Proof. First we prove that 0,0 = gk for any classical solution of (3.13). Indeed,
if we denote K = k — G 10,7, then it is easy calculus to verify that K satisfies the
linear parabolic equation

K 1 k, 1 . 1
OR 10 (BDOKY 10 (5 iK)+ (k- 120 k.
ot g du g ou g ou g ou
Moreover, K (u,0) = 0 because 8,7° = §°k° (see (3.15)). The term k3 — §~'0.a
is assumed to be bounded and therefore we may conclude that K(u,t) = 0 for any
€ [0,1],t € [0,T]. As gk = 0,0 we end up with Frenet’s formulae 8,T = gkN
and 0, N = —ng Similarly as in the proof of the identities (3.1), the equation
or = BN +aT yields p.0;p = §%(— kB — g ~19,a), where p = d,x. Thus 9;(|p|?) =
2p.0yp = 20,(3%) and therefore |0,x| = |p| = § because |9,2°| = ¢°. Again, using the
last two equations in (3.1) we obtain k = (Oux A 022)/|0,z|® = k and subsequently
v = , which gives us N = N,T = T. Hence & = z(u,t) obeys (2.4), i.c., dyx =
Bk, I/)N + a(k, v, g)f Therefore x is a solution of the intrinsic heat equation (2.2).

The regularity properties of x follow directly from the regularity of the solution ® and
(4.5) (see Theorem 4.1). O

5. Analysis of the equations for geometric quantities and short time
existence of solutions in the degenerate case. The aim of this section is to prove
the short time existence of smooth solutions of the curve shortening flow governed by
the intrinsic heat equation (2.2). Throughout the rest of the paper we will assume
that the normal velocity function v = 8(k, v) has the form

Bk, v) =~y (v) k" 'k,
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where m > 0 and v : R — RT is a given C* smooth anisotropy function satisfying
(5.1) 0<Cil<Aw) <Oy, )| <Oy for any v € R,

where C'; > 0 is a constant.

The assumptions guaranteeing the local existence of classical solutions of a nonlin-
ear curve shortening flow developed by Angenent in [6, 7] as well as those of Theorem
4.1 do not directly apply to the case B(k,v) = v(v)|k|™ 'k for m # 1. Recall that
these theories require g to satisfy (4.2). To use the result established in Theorem 4.1
we must go through a regularization argument. A similar technique was applied in
the paper by Angenent, Sapiro, and Tannenbaum [12] for the case of an isotropic
function (k) = k3. In what follows, we will slightly modify their approach for
the more general anisotropic power-like function 3(k,v) and for the case when the
curvature equation involves a nontrivial tangential velocity term a.

Henceforth, we denote by C;, M; any generic positive constant independent on
the regularization parameter 0 < ¢ < 1. Constants M; may also depend on the initial
curve I'°. We make the following regularization assumption on the function B

There is a family of nondecreasing C* functions 3°,0 < € < 1, such that

(i) pe(k,v) — B%k,v) = B(k,v) as ¢ — 01 locally uniformly with respect to

(k,v) € R

(ii) |B%(k,v)| < C2(1 + |k|™) for any k,v € R;

(ili) there exist constants A3 = A% (M7) > 0 such that \* < B7/(k,v) < A9

(iv) |85 (k, v)k* (B2 (k,v))?| + 7|ﬁ§i//((l€,:/,,))|2 < C3(M,) for any |k| < M; and v € R.

It is easy to verify that the regularization family (3°) defined as

k
B8 (k,v) = m’y(u)/ 24+ de i 0<m<1,
0
B%(k,v) = B(k,v) + ek if m>1
satisfies the above assumptions (i)—(iv) with constants A5 > 0 given by

A =6, AL =Cime™ ! if 0<m<1,
5.2 N\ = No=1 ' (k if 1
(5.2) =g, Ay +|k{1‘aga]\)§16k( V) if m>1,

where 6 > 0 is a constant independent of 0 < ¢ < 1. Furthermore,

B (k,v)

(53)  0<—

<max(1,m )37’ forany k,v € R and 0 <e < 1.

Let us emphasize the fact that the tangential velocity a may also depend on the
regularization parameter ¢, i.e., « = «°. For instance, a® may depend on k and
8¢ = p°(k,v). Concerning the structural properties of a® we make the following
hypotheses:

(5.4) sup {|a®|+19sa°; o =a(?), 0<e<1} <o
PeBy /2

for any set By, = {(k,v, g)T e O12, |k| < M} and

(55) o (e, 9) sy < C (1+ gllenesey + 16506 )
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for any ® = (k,v, g)" € By /2, where C' = C(M;) > 0 is a constant and 1 < ¢ < %. In
section 6 we will show how to construct a so-called tangential velocity preserving the
relative local length satisfying the above hypotheses.

Let T° be a smooth initial curve such that ®° = (k°,19,¢°)T € O; C E;. By
®. = (ke,ve, 9-)T we denote the classical solution of the governing system of equations
(3.13) with 8 = 8¢ and a = a°. The short time existence of ®. has been justified by
Theorem 4.1 for any 0 < ¢ < 1. From (4.5) and Theorem 4.2 we furthermore know
that the function

¢
ze(u,t) = 2%(u) —|—/ (ﬁgﬁs + asfg) dr
0

is a classical solution of the intrinsic heat equation (2.2) for any 0 < e < 1.

First we will show that the maximum of |k| remains bounded in a short time
interval [0, 7] and the parameterization of the curve I'* is regular.

LEMMA 5.1. Suppose that the regularization assumptions (i), (ii) are satisfied.
Then there exist constants T > 0 and M; > 0 such that

n}:}x|k5(.,t)| <My foranytel0,T] and e € (0,1].

If o satisfies (5.4), then there are constants g+ > 0 such that
0<g- <ge(u,t) < gy <oo forany (u,t) € Qr and € € (0,1].

Proof. The proof of the first part is essentially the same as that of [12, The-
orem 6.2]. Indeed, as O;k. = 023° + a0sk. + k2/3°, then by applying a max-
imum principle argument we get J;(maxr: |ke(.,t)]) < F€(maxy: [ke(.,t)[), where
Fe(k) = max, k2|3 (k,v)| < Cok?(1+|k|™) for any 0 < ¢ < 1. Solving this differential
inequality we conclude the proof of the bound for the total variation of the curvature.
To prove estimates on g we integrate the third equation in (3.14) with respect to time.
We obtain g.(u,t) = ¢°(u) exp(fot(—kzeﬂE +g-10,0%) dr), where 3° = (3°(k.,v:). The
proof now follows from the fact that both k.3° and g-10,a° = 9;a° are bounded for
|k| < M; and 0 < ¢° < oo uniformly with respect to e € (0, 1]. ad

In the next lemma we analyze the degenerate case when 1 < m < 2. It is a
key technical tool in order to establish some a priori estimates needed in the proof of
short time existence of a solution in this degenerate case. Interestingly enough, a new
geometric assumption on the initial curve is needed.

LEMMA 5.2. Assume 1 < m < 2. Suppose that the initial curve I'C satisfies

]{10
(56) o W ds < 00.

Then there exists a constant My > 0 such that

ke T 2
. —_— ; < M. <1
(5.7) tgﬁ)é] /Ft 5 e ) ds—l—/o /1“t |Oske|”ds < My for any 0<e <

Proof. Denote v = 3°(k,ve), k = ke, and v = v.. By using (3.4), the curvature
equation (3.2) and the velocity equation (3.10), we obtain

d kds:/ 0 <k> +E(—kv+8sa)d5

%th Fta ; v
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(5.8) :/ (i—kf >(82v+ac‘9k+k2)
l"t
e/
- kvig(@w +ak) —k* + ﬁ8301 ds

e/ 3
:/ <1kﬁ2’“>8zvkﬂ kﬁ”@ ds
rt \ U v v

because of the identity 0 = frt 0y (%’“) ds = frt %8504 + S0k — %851) ds, (3.3), and
(3.11). Recall that 3}’ = 5}, + ¢ = mTﬁ + ¢ and therefore

kG%! k
O _ +e(l—m)—.
v v

Plugging the above expression into (5.8) and integration by parts yield the identity

d k 1 k
7! - _1 ) S 2 s S _27 S 2
. Ftvds+(m )/Ft 2<|8v| + e0,v0:k — 2¢ |8v|>ds

k
=-—m [ k*ds+e(m—1) —d —/ ﬂ”@vds
Tt Tt rt ’U

It follows from (3.11) that 0:k = (Osv — B5'k) /85 . Thus

d [ k 2 k
=/ = —1
dt Ftvds+(m )/1:‘t ( 'U) dS
e/ o
= —m k2<1> ds—s/ = ds +/ X <€(m5,1)1> ds
It It re v k

re Y(v) v A rt

—0sv
*\7 V)|<C2 0<8k<1 and 0 < 5,<1 Let us

1
—05v

ds

1/

v
()
consider the auxiliary function ¢ defined as follows:

1 € 2ek 1 € 2e
ky=—(1+-——— 1+ - :
o= (155~ 5) = & (1 s o)
It is easy calculus to verify that if 1 < m < 2 then there exists a constant M3 > 0

independent of 0 < ¢ < 1 and such that inf|<as, ¢(k) > M3. Using the Cauchy—
Schwarz inequality we get
k

d k
— —ds+ M. -1 < 2 -
T ds 3(m )/w ds < mCj /rt ”

2
< m2Ct Ity Ms(m —1) / k
2(m — 1)Ms 2 -

because of the inequalities

2

Easv ds

v

0sv

—0sv| ds
v

and so
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Integrating the above inequality over the interval [0, 7], taking into account the in-
equality

“0. > [0.k| — CF M}

7(v)

and the initial time inequality [, £ds = [ #ﬁyo) ds < [ro ﬁ(kkoioyo) ds < oo we
finally obtain the estimate (5.7). 0

Remark 5.1. The assumption (5.6) seems to be quite restrictive. Note that
it is fulfilled in the case when the initial curve I'° is strictly convex or in the case
of a nonconvex smooth curve whose inflection points have at most (2 + mil)—order
contact with their tangents. As an example one can consider the Bernoulli lemniscate
(22 + y*)? = 4wy having the third-order contact with its tangents at the origin. In
this example the assumption (5.6) is satisfied iff 1 < m < 2.

Remark 5.2. It would be of interest to know whether the power m = 2 is an
optimal value. It follows from recent results due to Andrews [4] that for higher
powers of m the curve I'* need not be sufficiently smooth in the vicinity of a point
where the curvature vanishes.

LEMMA 5.3. For anyt € (0,T) we have

4
dt

‘ k

= ’(er(lm)Evk) 851<:+Mk2

(59) X)) < = [ 10w ds + Mur(1 4 X,(0),

where X,(t) = [ |w|Pds = fol [w[P|Oyze| du and w = 053° (ke,ve), p > 1.
Proof. Denote k = k.,v = v*. Applying the local length equation (3.4) and the
equation for the gradient of velocity (3.12) we obtain

d

1
2p(0) :/ (O (|wlP) O] + [w|P(=|Ouz[kv + Dua)) du
0

= /rt (plwP?wdw + |wlP(—kv + d50%)) ds

-/, <pw|”w [0, (8505w + 63K + B5'0) + 0% 010 + huw)
+ |wP(—kv + 88045)) ds

=-—plp—1) /F w2 (5100w ] + B k00w + B wdsw] ds
+(p-1) /rt |wlPkv ds

because 0 = [i, 0s (|w[Paf) = [ plw[P ?wdswas + |w[Pdsaf ds. Notice that the

tangential velocity term o is involved neither in the expression for X, nor in %Xp.
pplying the Cauchy—Schwarz inequality we ge
Applying the Cauchy—Sch i lity we get
o.w 2 e /2 o.w 2
5¢/K000 -+ 95wl < G + g2 4 IO ey O
k

and therefore

d -1
e I T TR
dt 2 Ju
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e /|2
o= 1) [P0+ ol O ds s - 1) [ ko ds
It k Tt

- [ e as
Ft
+C3p(p — 1)(Xp—2(t) + X, (1) + (p — )M X, (t)
because |w[P~2|0sw|? = 1%|88(wp/2)|2 and 2p(p — 1)/p?> > 1 for any p > 2. Since
Xp2(t) = [pu lw|P™2 < [ (1+ |w]P) < L'+ X,(t) for any p > 2 and L' < L° (see
(3.5)) we finally obtain the inequality (5.9) with a constant My > 0 independent of
O<e<landp>2. 0

LEMMA 5.4. Suppose that 0 < m < 2. If 1 < m < 2 we additionally suppose
that the initial curve T satisfies the condition (5.6). Then there is a constant My > 0
such that

if 0 <m <1 then maxpe |83 (ke ve)| < Mqt™3;
if 1 <m <2 then maxpe |86 (ke, ve)| < Mqt—2
forany0<e<land0<t<T.

Proof. The key idea behind the proof of this estimate is a modification of the
well-known Nash—Moser iterative technique adopted to the flow of plane curves. It
is similar, in spirit and technique, to that of [12, Chapter 6], which has been applied
in the case of the affine scaling parameterization, i.e., §(k) = k'/3. By using the
differential inequality (5.9) we will show that ||wl|, = X;/ P(t) is bounded uniformly
with respect top > 2 and 0 < £ < 1, yielding the desired L* estimate on 055 (ke, ve).

Let us consider the case 0 < m < 1. First, we will prove an estimate for Xs(t).
By (5.2) we have 85’ > § > 0 and 3° < M5. Then

X, = |wF /Xam —/1@%_— B0,w

2 = S [ )

According to (5.9), X is a solution of the differential inequality

dX
jfg——foMm+Xﬂ
where M = M;5(L°%)2 /8. By solving the above differential inequality we obtain
Xo(t) < A2t_ , where A; is a constant depending only on m, I'°, and T.
Let p > 2. As w = 9,v there must be a point at I'¥ where w”/2 vanishes. From
the interpolation inequality [12, Proposition 6.1, (25)] we infer

Xp:/rjwws(/wmﬁ)g( . ’2’>|) xj (5 [ oo

Let us consider the case 1 < m < 2. Again, we begin with an estimate for Xs(¢).
For 1 < m the derivative 87’ is bounded uniformly with respect to 0 < ¢ < 1. Since
k| < My we have X5(0) = [10 [0:6°1* < M [1o(1 + |0:k°?) < co. Integrating the
differential inequality (5.9) we obtain X»(t) < 1+ X3 (t) < (1+X2(0)) exp(4Myt) < A3
for any 0 < t < T, where Ay > 0 is a constant. By using the Cauchy—Schwarz
inequality we obtain

ot < o () (L)

w\‘d (IS
N\‘d
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According to (5.3) and Lemma 5.2 we have ( [p., %)% < Mg and hence
k

1
2

X, :/ w|P < sup |w|2X» < MgX>» (/ 5il|as(wg>|2)
Tt It ? ? re

In both cases, taking into account (5.9) we end up with a differential inequality

L
(5.10) %Xp(t) < —S;(}% (2)

+ Mp?(1 + X,(t))

for any t € (0,7], p > 2, and 0 < ¢ < 1, where (L,K) = (3,4) if 0 < m < 1,
(L,K)=(2,2)if 1l <m <2, and 5, M > 0 are constants independent of 0 < ¢ < 1
and p > 2. In the case (L, K) = (3,4) this is exactly the same differential inequality
as that of [12, eq. (2.4)]. Following the iterative method of supersolutions to the
differential inequality (5.10) presented in [12, Chapter 6], given a couple (L, K) such
that K = 2(L — 1), L > 1, one can prove the existence of a bounded sequence (Ay),
0 < Ay < M7, such that

Xy (1) < ARHE P

foranypk:2k+1,k207wherea0:%f0r0<m§1,a0:0f0r1<m§2and

k
1
—k—2 —1-2
Qp+1 = O + 2 —a()+7L_1lE_O2 — ag +

1
(L—1) 2L - 1)

as k — oo. This yields the estimate
) o (a0t 5y
sup |0s0°| = lim XpF (t) < Myt \"07=@-D
Tt k—oo

forany ¢t € (0,7] and 0 < € < 1. Since g = %,L:Z’)foro <m<landayg=0,L =2
for 1 < m < 2, the proof of the lemma follows. 0

Summarizing all the previous results we conclude the following a priori estimates.

LEMMA 5.5. Assume 0 < m < 2. Let ®. = (k.,v.,g:)T be a classical solution
of (3.13) ewisting on the interval I = [0,T] and satisfying the initial condition ®° €
O, C Ey. If 1 <m < 2 we furthermore assume that the initial curve T satisfies the
condition (5.6). If the tangential velocity o satisfies the condition (5.4), then

(1) ke, 55, t10,6° € L®(Qr);

(2) ge; g2+ € WH(1,L=(SY));

(3) Duve, ti0w. € L®(Qr);

(1) 2. € (W= (Qr))?
and if, in addition, o satisfies the condition (5.5), then

(5) ge, 91 € WH(Qr) and Oyxe € (WH(Qr))?
and their corresponding norms are bounded independently of 0 < e < 1.

Proof. The statement (1) is an immediate consequence of Lemmas 5.1 and 5.4 and
the assumption (ii) made on the regularization 3°. Since d;g. = —g.k:[° + Oy and
9=t = —g=20,ge the statement (2) follows from (1), Lemma 5.1, and the assumption
(5.4). The bounds for v, follow from the identities 9,ve = geke, O = 0s0° + ke
(see (3.8), (3.9)). As &z, = B°N. + o°T:, dyz. = g.T., and (°,0°,g. € L>®(S)
we conclude the statement (4). Let us assume of satisfies the condition (5.5). By
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integrating the third equation in (3.13) we obtain g.(.,t) = go(.)exp(fot(—kzgﬂE +
g 10,0%)dr). Furthermore,

154 £ e/
B (ko) = ko0u + BOuk. = (kg + 65,) 0.5 — P2 o ..
k k

With regard to (1) and the regularization assumption made on 3¢, we can conclude
|keBellcr < M||B%]|c1- Taking into account the condition (5.5) and Lemma 5.4 we
obtain the estimate

t
lge (5 D)ller < M (1 +/ (kB ller + llolle= + ||95(~,T)||01)d7>
0

t t
§M<1+/ | lerdr + ||ga(-77')||01d7'>
0 0

<M (1 +/Ot |9E(~7T)||01d7>

for t € [0,7] and 0 < € < 1. Hence the L> bounds for d,g. and d,9-! = —g-20,9.
follow from Gronwall’s lemma. The L° bounds for d2z. and 9,0,z now follow
from the identities 02x. = 9, (g-1.) = ugaﬁ + gngNE and 0;0yx. = 04 (g-T.) =
atgja + geﬁtugl\_fg and parts (2) and (3). ad

Now we are in a position to state the main result of this paper.

THEOREM 5.6. Suppose that B(k,v) = v(v)|k|™ 'k, where 0 < m < 2 and
7 satisfies (5.1). Let T° be a smooth regular plane curve such that (k% v°,¢")T €
Oy C Ei. If1 < m < 2, we also suppose that T'° satisfies the condition (5.6).
If the tangential velocity o obeys the conditions (5.4) and (5.5), then there exists
T > 0 and a family of regular plane curves 't = Image(x(.,t)),t € [0,T], z: Qr =
[0,1] x [0,T] — R? such that

(1) 2,0,z € (C(Q7))?, 02w, Oy, 0,0x € (L=(QT))?;

(2) ox.N = B(k,v) for any t € [0,T] and a.e. u € [0,1], where k, v, and N are

the curvatures, the tangent angle, and the unit normal vector of the curve I't.

Proof. Tt follows from Lemma 5.5, part (4), and the Ascoli-Arzela theorem that
there exists a subsequence of (x.) converging uniformly, i.e., z. — x in (C(Qr))? as
e — 0%. By part (5) we also have d,z. — 9,z in (C(Qr))? and 9z, 0,0,z,0%x €
(L*(Q7))?. Again, by (4) and (5) we furthermore have v. = v, g. = ¢ in C(Qr) and
g > 0. Hence fg = .0, = gOux = T and .7\7'E = ]\77 where T' and N are the unit
tangent and normal vectors to the curve I' = Image(z(.,t)),t € [0,7]. Moreover,
arg(T) = v.

Let ¢t € [0,7] be a fixed time instant. By (1) we have |9,0°] < M and, as a
consequence, one has 5 = 3 in C (S1). Denote by b° : R — R the inverse function
to the increasing function k — 3°(k,v)/v(v), € € [0,1], 3 = 3. Notice that the term
B¢ (k,v)/v(v) does not depend on v. With regard to the regularization assumptions
made on 3° we have b° — b = b locally uniformly in R. Then for the curvature k. =
b (3 (keyve) [y (ve)) = b5(5° /(re)) we have the convergence k. = k = b(5)/y(v) in
C(SY). Thus B(k,v) = 8. As (92z.) is bounded in (L>°(S'))? we have 82z, % 02z
weak star in (L°°(S1))2. On the other hand, k. = ¢g-3(0yze A 022.) = kg3 =
g3, 0ux. = Oyx. Thus k(u,t) is the curvature of the curve I'* at the point z = (u, t)
for every t € [0,T] and a.e. u € [0,1]. Finally, as (9;x.) is bounded in (L°°(S1))?
we have dyx. * Opx weak star in (L>°(S1))2. Therefore, 3° = atxg.ﬁg x 8,:96.]\7
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as ¢ — 0T. Since ¢ = 3 = B(k,v) in C(S*) we conclude oz N = B(k,v), as
claimed. O

6. Tangential velocity preserving the relative local length. As was al-
ready mentioned in section 2, the presence of a nontrivial tangential velocity term aT
in the governing equation (2.4) can prevent the numerically computed solution of (2.2)
from forming numerical singularities like, e.g., collapsing of grid points or formation
of the so-called swallow tails. The goal of this section is to propose a suitable choice
of the functional @ = a(k, v, ¢g) in such a way that a numerical scheme based on this
choice of a will be capable of uniform redistribution of grid points along the computed
curve. The main idea behind the construction of « is to analyze the relative local
length function defined as the ratio W, where L is the total length of I'* and
|0y (u, t)| represents the local length of I'. The idea is to keep this ratio constant
with respect to time, i.e., preservation of the relative local length:

(6.1) % ('8“”3L(f’t)|> =0

for any u € [0,1] and ¢t € I = (0,T'). Taking into account (3.4) and (3.5) one sees that
(6.1) is fulfilled iff

e 1
(6.2) 55 = kB(k,v) — I /F kB(k,v)ds,
where I' = T'*, L = L(I"), k is the curvature of T, and £ is the given normal velocity
function.

In what follows, we will show that there exist geometric quantities 61,60> such
that the tangential velocity function a given by a = %%(9—12) (see (2.5)) obeys (6.2).
We will furthermore prove some a priori estimates for « and 6;,7 = 1,2, considered as
nonlocal operators from the Banach space Ey/ (see (4.3)) into C?%7(S'). First we
need the following simple lemma.

LEMMA 6.1. Let 8¢ be a regularization of B satisfying reqularization assumptions
(i)—(iv) from section 5. Let T' = Image(z) be a C? smooth regular plane curve. Then
there exists a unique weak solution ¥ € C1(S1), ¥(0) = J(1) = 0, of the equation

o (p(k,v) 00 e 1 -
Furthermore, there exists a constant Cy = Cy(M;) > 0 such that
k k
< —_— < -
mlgx\ﬁ\ < 6'4/F T ) ds and |0:9| < CLL(T) )

for any |k| < M.
Proof. Denote a = %, g = |0ux|, and f = 1 [ kpB°(k,v)ds — kB°(k,v). Then
0<a<oo,g>0,and a,g, f € C(S'). Hence

(6.4) 8,9(u) = a(ug(u) (A +f " )9y dv

for some constant A. With regard to the condition ¥(0) = ¥(1) = 0 we obtain the
existence of a unique weak solution ¥ € C'(S') and

w u 13
() = A / a(©)g(€) dé + / a(€)(€) / F(0)g(v) dv de,
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where 4 = —(f; a(§)g(&) [ f(v)g(v) dvd€)(Jy a(€)g(€)d€)~". Since ag > 0 we
have [A| + | [ fg| < 2maxe [5 |flg < 2[5 |flg = 2 fp|flds < 4 [ kB (k,v)ds <
AL(T)M1Co(1 + M) = C4L(T"). This, together with (6.4), yields the pointwise es-
timate for |9s9| = |g710,9]. The bound for max|d¥| now easily follows from the
boundary condition ¥(0) = 0. ad

LEMMA 6.2. Let T' = Image(z) be a smooth regular plane curve such that ® =
(k,v,9)T € O1/2 C By, |k < My. Let 3° be any regularization of (3 satisfying
the regularization assumptions (1)—(iv) from section 5. Then there exist geometric
quantities 05 > 0, 65 : Oy 5 — C'(S"),i = 1,2, such that

epe I€ e _ — Y i £ __ HE J—
=y o= g () O =0 =1

where of € C1(Oy 2, C?7(Sh)) is the tangential velocity preserving the relative local
length satisfying (6.2). Moreover,

k
max |05 (®)| + max |05(P) 1| < exp (MG/ ds> )
r r r (¢
0s0°(®)| < M7, [la*(®)llc> < Mz (1 +[|B°(k, v)llcr + llgllcr);

i.e., of satisfies the hypotheses (5.4) and (5.5).

Proof. Let ¢ be a solution of (6.3). Define 65 = exp(¢) and 65 = k/(3°65). The
maximum bounds for 65 and (5)~! follow from Lemma 6.1. With regard to Lemma
6.1 we obtain that

. 1o /1N po . o
“ T b os (02) b == 55
is a solution of (6.2). Since 3¢ satisfies the regularization assumption we have af €
C'(O1/2,C?7(51)). Notice that the estimate for the C**7 norm of o may depend
on 0 < e < 1. It furthermore follows from Lemma 6.1 that ||a®(®)|co < MgL(T).
With regard to (6.2) we have 0,a° = (kB — const)g, where const = + [ k3°ds is
a constant. Hence |9sa°| = g71|0,0°| < 2maxr |kG°(k,v)] < M;. Furthermore, as
kB (k,v)||lcr < M||B5(k,v)||cr and |const| < maxr |kB¢(k,v)|, we have |02a°| <
|const||0yg| + |0 (gkBe (k,v))| < M7(1 + ||5°(k,v)|lcr + |lgllct), and the bound for
laf||c= follows. This is why o satisfies the assumptions (5.4) and (5.5). O

THEOREM 6.3. Suppose that B(k,v) = v(v)|k|™ 1k, where 0 < m < 2 and ~
satisfies (5.1). Let T° = Image(z®) be a smooth regular plane curve as in Theorem 5.6.
Then there exists T > 0 and a family of regular plane curves I'* = Image(xz(.,t)),t €
[0,T] such that

(1) z,0,x € (C(Qr))?, 2z, dz, 0,0,x € (L=(Qr))?%;

(2) the flow Tt = Image(x(.,t)),t € [0,T] of regular plane curves satisfies the

geometric equation

dx = BN + T,

where 8 = [(k,v) and « is the tangential velocity preserving the relative local
length, i.e., « satisfies (6.2) and

Ouz(u,t)] _ |0uz® (u)]
Lt~
for any t € [0,T] and u € [0,1].
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Proof. Let us consider the tangential velocity function af, 0 < ¢ < 1, satisfying
0saf = k3% (ke,ve) — L% fFE k.(°ds whose existence has been verified in Lemma 6.2.
Moreover, af is a C'' mapping from 012 C Ey/o into 2o (S1) and of satisfies the
structural conditions (5.4) and (5.5). By Theorem 5.6 there exists a family of regular
plane curves I'" = Image(x(.,t)) with the properties as in part (1). To prove (2), we
put o = 8,x.T and recall that gs = |Oyxc| = g = |Oux| as € — 0F. Therefore, LL =
fo |Oyze(u,t)| du — Lt = fo |0z (u,t)| du as e — 0F. Thus 2 xs(“ ol _, |a“x(“ t)l

€ — 07. On the other hand, since o is the tangentlal velocity preservmg the relatlve

local length we have iw = 0. Hence Ia“w Ll — |8“”L(tu DI Therefore,  is

the tangential velocity preserving the relative local length and from (6.1), (3.4), and
(3.6), we may conclude that « satisfies (6.2). 0

7. Numerical scheme. In this section we describe a numerical procedure that
can be used for computing the curve evolution satisfying the geometric equation (1.1).
To this end, we will propose a scheme solving the coupled system of intrinsic heat
equation (2.2) for the position vector x and (6.2) for the tangential velocity a. A
smooth solution x is approximated by discrete plane points z, i = 1,...,n, j =
0,...,m, where index i represents space discretization and index j a discrete time

stepping. The approximation of a curve in time j7 (with uniform time step 7 = %)

is given by a polygon with vertices xg, i = 1,...,n. In order to obtain such an
approximation of an evolving curve in the jth time step, we use the following fully
discrete semi-implicit scheme:

1 . x]_le jl—xj xi—xil
71 - gg + g — 2+ v [3 . 7—
( ) 2( [ ’L+1) T h2+1 ]’Lg_l )
t=1,...,n, for every j = 1,...,m. The coeflicients in (7.1) (for simplicity we omit

upper index j — 1) are given by the following expressions:

k.
i = |ril01i, hi =|ri|02:, 1ri=x —xi— 01,=—
gi | z| 1,35 7 | z| 2,1 [ [ i—1, 1,2 /61'9271'7
1 Ti+1-Ti—1
7.2 k; = ——sgn(r;_1 A r;11)arccos (l
(12) ki = g Arareeos {2070 )
v; = arccos(ri, /|rs|) if riy, >0,  v; = 2w — arccos(r, /|rs]) if i, <0,

Bi = B°(ki,vi), 02 = exp(¥;),

and the system (7.1) is subject to the periodic boundary conditions xl n = xz (i =
0,1). In order to compute ¥;, i = 1,...,n, governing tangential redistribution of
flowing points, we solve

Bi 4 Bi Bi 4 Bi
Lﬁ(ﬁ'l—ﬂ) L’“i(ﬁ —9i1)
7il + |7iga] a |7i| + |71 '
(7.3) = |ri| | kifi — <Z|?"l|klﬂz> <Z|7"l|>
=1 =1
for i = 1,...,n, accompanied by the periodic boundary conditions 9,1, = ¥; (i =

0,1).
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The system (7.3) can be represented by a symmetric positive semidefinite tridi-
agonal matrix with kernel containing n-dimensional vector each component of which
is equal 1. Since Y ., b; = 0, where b; are the components of the right-hand side of
(7.3), we have assured the existence of a solution that is also unique up to an addi-
tive constant. We choose the unique solution by imposing the constraint condition
Yo =1, = 0.

Then, the linear systems (7.1) can be represented by two symmetric positive
definite tridiagonal matrices for which we have the existence and uniqueness of a
solution. In each discrete computational time step j7 the scheme (7.1)—(7.3) leads to
solving three tridiagonal systems, namely, one for the redistribution of points along
the curve and two for finding the new curve position.

Remark 7.1. The approximation (7.1) can be considered as a full time-space
discretization analogy to the backward Euler time semidiscretization scheme

A 1 9 1l ,
(7.4) T g los <9g—1 35j1> v J=L2m,

of (2.2), where the terms 61,05 as well as arclength parameterization s are taken
from the previous time step z7~!, and IV = Image(z’) is considered as a smooth
approximation of the evolution in discrete time j7. Denoting 6, (z7) = (27 — 27~ 1) /7
and ds?—' = |9,z du, 67105 = ki1 /B (k1,197 1), we easily obtain

(7.5) 5-(x7) = BN + aT?,

where

] L S NS <1 = )

| Oy I~ 2RI 1 07 0si—1 \ 971 |Ouad |

In the next proposition we show that the backward Euler time discretization
scheme generates a discrete curve shortening sequence of plane curves. This result
can be considered just as an indication and not a rigorous proof that the sequence
of numerically computed discrete polygonal curves is stable in the sense that their
length decreases during evolution. The detailed analysis of the stability of the scheme
(7.1)—(7.3) is a work in progress and we hope it will be discussed in the forthcoming
paper. . ‘

PROPOSITION 7.1. Assume zi=' € C'(SY;R?), 771,657 € C'(S';R?) are
such that |0,x7~Y > 0, 9{71 > 0, 0%71 > 0. Then there exists a unique solution
xd € C%(SY;R?) of (7.4). Moreover,

(7.6) L +T/ Bkids’ < L7,
TJ

where LV = fol |0y |du represents the length of the curve T9. The sequence IV =
Image(x’) represents a curve shortening discrete flow.

Proof. The existence and uniqueness of a solution z7 can be achieved in the same
way as was done in [33, Lemma 4.1] in the case §; = 02 = k/3. To prove the estimate
(7.6) we proceed in a similar way as in the continuous case (see (3.5)). Indeed, the
time-discrete analogy of the first equation in (3.1) is given by

8, (0uz?) = |ua?| ((asjB +aki)NT + (= Bk + asjoz)ff)
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and therefore

10,27 | = 76, (037).T7 + 02?17 = 76, (0ya?).T7 + |8y’ 1| T7 1. 17
< 0?7 4+ 7(—BK + 045 @)|0ya? | = |8y2? Y| — TOK? |0y’ | + Ty

Integrating the above inequality over the interval [0, 1] yields the bound (7.6). Since
Bk > 0 we have Bki > 0 and therefore LY < Li~'; i.e., IV represents a curve-
shortening discrete flow. 0

Remark 7.2. The scheme (7.1)—(7.3) can be derived by using the flowing control
volume method (cf. [37]). Let us consider points z;, i = 1,...,n, belonging to a
smooth curve I'" = Image(z(., t)), where x is a solution of (2.2) at time t. By [z;_1, ;]
we denote the arc of the curve between the points z;_; and x;. Let us consider a
control volume V; around z; consisting of part of the arc connecting centers c¢;, ¢;41
of arcs [z;_1,;], [Ti,xiy1], respectively. Such a centered control volume is flowing
and changing a length during the evolution respecting the new positions of the points
x; along the curve. Let us integrate intrinsic diffusion equation (2.2) along the finite
volume V;. We obtain

Ox 1 0z
(7.7) / 0, —ds = {} .
V; 3t 02 85 ¢
Let us consider piecewise linear approximation of x, i.e., a polygon connecting points
x;, ¢ =1,...,n. From (7.2) we can compute constant geometrical quantities k;, v;, 3;

for each line segment [z;_1,2;]. The quantity ¥; can be computed numerically by
solving control volume approximation of the intrinsic equation (6.2). Integrating
(6.2) along [z;—1, ;] (a dual volume to V;) yields

(7.8) - ﬁjgﬂ . ri| | kiBBi — (Z |m|kzﬁz> <Z|m|>

Ti—1 =1 =1

Approximating 2% (z;) by 2% and %(zz) by %(% + 5:1) we end up with the

system (7.3). Now, approximating % by &; inside V; we obtain from (7.7) the system
of ordinary differential equations
1z, —a

J J
i 1 oy -5

1 —
7.9 SUrilbri + [riga]01,i41)2: = Tl
( ) 2(| | 1, | +1| L +1) 02,i+1 |Ti+1| 02, ‘T’i‘

)

There is a range of possibilities of how to solve this system. In order to obtain the
scheme (7.1) we approximate the time derivative by the time difference of the new
and previous discrete curve position where all nonlinear terms are taken from the
previous time step and linear terms are considered at a new time level. The numerical
simulations of section 8 show that such an approximation is sufficient in very general
cases regarding accuracy and efficiency of computations. Moreover, using Proposi-
tion 7.1 we have guaranteed a kind of stability for numerical computations.

8. Discussion on numerical experiments. In this section we describe numer-
ical results obtained by the algorithm (7.1)—(7.3) for solving the geometric equation
(1.1). We test properties of the model and the numerical scheme in evolution of convex
as well as nonconvex (and nonrectifiable) initial curves in the presence of nonlinear-
ity and anisotropy in the shape of function 5. The effect of redistribution of discrete
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(a) (b)

Fic. 1. B(k) = k. (a) Discrete evolution using tangential redistribution of points. (b) Without
redistribution, only normal component of velocity is used.

points representing an evolving curve is documented in the same time. We have found
several examples where the uniform grid redistribution based on relative local length
conservation of flowing curve segments is an important tool in correct handling of the
curve evolution without other artificial operations like points removing or artificial
cutting of the so-called swallow tails. The redistribution of grid points based on (6.2)
preserves the initial discretization of a curve and thus makes its discrete representa-
tion smooth enough during evolution. First such examples are given in Figures 1(a)
and 1(b). In those experiments 5(k) = k; i.e., we have classical curve shortening, and
we start with initial curve with large variations in the curvature, namely,

x1(u) = cos(2mu),

xo(u) = % sin(27u) + sin(x (u)) + sin(27w) (0.2 4 sin(27w) sin(67u) sin(67u)),

u € [0,1], and initial discretization is given by uniform division of the range of pa-
rameter u. The curve is represented by 100 discrete points. Addition of a nontrivial
tangential velocity obeying (6.2) leads to the evolution plotted in Figure 1(a). In Fig-
ure 1(b) the points move only in the normal direction and one can see their fast
merging in several regions and very poor discrete representation in other pieces of the
curve. In all experiments we have used the uniform time step 7 = 0.001. The blowup
time for the curvature was Ti,.x = 0.363. Isoperimetric ratio starting with 3.02 tends
to 1.0, which is consistent with Grayson’s theorem [24]. In both figures, we plot each
20th discrete time step using discrete points representing the evolving curve, and in
each 60th time step we plot also by piecewise linear curve connecting those points.



EVOLUTION OF CURVES BY CURVATURE AND ANISOTROPY 1495

(a) (b)

F1G. 2. B(k) = k'/3. (a) Discrete evolution using tangential redistribution of grids preserving
the relative local length. (b) Without redistribution, computation collapses due to vanishing of the
local length element |Oyx|.

In Figures 2(a) and 2(b) we computed affine evolution of the same initial curve for
the affine scale 3(k) = k'/3. The initial curve has been discretized almost uniformly.
In Figure 2(a) we show how this discretization is then preserved in evolution when
using the scheme (6.2). The blowup time Ti,.x = 0.694, a solution converges to an
ellipse with the isoperimetric ratio stabilized on 1.33. This is in good agreement with
analytical results of Sapiro and Tannenbaum [38]. On the other hand, without any
grid redistribution we can see rapid merging of several points leading to degeneracy
in the distance |r;| corresponding to discretization of the term |0,z| and subsequent
collapse of computation. In Figure 2(b) one can see evolution until ¢ = 0.38 just
before numerical collapse of a solution.

In the figures below we have shown evolutions of the initial “co-like” curve. In
Figures 3(a) and 3(c) the tangential velocity preserving relative local length has been
used, whereas in Figure 3(b) one sees that the computation without tangential re-
distribution cannot prevent vanishing of the term |9,z|. In Figures 4(a) and 4(b)
evolutions of general nonconvex curves are plotted.

In Figures 5(a) and 5(b) the affine invariant evolution of initial ellipse with half-
axes ratio 3:1 is shown. In Figure 5(a) the exact blowup time Ty,.x = 1.560, while
the numerically computed one is equal to 1.570 using time step 7 = 0.001 and 100
grid points for curve representation. The half-axes ratio as well as isoperimetric ratio
were perfectly conserved during numerical evolution. Without any tangential velocity
(i.e., « = 0 and #y = 1), the numerical solution collapses, as should be obvious from
Figure 5(b).
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(a) (b)

Fic. 3. B(k) = k4. (a) Evolution of “co-like” curve using redistribution. (b) Evolution of
“co-like” curve without redistribution leading to merging of points. (c) Evolution of “co-like” curve
using tangential redistribution of points.

In Figures 6 and 7 we present various computations including anisotropy in the
model. For Figures 6(a)-6(d) we have chosen threefold anisotropy, while for Fig-
ures 7(a) and 7(b), a fourfold one. In Figure 6(a) we have computed linear anisotropic
evolution of a unit circle by means of (7.1)-(7.3). In Figures 6(b) and 6(c) we have
combined anisotropy with a nonlinear function of the curvature. In Figure 6(d) we
have chosen the same initial curve and the velocity function as in Figure 6(c), but
curves were computed without uniform grid redistribution. Curves are represented by
100 grid points and 7 = 0.001. In the first numerical experiment shown in Figure 6(a)
the numerical blowup time Ti,.x = 0.509 (the exact one is 0.5). In this case the
isoperimetric ratio tends to 1.048 and the curve approaches the Wulf shape for such
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(a) (b)

Fic. 4. (k) = kEY/2. Evolution of general nonconvex curve using tangential redistribution of
points.

(b)

Fic. 5. (a) Affine invariant motion of ellipse using tangential redistribution of points. (b) Com-
putation using only normal component of velocity.

an anisotropy function. In Figure 6(b) we chose §(k) = k™, m > 1. The evolution
is faster, numerical Ty,ax = 0.373 (m = 2), and the asymptotic isoperimetric ratio is
1.014. Taking (k) = k™, m < 1, the anisotropic evolution is slowed down, numerical
Thax = 0.601, m = %, the isoperimetric ratio tends to 1.13, and the asymptotical
shape is more “sharp.” In this example one sees that the initial uniform redistribu-
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(c) (d)

F1G. 6. B(k,v) = (1 — 7/9cos(3v))k. (a)—(c) Using redistribution. (d) Without redistribution.

tion of grid points is not kept perfectly (in spite of results in Figure 6(b)). It very
likely is caused by lack of well-conditioning of linear systems. This phenomenon is
an objective of our future study. Further anisotropic experiments are presented in
Figures 7(a)-7(c), where convergence to “oval square” is observed in both convex and
nonconvex cases. The evolution of a nonconvex curve from Figure 7(c) is computed
also for the case of the threefold anisotropy. Results are plotted in Figure 7(d). The
last numerical experiment represents affine invariant evolution of a spiral. In Figure 8
we present several time moments of the motion until it is shrinking to a point.

9. Concluding remarks. In this paper we have studied the generalized mean
curvature flow of planar curves. The normal velocity v of the flow is assumed to be a
power-like function of the curvature k, and it may also depend on a spatial anisotropy
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(a) (b)

4

rBh
ERON

7

(©) (d)

Fi1G. 7. = (1 —0.8cos(4(v — 7/4)))k. (a), (c), (d) Using redistribution. (b) Without redistri-
bution.

v, i.e., v = vk™, where m > 0. Our analysis covers both singular (0 < m < 1)
and degenerate (1 < m < 2) cases. We followed the so-called direct approach. We
have proposed and analyzed a governing intrinsic heat equation which is a parabolic
equation for the position vector. This model is capable of describing both normal and
tangential velocities of an evolving family of plane curves. We have also found that
respect to choices of the tangential velocity numerical simulations may exhibit various
instabilities. We overcome this difficulty by constructing a suitable tangential velocity
functional yielding uniform redistribution of numerically computed grid points.

Acknowledgments. The authors are thankful to the anonymous referees for
their valuable comments and for bringing to our attention the recent paper by An-
drews.
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N\

Fi1G. 8. The sequence of evolving spirals for B(k,v) = k1/3 using redistribution. The limiting

curve is an ellipse rounded point.
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Abstract

The evolution of plane curves obeying the equatiea 8 (k), wherev is normal velocity and curvature of the
curve is studied. Morphological image and shape multiscale analysis of Alvarez, Guichard, Lions and Morel and
affine invariant scale space of curves introduced by Sapiro and Tannenbaum as well as isotropic motions of plane
phase interfaces studied by Angenent and Gurtin are included in the model. We introduce and analyze a numerica
scheme for solving the governing equation and present numerical experimé®39 Elsevier Science B.V. and
IMACS. All rights reserved.

Keywords:Curve evolution; Image and shape multiscale analysis; Phase interface; Nonlinear degenerate parabolic
equations; Numerical solution

0. Introduction

The goal of this paper is to investigate the evolution of closed smooth plane dUnRAZ — R2. By
contrast to the curve shortening flow studied in [1,7,14,17,18], we assume that the normal velocity of the
curveI” at its pointx is a nonlinear function of the curvatukeof I" at x. More precisely, we study the
evolution of plane curves obeying the geometrical equation

v=p(k), (0.1)

wherev is the normal velocity of evolving curves amid R§ — R{ is a smooth function. As a typical
example one can consider a functigiik) = k™, wherem > 0. Throughout this paper we adopt a
convention according to which the curvaturef a curverl” is always nonnegative whereas the normal
vector N may change its orientation with respect to the tangent vector
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The geometrical equations like (0.1) are capable of describing various phenomena in physics, material
sciences, computer vision, robotics and artificial intelligence. There are two main fields, in which the
evolution of a plane curve plays an important role: (a) the multiscale analysis of images and shapes
closely related to signal smoothing, edge detection and image representation (see, e.g., [3,19,27]); (b) the
Stefan problem with surface tension and related interface motion models (see, e.qg., [8,24,29]).

In the context of image processing, so-calledrphological image multiscale analyssswidely used.

This analysis is represented by a viscosity solution [13,16,12] of the following nonlinear degenerate
parabolic equation in a two-dimensional rectangular domain

v, = |Vulg(div(Vu/|Vu])), (0.2)

whereg is a nondecreasing function [2,3,21]. It is a generalization of the so-dalletiset equatiof25,
30] used for the classical mean curvature flow. The initial condition for (0.2) corresponds to the
processed image and the solutiorio its scaling version. In many situations, silhouettes (boundaries
of distinguished shapes) in the image correspond to level linesTdie morphological image multiscale
analysis then leads to the silhouettes motion obeying the equation of the form (0.1). In the vision
theory, affine invariant scale spadeas special conceptual and practical importance [2,28]. It is natural
generalization of the linear curve shortening flow, and is given by (0.1) gith = k3. The active
contoursmodels §nakeyandcurvature-based multiscale shape representatietated to edge detection,
image segmentation and recognition, are other important fields in which geometrical equations are widely
used [20,22].

In the context of multiphase thermomechanics with interfacial structure the plane curve evolution is
a natural model for thenotion of phase interface3he isotropic version of the theory of Angenent and
Gurtin [8,9] has the form of equation (0.1). In this case, the nonlinearity expresses the dependence of the
kinetic coefficient on the normal velocity (see [8, (4.11)]). For example, if the dependence is linear then
we haves (k) = k2. Under additional assumptions, a model corresponding to classical (i.e., anisotropic)
curve shortening flow is derived and studied in [8, (4.13)]; for numerical approximation in this case we
refer to [15,24]. If8 is a strictly increasing function equation (0.1) has been studied in [5,6] as a model
of curve evolution on arbitrary surfaces.

In the present paper, we suggesteav computational methddr solving geometrical equation (0.1).
The aim is to represent equation (0.1) by a so-called intrinsic heat equation governing the evolution
of plane curves with the normal velocity obeying equation (0.1). Such a representation of the curve
evolution is found for a general functigh using an appropriate curve parameterization. In Section 1
we make use of the “Eulerian transformation” of the intrinsic heat equation (1.3) into a degenerate
evolution partial differential equation (1.10) with spatial variable being independent on time and varying
on a fixed interval. This equation is a generalization of the corresponding equation studied by Dziuk
in [14]. The “intrinsic property” of the governing equation (1.10) causes that the spatial parameterization
step is not involved in the approximation scheme and therefore only the spatial position of points of a
curvel” and the curvature af’ play the role in the discretization scheme suggested in Section 4. In other
words, given a discrete polygonal curve one can compute its evolution without knowing the normalized
parameterization of the initial curve. The behavior of homothetic solutions is studied in Section 2. In
Section 3 we prove some a-priori estimates of a smooth solution, which, in particular, implyrihe
shorteningproperty of the governing equation (1.10) which ensures, in some way, the stability of the
method. The same property is proven for the time discretization scheme (4.1) in Section 4. In Section 5
the proposed numerical scheme is carefully tested by various examples of the nonlinear curvature drivern
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evolution (0.1). We present a comparison of the numerical results with the exact homothetic solutions.
In this section we also perform a comparison with previous results obtained by a conceptually different
method introduced in [23]. It is worthwhile noting that the method of [23] can be applied only for the
evolution of convex curves whereas the new method suggested in this paper is capable of capturing the
nonlinear evolution of both convex as well as nonconvex curves.

Notice that coefficients in Eq. (1.10) may develop singularities either due to vanishing of,
by contrast to the casg(k) = k studied in [14], also due to the presence of the extremal values of
the curvaturek = 0 or k = co. Moreover, Eq. (1.10) is written in a non-divergence form. This feature
make the analysis particularly difficult. Therefore the careful analysis of the convergence as well as error
estimates of the suggested approximation scheme are still open problems.

1. Governing equations
1.1. Parameterization of a plane curve

Let I be a smooth curve in the plaiR?. By this we mean thal” can be parameterized byG?
smooth functiont : R/Z — R? such that

I'={x(), uel0,1]}. (1.2

We will henceforth writel” = Image&x). To describe the time evolutiofi™*}, ¢ € [0, Tmax), Of a curve
I'° we adopt the notation

I'={x(u,t), uel0,1]}, t€l0, Tma,

wherex € C3(R/Z x [0, Tmay), R?). Obviously, any plane curv& admits various other parameteriza-
tions. Henceforth, the parametewill always refer to the arc-length parameter of a plane curve

Example 1.1. Consider another parameterizatiop of a curve I' = Imagex). Then it is easy to
verify that defox/ds., 92x/ds2] = ¢'(s)~3defdx/ds, 3%x/ds?], wheres, = ¢(s). As k = |defdx/ds,
8%x/9s?]| we have

| det[dx/ds., 3%x/ds?]| = 1 (1.2)

provided that the new parameterization= ¢(s) has the property 5§ = ¥ (s)ds where 9 = k'/3.
A parameterization of a plane curve satisfying Eq. (1.2) is referred tiveaaffine arc-lengtlisee [28]).

Throughout the paper we will use both notationsas well asdx/9¢ in order to denote the partial
derivative ofx with respect to a variablg.

1.2. Intrinsic heat equation

The aim of this paper is to investigate the evolution of plane cuf¥&s undergoing the intrinsic heat
equation
ax 9%

dx _ 9% 13
ar  9s? (13
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wheres,, is a new parameterization of a curyg obeying the law
ds, = 9 (s) ds.
We will seek for a functiond such that the normal component of the curve-flow velocitgatisfies
the equatiorv = B(k). To this end, let us transform Eq. (1.3) using the arc-length parameterization. We
obtain
ax 1 8(18x>_ 1 ¥ (s)
3t D(s)ds \O(s)ds ) 02(s) B3(s)
whereT is the unit tangent vectofi, = x; and N is the unit normal vector satisfying Frenet's formula
T, = kN. Hence the normal velocity = (x,, N) fulfills Eq. (0.1) iff

O =kY?B(k)~Y2. (1.5)
If the function 8 has the formg(k) = k¥, « > 0, we obtainy = k@ 9/ |f ¢ =1 thenx, = kN.
On the other hand, it = 3 we have? = k*/® andx, = k3N — 1(k,/k%3)T. Taking into account
Example 1.1 we may conclude that for the affine arc-length parameterization satisfying (1.2) the normal
velocity v of a curvel” with the curvature at a pointx satisfiesv = k%2 (see also [28]).

T, (1.49)

1.3. Eulerian form of the governing equation

It is worthwhile noting that the parameterizationoccurring in (1.3) may depend on timeand its
initial positionu atr = 0. This is because of the requirement that the normal velocity should depend
on the curvature only as it was prescribed by Eq. (0.1). Thus the evolution of the new parameterization
s« = s, (u, 1) as well as the arc-length parameterizatios s(u, r) depend on the solution itself. This
feature is similar, in spirit, to the transformation between Lagrangian (material) and Eulerian (spatial)
coordinates in the classical mechanics. This is why the intrinsic heat equation (1.3) is not convenient
when treating evolution of plane curves numerically. To overcome this difficulty, we rewrite (1.3) into a
form involving a parameterizatiom independent of the time variabieand varying on the fixed interval
[0, 1].

Letu € [0, 1] be a time independent parameterization of a curv&hen the arc-length parameteriza-
tions of I' is related ta: by ds = |x, | du. Furthermore, aé = |x,,| and

32x 1a<1ax) 1( 1( ))
N o — . ) = T X — 5 X Xy ) Xy
ds2 x| du \|x,| du |x.12 |, |?

we havek = k(x,, x,,), where

_ 1/2
k(p.)=1pI (1Pl = (p.9*)"", p.qeR? (1.6)
where(-, -) denotes the Euclidean scalar produciRifiand the corresponding norm is denoted| by.
Here and after we will assume that a function

®) B:10, c0) — [0, co) is Ct-smooth on(0, oo) and is continuous ofD, co),
B(k) > 0fork > 0.
Let us consider a new parameterizatiQreatisfying @, = 9 (s) ds, wherev (s) is defined as in (1.5),

i.e.,® = k¥/?B(k)~Y/2. To facilitate the notation, let us define scalar valued functipns s : R? x R? —
R,

05(p.q) =k(p. )2 Bk(p.)) 2, Gp(p.q) =1plOs(p.q). (1.7)
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It is easy to verify that(p, ¢) = |p|~3|delp, ]| and this is why the function&;; and k have the
following scaling and affine properties:

Gg(p,ap+q) =Gg(p, q), k(p,ap+q)=k(p,q), k(ap,bq) = a~?bk(p, q) (1.8)

foranyp,q € R? a,beR.
If B(k) =kY*, a >0, then

_ (a—1)/(4a)
Gy (p.q) = IpI® @ (1pRlg2 — (p, 9?) ™,
and, in addition to (1.8), one has
Gglap, bq) = |a|Y*|b|“ /@ Gy(p,q) foranyp,q eR? a,beR. (1.9)

Now we are in a position to rewrite the intrinsic heat equation (1.3) into so-called “Eulerian form”
with a parameterization varying on fixed interval0, 1] as follows:

ax 1 0 < 1 0x
0t Gp(Xus Xuu) Bu \ G p(Xys X)) It

The fully nonlinear system of PDEs (1.10) is subject to the initial condition 0) = x°(u), u € [0, 1],
and periodic boundary conditions@at= 0, 1, i.e.,x € C>Y(R/Z x [0, Tmay), R?).

>, (u,1) €[0,1] x [0, Trmax- (1.10)

2. Special solutions

Throughout this section we will restrict ourselves to the case wigh= k%, « > 0. We will seek
for a solutionx (u, ) of (1.10) having the form

x(u, ) =¢(0)X (u). (2.1)
Suppose that € C2(R/Z; R?), x # 0, is a solution of the nonlinear eigenvalue problem
1 a 1 X
v _( 1 _"):u, u € [0, 1]. 2.2)
Gﬁ (-xu, xuu) u Gﬁ (xu, xuu) u

Clearly, if ¥ # 0 is a solution of (2.2) then by taking the scalar produdtZiA(0, 1)) of (2.2) with Ggx
we obtain

L o @W/GplEl o

Jo G512
Let ¢ be a solution of the initial value problem
d
Do 9O =g0>0 (23)

Then it should be obvious from the scaling property (1.9) that the functi@an:z) = ¢ (1)x(u) is a
solution of (1.10) satisfying the initial condition(u, 0) = ¢ox (1), u € [0, 1]. The explicit form of a
solution of (2.3) is given by

1 a/(a+1)
P(t) = |pST — %Az . (2.4)
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The life-span of a homothetic solution of the form (2.1) is the intef®al’,,ax), Where

a¢c()1+a)/a

Example 2.1. An eIIipsef = {(acos2ru), bsin(2ru))", u [0, 1]} is a solution of (2.2). Then
Gy (% o) = 27 (ab) @0/ (g2 sin (27 u) + b2 o (2ru)| &

In the caser = b (i.e., I is a circle) andr > 0 we haveG = 27a@+9/* and saf is a solution of (2.2)
iff A =a~@tD/2 |f we choose the initial conditiopy = 1 (i.e., I"° = I") then the life-span of a solution
iS Tmax= (&/(a + 1))a**P/%. On the other hand, i # b anda = 3 we obtainGz = 2 (ab)*/® and so
A = (ab)?/. ThenTmax= 3(ab)?3.

By using the phase-space analysis argument, one can show that the only solution of Eq. (2.1)
with normalizedir = 1 is either a circle for O< o # 3, or an ellipse fora = 3. Thus a function
x € C2Y(R/Z x [0, T), R?) of the formx(u, ) = ¢(¢)%(u) is a solution of (1.10) iff the family of its
imagesI™t = Imag€gx(-,t)), t € [0, T), are either homothetically shrinking circles for<Oa = 3 or
homothetically shrinking ellipses for the case= 3. This is consistent with the result obtained by Sapiro
and Tannenbaum [28] for the cagék) = k3.

3. A-priori estimates of solutions

The goal of this section is to derive a-priori estimates of solutions of the intrinsic heat equation (1.10).
We will provide these estimates for the original equation (1.10) as well as for the modified equation

a 1 0 1 d

ox _ _( _x), 3.1)
ot Gﬂ,s(xuv Xuu) OU Gﬁ,s(xuv Xyu) OU

whereGg ., ¢ > 0, is a modification ofG4 such that

G R? x R? - Ris Ct-smooth, 0< G4.(p, q) < 0o,
(B) Gge(p,ap+q)=Gps.(p,q), foranyp,q € R?,a,b € R ande > 0, and
Gp.e(p.q) > Ggo(p,q) =Gg(p,q) ase — 0" forany p, g € R?,

Definition 3.1. By anondegenerate evolving curwe mean a function € C>*(R/Z x [0, T), R?) such
that 0< Gg . (x,(u, 1), x,,(u, 1)) < oo for anyu e R, t € [0, T). By anondegenerate classical solution
of Eqg. (3.1) we mean a nondegenerate evolving curgeC%1(R/Z x [0, T), R?) satisfying (3.1).

Proposition 3.1. Let x be a nondegenerate classical solution of E8.1), ¢ > 0. Then, for each
re (07 Tmax)1

1 1
d
= / (1)) + / W B K)|xu (- 1)] = O, (3.2)
0 0

wherek = k(x,, x,,) andw, = Gg(xy, X))/ Gp.e (X, x4y,) fOr e >0, wo = 1.
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Since d = |x,| du we have
1

/a)fkﬁ(k) ds =/a)§kﬁ(k)|xu|du.
rt 0
Herek stands for the curvature @f’ at a pointx € I'*. Therefore, Eq. (3.2) can be rewritten as

d
FLength +/ w?kB (k) ds =
Corollary 3.2. LetI", t € [0, Tmax), WherelI'" = Imag€gx (-, t)) be a flow of plane curves whexeis a

nondegenerate classical solution @.1). Then(d/dr)|I"'| < 0. In other words, the length™| of the
curveI'" decreases along the time, i.€l;'}, t € [0, Tmax), iS @ curve shortening flow.

Proof of Proposition 3.1. Denotek = k(x,, Xuu), G = Gg ¢ (xy, Xu,) ANAO = |x,|"1G. Then
1 Xy d Xy d x,
|xuls = Ix u|(xutvxu) (xutv G) _9{ du (xt’ E) - (xt’ 56)}
ol d (iix—“ o) = . G | = 0%, P +91{( L d x )
du\G du G’ G ’ ! d 02|x,| du 0xy| |xul
=l P+ o [ (e S ) (S )
due L 6%, | \ [x,] " |x,| 03 x, | \ due x| x|

d/ 6,
:—92|xu||x,|2—9d—(—) 3.3)
u

0%xu|

because

d x, =x,
—— — | =0.
(du || |Xu|)

With regard to (1.6) we havi, |2 x..|? — (X, Xu)? = k?|x,|®. Therefore,

2 2

| | 1 d Xy 0| | 9 | | G(XM’ xuu)
Xl = = Xy [ Xyu — Ty | Xy | Xy — u
C 02k du Olx,l| T 6%, 1° x|
2
— 2 2 2
- 96' 6 {9 [lxuu| |xu| - (xua xuu) ] + 0 |xu| } k 9 + 96| | * (34)

Taking into account (1.7), (3.3) and (3.4) we obtain

d )
ult — uk2 2__< “ )
[l = — e

Finally, as

_ o klx
2 2 _ 12 2 2 2 2
k2072 = k%, °G52 = 500 G2kB(k) = G2G 52k (k) = w?kB (k)

we conclude that
d 0,
ale = —eZ x|k BCR) — (—) (35)

03], |
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Since bothx(u, ) as well asé(u, ) are 1-periodic functions im Eq. (3.2) follows from (3.5) by
integrating over the intervdD, 1]. O

4. Numerical scheme

In this section we present a time semi-discretization scheme for solving Eq. (3.1D, Z8tbe an
interval and letr = T'/n, n € N, denote the time discretization step. By i =0, 1, ..., n, we denote
the approximation of a true solution of (3.1) at time-it, i.e.,x'(:) = x(-,it). Lete > 0 be fixed. The
idea of the construction of a time discretization scheme is based on approximation of the intrinsic heat
equation (1.3) by the backward Euler method

i i—-1 82xi

2 9 & 9 by
T dS

where the parameterization is computed from the previous time stejp'. The “Eulerian form” of the
above scheme reads as follows:

. 9/ 1 ox! .
xz_;_(__i>=le, i=12....n, (4.1)
gl—l u gt—l ou

whereg'~t = Gg . (x/ 71, x{~1) andx? is the initial condition.

In what follows we will investigate the discretization scheme (4.1). We will prove the existence of
a sequence’, i =1,2,...,n, as well as we will show that such a discretization of the governing
equation (3.1) generates the curve shortening discrete semiflow.

Lemma 4.1. Suppose thag € C1(R/Z;R), g >0, T > 0, andx € C(R/Z; R?). Then there exists a
unique solutiont € C2(R/Z; R?) of the equation

d /10
x_E_(_l):i (4.2)
gou\gou
Moreover,
1 1 1 1

[eni+2r [ i< [ (4.3)

0 0 ¢ 0
and, in particular,x = 0 whenever = 0. Finally, if x € C*(R/Z; R?) then

kx|
8

Zuu+rj<

wherek = k(x,, x,.).

2 l
) < [ 15l (4.4)
0
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Proof. We first prove the uniqueness of a solution of (4.2). Since (4.2) is a linear nonhomogeneous
equation forx the proof follows from (4.3) withk = 0. To prove (4.3) one can take ttié inner product
of (4.2) with gx to obtain the estimate

1 11 1 1 1
2/g|x|2+2r/—|xu|2=2/g<x,x> </g|x|2+/g|i|2
0 0 g 0 0 0

from which inequality (4.3) easily follows.

To prove the existence of a solution of (4.2) one can argue by Fredholm’s alternative. Indeed, let
A:C(R/Z;R? — C?(R/Z;R? be a solution operator for the equatiep, + 72x = f, i.e.,.x = Af.
Then

1 u
Af(u) = —% /Sin(nu —ms)f(s)ds + %/Sin(nu —7s) f(s)ds
0

0

and this is why the linear operater is bounded when operating fro@ — C? and is compact as an
operator fromC — C?. Let L be a linear operator o60*(R/Z; R?) defined asLx = A(g,g *x, +
g’t x + 72x). ThenL:C! — C' is compact and thereforé — L is a Fredholm mapping of zero
index. As a consequence of (4.3) we have that the kernél-ofL is trivial. Therefore, the equation
x — Lx = —A(g%t~1x) has a solution: € C*. In fact,x € C? andx solves (4.2).

Finally we prove (4.4). The proof is similar, in technique, to that of Proposition 3.1. Let us denote
6 = |x,|"tg, 8;x = (x — x)/t. Then, following the lines of the proof of Proposition 3.1 one obtains

<5rxu,|x—u|) 0%, “>=e{d‘1(ax g)_<5x dix;)}

:—92|xu||5fx|2—91( Ou )
du \ 6%|x,|

Using the same argument as in (3.4) yields

8 | B 1 d x, 2_ 2._a Quz
i 62|x, 12| du 6]x,]| 6%x,1%
Hence,

Xy 2.2 d 0,
SeXu, — | = —kO0 x| — — .
| | du \ 63| x,|

On the other hand,

Xy 1 _ Xy Xy
thuv— =\ Xu = Xy, 7/ | ul xuv— .
|| T EAVARR: | |

Therefore,

/|xu|+r/( ) |xu|—0/(xu,m) /|xu

and the proof of the lemma follows.O
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We claim that we have assured the existence of a sequeneeC?(R/Z;R?), i =0,1,...,n,
generated by the iteration scheme (4.1) provided #lat C3(R/Z; R?). Indeed, fore > 0 we have
g% > 0 andg® e C*. Now, if g'=! € C?* then according to Lemma 4.1 there exists the unique solution
x' e C? of (4.1). Then
i—1 i—1\2
i = 8u i 4 ) (xi _xi—l>‘

uu i—17u T

8

By the hypothesis (E) and the property (1.8) we may conclude that the fungtienGs . (x!, x! ) =
Gpo(x, (g H2r7(x! —x'~1)) is, in effect,Ct-smooth ang’ > 0. Then an induction argument enables
to conclude that the sequengg i =0,1,...,n, is well defined and alk’, i =0,1,...,n, areC?-
smooth.

Summarizing the above considerations we obtain the following result.

Proposition 4.2. Let x° € C3(R/Z;R?) and ¢ > 0. Then there exists a unique sequence i =
0,1,...,n, generated according to the iteration schefdel). Moreover,

/|x|+ /(klw) /|x’ 1 fori=1,2,. (4.5)

wherek’ =k(x,x! ) andg' =t = G .(xi71, xI-1). In particular, the length of the curvE’ = Imagex’)
decreases along the discrete evolution generate@ ).

We end this section by discussing the full space-time discretization scheme to be used in all numerical
simulations below. To derive the fully discrete analogue of (4.1) we use the uniform spatial; gtigh
(j =0,...,m) with h = 1/m. The smooth solution: is then approximated by the discrete valug
corresponding tac(jh, it). Using quite natural finite difference approximations of spatial differential
terms in (4.1) we end up with the following semi-implicit difference scheme

1 xi Xl~ 1 '+l i xi} xl 1
—(g»_ —i—gA_l) A - = i=1...,n, j=1,...,m, (4.6)
2™ " T 834—% g; !

where

i1 _ i1 k§‘71+8
g =hj i1
:3(]‘ +¢)

and
i-1_j.i-1 -1
h; —|xj Xj-1

9

i1 i1y i1 i-1
Kl ’arccoe{(x]+l xlfl’xj —xj 2)/(|x1+1 Xl = X))
: .

i—1
-

The scheme is subject to the periodic boundary conditk}asﬁ = x;i (j = —1,0,1). In each discrete
computational time stepr the scheme (4.6) leads to solving of two tridiagonal systems for the new
curve position, which are computed in a very fast way. Let us mention that (4.6) does not involve the
spatial grid parametér and in the linear casg(k) = k it coincides with Dziuk's scheme [14].



K. Mikula, D. Sewdvic / Applied Numerical Mathematics 31 (1999) 191-207 201
5. Discussion on numerical experiments

Now, we present numerical results obtained by the approximation scheme (4.1) in the fully discrete
version (4.6).

It follows from (2.4) that a special solution of (0.1) wif(k) = k™, m > 0, is a circle homothetically

shrinking to the center; its radiuB(¢) being given byR(t) = (R(0)"** — (m + 1)r)¥Y™+D, Using
this formula we obtain exact blow up time for curvature. Table 1 shows relationship between exact
and numerically computed blow up times for the power like funciigh) = k™ for variousm > 0. It
shows the exact blow up tim&s,.« (see (2.5)), and numerically computed ones for time step€.01,
7 = 0.001,7 = 0.0001, respectively. The equidistant time step is used until the curvature begins to growth
beyond a threshold value. After this moment we adaptively refine the time step to obtain numerical blow
up (curvature of order ). We use the mesh containing 100 space grid points in order to represent the
position of the curve.

In the cases (k) = k%3, arbitrary ellipse is a homothetic solution (see [2,28] and Section 2 of this
paper). This property is also confirmed by our numerical simulations. During the time evolution the ratio
a/b of halfaxes stays constant up to the moment very close to the exact time of shrinking. The shape
selfsimilarity during the evolution is justified by computing the isoperimetric ratio=dsb?/ (4 S),

S
2

B

-1

-1 -0.5

=)

0.5 1

Fig. 1. Shrinking of the unit circle by nonlinear curve shortening vdith) = k%/2; numerical blow up time for the
curvature is 0.671, plotting time step is 0.1.

Table 1
Relationship between exact and numerically computed curvature blow up
times for initial unit circle,8 (k) = k™

1 1 1 1
m 1 Z 3 p 1 0
Tmacexact 0909 08 075 ® 05 1.0

=001 0942 0835 0.785 0.701 0536 1.02
7=0001 0913 0.8047 0.754 0.671 0.5048 1.003
7=0.0001 0.9098 0.8007 0.7506 0.6673 0.5005 1.0007
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a
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_3 " ) 1 2 3

(@)

Fig. 2. Affine invariant evolution of the ellipse, initial halfaxes= 3, b = 1; halfaxes ratio and isoperimetric ratio
are conserved during the computations.

Table 2
Relationship between exact and numerically computed curva-
ture blow up times for initial ellipseg (k) = k1/3

Halfaxes ratio 2:1 3:1 4:1
Tmax-exact 1.191 1.560 1.890
7 =0.001 1.195 1.564 1.893
Iso 1.188 1.508 1.864
Table 3

Evolution of the isoperimetric ratio
Time/Iso 0 0.6 1.4 15 1519
Bk)y=kY2 1508 1.36 1.25 1.11 1.07 1.04
Bk)y=kY* 1508 1.63 1.79 2.39 3.36 4.12

=

where L is the length of the curve anl is the enclosed area. It turns out that also this quantity is
practically constant for the numerical solution.

Form = % the exact blow up time for a shrinking ellipse can be computed (see Example 2.1) and is
equal to§1 (ab)?3. In the next table we compare the numerical and exact blow up times for several ellipses.
The ratio of halfaxes is printed in the headline of Table 2. The mesh containing 200 space grid points has
been used for discretization of the curve. We also print the isoperimetric ratio which is conserved up to
4 digits during numerical evolution.

In spite of conservation of the isoperimetric ratio for= % it tends to 1 in numerical computations
with m = % and tooo for m = %, respectively. We print values of Isor € [0, Tmax), in these two cases
for initial ellipse with halfaxes ratio 31.

In Figs. 3 and 4 we present the comparison of the numerical results obtained by two rather different
methods. Namely, the tested method (4.1), based on the computing of the curve’s position vector, and the
method introduced in [23], based on the computing of the curvature of evolving curve. In the second case,
the real motion is reconstructed from the computed curvature in discrete time steps. This method is basec
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1

(772
BN

-2 -1 0 1 2

o

Fig. 3. Comparison of two different methods for evolution of convex curve: tick marks—method (4.1); solid
lines—method from [23].

-2 -1 0 1 2

Fig. 4. Comparison of two different methods for evolution of selfintersecting “convex” curve: tick marks—method
(4.1); solid lines—method from [23]. The evolving curve is plotted at the same discrete time moments until the
“hair” singularity is formed. The method from [23] cannot continue beyond singularity.

on solving the nonlinear parabolic equation of porous-medium type and its convergence for (0.1) is the
consequence of the results of [24]. However, it is restricted to convex cases (including selfintersections).
In Fig. 3 one sees suitable redistribution (from initial to the first plotted step) of computational grid
points due to the presence of the tangential component of the velocity (see (1.4)). Due to the ghape of
the points with high curvatures are moving along the curves:(1) and it works against the degeneracy
of equation. In spite of this, the effect is oppositedor 1 and leads to serious computational difficulties
in that case. This phenomenon can be explained, in a satisfactory manner, by Eq. (1.4). It follows from
(2.4) and (1.5) that the tangential velocity is proportionattéimes the sign ofn — 1. Therefore in the
casem < 1 the tangential component of the velocity drives the grids away from the pieces of the curve
with increasing curvature whereas its action is opposite in themasd..
The results discussed above are very accurate already for reasonable large computational time step:
It indicates the usefulness and effectiveness of the method even in cases when no exact solutions ar
known. In Figs. 5-8 we show evolutions of several initially nonconvex curves with the different choices
of 8. We also present the passage through singularities in some examples of immersed curves. A simple
point removing algorithimhas been built into the scheme preventing the |“= 0” kind of singularity
and, moreover, it is very useful tool in order to pass through singularities and other situations when the
grid points representing the curve move very close to each other.
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-1 -0.5 0 .5

Fig. 6. The initial nonconvex curve.

Fig. 6b. The cases(k) = k/3. Time interval is
[0, 0.56].

Fig. 6a. The cased(k) = k. Time interval is

[0, 0.26].

0.75

B
)~

>
~

-1 -0.5 0 0.5 1

Fig. 6¢. The casg(k) = k¥/°. Time interval is

[0, 0.56].
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-2 -1 0 1 2

Fig. 7. The initialoo-like selfintersecting curve.

-2 -1 0 1 2

Fig. 7b. The case8(k) = k¥/3. Time interval is Fig. 7c. The case8(k) = k2. Time interval is
[0, 0.3]. [0, 0.08].

Figs. 6a—6¢c show the time evolution of the initial curve depicted in Fig. 6. The plotting step is 50.
The initial curve has the parameterizatipftos2ru), 2 sin(2ru) — 1.99sin27u)3), u € [0, 1]} and
the spatial mesh contained 100 equally distributed points. In Fig. 6a, respectively 6kg (wjtk- k,
respectivelyf(k) = k3, one can see the evolution of a nonconvex curve to a circle-rounded point,
respectively to an ellipse-rounded point, in Fig. 6¢ we have plotted evolution of the nonconvex curve
with the blow up of isoperimetric ratio for the cagék) = k'/°.

Figs. 7a—7c show the time evolution of the initial curve depicted in Fig. 7. The plotting step is 40
(Figs. 7a, 7b) and 30 (Fig. 7c¢). The initial curve has the parametrizétboog2ru), sin(4ru)), u €
[0, 1]} and the spatial mesh contained 100 equally distributed points. In Fig. 7cAwkth= k® one
sees very different behavior for the parts of curve with curvature close or equal to O in comparison with
Fig. 7b, whereg (k) = k3. We did not trace the evolution of curves f8k) = k?> beyond the time
interval [0, 0.1] as it becomes unstable for large time intervals of simulation. The pieces of the curve
with the curvature close to zero do not move for a long time in the g&e= k? (see Fig. 7c) whereas
they move quickly apart from each other in the cgge) = k'3 (see Fig. 7b). This phenomenon can be
related to the effect of the the slow and fast diffusion diffusion effect known from the analysis of porous
medium equations.

Another example of the time evolution of an irregular initial curve with the large variation in the
curvature is demonstrated by Figs. 8a—8c with initial curve depicted in Fig. 8. We have used the time step
7 = 0.001, plotting step 50, and the mesh contained 200 grids.
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1.5 1.5
1 1
0.5 0.5 C)
0 /\ 0
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[0, 0.65].
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Fig. 8b. The casg (k) = k/3. Time interval is
[0, 0.9].

Fig. 8c. The caseS8(k) = arctartk). Time
interval is[0, 1.1].
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Abstract

Weakly nonlinear analysis is adopted in order to study a model of magnetoconvection in a rotating horizontal fluid layer.
The layer is supposed to be non-uniformly stratified and is permeated by an azimuthal magnetic field. The only nonlinearity
brought in this convecting system is due to presence of Ekman layers along the horizontal mechanical boundaries. The
governing equations for this model together with the expression for geostrophic flow, i.e., modified Taylor’s constraint are
analysed with help of perturbation methods. As a result, the bifurcation structure in the vicinity of the critical Rayleigh
number is revealed. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Magnetoconvection; Modified Taylor's constraint; Non-uniform stratification; Perturbation techniques, Weakly nonlinear

anaysis

1. Introduction

In a large class of MHD models, the assumption
is often made that the primary force balance in the
Earth’s core is entered by Lorentz, Coriolis, buoy-
ancy and pressure forces in the equation of motion.
Such a force baance, familiar aso as magne-
tostrophic approximation, has a solution, if and only
if so-called Taylor's constraint is satisfied (Taylor,
1963). In the case of small but non-zero viscosity,
the magnetostrophic approximation still holds as a

* Corresponding author. E-mail: brestensky @fmph.uniba.sk

primary force balance, but Taylor’s constraint has to
be modified to include viscous effects. In this case,
modified Taylor’'s constraint can be taken as a pre-
dictive formula for evaluation of geostrophic flow
which is thus expressed explicitly (Fearn, 1994).

In this paper, we focus our attention on a finite
amplitude rotating magneto-convection in a horizon-
tal layer permeated by azimuthal magnetic field. The
linearized version of this problem for the model of
uniformly stratified rotating layer with infinite hori-
zontal extension has been studied by Soward (1979)
and Brestensky and Sev€ik (1994). In the model of
rotating annulus (Skinner and Soward, 1988, 1991),
the effect of geostrophic flow was incorporated mak-
ing the whole problem nonlinear. Here, conditions

0031-9201,/99/$ - see front matter © 1999 Elsevier Science B.V. All rights reserved.

Pll: S0031-9201(98)00148-4



84 M. Revallo et al. / Physics of the Earth and Planetary Interiors 111 (1999) 83-92

for the onset of instability in the regime of so-called
Taylor state * were found.

Unlike the above mentioned references, in our
recent studies made in Brestensky et al. (1997) and
Revallo et al. (1997), 2 we restricted our attention on
the early evolution of instability in the vicinity of the
basic static state, i.e, in the vicinity of critica
Rayleigh number R.. This leads to a specific weakly
nonlinear problem where the ensuing magnetocon-
vection is affected by the presence of geostrophic
flow. The interested reader is referred to BRS for
some mathematical aspects as well as for the method
of solution. In RSB we considered a simple model of
radially bounded horizontal rotating layer with free
infinitely electrically and thermally conducting
boundaries. We found that the oscillatory convection
in this system sets in via Hopf bifurcation which is
typically supercritical for g = 0.005. Furthermore the
convective instability has a form of travelling waves
whose frequency has a decreasing tendency as the
Rayleigh number is increased beyond its critical
value.

In this paper, we pursue the weakly nonlinear
analysis made in BRS and RSB for a more compli-
cated model of magnetoconvection where non-uni-
form dtratification of the layer is incorporated. Our
modification of the model is based upon an idea
originally proposed by Bod'a(1988) and later devel-
oped by SevCik (1989). * In these references a linear
problem of magnetoconvection in a horizontally un-
bounded geometry was set up in which the density
gradient changes its sign across the layer (non-uni-
form stratification). The concept of a non-uniformly
stratified layer appears to be reasonable as it incor-
porates more realistic conditions in the Earth’s inte-
rior which is known to be non-uniformly stratified.

Note that several interesting features were isolated
in the model introduced by Bod'a (1988), e.g., exis-
tence of the magnetic mode in the layer gravitation-
aly stable in the top half and unstable in the bottom
half. Moreover, under the assumption of non-uni-

% In this asymptotic regime the magnitude of geostrophic flow
is such that viscous forces no longer have major influence on the
convection and the net torque on geostrophic cylinders vanishes.

2 Henceforth referred to as BRS and RSB.

% Henceforth referred to as S89.

form stratification, the excitation of therma mode
was observed in S89 even for the layer cooled from
below and heated from above (the case of negative
Rayleigh number).

The paper is organised as follows. In Section 2
we formulate the nonlinear problem and we state the
expression for the geostrophic flow. In Section 3 we
present a system of nonlinear PDE’s governing mo-
tion. Such a motion is periodic in both time and in
the azimuthal variable. Section 4 refers back to the
origina linear problem for a non-uniformly stratified
layer solved in S89. In Section 5 we briefly outline
the solution of PDE's by a perturbation technique
and we quote resulting amplitude equation. The re-
sults of bifurcation analysis are presented in Section
6. The corresponding bifurcation diagrams are also
shown in this section. Section 7 is devoted to conclu-
sions.

2. Description of the nonlinear model

The model under consideration is a weakly
bounded cylinder + of width d, ze <0, d) and
radius s,, s€<0, s,», rotating rapidly with angular
velocity 2,2 about the vertical rotation axis. The
cylinder contains an electrically conducting Boussi-
nesq fluid permeated by an azimuthal magnetic field
B, linearly growing with the distance from the rota-
tion axis. The instability of this system can be caused
by the vertical temperature gradient. Therefore, we
consider the temperature difference AT maintained
between the lower, T,, and the upper boundaries,
T, — AT. Non-uniform stratification can be modelled
by negative heat sources, H < 0, distributed within
the layer. This has a consequence of non-linear
(quadratic) dependence of basic temperature profile,
To-

Assuming small but non-zero viscosity leads to-
wards formation of viscous boundary layers (the
Ekman layers) along the horizontal boundaries. As a
result, non-zero geostrophic flow £(s) is induced by
Ekman suction, which couples the interaction be-
tween boundary layer and the rest of the fluid,
making the whole problem nonlinear.

“ The radial extension of the layer is much greater than its
thickness.



M. Revallo et al. / Physics of the Earth and Planetary Interiors 111 (1999) 83-92 85

The ensuing convective instability manifests itself
by perturbations of the velocity u, the magnetic field
b and the temperature 9% which relate to the basic
state represented by

U, =0,

Bo=Bu5é,
d (1)

A z z—d
TO_T|_ Ta 1_m .

The quantity z, * = —p,C,kAT/(dH) +d/2, re-
ferred to as stratification parameter, is the z-coordi-
nate of the level dividing the layer into the stably
and unstably stratified sublayers; p,c,« is the ther-
mal conductivity. The temperature T,(z) reaches
minimum and its gradient changes direction at the
level z=z,, *. Note that the cases of uniform strati-
fication can be obtained as the limiting cases z, *
— 40,

We non-dimensionalise the basic eguations with
the use of characteristic length d, magnetic diffusion
time d?/m, magnetic field B,,, and temperature
difference across the layer AT. The equations in the
cylindrical polar coordinates (s, ¢, z) governing the
evolution of perturbations u, b, ¢ are cast as fol-
lows

Zxu=—-Vp+A[(VXs@)xXb+ (VXb)Xsp]

+ R Z, (2)

db
T VX (s2(s)eXb)=VX(uxsp)

+ V?b, (3

a9 ~ ~

q a—t+(s_(2(s)¢~V)ﬁ =—u-VT,+ V3,
(4)
V-b=0, V-u=0 (5)

where 2 and & are the axial and azimuthal unit
vectors, respectively.

In Egs. (2)—(5) the dimensionless parameters, the
modified Rayleigh number R, the Elsasser number

A, the Ekman number E and the Roberts number g,
are defined by

gdATa B3 E v
Bl 200k’ B 20, ponp”’ B 2d%,’
K
q: —
n

where k and n are the therma and magnetic diffu-
sivities, v isthe kinematic viscosity, « is the coeffi-
cient of thermal expansion, g is the acceleration due
to gravity, w is the permesbility and p, is the
density.

In the case of non-uniform stratification, the tem-
perature gradient entering Eq. (4) can be expressed
in terms of the dimensionless parameters in the
following form (S89)

dT,

— = —(2az—a+1) for AT> 0,

dz

(6)

dT,

el +(2az—a+1) for AT<O
where the coefficient a relates to the dimensionless
stratification parameter z,, via

! 7
a= .
1-2z, ()

Here z,, = z,, * /d. Note that taking the coefficient
a = 0 corresponds to uniform stratification.

The angular velocity £2(s) of geostrophic flow
entering the convective non-linearities in the above
set of equations is determined by modified Taylor's
constraint

Z
J Rz with (R,
S7zg

= ([(Vxb) xb],>* (8)

where z5 and z; delimit the horizontal boundaries
of the layer, the (...)*=1/Q2m)[¢"...d¢ stands
for averaging over ¢ and Fy,=[(VX B) X B], de-
notes an azimuthal component of Lorentz force.
Egs. (2)—(5) have to be solved subject to bound-
ary conditions corresponding to rigid ° perfectly

® Only due to the effect of Ekman secondary flow.
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electrically and thermally conducting horizontal
boundaries, i.e.,

o _db
u,=39=h,=0, z><8—2=0 a z=0,d. (9
In addition, we will assume that on the sidewall
boundaries, delimited by s= s, the perturbations are
vanishing (see following section).

3. Formulation of the nonlinear problem

It is convenient to rearrange the system of nonlin-
ear equations (Egs. (2)—(5)) with help of the
poloidal—toroidal decomposition of vector fields (for
details see BRS). For the velocity perturbation u and
magnetic field perturbation b we assume

u=k2[VX(VXW2)+ VX 2],

b=k 2[Vx (Vxb2) + Vx 2. (10)
Here k isa radial~ wave number and the representing
functions W, @, b, j depend on coordinates z, s, ¢
and time t and will be symbolized by f(z, s, o, 1),
or shortly f, asin Brestensk{ and Sev&ik (1994). The
same notation applies for the temperature perturba-
tion, i.e., . .

The representing functions of f can be sought in
the form

f(z,5,¢.,t) = Re[ A(£Pt) f,( z,5)exp(ime + At)}.
(11)

Hereafter the symbol f, (z,s) stands for one of the
complex functions w,(z5s), .(z9s), b(z59),
im(z,9) and 9,(z,5) dependent on coordinates z and
s. Unlike the assumption often made in the linear
case, eg, (Soward, 1979; Simkanin et a., 1997),
each of the functions f_(z,s) above is modulated by
acomplex amplitude A(ePt) varying in the so-called
slow time scale Pt where £ is a small unfolding
parameter and p is a natura number to be specified
later. Furthermore, m is an azimuthal wave number
(integer) and A is a complex frequency (related to a
real frequency via A =io).

Upon the above assumption, the reduced system
of nonlinear equations can be derived from Egs.
(2)—(5). Hereafter, the notation 7= Pt and A(7) =

dA(T)/dr will be used. The partial differential
equations for representing functions take the follow-
ing forms

0= —Dw,(z,s) +2ADb,(z5s) -
0= —Dwy(z5) +2ADj,(z,5)
+imA(D? - k%7, )b, (Z,8) —
AA(T)by(2,8) + PA(T) by 2,8)
+A(1-)|A(1-)|2 W(2,8) =1mA(T)
+A(7)(D? = K7, ) by( 2,9),
AA(T)jn( Z,9) +gpA(1-)Jm( z,s)
+ A7) A(T)IPT,( 2,5) =IMA(T) 0 Z,9)
+A(T)(D2 k27 m) m(Z,9),
(1/0) (AA(T) 9 2,5) + £PA(T) 9( 2,9)
+A(T) A(T)I°S(2,8)) = A(T) ¢(2)
X IWin( Z,8) + A(T)(D? = K27, ) 9( 2,9)

imAj.(z,s),

Rk?9..( z,3),

W (z,9)

(12)

where ¢{(2) = —dT,/dz
The representing functions for nonlinearities
P.(z59), T,(z9), S,(zs) are expressed in terms of

P.n(z,s) =im2(s)b.(zs)
—im7 %, by(z,5)},
To(2,5) =im2(s)j.(z.9)
+ 71T, Dby(2,9)},
S.(z,8) =im(s)d,(z,5s). (13)

Here D=9/0z and .7,,! is the inverse operator to
the linear Bessel differential operator .7,

1(9°? 19 m?
fm = — F

and P,, T, are differential operators

- 1 [0%2(s) 90(s) ) o 1
=—- = + —+ -1,
@ k2| os? s s s

_+__
9s® sds &

1 9%(s) 9 a0( s)
Tpy=——{8——>—+5
@ k2 as?  ds s
m 2 9 92 u
X|—4+——+—|}.
s> sds 9s? (14)
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The expression for the geostrophic flow 2(s) in
terms of b (z,s) and j,(z5) can be derived directly
from Eq. (8) (see RSB). Assuming the separability
f.(z,5) =f(2)J,(ks), it smplifies to

1d
0(s) =23 d—SJrﬁ(ks) where 2

A
= mmefz j(z)Db(z)dz  (15)

is a functional depending on the functions b(z) and
j(2) known from the linear study.

For the representing functions f_(z,s), the corre-
sponding boundary conditions can be obtained from
Eqg. (9)

W(2,8) = 9,(2,5) =b,(z5s) =Dj,(zs) =0,
foral z=0,dand s€ (0,s,). (16)

In aradia direction we impose the following bound-
ary conditions

9,(2,5) =by(2,9) =jn(2:9) =0,
forall s=0,s,, and z€ (0,d). (17)

In our model, the parameter s,, which delimits
the layer in a radia direction, has to be chosen to
coincide with the n-th root of the Bessel function
i.e, J.(ks,) =0 for sufficiently large integer n.
Since the values of radial wave number k are taken
from the linear analysis, the above condition is met
for certain values of s, only.

4. Linearized problem and its solution

Considering small perturbations the whole prob-
lem can be linearized (see e.g., Bod'a, 1988; S89).
Specifically, in our model the linearization can be
fixed by the condition 2(s)=0. The linear case
allows for the separation of representing functions

f(z,8) =1(2)J,(ks) (18)

where J.(ks) is the Bessel function of the first kind,
k is a radia wavenumber (rea) and f(z) is the
complex function of zcoordinate. Respecting the

boundary conditions, for each particular f(z) we
have
w(z) = ) wsn(mnz),

n=1

w(2) =w,+ i w,cos(wnz),

b(z) = i b,sin(mnz),
i(2) =i+ X Jscos(mnz),

3(2z) = Y. 9,sn(wnz). (19)
n=1

Inserting the above expansions into the linearized
equations, after a series of standard operations we
obtain a set of algebraic equations for complex coef-
ficients w,, w,, b, J, U, In S89, the critical
Rayleigh number R_, the critical frequency A, the
critical radial wave number k. and the complex
coefficients were computed for various sets of pa
rameters (A, g, m, a).

5. Solution of the nonlinear problem

A standard way is to represent nonlinear equa-
tions (Eq. (12)) in a matrix form (in BRS referred to
as an abstract nonlinear problem)

A7) L= N(A(T),A(T), ) (20)
where A(7) is the complex amplitude, .# is the
linear operator and s is the vector function

7= (W 2,9) 00 2:9) By(2,5) [ 2.5),

9(2,9)) (21)

and the right-hand side vector N(A(T), A(7), )
contains the nonlinearities.

Due to the structure of the geostrophic term, a
cubic nonlinearity appears in the system. Taking the
symmetry properties into account, the integer param-
eter p has to be set p= 2 and the increment R-R,
of the Rayleigh number will be fixed by the condi-
tion

R-R.,= +&° (22)
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which ensures the supercritical or subcritical charac-
ter of bifurcation. Here ¢ has the meaning of a small
unfolding parameter. The vector of representing
functions ¢ as well as the complex amplitude A(7)
have to be expanded in terms of &, (¢ < 1)

¢:¢1+3¢2+32‘p3+ B
A(T)=eA(T) + 82A2(T) + 83A3(T) + -,
(23)

where 7 is the slow time associated with the physical
time through the relation 7= £°t.

Inserting the above expansions into (20) and col-
lecting terms of the same power of &, yields a series
of non-homogeneous matrix equations. In order to
ensure their solvability, the complex amplitudes A,
(i=1, 2,...) must be adjusted at each stage of
expansion, giving rise to amplitude equations. At the
leading order the final form of amplitude equation
reads

dA(e?t)

s =(R—RC)aA(82t)

~ BA(s*)IA(T)I%, (24)
which describes the evolution of the amplitude A(7)
in the physical time t instead of 7.

The equation quoted above is the normal form for
the Hopf bifurcation in R= R,. Stability analysis of
this normal form enables us to identify the super- or
subcriticality, stability and the frequency response of
the convecting system in the vicinity of R=R_.. We
are able to discuss these properties in terms of the
complex coefficients « and B which depend on the
parameters m, A, E, q as well as on the critical
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Fig. 1. T, MW and ME modesfor m=1, z,, = 0.6 and g = 0.005.
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Fig. 2. T and ME modesfor m=1, z,, = 0.6 and q= 0.5.

parameters R, k. and o, as shown in Appendix A.
Motivated by RSB we introduce the following nota-
tion

Rzzﬁa Uzzai&_ﬁi- (25)

r r

The above expressions are directly associated with
the Hopf bifurcation properties, namely if R, > 0the
Hopf bifurcation at R, is supercritical, otherwise it
is subcritical. The sign of «, causes the change of
stability of the solutionsin the vicinity of R.. In case
o, > 0 the frequency response of the nonlinear sys-
tem is such that frequency of the oscillations grows;
in case o, <0 frequency of the oscillations de-
creases (if o, > 0).

6. Results

In the numerical experiments to follow the values
of the critical Rayleigh number R, the critical radial
wave number k. and the critical complex frequency
A.=l0, were obtained from the linear stability
analysis made in S89. We have evaluated the coeffi-
cients R, and o, numericaly for various sets of
parameters m, g, A.

Namely, we studied two particular cases related to
the azimuthal wave numbers m= 1 and m= 2 with
the Elsasser number A ranging from 102 to 2500.
The values of the Roberts number were chosen
g=0.005 and g= 0.5. Note that the choice of the
Ekman number is irrelevant in this case. It can be
scaled out of the problem when the nonlinearity is
only due to geostrophic flow.
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Fig. 3. T and ME modes for m=1, z, = 0.4 and g = 0.005.

The figures below are bifurcation diagrams in the
space of parameters R (Rayleigh number) and A
(Elsasser number) where the marked curve R, =
R.(A) shows the dependence of the critical Rayleigh
number on the Elsasser number for each particular
convective mode. Knowing the coefficients « and B
of the amplitude equation enables us to classify the
domains separated by R.= R.(A). In each of the
diagrams, the domains below the curves correspond
to trivial conductive solutions whilst the domains
above correspond to oscillatory convective solutions.

Here T and MW symbolize thermally and magnet-
icaly driven waves propagating westwards, respec-
tively and ME denotes magnetically driven waves
propagating eastwards. Other notation adopted here
differs from that used in RSB. Hereafter + and — in
the diagrams stand for supercritical and subcritical
Hopf bifurcation. In both cases the trivial solution
loses stability when the parameter R passes its criti-
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Fig. 4. T and ME modesfor m=1, z,, = 0.4 and g= 0.5.
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Fig. 5. T modes for m= 2, z,, = 0.6 and q = 0.005.

cal value R,. Recaling properties of the Hopf bifur-
cation, the arising subcritical and supercritical oscil-
lations are unstable and stable, respectively. It must
be emphasized, however, that all of what was said of
the stability holds in the case when «, > 0. Analyz-
ing the normal form for «, < 0, we deduce that the
stability of the trivial and nontrivial solutions is
reversed. Specificaly, the case of supercritically bi-
furcated oscillations which are unstable (only ME
modes for q=0.5) will be denoted by +U. The
arrow symbols 1 and | in the graphs below denote
increase or decrease in frequency of nonlinear con-
vective oscillations.

At this stage, we must realize that also negative
values of the Rayleigh number can be considered in
the underlying model. This is actually the case when
the lower horizontal boundary of the layer is cooled
and the upper one is heated. From the physical point

104 I
s T+
10° £
X
, MW +T
10° 000 S e
107! 1 10! 10? 10°

AN
Fig. 6. T and MW modes for m=1, z,, = 0.9 and q = 0.005.
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Fig. 7. T modesfor m=1, z,, = 0.9 and g= 0.5.

of view only the absolute value of the Rayleigh
number is of relevance as it is directly related to the
energy input into the system. Realizing this fact in
what follows, we classify the type of bifurcation
(supercritical or subcritical) with respect to the abso-
lute value of the Rayleigh number.

Figs. 1-5 are bhifurcation diagrams where the
stratification parameter was set z,, = 0.6 and z, =
0.4. This choice of z,, relates to the cases of posi-
tive and negative Rayleigh number, respectively. The
weakly nonlinear behaviour of particular kinds of
modes shows some characteristic features. In Figs.
1-5, it can be seen that the value of dimensionless
stratification parameter z,,, measuring the thickness
of unstably stratified sublayer, is directly related to
the sub- or supercriticality of the T, MW and ME
modes. Typicaly, the T modes bifurcate supercriti-
caly and the ME modes bifurcate subcritically for
z,, = 0.6, i.e.,, when thickness of the unstably strati-
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Fig. 8. ME modesfor m=1, z,, = 0.1 and g = 0.005.
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Fig. 9. ME modesfor m=1, z,, = 0.1 and g= 0.5.

fied sublayer is larger than that of the stably strati-
fied sublayer. On the other hand, for z,, = 0.4 the T
modes appear to be subcritical and the ME modes
are supercritical.

The same applies for different configuration of
stratification when z,, was chosen z, =0.9 or z,
= 0.1, as it is presented in Figs. 6—10. This choice
of z,, means that the unstably and stably stratified
sublayers become more distinct from each other as
for their thickness. That is why only one kind of the
convective oscillatory mode was isolated for each
particular stratification. As for Figs. 8 and 9, only
ME modes are depicted. Here, the T modes are off
the scale due to the high Rayleigh number R. For
m=1, z,=0.9 and q= 0.005 (see Fig. 1) an ob-
servation has been made in the linear study that at
A ~ 50 the T mode is continuously transformed into
MW mode.

10* £
10° £
x
10% 4 T+1T
Lt b

107! 1 10! 10* 10®
A

Fig. 10. T modesfor m= 2, z,, = 0.9 and q = 0.005.
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Table 1
The values of the functional 2" for T modes for m=1, g = 0.005
and various A and zy,

zy,=01 2z,=04 z2,=06 z,=09
A =100 0.0245 0.13 0.019 0.0128
A =500 0.0056 0.023 0.0243 0.0016
A=1000 0.0031 0.029 0.0199 0.0032
A=2500 0.0024 0.043 0.032 0.0025

Redlizing that frequency of the nonlinear convec-
tive oscillations changes at A ~ 50, the weakly non-
linear analysis is capable of identifying this interface
aswell. It is also remarkable that for m=1, q=0.5
and for z,, = 0.4 or z,, = 0.1 the supercritical oscil-
lations corresponding to ME modes were found to be
unstable (the domain below the dotted curve in Figs.
4 and 9). This was the only case when the unstable
supercritical convection was observed in our magne-
toconvection model.

In Table 1 we show the dependence of the func-
tional .z on the Elssaser number A and the stratifi-
cation parameter z,,. Recal that Z enters the ex-
pression (15) for the geostrophic flow 2(s), i.e, it
can be thought as the amplitude of (s). It turned
out that the dependence of 2 on A is non-monoto-
nous. More interestingly, for fixed A, the factor =
exhibits local maximum as a function of z,, located
near z,, = 0.5.

7. Concluding remarks

In this paper we studied the weskly nonlinear
effect of geostrophic flow on the margina convec-
tion in the non-uniformly stratified horizontal fluid
layer. Under the assumption of weak boundedness of
the layer, the analysis presented here is based on the
data available for the unbounded linear version of
the model. We found out that the convective instabil-
ity in our model sets in via Hopf bifurcation and
classified its properties.

For the azimuthal wave number m=1, it is ap-
parent from the bifurcation diagrams that the weakly
nonlinear behaviour of T and ME modes under the
action of geostrophic flow is different while T and
MW modes are not distinguished from each other.
The global observation says that, for each considered

value g, A, z,, and for R> 0, the T modes bifurcate
supercritically and the ME modes bifurcate subcriti-
cally. On the other hand, for R < 0 the bifurcations
corresponding to T and ME modes are subcritical
and supercritical, respectively. Varying the values of
the parameters q, A, z,, may only cause changes in
stability of solutions or change in frequency re-
sponse.

Two interesting features were isolated for particu-
lar modes in certain parametric regimes. Firstly,
when g = 0.005 and stably stratified sublayer is thin
enough as it is expressed in terms of stratification
parameter equal z,, = 0.9, the continuous transition
between T and MW modes occur. This phenomenon,
known from linear study of Soward (1979) and S89,
was observed aso in our nonlinear problem as a
change of frequency of instabilities. Secondly, for
g = 0.5 and the stratification parameter z,, = 0.4, the
ME modes though being preferred to T modes at the
linear stage, were identified as unstable supercriti-
cally bifurcated ones. Irrespective of the choice of
parameters, the convective oscillatory modes with
the azimuthal wave number m = 2, which are always
thermally driven, set in via supercritical bifurcation
and their frequency grows.

We also found that respect to the choice of the
stratification parameter z,,, the maximal amplitude
of the geostrophic flow can be expected for the
stratification characterised by z, = 0.5, i.e.,, when
the stably and unstably stratified sublayers have the
same thickness.

In the following, we comment briefly on some
mathematical aspects of our analysis. Inserting the
perturbation expansions into the modified Taylor
constraint, the resulting formula for geostrophic flow
0(s) gains quite a simple form (Eg. (15)) which is
usable for analytical calculations. Moreover, the
structure of the expression for £2(s) implies that in
this nonlinear problem there is no interaction of
oscillatory modes with different azimuthal wave
numbers m. Note also that growing the radial exten-
sion of the layer, measured in terms of s,, makes
only the amplitude of perturbations vanish, having
no impact on the bifurcation properties. This fact
emerges from the assumption of weak boundedness
of the layer.

Another notable feature is that the Hopf bifurca-
tion is a direct consequence of symmetry of the
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governing equations which is due to the presence of
cubic nonlinearities. Therefore, the same type of
bifurcation would appear in spherical geometry where
more realistic problem of this kind could be formu-
lated.
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Appendix A

The normal form Eq. (24) coefficients « and B
are

_ _k§<ﬁ(z)w*(z)>zi
M
/3=42’:—i (Db(z?vler(Z)>
where
M= (b(z)b*(2))*+ (j(2)|"(2))*
+(1/9){3(2)9"(2))*

and Z is afunctiona defined by Eq. (15).
The bracketed terms denote the integrals over the
z coordinate

(2T (D)= [ (2T (2)dz

Zg

where the functions f*(z) solve the corresponding
adjoint problem.

The coefficient B involves the integrals over the
radial coordinate

I, = /OS"Jrﬁ( k.s)sds,

|2=/()S”Jr§(kcs)(%3m(kcs))zsds.

Being positive for each choice of s, and irrespec-
tive of k., these integrals do not affect the properties
of the Hopf bifurcation and their ratio 1,/1;, — 0 as
S, — . The consequence of this asymptotics is that
the amplitude of solution decreases as s, becomes
larger, as would be naturally expected from configu-
ration of the model.
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Abstract. A problem of magnetoconvection is considered where the nonlinear
eledt of geostrophic flow determined by Ekman suction is included. Pertur-
bation techniques are adopted in order to construct slowly varying periodic
solution branching from the steady state conductive solution. The analysis is
also used to determine the relevant bifurcation structure in the vicinity of the
critical Rayleigh number.
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1. Introduction

The fluid motion in Earth-like planet cores can be characterized by magne-
tostrophic approximation with dominating Lorentz, Coriolis, buoyancy and pres-
sure forces in the equation of motion. The approximation with zero viscous forces
has a solution, only if so-called Taylor’s constraint is satisfied (see Section 2).
A specific problem arises when magnetostrophic approximation holds but small
viscous forces in the Ekman boundary layers are present. In this case a hon-zero
geostrophic flow is induced by the viscous flow in thin Ekman layers and non-
linear dynamics of the whole magnetoconvecting system is a [edted through the
so-called Ekman suction mechanism.

The question is, if such a nonlinear viscous system, which reflects more re-
alistically conditions in the Earth’s core, could possibly evolve into the Taylor
state. At this particular state, viscous forces have no longer major influence on
the dynamics and Taylor’s condition is met. The problem of possible achieve-
ment of the Taylor state has been studied in simpler planar or cylindrical and
also in spherical geometry for both kinematic dynamos and magnetoconvection
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models. It has been shown by Fearn, Proctor and Sellar (1994) that some specific
simplifications can be made in the case of magnetoconvection models. Namely,
non-axisymmetric instabilities of magnetic field only have to be considered for
computation of geostrophic flow, whereas contributions from basic axisymmetric
magnetic fields can be neglected (see Section 2).

In this paper we study a problem of finite amplitude rotating magnetocon-
vection aledted by Ekman suction. The investigation has been motivated by
the linear stability analysis developed by Soward (1979), (see also Brestensky
and SevEik 1994, 1995, and Simkanin et al 1997 in this Issue) as well as the
nonlinear problem studied in Skinner and Soward (1988, 1991). In contrast to
the approach applied in the nonlinear study done by Skinner and Soward (1988,
1991), the purpose of the present paper is to study state of magnetoconvection
near the critical Rayleigh number R, .

The methods and techniques of this paper are based on the regular pertur-
bation theory, linear and nonlinear functional analysis and bifurcation theory.
The main idea is to expand a solution into power series in terms of a small un-
folding parameter € corresponding to the small increase in the Rayleigh number
beyond its critical value R. . Let us emphasize that this approach can describe
local bifurcation structure near R only.

The underlying geometry is a weakly bounded cylinder, i.e. the cylinder
with a radius strongly exceeding its height. It can su [ciehtly approximate the
laterally unbounded geometry used in the linear study (Soward 1979). We must
emphasize that the finite extension in the radial direction is a crucial assumption
of the theory. The reason for dealing with the bounded geometry is twofold.
Firstly, it enables us to set up suitable function spaces and operators we will
work with. Secondly, as a consequence of the boundedness of the cylinder, the
third order approximation of the power series expansion is capable of describing
the Hopf bifurcation phenomenon in the amplitude equation (51) in Section 3.3.
On the other hand, the main disadvantage of this approach is that we have to
set up boundary conditions on vertical boundaries of the cylinder. In this paper
we consider the simplest case of Dirichlet boundary conditions which seem to
be less physically meaningful. The more realistic boundary conditions will be
treated in the forthcoming paper.

The outline of this paper is as follows. In Section 2 we derive a system of
nonlinear PDE’s governing the motion periodic in both time and the azimuthal
variable. Section 3.1 is devoted to the study of the constructed system of nonlin-
ear equations. We present a method on how to obtain a power series expansion
of a solution in terms of a small unfolding parameter. Using the so-called solv-
ability condition known from Fredholm’s alternative in the functional analysis,
we determine leading coe Lciehts of the expansions in Section 3.2. In Section
3.3 we sketch a procedure how to derive an ordinary diLerential equation for
the time dependent amplitude. Numerical results are reported in Section 4. In
the Appendix we present formulae for the leading terms in the power series
expansions.
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2. Formulation of the nonlinear problem

2.1. Basic leading equations

The aim of this paper is a local stability analysis of a nonlinear system of PDE’s
governing a specified model of magnetoconvection.

The model considered is an infinite horizontal layer of width d rotating
rapidly with angular velocity QoZ . The layer contains an electrically conducting
Boussinesq fluid permeated by an azimuthal magnetic field linearly growing with
the distance from the vertical rotation axis. An unstable temperature gradient
is maintained by heating the fluid from below and cooling from above. The fluid
layer is supposed to have free perfectly electrically and thermally conductive
horizontal boundaries.

The convective instability in this rotating system is caused by the vertical
temperature gradient and manifests itself by perturbations of the velocity u, the
magnetic field b and the temperature 3 which refer to the basic state represented
by Ug, Bo, To.

In this paper, we investigate the existence of periodic solution for these
perturbations in the vicinity of the basic state determined by

S AT d
Uy =0, BOZBMaqS, TOZTl_T(Z+§)' (@)

We non-dimensionalise the problem with the use of characteristic length d,
magnetic di[Tdion time d?/n, magnetic field By, and temperature di[erfence
across the layer AT . In the cylindrical polar coordinates (s, ¢, z) the equations
governing the evolution of perturbations u, b, 3-df the basic state gain the
following form

xu=—[ERA[([XE®)xb+([Xb)xsd]+R9Z,  (2)

P — CxAs0(5) xb) = Lx(ux5§)+ [2bl ®)
1 1

qiR g—igﬂl-(sﬂ(s)qi-ljﬁ@:—u-mr_}@ @)

H=0, (5)

Cd=0 (6)

where @ and Z are the unit azimuthal and axial vectors, respectively. The di-
mensionless parameters, the modified Rayleigh number R, the Elsasser number
A, the Ekman number E and the Roberts number gr, are defined by

_ gdATa _ B v
T2Qok "~ 2Qopont’ T 2d2Q

0r =

=R N
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where K and n are the thermal and magnetic di [udivities, v is the kinematic
viscosity, a is the coe [cieht of thermal expansion, g is the acceleration due to
gravity, W is the permeability and pg is the density.

The model of magnetoconvection includes the e [edt of Ekman suction which
is associated with a nontrivial geostrophic flow. This gives rise to the presence
of nonlinear terms encountered in the above di[erential equations, namely in
(3) and (4). It is known that geostrophic flow can be expressed via so-called
modified Taylor’s constrﬁ;[ (see Fearn 1994).

Let .. ®= 1/(2n) o ---dd be averaging over the azimuthal component
¢ . Denote by Fme = [([XIB) % B]g the azimuthal component of Lorentz
force. Then splitting magnetic field B on basic field By and perturbation b,
B=By+b (B M®=B,, [bM=0), the angular velocity Q(s) of geostrophic
flow in our magnetoconvection model can be expressed in terms of the magnetic
field perturbation b, i.e. (see e.g. Skinner and Soward 1988)

N

A8 = ey

[(Bme dz with [Bme (1= ({ [Xb) x bl . (7)

It is significant for the model under consideration that the possible contribution
U =X1By) * Bols [® from basic field to azimuthally averaged Lorentz force
[(BFme [ vanishes (see also Fearn, Proctor and Sellar 1994). We note that the
expression (7) is well-known as modified Taylor’s constraint.

The vector nonlinear equations (2-6) together with the expression for geo-
strophic flow (7) seem rather complicated to be solved analytically. We therefore
restrict solutions to a smaller phase space of functions having special structure.
Roughly speaking, the main idea is to express all the vector fields in terms of
their scalar representing functions which are supposed to have a form of travel-
ling waves, as it is described below.

We split the velocity perturbation u as well as the magnetic field perturba-
tion b into their poloidal and toroidal parts

u = kT?( XX [XMZ) + CX1h7), (8)
b = k2( =\ [xb3) + Cx13). 9)

Similarly as in the papers Brestensky and Sevik (1994) and Brestensky, Revallo
and Sevtovit (1997)* we have adopted the tilde notation for representing poloidallj
and toroidal functions as well as for thermal function. Each of the representing
functions Vi, @, b{,-$-cAll symbolized as f)-depends on coordinates z, s, ¢ and
time t.

Suppose that the representing functions f-edn be decomposed as

f(z,s,¢,t) = [&{Fm(z,s)exp(im + At)} (10)

1Henceforth the abbreviations (BS) and (BRS) will be used.
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where the functions of f,(z,s), i.e. bm(z,8), Jm(z,S), Wm(z,S), wm(z,s) and
9m(z, s) depend on vertical and radial coordinates z and s. Here m is an integer
azimuthal wave number, k is a real radial wave number and A is a complex
frequency related to a real frequency via A = io.

Inserting the above ansatz into the governing equations for perturbations
(2-6) and into the expression for modified Taylor’s constraint enables us to
set up a system of nonlinear equations for representing functions f,,(z,s). The
resulting nonlinear system is well posed on a suitable function space as it has
been yet shown in (BRS). Hereafter, this system of equations will be referred to
as an abstract nonlinear problem.

2.2. Abstract nonlinear problem

The procedure leading towards the abstract nonlinear problem presented below
is straightforward but rather technically tedious. It is discussed in a more detail
in (BRS).

The equations for the representing functions f,,(z, s) can be finally written
as follows
0 = —Dwmn(z,8) + 2ADbm(z,s) — imAJm(z,s),
0 = —Dwm(z,8) + 2ADjm(z,s) + imA (D? — k? In) bm(z, s) — Rk? 9m(z, s),
Abm(z,5) + Pm(z,S) = imWm(z,s) + (D? = k? Jn) bm(z,5), (1)
Aim(z,5) + Tm(z,5) = iMwm(z,5) + (D = Kk* In) jm(z,9),
(170r) (ABm(z,5) + Sm(z,5)) = InWm(z,s) + (D? = k* In) Om(z, 5)
where the nonlinearities Pm(z,s), Tm(z,s) and Sm(z, s) are expressed in terms
of fm(z,s) and the angular velocity Q(s) of geostrophic flow as follows

Pm(z,8) =imQ(s)bm(z,s) — imJy *{Pq bm(z,s)},
Tm(z,5) =iMmQ(S) jm(z,5) + Jn *{Ta Dbm(z,5)}, (12)
Sm(z,s) =ImQ(s) m(z,s).

Here D = 3/0z and J,, ! is the inverse operator to the linear Bessel di [erential
operator Jy, . The operator J, is defined as

L 1
1 N 19 m?
k2 0s?2 sods s2
and for the Bessel function Jmn(ks) it has a useful property Jm {Im(ks)} =
Jm(ks) . Furthermore, Pq, Tq are diLerkntial operators

1 l%Q(S) 0Q(s) Da 1

In = — (13)

Po=—> — 74 2+ 14
Q k2 0s2 ds s s (14)
1 11
To = _i IS ZQ(S) i +5s aQ(S) m_2 + % i + i (15)
27 k2 9s2  ds as s2  sds 0s2
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where the partial derivative d/0s reflects the fact of Q(s) being a functional (see
below). The interested reader is referred to (BRS) for the complete derivation
of the above system of nonlinear PDE’s. Furthermore, it has been shown in
Appendix of (BRS) that J,, ! is a well defined bounded linear operator on a
suitable function space. We notice that the above expressions for Py and T, in
(12) emerge after decomposition of the vector nonlinearity in induction equation
(3) into poloidal and toroidal fields. The expression for Sy, represents the scalar
nonlinearity in the heat equation (4).

The geostrophic flow Q(s) entering the set of equations (12) is given by
formula which can be directly obtained by inserting (9) together with the ansatz
(10) into (7). A straightforward series of calculations yields

A1 I:1| d _—
Q(s) = SGE)Z 5 [el 7 35 [s21(s)]— B(s) (16)
where - -
L L,
I(s) = k—14 n;—zjm(z,s)Dbm(z,s) — %jm(z,s)aa—SDbm(z,s) dz

ZB

is the integral part and
1 0. — ]

is the boundary term. Here D = 0/0z and an overbar denotes the complex
conjugation of by (z,s).

It is remarkable that the complex conjugation in the expression for geo-
strophic flow Q(s) eliminates exponentials of the tilded representing functions
b(z,s, d,t) and j(z,s, ¢,t). Therefore upon assumption (10), the expression for
Q(s) does not involve the variables ¢, t and is entered by simpler functions
bm(z,s) and jm(z,s) only. This is the important fact which approves the choice
of fm(z,s) as representing functions for our nonlinear problem. At this stage it
is yet easy to see that Pm(z,s), Tm(z,s) and Sm(z,s) are cubic nonlinearities
in fm(z,s).

For the special case of infinitely electrically and thermally conducting hor-
izontal boundaries and vanishing viscosity? the following boundary conditions
have to be satisfied

Wm(z,S) = 9m(z,8) = bm(z,8) = Djm(z,s) =0,
for all z=2zg, zt, and s [(0,sn). 17

Notice that the above choice of boundary conditions makes the boundary term
in expression (16) vanish.

2Recall that viscosity in our model is to be taken non-zero only within the Ekman layers
along the horizontal boundaries. It is actually the viscous flow in the Ekman layers which is
responsible for Ekman suction and geostrophic flow given by (16).
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In a radial direction we impose the following boundary conditions

Wm(z,8) = 9m(z,8) = bm(z,8) = jm(z,s8) =0,
forall s =0, sh, and z [((@g, zT). (18)

Here and after sn, which delimites the layer in a radial direction, will always
stand for the n-th root of the scaled Bessel function Jm(ks), i.e.

Im(ksp) =0 foralln=1,2,.... (19)

Notice that the Dirichlet-like boundary conditions (18) for the representing
functions have been set up especially due to mathematical purposes. It should
be emphasized again that in our approach the bounded geometry is needed in
order to apply some functional analytical results. Roughly speaking, the choice
of boundary conditions (18) enables us to guarantee the existence of the inverse
operator J,,~! and, as a consequence, to justify the definitions of the cubic
nonlinearities Pm(z,s), Tm(z,s) introduced in (12).

Given a parameter k > 0, in our case from the linear stability study for
the unbounded geometry, we are forced to restrict ourselves to a certain set
of possible radii of the underlying cylinder. Namely, these radii must meet the
condition (19).

The relation (19) represents itself a kind of a duality for the choice of the pair
(k, s); 1) either we firstly fix k and subsequently restrict the radial extension to
Sn, or 2) we prescribe the radius, say S, first and then we find a set of possible
values of k’s satisfying the relation Jn(knS) = 0. Although both approaches
are beneficial, in this paper we discuss the first approach only.

We also notice that in the approach 1) the minimisation of R(k) leading to
the critical R; and k. is performed over a continuum of values of k whereas in
the approach 2) minimisation is performed over a discrete set of k’s. Finally, we
remark that the discrete set of k ’s is asymptotically dense in (0, ) as S - oo,
Therefore, for large values of the radius S, both approaches appear to be the
same from numerical point of view.

3. Solution of abstract nonlinear problem by perturbation
methods

3.1. Properties of the adjoint operator

In this section we recall derivation of the so called solvability condition made
in (BRS). The computations to follow are based on methods of the functional
analysis, namely on the Fredholm alternative argument which is applicable to
linear operators on Hilbert spaces. In this paper we will not report all the
relevant mathematics except of some remarks on the choice of function spaces
setting.
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Following the idea of a matrix representation (see e.g. Proctor and Weiss
1982) we rewrite the linear part of equations (11) in the matrix form

- _ -
D 0 2AD  —imA 0
5 —D imAD?  2AD —Rck?
L= [Fm 0 (D2—=A) O 0 (20)
0 im 0 (D2—Xo) 0
In 0 0 0 (D? = A/0R))

where D? = D2 — k?J,, . Thus the linear part of (11) has the form Ly where
is a vector function

U(z,8) = Wm(z,5), Om(Z,S), bm(z,5), im(z,5), ¥m(z,9))" .
The linear kernel problem, i.e. the homogeneous matrix equation
Ly=0 (21)

has been studied in Soward (1979) where the critical values of Rayleigh number
R¢, the complex frequency A. = ig; as well as the solution ¢ have been found.
The full nonlinear problem (11) can be rewritten as

LU=N() (22)

where the term N () contains all the nonlinearities Pm(z,s), Tm(z,S), Sm(z,s)
involved in (11).

At this stage it is worthwhile noting that the nonlinear problem (11) has
an important symmetry, i.e. the vector function § = (Wm, ®m,bm, jm, dm)"
solves (11) if and only if — does. This is based upon the useful property of
the nonlinearities Pm(z,s), Tm(z,s) and Sm(z,s) being cubic in representing
functions fm(z,s) .

To solve the above semilinear problem by means of the functional analysis we
have to find the kernel of the corresponding adjoint operator L™, i.e. a solution
W™ of the adjoint linear equation

A solution of the above problem will be taken for as so-called test function in
order to determine higher order terms in power series expansion for a solution
Y of (22).

We define a bilinear form CJ-Has follows

—=h
Eﬂl%j: x ey = f(z,s)9(z,s) sdsdz (24)
G

1
where  denotes the summation over all components f and g of vectors Y and
X, respectively. Here G, is a bounded domain of the vertical and radial variable,
Gn = (ZBIZT) x (Olsn) .
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Now we are infagosition to define an adjoint operator to L with respect to the
inner product CI--H1The adjoint linear operator L™ is completely determined
by the relation

mm%&m@qﬁm forall p X, " X" (25)

where X and X are domains of definitions of linear operators L and L™,
respectively. Applying Green’s formula on [IL yields

Eﬂ.m%@ﬁﬂl%qJ-'—D‘B (26)

where B is a boundary term. With the use of (26) it can be shown that the
matrix linear operator

_ 1
D 0 —im 0 I
h D 0 —im 0
L* = F2AD —imAD2 (D2+A;) O 0 (27)
ithA  —2AD 0 (D2+A) 0
0 —Rck? 0 0 (D?+AJUR)

obeys the definition (25) (i.e. the boundary term B vanishes), provided that
W(z,s) satisfies the boundary conditions (17,18) and Y™ (z,s) = (Wm(z,5),
W (z,8), bh(z,5), Jm(z,9), 94 (z,s))" satisfies dual boundary conditions at z =
B, I1

wm(z,s) =95(z,s) =bm(z,8) =Djm(z,s) =0,
for all z=2zg,z7 and s [(0,sn) (28)

and radial boundary conditions at s =0, s,

Y™ (z,0) =™ (z,5n) =0,
forall s=0,s, and z [((@g, 7). (29)

We proceed by construction of a kernel function ¢™* satisfying the adjoint
equation L*y* = 0. The components of a vector §* = (W, o, b, i, 94)7T
are assumed to be separated as follows

fh(z,8) = F7(2) Im(ks) (30)

where the adjoint functions f*(z) depend only on a vertical coordinate while
the radial dependence is expressed here by the Bessel function Jm(ks) . Plugging
the above ansatz into the matrix equation L*¢* = 0, we obtain a system of
linear di [erkential equations in z variable (see BRS). The existence of a nontrivial
solution of this adjoint system satisfying the dual boundary conditions (28) in
the z variable is a consequence of the spectral theorem for the adjoint operator
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and the fact that the equation Ly = 0 has a solution decomposable in each
vector component to the form fi,,(z,s) = f(z)Im(ks) (see BS).

The linear operators L and L™ are defined on suitable Hilbert spaces X and
X™, respectively, with values in a Hilbert space Z . These function spaces can
be constructed with respect to boundary conditions for vector functions § and
W™, respectively. It turns out that these spaces are subclasses of Sobolev spaces
W22(Gp,) . The space Z is the weighted Lebesgue space L2(G,) with the weight
[(d) = s. The reader is referred to the analysis made in (BRS) for further details
of construction and properties of the underlying function spaces.

Let us emphasize that the crucial assumption of the theory is that we operate
with function spaces defined on a bounded domain G, . Then the operator
Jmn defined on a subclass of a Sobolev space has a discrete spectrum bounded
away from zero. This justifies the usage of the inverse operator Jy, * in (12).
Furthermore, the boundedness of the domain implies that the coe [ciehts (3
defined in Appendix and consequently R, determined in (43) are generically
non-zero. Thus the amplitude equation (51) in Section 3.3 is indeed a prototype
for the Hopf bifurcation phenomenon.

3.2. Derivation of the solvability condition

At this stage, we are yet able to make use of perturbation techniques and ad-
jointness properties in order to solve the abstract nonlinear problem (11) in its
matrix representation (22).

Suppose that the unknown function ¢ and the Rayleigh number R (the
system parameter) can be expanded into a power series in terms of a small
unfolding parameter €, (¢ 1)1

P=eP+ePp+ePs+..., (31)
R=R.+&R; +&Ry+... (32)

where the first order term ; is identical to the solution of the linearized problem
(21) and R is a critical value of Rayleigh number known from linear stability
analysis made in (BS). Higher order coe [ciehts in the expansion are assumed
to satisfy Yy [IKer(L) fork = 2.

The nonlinear system (11), however, when being driven through the critical
value R within its parameter regime, gives rise to the oscillatory instability.
Therefore a complex frequency A has to be expanded into a power series as well

A=Ac+EN +E2 N+ ... (33)

where A; is a critical frequency corresponding to R.. Now we can insert the
above expansions (31-33) into the system (11). Collecting the terms of the
same power of € and using the well-known matrix representation one obtains a
series of linear problems.
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In the first order of €', we obtain a homogeneous linear problem
L LIJ]_ =0 (34)
where the components of the vector ; can be sought in the form f,1(z,8) =
f(2)Im(ks) . The exact expression for each vector component f(z) can be found

e.g. in (BS) or in (§imkanin et al 1997) in this Issue.

In the second order of €2, we have
1 1

J.k2 'Sml(za S)
Lyz = A1 bmi(z,8) (35)
')\l jml(zr S)

(A1/0R) m1(z,9)

where the components f2(z, s) of a vector Y, are yet unknown. At this order
of perturbation expansion the influence of the cubic nonlinearities (z,s),
Tm(z,s) and Sm(z, s) is still not present. Taking the inner product CI--Hof (35)
with the dual kernel function @* yields a simple complex equation

—0o1 R+ =0. (36)

With regard to the requirement A; = igy, 03 is real, the unique solution of this
equation is R; = 0, A; = 0 and so Ly, = 0. As (), does not belong to the
kernel of L we finally obtain y, = 0. This property can be also seen from the
symmetry of the abstract nonlinear problem.

In the third order of €3, the solvability condition yields a nonhomogeneous

problem
1 0 1

RszSml(Z, S)
Lys = Pm1(z,8) + A2bmi(z, ) - (37)
Tml(z, S) + )\ijl(zl S)

(/9r)Sm1(z,s) + (A2/0r)Om1(z,S)

It is obvious that the nonlinear terms in first order representing functions
fm1(z,s), namely Pm1(z,s), Tmi1(z,s) and Smi(z,s), arise at this order of ex-
pansion. Now the angular velocity Q(s) of geostrophic flow (in its leading term)
is a function of bm1(z,s) and jmi(z,s). We therefore adopt the notation Q;(s)
for convenience.

We briefly sum up the notation used for this stage of perturbation method.
All the nonlinearities are functions of f11(z,s) which are separable in z and s
coordinate. They can be therefore expressed in terms of the simple representing
functions f(z), known from the linear stability study, as follows

Pm1(z,5) = im Q1(8) Im(ks) b(z) = im I {Pa, Im(ks)}b(2),
Tmi1(z,8) = iMQ1(8) Im(ks) i (2) + Im {Ta, Im(ks)} Db(2),  (38)
Sm1(z,s) = iM Q1(s) Im(ks) 9(z)
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with Pq,, Tq, corresponding to Pq, Tq in (14, 15) where Q(s) has been substi-
tuted by Q;(s).

Following (16) and the boundary conditions (17), for geostrophic flow Q;(s)
in terms of the simple representing functions f(z) we have

Q1(s) = Z - Qs(s).- (39)

Here
1

[e1 j(z)Db(z)dz (40)

Z

N

Z= 2(2E)1/2 k2 '

is the functional involving the functions b(z) and j(z) and

L] (- ]

m2J2 (ks) — s? aa—SJm(ks)

1 0
k2s3 9s

Qs(s) =

describes the radial dependence of geostrophic flow. Using the property of the
Bessel dilerkntial operator J., defined by (13), the above expression can be
simplified and written as

1d
Qs(s) = = —J3 (ks). 41
$(8) = < ggIm(ks) (41)
The solvability condition for the 3-rd order of the expansion yields an inner

product equation

[H3 % L+0 (42)

where F3 is a vector of right-hand side terms in (37) and ™ is the previously
constructed solution of L*y* = 0. By straightforward integrations one finds
the solvability condition schematically written as

—aR,+ A —B=0. (43)

This condition can be thought of as a complex equation for determining the
parameters R, and A\, = i0, where o, is real, giving us information about
bifurcation and frequency response of the dynamical system in the vicinity of
the critical Rayleigh number R;.

The complex coe [ciehts a and  entering (43) depend on the parameters
m, A\, E, gr as well as on the critical parameters R, k; and A¢ . Their full form
is given in terms of analytical expressions (see Appendix).

Now the solution i of the nonlinear problem L{y = N () has the power
series expansion

W = ey + 33 + o(e?). (44)
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Similarly, up to the second order terms, we have

R [R} +¢°Ry, (45)
A LA+ €N, (46)
Finally, if we put
1
e= (R—R)/R; 47

then, in the first order approximation, the representing functions f~(z,s,¢,t)
associated to a solution of the evolution problem (2-6) through (8,9) can be
written as

Re [e{F (z)Im(ks) exp(im + AD)}. (48)

f(z,s,¢,t) 1 =5

1
The expression (R — R.)/R; therefore relates to the amplitude of representing
functions f~(z, s, ¢, t). It can be seen that if R, > 0, the Hopf bifurcation arising
in R is supercritical. On the other hand, if R, < 0, the bifurcation is subcritical.
The complex frequency in the neighbourhood of R varies according to

R_RC
2

ALCAI+E2N = A+ Az (49)
Some useful properties of the constructed solution, i.e. its dependence on the
system parameters and its asymptotics, are presented on Figures 1-4 below.

3.3. The amplitude modulation and stability properties of the solution

In the previous paragraph it has been shown that the nonlinear problem (2 - 6)
has a nontrivial periodic solution when Rayleigh number R is increased beyond
its critical value R.. This periodic solution, branching at R; from trivial one,
can be either supercritical or subcritical, depending on the sign of parameter
R . Such a behaviour should indicate the Hopf bifurcation arising at the critical
Rayleigh number R .

The above analysis, however, does not cover stability properties of the peri-
odic solution constructed above. To analyze stability of the basic state and the
bifurcating periodic orbit we have to study a larger phase space than the space
of all functions periodic in t and ¢ variable as it has been proposed by ansatz
(10). To this end, one may enlarge this class of functions by assuming that the

representing functions b, @and $-Have the form
f(z,5,9,1) = [E{AE®) fin(2, ) exp(imd + Act)}. (50)

Notice that in (50) each of the functions f,(z,s) is modulated by complex
amplitude A(g2t) varying in the so-called slow time scale €2t where € is a small
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unfolding parameter as in (31-33). As it is indicated by expansions (45, 46) we
are forced to choose the scale €2t in order to capture slowly varying periodic
solutions with the complex frequency A [CAJd + €2A, . The meaning of all other
variables and parameters involved in (50) is left unchanged.

Under the above assumption, straightforward computations based on the
same Fredholm alternative argument and on the same function spaces setting
can be carried out to derive solvability condition. It can be shown that in this
case solvability condition gains a form of an ordinary di[erkntial equation for
the time dependent complex amplitude A(g?t). For the modulus |A(g?t)| the
third order approximation of the corresponding ordinary dilerkntial equation
reads as follows

1 dIAE?D)

o d - = RRIAEDI-RIAEDP (51)

where the coe Lciehts a, (the real part of a) and R, are the same as in solvability
condition (43).

Notice that the amplitude equation (51) is a prototype for the Hopf bifurca-
tion phenomenon and therefore can be conceived as normal form for the Hopf
bifurcation. Both the trivial solution and the bifurcating periodic (nontrivial)
solution can be sought as stationary solutions (fixed points) of amplitude equa-
tion (51). The only nontrivial steady state solution of the ODE (51) is the
constant function
1

R—R¢

R2

|Al = (52)
which in fact coincides with the unfolding parameter €. Therefore inserting the
steady state amplitude (52) into (50) yields the same periodic solution as the
one previously constructed in Section 3.2.

As a result, depending on the sign of R, one observes either supercritical or
subcritical type of the Hopf bifurcation. The stability of both steady state and
periodic solutions depends on the sign of coe [cieht o, . More details concerning
the amplitude modulation as well as derivation and analysis of the normal form
equation (51) will be presented in the forthcoming paper.

4. Bifurcation diagrams and asymptotic properties of the
solution

In our numerical experiments the values of the critical Rayleigh number R,
the critical radial wave number k. and the critical complex frequency A; = ig.
were obtained from the linear stability analysis made in (BS). We studied four
particular cases related to the azimuthal wave numbers m =1, 2, 3and 5, with
the Elsasser number A ranging from 10~2 to 2500 . The Ekman number and the
Roberts number were chosen E = 3 x 10~/ and gg = 0.005, respectively. More



Magnetoconvection due to modified Taylor’s constraint 331

details concerning the typical values of the critical parameters can be found e.g.
in Simkanin et al (1997) in this Issue.

The Figures 1, 2 are bifurcation diagrams in the space of system parameters
R (Rayleigh number) and A (Elsasser number). The dependence Rc = R¢(A) is
known from linear stability studies made in Soward (1979) and (BS). The weakly
nonlinear analysis from previous sections is capable of describing behaviour
of solutions (trivial and nontrivial one) and their stability properties in the
underlying space of parameters. This enables us to classify qualitatively the
bifurcation diagrams to follow.

R R
10°
BS-U 107 BS-U
10+
PO-S , PO-S
10 75
10°
10 %4
102
0] BS-S 104 BS-S
1 4 i 4 i T T 1 T T T T T
07 1072 107" 1 10 10?2 WO}A 107" 1 10 1072 10° A
Fig.1. T and MW modes for the az- Fig.2. T modes for the azimuthal
imuthal wave number m=1. wave number m =5.

The marked curves in Figures 1,2 show the dependence of the critical Rayleigh
number R; on the Elsasser number A for azimuthal wave numbers m =1, 5.
Here T and MW are to symbolize thermally and magnetically driven waves
propagating westwards, respectively, as they have been classified in (BS); in
Figure 1 the T wave changes into MW wave by increasing A at A [100. The
parameter space (A, R) divided by the curve Rc = R¢(A\), splits into two regions.
In the region labeled by BS —S there is no periodic orbit near the locally stable
basic state whereas in the region BS—U, PO —S the basic state is unstable and
there is a stable periodic solution. Here the abbreviation BS stands for "Basic
State” and P O for ”Periodic Orbit”.

The other studied cases of the azimuthal wave number m = 2, 3 result
into qualitatively same plots and therefore are omitted. We only mention that
for large values of the Elsasser number, there is an indication for the Hopf
bifurcation to be subcritical for the case m = 2. This is due to the change in
sign of the coe [cieht a, . This special case however needs to be investigated in
a more detail. Note that in Skinner and Soward (1990) the subcritical behaviour
has been observed for gr of order unity and for smaller A only.



332 M. Revallo, D. SevEovit, J. Brestensky

The Figures 3,4 show asymptotic properties of the finite amplitude solution
when the radius of the layer becomes larger. We remind ourselves that the radial
extension of the layer measured by s, has to be finite as it has been proclaimed
in previous sections.

Recall that in general the critical Rayleigh number R, and the critical com-
plex frequency A. = ig; are functions of the critical radial wave number k.. In
the linear stability study in (BS) related to the unbounded geometry, for any
value of Elsasser number A, the wave number k = k. has been chosen such that
the corresponding R was minimal. For the particular case of m = 5 and for the
choice of A = 1.0, it follows from (BS) that k. = 5.16.

IAl 0—0.[107°]
s, = 9.85
s, = 100.00
20+ 0.0
s, = 50.07
10 -1.2
s, = 50.07
s, = 100.00
s, = 9.85
Q -2.4
0.0 0.5 1.0 F 0.0 0.5 1.0 F
Fig.3. The modulus |A| of the am- Fig.4. The dilerknce 0 — o¢ of fre-
plitude versus I for the azimuthal quencies versus I" for the azimuthal
wave number m = 5, the Elsasser wave number m = 5, the Elsasser
number A = 1 and various radii Sp, . number A = 1 and various radii sn, .

Figure 3 above depicts the dependence of the modulus of the amplitude |A|,
given by (52), on the so-called surplus thermal energy ' = (R — R.)s2 . More
precisely, the quantity I" is qualitatively proportional to the thermal energy
needed to heat the bottom circular domain of the radius s, which is, in e [edt,
associated with increase of the Rayleigh number R beyond R. . This picture can
be also viewed as a supercritical bifurcation diagram. Indeed, if R < R (i.e.
I < 0) there is no periodic solution in the vicinity of the stable basic state.
On the other hand, when R > R. (i.e. ' > 0) there is a stable periodic orbit
with the modulus of amplitude equal to |A| and the basic state is unstable. The
bifurcation curves are plotted for various radial extensions s, of the cylinder.
The reason for introducing the quantity I is to compare bifurcation curves for
various radii s, . In terms of the new system parameter I, for the amplitude we
have |[A| = (IT/R2)Y2s;? instead of (52).

It follows from (43) and the expressions for a and 3 in Appendix that R, =
O(syt) as sn — +oo. Therefore for fixed values of the parameter I we have
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|Al = O(sﬁl/z) as sp, —» +oo. This is in agreement with an observation that if
the input energy proportional to I' is constant, the amplitude of motion becomes
smaller with growth of the radial extension of the layer.

One has to be careful, however, about the asymptotics like this. The proof
of existence of finite amplitude periodic solution based on the weakly nonlinear
theory is limited to the garameter range R < R < R(sp) only. Gathering
from the expression € = (R —R¢)/R2, where € has to be chosen small (i.e.
¢ [CT)Jand from the asymptotics R, = O(spt) as sp, — +oo, we can see that
R(sn) -» R¢ as sp, — +oo, i.e. the region of parameter space evaporates.

Figure 4 shows the dependence of the complex frequency A = ic on I". For
m = 5 and A = 1 the critical frequency is Ac = io. with o, = 0.0376392.
Actually, the dilerence o — o, has been plotted versus I". In terms of I we have
0 = 0. + (I'o2)/(R2s2) . Therefore the dependence of ¢ on T is linear.

Notice that the I" scale in Figures 3, 4 is magnified in order to show the
qualitative features of behaviour of amplitude modulus and frequency response
of the nonlinear system. The maximal value of the parameter I", however, must
be chosen small enough as it is interrelated with the small unfolding parameter
€ through the relation I' = €?R;s2 .

5. Conclusions

It has been shown in this paper that the weakly nonlinear analysis is capable of
proving the existence of a nontrivial periodic solution in the vicinity of the crit-
ical Rayleigh number R for a nonlinear model of rotating magnetoconvection
aledted by Ekman suction. Although the basic governing equations together
with modified Taylor’s constraint yield a rather complicated structure, they can
be solved analytically in the vicinity of R;. It has been shown that besides
the trivial (zero) solution, there is a periodic solution of the nonlinear problem
representing wave propagation in the azimuthal direction.

The existence of a non-trivial periodic solution is neither an obvious matter
emerging from the corresponding linearized theory nor a direct consequence of
the form of nonlinear governing equation. Among the assumptions guaranteeing
the existence of such a solution a crucial role is played by boundedness of the
underlying geometry. In case of a rotating horizontal layer it naturally means a
restriction to the radially bounded cylinder.

The symmetry of governing equations which is due to cubic nonlinearities
implies that the transition from a trivial (conductive) solution towards a non-
trivial (convective) periodic solution is via Hopf bifurcation. Applying methods
and techniques of the functional analysis, namely solvability conditions from
Fredholm’s alternative, leads towards derivation of the normal form for the
Hopf bifurcation and analytical expressions of its coe [Ciehts.

The obtained analytical formulae for the normal form coe [ciehts were eval-
uated numerically. The bifurcation diagrams showing domains of existence and
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stability of the solutions have been depicted for the parameter space (A, R) . Also
the asymptotic properties of the amplitude and frequency of periodic solution
for di Lerknt radial extensions of the layer have been portrayed.
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Appendix
The coe Lciehts a and B in the solvability condition (55) are

_ 2 B3@)e*(2) & _ 5 12 b(2)j"(2) &
a= kgT, B_4z|—1T

where M = [0(z) b*(z) B+ OI(z) j*(z) B+ (/gr) X(z2)d*(z) Bland Z is a
functional given by (41).
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The above expressions are entered by the integrals over the radial coordinate

O, -, = -
I, = JZ (kes)sds, I, = J2(keS) —JIm(kes) sds
0 0 ds
which are to be computed numerically and by the integrals over the z coordinate
LA
() fH(z) B= f(z2)f*(z)dz.
B

Particular integrals needed for evaluation of the coe Lciehts are

I O s
@Z)w™(2) E= m | CiYr,
. 1 I i i}fl . 1
b(z)b™ (z) BE1= — TN 1,
. T —
0@2)j*"(2) a=— 2N sfayim,
FU-
}z) 9" (2) EI= IRKZ’

- 1 ]
Db@)j* () 1=~ yinfa
1

where

= T[|2 + kg + A,
2
V= T 1 + A= 2mAY + MG + 1),

s¥ = m(mE + k2 + A —2imA) gy,
. S‘*’

sl ==L

Ci

with m; = (21 — 1)m, A = io and | equals to 5.

Let us emphasize that the integral 11 diverges to +oco whereas 1, converges
as sn — +oo. Thus the coe [cieht B vanishes when s, tends to +oo. We also
notice that the integrals over the z coordinate are entered by functions of f(z)
which solve the linearized (eigenvalue) problem and by functions of *(z) which
solve the homogeneous adjoint problem in Section 3.1.





