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1.4. Itō’s lemma for vector random processes . . . . . . . . . . . . . . 19

2. The Black–Scholes equation . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1. A stochastic differential equation for the option price . . . . . . . . 21
2.2. Self-financing portfolio management with zero growth of investment 22

3. Terminal conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1. Pay–off diagrams for call and put options . . . . . . . . . . . . . . 25
3.2. Pay–off diagrams for combined option strategies . . . . . . . . . . 26

4. Boundary conditions for derivative prices . . . . . . . . . . . . . . . . . . 29
4.1. Boundary conditions for call and put options . . . . . . . . . . . . 30
4.2. Boundary conditions for combined option strategies . . . . . . . . 31

3 European style of options 35
1. Pricing plain vanilla call and put options . . . . . . . . . . . . . . . . . . . 35
2. Pricing put options using call option prices and forwards, put-call parity . . 40
3. Pricing combined options strategies: spreads, straddles, condors, butterflies

and digital options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4. Comparison of theoretical pricing results to real market data . . . . . . . . 44
5. Black–Scholes equation for pricing index options . . . . . . . . . . . . . . 46

v



vi Contents

4 Analysis of dependence of option prices on model parameters 53
1. Historical volatility of stocks . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.1. A useful identity for Black–Scholes option prices . . . . . . . . . . 54
2. Implied volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3. Volatility smile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4. Delta of an option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5. Gamma of an option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6. Other sensitivity factors: Theta, Vega, Rho . . . . . . . . . . . . . . . . . . 65

6.1. Sensitivity with respect to a change in the interest rate – factor Rho 65
6.2. Sensitivity to the time to expiration – factor Theta . . . . . . . . . . 66
6.3. Sensitivity to a change in volatility – factor Vega . . . . . . . . . . 67

5 Option pricing under transaction costs 71
1. Leland model, Hoggard, Wilmott and Whalley model . . . . . . . . . . . . 71
2. Modeling option bid–ask spreads by using Leland’s model . . . . . . . . . 76

6 Modeling and pricing exotic financial derivatives 83
1. Asian options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

1.1. A partial differential equation for pricing Asian options . . . . . . . 85
1.2. Dimension reduction method and numerical approximation of a so-

lution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2. Barrier options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.1. Numerical and analytical solutions to the partial differential equa-
tion for pricing barrier options . . . . . . . . . . . . . . . . . . . . 91

3. Binary options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4. Compound options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5. Lookback options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Short interest rate modeling 101
1. One-factor interest rate models . . . . . . . . . . . . . . . . . . . . . . . . 102
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Introduction

The aim of this book is to acquaint the reader with basic facts and knowledge of pricing
financial derivatives. We focus our attention on qualitative analysis and practical methods
of their pricing. The extensive expansion of various financial derivatives dates back to the
beginning of seventies. The analysis of derivative securities was motivated by pioneering
works [14, 84] due to economists Myron Scholes and Robert Merton and theoretical physi-
cist Fisher Black. They derived and analyzed a pricing model nowadays referred to as the
Black–Scholes model. The approach was indeed revolutionary as it brought the method
of pricing derivative securities by means of solutions to partial differential equations. The
Black–Scholes methodology enables us to price various derivatives of underlying assets as
functions depending on time remaining to expiry and the underlying asset price.

The book is thematically divided into several chapters. The first ten of them can be
considered as a standard introduction to pricing derivative securities by means of solutions
to partial differential equations. We were deeply inspired by a comprehensive book [122]
by Wilmott, Dewynne and Howison. In these introductory chapters we made an attempt
to give the reader a balanced presentation of modeling issues, analytical parts as well as
practical numerical realizations of derivative pricing models. We furthermore put a special
attention to the comparison of theoretically computed results to financial market data. The
remaining four chapters mostly represent our own research contributions to the subject of
financial derivatives pricing.

In the first chapter we present a descriptive analysis of stochastic evolution processes of
underlying assets and their derivative securities. We discuss basic types of derivative secu-
rities like plain vanilla options and forward contracts. Although this chapter does not have
a strict mathematical character, its aim is to verbally highlight the importance of study-
ing and analyzing financial derivatives as useful and necessary financial instruments for
hedging and protecting volatile portfolios. The second chapter focuses on the standard
Black–Scholes model for pricing derivative securities. Its mathematical formulation is a

xi
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partial differential equation of the parabolic type, whose solution represents the price of a
derivative contract. The chapter is also devoted to the presentation of the basic knowledge
and facts of stochastic differential calculus, which is needed throughout the rest of the book.
It is a basis for derivation of a broad class of financial derivatives pricing models. The third
chapter is devoted to the classical theory of pricing European call and put options. We de-
rive an explicit pricing formula refereed to as the Black–Scholes or Feynman-Kac formula.
The content of the fourth chapter is focused on qualitative analysis of dependence of the
option prices on various model parameters. We present basic concepts of analyzing finan-
cial markets including a notion of historical and implied volatilities, in particular. Then
we concentrate on various sensitivity factors like Delta, Gamma, Theta, Vega and Rho of a
financial derivative. These factors can be used in managing portfolios consisting of options,
underlying assets and riskless money market instruments. We analyze the dependence of
the sensitivity factors on underlying asset price and other model parameters. Modeling
transaction costs is a main topic of the fifth chapter. In the sixth chapter we introduce basic
classes of exotic derivatives and we discuss qualitative and practical aspects of their pric-
ing. In more detail, we analyze Asian derivatives, barrier options and look-back options.
In the seventh chapter, we are interested in modeling of the short interest rate. It can be
considered as a nontradable underlying asset for a wide range of the so-called interest rate
derivatives. In the subsequent chapter we deal with practical issues of pricing interest rate
derivatives. We present the methodology of pricing bonds and other interest rate deriva-
tives for single and multi-factor models. A special attention is put on non-arbitrage models
of interest rates, such as the Vasicek or Cox-Ingersoll-Ross model and their multi-factor
generalizations. The American style of financial derivatives is studied in the ninth chapter.
These derivatives are characterized by a possibility of an early exercising of the financial
derivative. We show that the problem of pricing American derivatives can be transformed
to a mathematical problem of finding the free boundary for the Black–Scholes parabolic
partial differential equations defined on a time dependent domain. In financial terminology,
this free boundary is referred to as the early exercise boundary. In the tenth chapter, we
present stable and robust numerical approximation methods for solving the Black–Scholes
partial differential equation by means of explicit and implicit finite difference methods. We
show how to solve the problem of pricing the American style of derivatives numerically by
the so-called projected successive over relaxation algorithm. The eleventh chapter contains
an overview of recent topics on pricing derivative securities. We present various nonlin-
ear generalizations of the classical Black–Scholes theory. We show that, in the presence
of transaction costs and risk from unprotected portfolio, the resulting pricing model is a
nonlinear extension of the Black–Scholes equation in which the diffusion coefficient is no
longer constant and it may depend on the option price itself. A similar nonlinear general-
ization of the Black–Scholes equation often arises when modeling illiquid and incomplete
markets, in the presence of a dominant investor in the market, etc. We also show how to
solve these nonlinear Black–Scholes models numerically. The twelfth chapter is devoted to
modern transformation methods for pricing American style of derivative securities. These
methods are capable of reducing the problem to construction of the early exercise position
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as a solution to a nonlinear integral equation. The last two chapters deal with advanced
topics in modeling of interest rates. In the thirteenth chapter we focus on calibrating is-
sues of standard one-factor interest rate models. We concentrate on estimation of the model
parameters for Cox–Ingersoll–Ross model. The fourteenth chapter consists of two main
parts. First, we consider an analytic approximation of bond prices in one-factor models,
in which a closed explicit formula is not available yet. Then we study two-factor models,
distributions of bond prices and interest rates with respect to the unobserved parameters of
the model and their averaged values.

The book is designed to provide a bridge between theoretical and practical aspects of
derivative securities pricing. We hope that the methodology of pricing derivative securities
by means of analytical and numerical solutions to partial differential equations may attract
the attention of students as well as mathematicians, engineers and practitioners having some
experience with analysis and numerical solving of partial differential equations. It contains
study materials which can be taught in basic and advanced courses on financial derivatives
for undergraduate as well as graduate university students. The organization and presentation
of the material reflects our experience with teaching the subject of financial derivatives at
Comenius University and Slovak University of Technology in Bratislava, Slovakia. We
thank our colleagues M. Takáč, T. Bokes and S. Kilianová for their valuable comments that
helped us to improve presentation of the material contained in this book.

March 2010

Daniel Ševčovič, Beáta Stehlı́ková and Karol Mikula
authors





Chapter 1

The role of protecting financial
portfolios

In the last decades, we have witnessed rapid expansion and development of various
types of companies - starting from classical enterprises and ending with modern technolog-
ical dot-com companies. One of the basic indicators of successful management and future
expectations of a company is represented by the value of stock assets of the company. At the
same time, it brings a defined profit in the form of dividends that are being paid to holders
of stocks. From the point of view of a company development, stocks are often sources of
further capitalization of the company. Although the stock price need not necessarily reflect
the real value of the company, it is one of the best indicators of its present state, perspective
and future development.

One of the most important problems in managing asset portfolios is the problem of
effective portfolio allocation of the investment between stocks and bonds. Stocks usually
bring higher returns. On the other hand, they represent a risky type of assets. Secure bonds
(e.g., treasure bills) usually have lower yields, but they are less risky and volatile when
compared to stocks. Investors are therefore looking for an optimal risk profile structure of
their portfolios. A basic tool for protecting (hedging) an investor against risk is the so-called
financial derivative. The origin of plain financial derivatives can be dated back to the 19th
century. Historically first derivative security contracts were closely related to agricultural
contracts for purchasing a crop. These types of derivative contracts were made during the
winter season and gave the farmers a possibility of further investments and estimation of
necessary amount of parcels of arable land. In modern language, these contracts can be
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Figure 1.1. Time evolution of Microsoft (top) and IBM (bottom) stock prices in 2000.

interpreted as one of the basic type of a financial derivative called a forward. The last three
decades constitute a turning point in trading financial derivatives. Derivative securities are
mostly written on stocks, exchange rates or commodities. Among basic types of financial
derivatives belong options and interest rate derivatives.

1. Stochastic character of financial assets

By examining financial data streams, we can get an idea of the stochastic evolution of
the underlying asset prices, such as stocks, indices, interest rates and other assets. Their
time development is often unstable and volatile, having fluctuations of larger or smaller
sizes. These random changes are often caused by the influence of extensive trading in stock
exchange markets. The stock prices are formed by supply and demand for those assets.
When analyzing the time series, we often observe a certain trend in the stock prices and,
at the same time, a fluctuating component of the price evolution. The trend part usually
corresponds to a long term trend in the stock price, mostly influenced by a position and
future expectations of the company. On the other hand, the fluctuating part can be due to
balancing of demand and supply in the market.

In Fig.1.1 and Fig.1.2 we can see the time evolution of stock prices of Microsoft and
IBM companies in the years 2000 and 2007-2008. The total trading volume of transactions
is shown in bottom parts of both plots. The next Fig. 1.3 depicts evolution of the industrial
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Figure 1.2. Time evolution of Microsoft (top) and IBM (bottom) stock prices in 2007 and
2008 and their trading volumes.
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Figure 1.3. Time evolution of the Dow–Jones DJIA index in years 2000 (top) and 2007/08
(bottom).

Dow–Jones index.

The purpose of previous financial market data examples was to persuade ourselves
about the stochastic evolution of various stock prices and indices on the market. We will
deal with modeling of the stochastic behavior of stock prices in the following chapter. From
the practical point of view, it should be emphasized that one of principal goals of investors
is to minimize their possible losses from sudden decrease of stock prices. One of the most
effective tools how to achieve this goal consists in usage of modern hedging instruments
such as various derivative securities.

2. Using derivative securities as a tool for protecting volatile
stock portfolios

In this section we discuss the importance of derivative securities in achieving the goal of
stability of a portfolio book with respect to volatile fluctuations of the underlying asset
prices. First, we consider the so-called forward and option types of financial derivatives.
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2.1. Forwards and futures

Historically first hedging tools for protecting investors against the risk arising from volatile
underlying assets were the so-called forward contracts. A forward is an agreement between
two parties — a holder and writer — representing both the right and, at the same time,
obligation to accomplish the forward contract between the writer of the contract and its
future holder. It consists in purchasing the underlying asset (usually a stock) at the precisely
specified expiration time for a precisely specified expiration price. As it will be obvious
from Chapter 3, pricing a forward is relatively simple and it is based on the idea of pricing
the forward as the price of the underlying asset minus the expiration price discounted by
a continuous interest rate. This simple pricing formula is, in fact, a consequence of the
definition of a forward contract as a right and, at the same time, obligation to realize the
contract.

2.2. Plain vanilla call and put options

In contrary to forward contracts, a call (put) option represents a kind of a derivative contract
in which a holder of the contract has the right but not obligation to purchase (to sell) the
underlying asset for the predetermined expiration price at the specified expiration time.
Hence call or put options do not have an obligatory character, i.e., they give the holder
certain freedom in their use. For a better illustration, let us consider a simple example of a
call option. Suppose that we own a call option on purchasing the IBM stock for the exercise
price USD 60 which can be exercised in three months. Let the present spot price be USD
55. Suppose that after three months of the lifetime of an option the underlying stock price
rises up to USD 70. Then exercising such an option gives us a net profit of USD 10, which is
just the difference between the spot underlying stock price USD 70 and the expiration price
USD 60 of the option. In such a case we say that the option is in-the-money since exercising
yields a nontrivial profit. On the other hand, if after three months the underlying stock price
falls and achieves only the level of, say, USD 58, then for option holders, such an option
becomes useless and it makes no sense to exercise it. In this case we say that the option
is out-of-money, since it does not gain any profit. Note that the right but not obligation to
exercise the option gives the option holder a certain advantage when compared to those not
having this right. Hence, the right to purchase the underlying stock has a certain value. This
value has to be paid by the future holder at the time of writing the contract. The writer asks
for the so-called option premium for holder’s right for future purchase of the underlying
stock. One of the basic problems in the theory of financial derivatives is the question what
is the fair price of such a derivative contract.

The basic types of derivative contracts are represented by the so-called plain vanilla
options. The European style of a call option is a derivative contract in which the holder
of such an option has the right but not obligation to purchase the underlying stock at the
specified expiration time t = T of maturity, for the predetermined expiration price E. On
the other hand, the European style put option is a derivative contract in which the option
holder has the right but not obligation to sell the underlying stock at the exercise time t = T
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for the expiration price E. For both types of options the key problem is to find a value V of
the call (put) option at the time t = 0 of signing the derivative contract.

In Table 1.1 we depict real market prices of call and put option on the underlying Mi-
crosoft stock from October 21, 2008. For example, a call option with expiration on Decem-
ber 19, 2008, and the expiration price E = 15 (USD) had the bid price 5.20 (bid price is
an offer to purchase the option) and ask price 5.30 (ask price is an offer to sell the option).
The underlying stock price was S = 20.12. The difference between the spot and expiration
prices, i.e., S − E, was 5.12. It means that the option price was slightly higher than the
price at the time of expiration. This difference can be explained since there are remaining
four weeks until expiration. The underlying stock price is subject to stochastic fluctuations.
Therefore, there is a certain risk of the rise of its price. Similarly, for the put option with ex-
ercise price E = 25, having its spot price in the interval from 4.85 to 4.95, we can observe
that its price is slightly higher than just the difference E − S = 4.78.

When analyzing prices of options with exercise prices higher and lower than the present
spot price of the underlying stock, we can see that the option price is composed of two parts.
One of them is the so-called intrinsic value of an option given by the value max(S−E, 0) in
the case of a call option and max(E − S, 0) in the case of a put option. The remaining part
of the option price represents the risk premium valuing the risk arising from the stochastic
(volatile, fluctuating) character of evolution of the underlying asset price during the entire
time interval remaining to expiration.
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Chapter 2

Black–Scholes and Merton model

In this chapter we derive and analyze a partial differential equation describing evolution
of an option price depending on the underlying asset price and time remaining to maturity.
The mathematical model is called the Black–Scholes and Merton model and the resulting
equation is refereed to as the Black–Scholes equation. A key role in the derivation of the
Black–Scholes equation is modeling the stochastic behavior of underlying assets. A basic
tool for describing such a random evolution of the asset price is a concept of the so–called
random Markov processes. Although there is a wide range of various types of Markov pro-
cesses, the Wiener process and its generalization Brownian motion play a crucial role in
modeling stochastic evolution of asset prices. We present a stochastic differential equation
describing the Wiener process and Brownian motion. We furthermore derive a basic tool
of the stochastic analysis – Itō’s lemma. It turned out to be very useful in financial mod-
eling. In particular, application of Itō’s lemma is a key step in forthcoming derivation of
the Black–Scholes partial differential equation. In derivation of the model we have to adopt
several economical principles such as market completeness and liquidity, risk aversion of
an investor, nonexistence of arbitrage opportunities. At the end of the chapter, we discuss
various option strategies: from simple plain vanilla call and put options to more complex
combined option strategies.

9
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1. Stochastic processes and stochastic differential calculus

A stochastic process is a t–parametric system of random variables {X(t), t ∈ I}, where
I is an interval of reals or a discrete set of indices. The Markov process is a stochastic
process having the Markov property of the so-called memorylessness. By this we mean
that its future random values X(t) for t > s conditioned to the present state X(s) are
independent of the history of previous random valuesX(u) for u < s. From practical point
of view, if the process {X(t), t ∈ I} is a Markov process, then, for any time s we can
restart generation of the process {X(t), t ∈ I, t > s} ab initio, i.e., starting from the given
initial value s without knowing the past history of the process. Assumption of a Markov
character of asset prices is in agreement with the so–called weak form of market efficiency,
since only present values of assets can be used in order to generate the future values. If I is
a discrete set a Markov process defined on I is also refereed to as the Markov chain.

1.1. Wiener process and geometric Brownian motion

Definition 2.1. A Brownian motion {X(t), t ≥ 0} is a t–parametric system of random
variables, for which

i) all increments X(t + ∆) − X(t) have a normal probability distribution with the
expected value µ∆ and dispersion (or variance) σ2∆,

ii) for any partition t0 = 0 < t1 < t2 < t3 < · · · < tn of the interval (0, tn), all
increments X(t1) −X(t0), X(t2) −X(t1), . . . , X(tn) −X(tn−1) are independent
random variables with parameters according to the point i),

iii) X(0) = 0 and trajectories {X(t), t ≥ 0} are continuous almost surely.

A Brownian motion with parameters µ = 0, σ2 = 1 is called the Wiener process. Clearly,
the Wiener process as well as the Brownian motion are Markov processes.1

When analyzing the definition of a Brownian motion, the following question naturally
arises: what is the reason for the expected value and dispersion of increments X(t+ ∆)−
X(t) to be proportional to ∆ and not to some other function of ∆? At this point we make
attempt to provide a convincing argument giving an answer to this question. Let us consider
arbitrary partition of a given interval [0, t], i.e., 0 = t0 < t1 < · · · < tn = t. Then

X(t)−X(0) =
n∑

i=1

X(ti)−X(ti−1),

and hence the expected values and dispersions on the left hand and right hand sides must be
equal. For the expected values of the term X(t)−X(0), from the definition we obtain that

E(X(t)−X(0)) = µ(t− 0) = µt .

1Norbert Wiener, 1884-1964, mathematician and statistician. He worked in the fields of mathematical
analysis and probability theory. He is also considered to be a founder of modern cybernetics.
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Figure 2.1. Norbert Wiener (1884-1964) and Robert Brown (1773-1858).

On the other hand, the expected value of the random variable
∑n

i=1X(ti) − X(ti−1) is
given by

E

(
n∑

i=1

X(ti)−X(ti−1)

)
=

n∑

i=1

E(X(ti)−X(ti−1)) =
n∑

i=1

µ(ti − ti−1) = µt

and hence the expected values of X(t) − X(0) and
∑n

i=1(X(ti) − X(ti−1)) are equal.
Notice that without the assumption that every increment X(ti) − X(ti−1) has the ex-
pected value exactly equal to µ(ti − ti−1), we would not be able to derive this equality.
Now we concentrate on analysis of the dispersion of random variables X(t) − X(0) and∑n

i=1(X(ti)−X(ti−1)). By the definition, we have

V ar(X(t)−X(0)) = σ2(t− 0) = σ2t .

Recall that for independent random variables A,B it holds: V ar(A + B) = V ar(A) +
V ar(B). Since we assume independence of increments X(ti) − X(ti−1) for i =
1, 2, . . . , n, it holds that

V ar

(
n∑

i=1

X(ti)−X(ti−1)

)
=

n∑

i=1

V ar(X(ti)−X(ti−1)) =
n∑

i=1

σ2(ti − ti−1) = σ2t .

Again, it should be noted that without the assumption that each incrementX(ti)−X(ti−1)
has dispersion exactly equal to σ2(ti− ti−1) and the Markov property, the equality between
dispersions of X(t)−X(0) and

∑n
i=1(X(ti)−X(ti−1)) could be violated.

From the preceding definition, it immediately follows that, if {w(t), t ≥ 0} is a Wiener
process then for its first two statistical moments (the expected value and dispersion), we
have:

E(w(t)) = 0, V ar(w(t)) = t . (2.1)

Moreover, the cumulative distribution function of a Wiener process is given by

Prob(w(t) < x) =
1√
2πt

∫ x

−∞
e−ξ

2/2tdξ . (2.2)
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Figure 2.2. Two different random realizations of a Wiener process.
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Figure 2.3. Five trajectories of a Wiener process displayed together.

A sample of five numerical realizations of a Wiener process is shown in Fig. 2.3. An
experimental evidence of linear dependence (2.2) between the variance V ar(w(t)) and
time t are presented in Fig. 2.4.

A Brownian motion {X(t), t ≥ 0} with parameters µ and σ can be also analyzed by
means of its increments dX(t) = X(t + dt) − X(t) where dt is an infinitesimal small
quantity. According to definition i), for their expected value and dispersion, it holds that
E(dX(t)) = µdt and V ar(dX(t)) = σ2dt = σ2V ar(dw(t)). It means that a Brownian
motion can be characterized by its deterministic and fluctuating components. Its increments
dX(t) can be expressed in the following form of a total differential

dX(t) = µdt+ σdw(t) , (2.3)

where {w(t), t ≥ 0} is a Wiener process. Equation (2.3) is called stochastic differential
equation.

Definition 2.2. If {X(t), t ≥ 0} is a Brownian motion with parameters µ, σ and y0 ∈ R+,
then the system of random variables {Y (t), t ≥ 0},

Y (t) = y0e
X(t), t ≥ 0,

is called a geometric Brownian motion.
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Any geometric Brownian motion is again a Markov process. Based on the explicit form
of the probability distribution function of a Wiener process (2.2) we are yet able to compute
its first two statistical moments:

E(Y (t)) = y0e
µt+σ2t

2 , V ar(Y (t)) = y2
0e

2µt+σ2t(eσ
2t − 1) . (2.4)

To simplify computation of moments (2.4) it suffices to consider only the case when y0 = 1.
Then for the cumulative distribution function G(y, t) = Prob(Y (t) < y) of the geometric
Brownian motion Y (t) we have thatG(y, t) = 0 for y ≤ 0. It is a consequence of positivity
of the variable Y (t). For y > 0 it holds that

G(y, t) = Prob(Y (t) < y) = Prob
(
Z(t) <

−µt+ ln y
σ

)
,

where Z(t) is a random variable, Z(t) = (−µt+ lnY (t))/σ. Clearly, dZ(t) = dw(t) and
hence Z(t) = Z(0) + w(t) = w(t) because Z(0) = 0. This way we have shown that Z(t)
is indeed a Wiener process. Using the knowledge of the cumulative distribution function
of a Wiener process (2.2), for the distribution function G(y, t) of random variable Y (t) we
obtain G(y, t) = 0 for y ≤ 0 and

G(y, t) =
1√
2πt

∫ −µt+ln y
σ

−∞
e−ξ

2/2tdξ for y > 0 .

Since E(Y (t)) =
∫∞
−∞ yg(y, t) dy and E(Y (t)2) =

∫∞
−∞ y2g(y, t) dy, where g(y, t) =

∂
∂yG(y, t), by computation of these integrals we obtain that

E(Y (t)) =
∫ ∞

−∞
yg(y, t) dy =

∫ ∞

0
yg(y, t) dy

=
1√
2πt

∫ ∞

0
ye−

(−µt+ln y)2

2σ2t
1
σy

dy

(ξ = (−µt+ ln y)/(σ
√
t))

=
eµt√
2π

∫ ∞

−∞
e−

ξ2

2
+σ
√
tξ dξ =

eµt+
σ2

2
t

√
2π

∫ ∞

−∞
e−

(ξ−σ
√

t)2

2 dξ

= eµt+
σ2

2
t .

In the same way we obtain the dispersion (2.4).

In what follows, we will say that a random variable {Y (t), t ≥ 0} has a lognormal
distribution with the expected value and dispersion given by (2.4). Throughout the rest of
this book, a Wiener process will be denoted by either {w(t), t ≥ 0} or {W (t), t ≥ 0}.
Its increments over a short time interval dt will be denoted by dw, i.e., dw(t) = w(t +
dt) − w(t). According to the definition of a Wiener process the increments dw(t) are
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Figure 2.4. Time evolution of the dispersion of a Wiener process computed from simulation
of 1000 individual trajectories of the Wiener process.
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Figure 2.5. Two trajectories of a geometric Brownian motion dS = µSdt+σSdw with the
positive drift µ = 1 > 0 (left) and negative drift µ = −1 < 0 (right) together with the drift
function t 7→ S0e

µt (exponential curves). We set S0 = 30 and σ = 0.49 in both examples.

independent in time t. Their expected value is zero, i.e., E(dw(t)) = 0 and their dispersion
V ar(dw(t)) = dt. The increment dw can be therefore written as

dw = Φ
√
dt, where Φ ∼ N(0, 1) ,

i.e., Φ is a random variable with the standardized normal distribution.

1.2. Itō’s integral and isometry

Important technical tools in analysis of stochastic processes are the so–called Itō’s integral
and Itō’s isometry. Construction of Itō’s integral is very similar to the definition of the
Riemann–Stieltjes integral of functions of a real variable.

First, we notice that it follows from the definition of a Wiener process {w(t), t ≥ 0}
that the random variable w(t) has a normal distribution with a zero mean and dispersion t,
i.e., w(t) ∼ N(0, t). This equality can be rewritten as:

∫ t

0
dw(τ) = w(t)− w(0) = w(t) ∼ N(0, t).
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It means that for a constant function f(τ) ≡ c we have
∫ t

0
f(τ)dw(τ) = c

∫ t

0
dw(τ) = cw(t)− cw(0)

= cw(t) ∼ N(0, c2t) = N(0,
∫ t

0
f2(τ)dτ).

This simple identity gives us an idea, how to define the so–called Itō’s integral of a measur-
able function f : (0, t) → R such that

∫ t
0 f

2(τ)dτ <∞. We let
∫ t

0
f(τ)dw(τ) := lim

ν→0

n−1∑

i=0

f(τi)(w(τi+1)− w(τi)),

where ν = max(τi+1 − τi) is the norm of a partition 0 = τ0 < τ1 < · · · < τn = t of the
interval (0, t). Convergence is meant in probability. Let the function f be constant on each
subinterval [τi, τi+1). Then, for the expected value of the finite sum

∑n
i=1 f(τi)(w(ti+1)−

w(ti)), it holds:

E

(
n−1∑

i=0

f(τi)(w(τi+1)− w(τi))

)
=

n−1∑

i=0

f(τi)E(w(τi+1)− w(τi)) = 0,

because all increments w(τi+1) − w(τi) are normally distributed random variables
w(τi+1) − w(τi) ∼ N(0, τi+1 − τi). Since these increments are also independent and
w(τi+1) − w(τi) = Φi

√
τi+1 − τi, where Φi ∼ N(0, 1), we may conclude for the sum of

the independent normally distributed random variables the following identity:

E




[
n−1∑

i=0

f(τi)(w(τi+1)− w(τi))

]2

 =

n−1∑

i=0

f2(τi)E(Φ2
i )(τi+1 − τi)

=
n∑

i=1

f2(τi)(τi+1 − τi).

Similarly as in construction of the Riemann–Stieltjes integral, we can pass to the limit as
the norm ν of a partition tends to zero and the sequence of simple step functions pointwise
almost everywhere converges to a measurable function f with a finite integral

∫ t
0 f

2(τ)dτ <
∞. This way we obtained the so–called Itō’s isometry:

Lemma 2.1. Let a measurable function f : (0, t) → R be such that
∫ t
0 f

2(τ)dτ < ∞.
Then there exists Itō’s integral

∫ t
0 f(τ)dw(τ). It is a normally distributed random variable

having N(0, σ2(t)) distribution, where σ2(t) =
∫ t
0 f(τ)2dτ . It means that the following

identities hold:

E

(∫ t

0
f(τ)dw(τ)

)
= 0,

E

([∫ t

0
f(τ)dw(τ)

]2
)

=
∫ t

0
f(τ)2dτ.
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Figure 2.6. A sample of the mean value of Itō’s integral
∫ t
0 f(τ)dw(τ) (left) and its dis-

persion together with a graph of
∫ t
0 f(τ)2dτ (right) for the function f(τ) = sin(2τ). A

number of partitions of the interval was chosen: n = 100.

The last identity is called Itō’s isometry.

Notice that Itō’s isometry holds not only for the measurable functions f, but also for
general stochastic processes, which are continuous from the left and locally finite. For
such a stochastic process {H(τ), τ ≥ 0} Itō’s integral can be again defined as a limit (in
probability) of finite sums

∫ t

0
H(τ)dw(τ) := lim

ν→0

n−1∑

i=0

H(τi)(w(τi+1)− w(τi)).

Then Itō’s isometry has the form:

E

([∫ t

0
H(τ)dw(τ)

]2
)

= E

(∫ t

0
H(τ)2dτ

)
, (2.5)

(see e.g., Øksendal [89]). Moreover, for the mean value of the integral we obtain

E

(∫ t

0
H(τ)dw(τ)

)
= 0. (2.6)

Further details concerning qualitative and quantitative properties of stochastic processes can
be found in the books and survey papers by e.g., Karatzas and Shreeve [71], Papanicolaou
[90], Hull [65], Wilmott, Dewynne and Howison [122], Melicherčı́k et al. [83], Baxter and
Rennie [13].

1.3. Itō’s lemma for scalar random processes

Analysis of functions, representing prices of financial derivatives, whose one or more vari-
ables are stochastic random variables satisfying prescribed stochastic differential equations
plays a key role in the theory of pricing financial derivatives. In this section, we focus our
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Figure 2.7. Kiyoshi Itō (1915–2008).

attention on the question whether there exists a stochastic differential equation describing
evolution of a smooth function f(x, t) of two variables, where the variable x itself is a so-
lution to a prescribed stochastic differential equation. The positive answer to this question
is given by Itō’s lemma. This is a key stone of analysis of stochastic differential equations.
According to Wikipedia, Itō’s lemma is “the all time most famous lemma”.1

Lemma 2.2 (Itō’s lemma). Let f(x, t) be a smooth function of two variables. Assume the
variable x is a solution to the stochastic differential equation

dx = µ(x, t)dt+ σ(x, t)dw,

where w is a Wiener process. Then the first differential of the function f is given by

df =
∂f

∂x
dx+

(
∂f

∂t
+

1
2
σ2(x, t)

∂2f

∂x2

)
dt ,

and so the function f satisfies the stochastic differential equation

df =
(
∂f

∂t
+ µ(x, t)

∂f

∂x
+

1
2
σ2(x, t)

∂2f

∂x2

)
dt+ σ(x, t)

∂f

∂x
dw . (2.7)

An intuitive (and from mathematical point of view fairly incomplete) proof of Itō’s
lemma can be done by expanding the function f = f(x, t) into a Taylor series of the
second order. Indeed,

f(x+ dx, t+ dt)− f(x, t) =
∂f

∂t
dt+

∂f

∂x
dx

+
1
2

(
∂2f

∂x2
(dx)2 + 2

∂2f

∂x∂t
dx dt+

∂2f

∂t2
(dt)2

)
+ h.o.t.

1Kiyoshi Itō, 1915-2008, mathematician and statistician, the Gauss prize winner in 2008. He worked in
the field of the probability theory and stochastic processes. He proved one of the most important and useful
propositions of stochastic differential calculus – Itō’s lemma.
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Now, it follows from the property dw = Φ
√
dt, where Φ ∼ N(0, 1), that

E((dw)2 − dt) = 0, and V ar((dw)2 − dt) = [E(Φ4)− E(Φ2)2](dt)2 = 2(dt)2.

By neglecting higher order terms in dt we can approximate the term (dw)2 by dt. We
obtain2

(dx)2 = σ2(dw)2 + 2µσdw dt+ µ2(dt)2 ≈ σ2dt+O((dt)3/2) +O((dt)2) .

Similarly, the term dx dt = O((dt)3/2)+O((dt)2), and consequently the first order expan-
sion of the differential df with respect to infinitesimal increments dt and dx can be written
in the form

df =
∂f

∂x
dx+

(
∂f

∂t
+

1
2
σ2(x, t)

∂2f

∂x2

)
dt .

The relation (2.7) follows from the above relation for df by substituting the expression
dx = µ(x, t)dt+ σ(x, t)dw for the differential term dx.

The stochastic differential equation

dx = µ(x, t)dt+ σ(x, t)dw,

describing a general Itō’s process, should be understood in the integral sense, i.e.

x(t)− x(0) =
∫ t

0
µ(x(τ), τ)dτ +

∫ t

0
σ(x(τ), τ)dw(τ).

The term
∫ t
0 µ(x(τ), τ)dτ is a usual Riemann integral whereas the term

∫ t
0 σ(x(τ), τ)dw(τ)

is Itō’s integral
∫ t
0 H(τ)dw(τ) (see the previous section) with a random process H(t) de-

fined asH(t) = σ(x(t), t). It is important to emphasize that, with regard to the construction
of Itō’s integral, the increment w(ti+1)−w(ti) of a Wiener process w and the random vari-
able x(ti) at any time ti are independent. Since E(w(ti+1) − w(ti)) = 0 we therefore
conclude

E(σ(x, t)dw) = 0,

as well (see also (2.6)). This is one of important features of Itō’s process that will be used
many times throughout this book.

As an example of application of Itō’s lemma, let us consider a Brownian motion dX =
µdt + σdw and its function Y (t) = f(X(t), t), where f(X, t) = eX . By applying Itō’s
lemma we obtain

dY =
(
∂f

∂t
+ µ

∂f

∂X
+

1
2
σ2 ∂

2f

∂X2

)
dt+ σ

∂f

∂X
dw =

(
µ+

σ2

2

)
Y dt+ σY dw.

2By the term f(ξ) = O(g(ξ)) we have denoted the Landau ”big O” symbol representing any function f
with the property |f(ξ)| ≤ Cg(ξ) for any sufficiently small ξ where C > 0 is a constant.
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As a consequence, we obtain for the expected value E(Y (t) the following ordinary differ-
ential equation

dE(Y (t)) =
(
µ+

σ2

2

)
E(Y (t))dt,

from which we easily deduce thatE(Y (t)) = E(Y (0))e(µ+σ2/2)t, as it was already claimed
in (2.4).

1.4. Itō’s lemma for vector random processes

The previous procedure of deriving Itō’s lemma for a function of a scalar random variable
x can be successfully extended also for the case of C2 smooth function f = f(~x, t) :
Rn × R → R of a vector argument ~x = (x1, x2, . . . , xn)T . Concerning the variables
xi, i = 1, . . . , n we will assume they satisfy a system of stochastic differential equations

dxi = µi(~x, t)dt+
n∑

k=1

σik(~x, t)dwk ,

where ~w = (w1, w2, . . . , wn)T is a vector of Wiener processes which have independent
increments, i.e.

E(dwi dwj) = 0 for i 6= j , E((dwi)2) = dt .

The equations for stochastic processes xi can be written in a vector form as follows:

d~x = ~µ(~x, t)dt+K(~x, t)d~w ,

where K is an n× n matrix

K(~x, t) = (σij(~x, t))i,j=1,...,n.

Then, for the increment df of a smooth function f = f(~x, t), we can write its expansion to
a Taylor series of the second order. We obtain

df =
∂f

∂t
dt+∇xf.d~x

+
1
2

(
(d~x)T∇2

xf d~x+ 2∇xf
∂f

∂t
d~x dt+

∂2f

∂t2
(dt)2

)
+ h.o.t. ,

where ∇xf, respectively ∇2
xf denote the gradient and the Hess matrix of a function f with

respect to variables x1, . . . , xn. Similarly as in the derivation of one-dimensional variant of
Itō’s lemma, the terms d~x dt and (dt)2 are negligible when compared to the term dt. There-
fore a crucial part will be again analysis of the term (d~x)T∇2

xf d~x =
∑n

i,j=1
∂2f

∂xi∂xj
dxi dxj .

From the assumption on the independence of increments dwi and dwj for i 6= j we obtain
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that

dxi dxj =
n∑

k,l=1

σikσjldwk dwl +O((dt)3/2) +O((dt)2)

=

(
n∑

k=1

σikσjk

)
dt+O((dt)3/2) +O((dt)2) ,

But it means that the expansion of the differential df with respect to the increments dt, d~x
can be written in the form

df =
(
∂f

∂t
+

1
2
K : ∇2

xfK

)
dt+∇xf d~x , (2.8)

where the term K : ∇2
xfK is defined as follows:

K : ∇2
xfK =

n∑

i,j=1

∂2f

∂xi∂xj

n∑

k=1

σikσjk . (2.9)

The relation (2.8) for the first differential of a smooth function depending on a vector of
stochastic processes constitutes the statement of Itō’s lemma for functions of a vector ar-
gument. This result plays an important role in analysis of multifactor models for pricing
interest rate derivatives, analysis of basket and index options.

2. The Black–Scholes equation

In this section we derive a mathematical model for pricing financial derivatives, such as
options. Mathematical formulation of this model is represented by the so–called Black–
Scholes partial differential equation. It describes the time evolution of a derivative price as
a function of the underlying asset price and time remaining to maturity of a derivative.

The derivation of the Black–Scholes differential equation will be shown on the example
of a European call option. Recall that the call option is a contract, in which the holder of an
option has the right but not obligation to purchase the underlying asset from the writer of
an option in the predetermined expiration time t = T at the prescribed expiration (strike)
price E. We emphasize that the holder has the right but not obligation to buy the stock.
Hence this right has a certain value and at the time of signing the contract t = 0. The buyer
(holder) of such an option has to pay the so–called option premium V to the writer of a call
option. For both sides of the contract, i.e., for the writer or the option as well as for the
holder, it is of interest to know, what is the fair price of this premium.

Let us denote:

• S - value of the underlying asset price,

• V - value of a derivative (option) on the underlying asset,
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• T - expiration time, i.e., date of expiry (maturity) of the option,

• E - expiration (strike) price of the option,

• t - time, t ∈ [0, T ].

Our goal is to find a mathematical model describing the price of an option V = V (S, t) as
a function of the underlying asset price S and the time t. An option premium is then given
by the value V (S, 0) at the time t = 0 of signing the contract.

Concerning a stochastic behavior of the underlying asset process we will suppose that
it satisfies a stochastic differential equation for the geometric Brownian motion. The foun-
dation for modeling evolution of asset prices by means of a Brownian motion has been pro-
posed by Louis Bachelier in his famous thesis ”La Théorie de la Spéculation” from 1900.
He proposed that stock prices are moving similarly as particles in the Brownian motion.
His work has been rediscovered by Paul Samuelson. In [98], Samuelson modified Bache-
lier’s idea of a Brownian motion and he postulated that the stock prices follow a geometric
Brownian motion rather than a simple Brownian motion.

Next, derivation of a governing equation for V = V (S, t) consists of two steps. In
the first step, we derive a stochastic equation fulfilled by an arbitrary smooth function
V = V (S, t) of a stochastic underlying price S and time t. The function V is, in general,
called a financial derivate. In the second step, we will construct the so–called self-financing
portfolio having zero net investment and consisting of underlying assets, options on these
assets and riskless bonds.

2.1. A stochastic differential equation for the option price

As we have already mentioned in the previous section, in order to model random evolution
of the underlying asset price as a function of time S = S(t) we will use the stochastic
differential equation representing the geometric Brownian motion.

dS = µSdt+ σSdw , (2.10)

where dS is the change of asset value over the time interval of a length dt, µ represents
a trend of underlying asset price evolution and σ is its volatility. By dw we have denoted
the differential of a Wiener process. The deterministic process dS = µSdt (i.e., σ = 0)
has solution S(t) = S(0)eµt representing thus exponential growth (decrease if µ < 0) of
asset values observed in financial markets. Furthermore, notice that the stochastic equation
(2.10) can be also written in the form

dS

S
= µdt+ σdw.

The term σdw can be therefore understood as random fluctuation over the trend part of the
asset price. Hence the essential information is contained in the relative change dS/S and
not in the absolute change in the asset price dS. Moreover, the relativized differential dS/S
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represents a return on asset. Another reason is that the resulting model has to be invariant
with respect to choice of units, i.e., the pricing formula should be currency unit invariant.

In the next step we derive a stochastic differential equation describing the evolution of
an arbitrary smooth function (derivative) of asset price and time. Suppose that a function
V = V (S, t) is a smooth function of two variables, where S satisfies the stochastic dif-
ferential equation (2.10). A stochastic differential equation for the function V = V (S, t)
can be derived by using the fundamental tool in the theory of random processes – Itō’s
lemma 2.2). In our case, the variable S satisfies the stochastic differential equation (2.10),
i.e., dS = µSdt + σSdw, and hence µ(S, t) = µS, σ(S, t) = σS, where µ, σ are con-
stants. Then a function V (S, t) of the stochastic process S satisfies the following stochastic
differential equation

dV =
(
∂V

∂t
+ µS

∂V

∂S
+

1
2
σ2S2∂

2V

∂S2

)
dt+ σS

∂V

∂S
dw . (2.11)

2.2. Self-financing portfolio management with zero growth of investment

In this step we focus on construction of a portfolio consisting of underlying assets of the
same type, options on this assets and riskless bonds. The idea of self-financing strategy
consists in dynamic selling or buying components of the portfolio in such a way, that it
is risk-neutral, no further investments are needed (assumption on zero net investments),
and selling or buying of one type of assets (stocks, options, bonds) is balanced by buying
or selling another assets in the portfolio (self-financing principle). This methodology of
deriving the Black-Scholes model is due to Merton. Its difference from the derivation done
by Black and Scholes is precisely in considering the self-financed portfolio with zero net
investments. Notice that the assumption on effort to create risk–neutral portfolio is a basic
pillar in deriving the Black–Scholes equation. This assumption arises from investors’ efforts
to achieve risk neutral hedging strategies. It is based on the assumption of completeness
and liquidity of a market yielding thus possibility of perfect replication of a risk-neutral
portfolio. Although basic assumptions of derivation of the Black–Scholes model need not
be satisfied in reality, we postulate them in order to derive the standard model. In Chapters
5 and 12 we will present various generalizations of the standard Black-Scholes model by
taking into account more realistic concepts like pricing options in incomplete or illiquid
markets, presence of a dominant traders, pricing under transaction costs etc.

Let us construct a portfolio consisting of underlying assets, options on these assets and
riskless bonds. We will consider the so–called self-financing portfolio, i.e., a portfolio in
which the purchase or sale of one of the three components has to be compensated by selling
or purchasing another component of the portfolio. More precisely, at time t, the portfolio
consists of amount of QS stocks with the unit price S, amount of QV option with the unit
price V and the riskless zero-coupon bonds having the total money value B. If we denote
MS = SQS , MV = V QV , then the assumption of zero net investments means, that the
balance equation

MS +MV +B = 0,
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has to be satisfied for all times t ∈ [0, T ], i.e.

SQS + V QV +B = 0, (2.12)

for t ∈ [0, T ]. Now Merton’s condition on self-financing of the portfolio can be stated in
the following form

SdQS + V dQV + δB = 0 (2.13)

where dQS , dQV denote changes in the amount of underlying assets and options. By δB we
have denoted a change in the money volume of riskless bonds in the portfolio that have been
used in order to finance purchases of assets or options (δB < 0), or have been gained from
selling assets or options (δB > 0). Recall that for a standalone portfolio of riskless zero-
coupon bonds there is a simple pricing formulaB(t) = B(0)ert,where r > 0 is continuous
interest rate. This equation can be written in the differential form as dB = rB dt. In the
case bonds are dynamically used/gained in self-financing the portfolio we have the total
change in the money volume of the bonds dB expressed as:

dB = rB dt+ δB . (2.14)

Differentiating relation (2.12), inserting (2.14) into (2.13) and expressing the price B from
equation (2.12) we finally obtain the following identity:

0 = d (SQS + V QV +B)
= SdQS + V dQV + δB +QSdS +QV dV + rB dt
= QSdS +QV dV − r(SQS + V QV ) dt.

After dividing by a nonzero valueQV of the amount of options in the portfolio, we conclude
that:

dV − rV dt−∆(dS − rS dt) = 0 , where ∆ = −QS
QV

. (2.15)

Recall that both random processes, i.e., the asset price S, as well as the option price V
satisfy stochastic differential equations

dS = µS dt+ σS dw ,

dV =
(
∂V

∂t
+ µS

∂V

∂S
+

1
2
σ2S2∂

2V

∂S2

)
dt+ σS

∂V

∂S
dw .

Substituting the above expressions for the differentials dS and dV, we obtain, after some
manipulations,
(
∂V

∂t
+ µS

∂V

∂S
+

1
2
σ2S2∂

2V

∂S2
− rV −∆µS + ∆rS

)
dt+ σS

(
∂V

∂S
−∆

)
dw = 0 .

The purpose of a risk-neutral investor is to combine the portfolio of assets, options and
bonds in such a way that the risk of the portfolio is neutralized. Such a behavior of an
investor is called risk aversion. Clearly, the only stochastic term in the equation above is
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represented by the differential dw of the Wiener process. This term vanishes provided that
we choose the ratio ∆ as follows:

∆ =
∂V

∂S
. (2.16)

After substituting this choice of ∆ to the remaining determininstic part we obtain the re-
sulting equation (

∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV

)
dt = 0,

and hence
∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 , (2.17)

which is refereed to as the Black–Scholes partial differential equation for pricing derivative
securities. It was first published in the seminal paper by Black and Scholes [14].

Let us consider a useful generalization of the Black–Scholes equation for the case when
the underlying asset is paying nontrivial continuous dividends with an annualized dividend
yield q ≥ 0. In this case, holding the underlying asset with a price S we receive a dividend
yield qSdt over any time interval with a length dt. By paying dividends the asset price itself
falls. It can be expressed by modifying the drift part of the stochastic differential equation
for the asset price. Hence the asset price satisfies the stochastic differential equation

dS = (µ− q)S dt+ σSdw .

On the other hand, by receiving dividends, we have new resources for our self-financing
portfolio. Their total money volume being qSQS dt over the time interval dt. This amount
of money can be therefore added as an extra income to the right hand side of the equation
(2.14) describing change of the money volume of secure bonds, i.e. dB = rB dt + δB +
qSQS dt. This way we have modified equation (2.15) to the following form:

dV − rV dt−∆(dS − (r − q)S dt) = 0 .

Repeating the remaining step of derivation of the Black–Scholes equation we end up with
the modifies equation (2.17) which includes a continuous dividend yield q ≥ 0:

∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0 . (2.18)

We end this section by another useful generalization of the Black–Scholes equation for
the case when the underlying asset price is a solution to Itō’s stochastic differential equation
of the form

dS = µ(S, t)Sdt+ σ(S, t)Sdw . (2.19)

As an example of such a generalized process for the underlying asset one can consider the
so-called constant elasticity of volatility (CEV) model proposed by Cox and Ross. In this
model, the underlying asset price is assumed to follow a stochastic differential equation of
the form

dS = µSdt+ σSαdw , (2.20)
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where µ and σ > 0 are constants and the exponent α > 0. Clearly, if α = 1 then the
process (2.20) is just a geometric Brownian motion.

Following the lines of derivation of the Black–Scholes equation we can see that the as-
sumption that µ and σ are constants plays no role. Hence, for an underlying asset following
(2.19) we can derive the corresponding partial differential equation for pricing its derivative
security in the form:

∂V

∂t
+

1
2
σ(S, t)2S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0 . (2.21)

For example, if S is a solution to the CEV process (2.20) then the corresponding Black–
Scholes equation has the form

∂V

∂t
+

1
2
σ2S2α∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0 . (2.22)

3. Terminal conditions

In the derivation of the Black–Scholes equation so far we have not used our assumption
that the derivative security is a call option. In this section, we show that we have to add
to the Black–Scholes equation (2.17) an additional terminal condition at expiration time T,
determining the type of a derivative contract. Such conditions are called terminal pay–off
conditions or pay–off diagrams.

3.1. Pay–off diagrams for call and put options

In the case of a European call option we have to add the terminal condition at expiry time
T to the Black–Scholes equation (2.17), respectively to its modified version (2.18). The
terminal pay–off diagram of a call option is easy to understand. Indeed, if the present spot
price S of the underlying asset at time T exceeds the exercise price E then the value of the
(in-the-money) option premium (if payed at time T ) is given just as a difference between
the present price S and strike price E, i.e., S − E. This follows from our assumption on
impossibility of arbitrage opportunities, i.e., possibilities for gaining riskless profit. On the
other hand, if the present asset price does not exceed the strike priceE then the (out-of-the-
money) option has no value, since we will not exercise it. It means that at the time t = T it
is easy to price the call option. Its value is given by the terminal pay–off condition

V (S, T ) = (S − E)+, (2.23)

which is depicted on Fig. 2.8 (left). Here we have denoted by x+ the positive part of a real
number x, i.e.

V (S, T ) = (S −E)+ := max(S − E, 0).
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Figure 2.8. Terminal pay–off diagrams for call (left) and put options (right) with the exercise
(strike) price E = 50.

If we consider a European put option then derivation of the terminal condition for its
price at expiry time T follows from a similar argument as in the case of the call option.
If the present asset price S at time T exceeds the exercise (strike) price value E then the
value of the (out-of-the-money) option is zero as it would not make no sense to exercise this
option and to sell the asset for a lower price E when compared to its market spot value S.
On the other hand, if the present price of the asset is lower then the expiration priceE, then
the (in-the-money) option has a value and it is equal to the difference E − S. It means that
the terminal pay–off diagram of a put option is the function:

V (S, T ) = (E − S)+, (2.24)

which is depicted on Fig. 2.8 (right).

3.2. Pay–off diagrams for combined option strategies

A bullish spread option strategy is a combination of purchasing and selling two call options
written on the same underlying asset, one with a lower and one with a higher strike price,
E1 < E2. The pay–off diagram is given by

V (S, T ) = (S −E1)+ − (S − E2)+ . (2.25)

On the other hand, a bearish spread strategy is a combination of selling and purchasing two
call options written on the same stock, one with a lower and one with a higher strike price,
E1 < E2. The pay–off diagram is given by

V (S, T ) = −(S −E1)+ + (S − E2)+ . (2.26)

Bullish spread is an option strategy often used in a situation when we expect the growth
of the underlying asset price. In the case of a growth of S, it is possible to achieve a defined
profit. On the other hand, bearish spread is used when a fall of the asset price is expected.
From the pay–off diagrams of both spread strategies it follows that the possible profit and
loss are bounded. This is an important property of spreads preferred by investors.
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Figure 2.9. Terminal pay–off diagrams of bullish (left) and bearish (right) spreads with the
exercise (strike) prices E1 = 50, E2 = 60.
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Figure 2.10. Terminal pay–off diagrams of bought (left) and sold (right) straddle strategies
for the strike price E = 50.

The option strategy bought straddle consists in purchasing one call option and one put
option written on the same underlying asset, with the same strike prices E and the same
maturity T . By employing this strategy the investor is able to limit the loss if the asset price
is the strike price. In the opposite case a possible profit is high. A mathematical description
of the terminal pay–off condition at the expiration time t = T is:

V (S, T ) = (S −E)+ + (E − S)+ . (2.27)

A sold straddle option strategy is a combination of selling one call and one put option
written on the same underlying asset, with the same strike prices E and the same maturity.
Its pay–off is given by

V (S, T ) = −(S − E)+ − (E − S)+ . (2.28)

A butterfly option strategy is a combined strategy that consists of purchasing two call
options, one with a lower strike E1 and the other one with a higher E4 strike price and
selling two call options with the same strike prices E2 = E3, where E1 < E2 = E3 < E4.
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Figure 2.11. Terminal pay–off diagrams of butterfly (left) and condor (right) strategies for
strike prices E1 = 50, E2 = E3 = 60, E4 = 70 (butterfly), respectively E1 = 50, E2 =
60, E3 = 65, E4 = 70 (condor).

Moreover, we assume E1 + E4 = E2 + E3 = 2E2. All the options are written on the
same underlying asset and have the same maturities. The butterfly strategy is based on the
investor’s expectation about the price stability, it gains a maximal profit if the asset price is
in the neighborhood of the value E2 = E3.

V (S, T ) = (S − E+
1 )− (S − E2)+ − (S − E3)+ + (S −E4)+ . (2.29)

A condor option strategy is a strategy similar to butterfly, but the difference is that the
strike prices of sold call options need not be equal, E2 6= E3, i.e., E1 < E2 < E3 < E4.
The mathematical expression of the terminal pay–off condition is given by the formula
(2.29). The condor strategy gains a maximal profit if the asset price is in the interval
(E2, E3).

A bought strangle strategy is a combination of purchasing one call and one put option,
where the call option is written on a higher strike price E2 and put option on a lower strike
price E1, E1 < E2. Its terminal pay–off diagram is therefore:

V (S, T ) = (S − E2)+ + (E1 − S)+ . (2.30)

A sold strangle strategy is a combination of selling one call and one put option, where the
call option is written on a higher strike price E2 and put option on a lower strike price E1,
E1 < E2. The maximal profit of this strategy is achieved in the case the underlying asset
price is in the interval (E1, E2). Its terminal pay–off diagram is given by:

V (S, T ) = −max(S − E2, 0) − max(E1 − S, 0). (2.31)

At the end of this brief overview of the most common option strategies, we also recall
three other simple derivatives that belong to a category of the so–called binary options.

The cash-or-nothing strategy is a kind of an option ”bet”, in which the holder of such an
option receives a fixed predetermined amount of money (e.g., one unit amount of money)
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Figure 2.12. Terminal pay–off diagrams for the bought (left) and sold (right) strangle strate-
gies for the strike prices E1 = 50, E2 = 70.

in the case the underlying asset price S exceeds the given strike price E. It means that the
terminal pay–off diagram of such a strategy is:

V (S, T ) = 1 if S ≥ E, V (S, T ) = 0 if S < E , (2.32)

(see Fig. 2.13).
An asset-or-nothing strategy is again a kind of an option ”bet”, in which the holder of

such an option receives the asset value S, provided it exceeds the predetermined strike price
E. It means that the terminal pay–off diagram is the following function:

V (S, T ) = S, if S ≥ E, V (S, T ) = 0, if S < E , (2.33)

(see Fig. 2.13).
A digital option is a kind of an option ”bet”, in which the holder of the option receives

a fixed amount (one unit of money) in the case the underlying asset price S belongs to the
interval (E1, E2). It means that the terminal pay–off diagram is given by:

V (S, T ) = 1, if S ∈ (E1, E2), V (S, T ) = 0 otherwise . (2.34)

We refer the reader for other important aspects of option pricing and practical usage of
various option strategies to books and lecture notes of Hull [65], Wilmott, Dewynne and
Howison [122], Melicherčı́k et al. [83], Baxter and Rennie [13].

4. Boundary conditions for derivative prices

When analyzing partial differential equations of the Black–Scholes type, it is often neces-
sary to prescribe initial (terminal) conditions and boundary conditions. Terminal conditions
were already discussed in the previous section and they depend on a chosen option strategy.
The aim of this section is to show how to prescribe boundary conditions for basic types of
options, such as call and put options.
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Figure 2.13. Terminal pay–off diagrams of Cash-or-nothing (left) and Asset-or-nothing
(right) option strategies for the strike price E = 50 and a digital option (bottom) with
E1 = 50.

4.1. Boundary conditions for call and put options

First, we discuss the boundary conditions for a European call options. The domain of pos-
sible values of the underlying asset variable S is the interval [0,∞). A boundary condition
for the call option price at the left end S = 0 follows from a simple reasoning: the option
on the asset that reached its default value S = 0 is zero as well, i.e., Vec(0, t) = 0. On
the other hand, for large values of the assets S → ∞ the option price should approach the
value S. More precisely, the option price V for large values of S has to approach the asset
price. More precisely, the boundary conditions for European call option on the asset paying
no dividends can be stated as follows:

Vec(0, t) = 0 , lim
S→∞

Vec(S, t)
S

= 1, (2.35)

for all t ∈ (0, T ). If the underlying asset pays continuous dividends with a dividend yield
rate q ≥ 0 then the boundary conditions have to have the form:

Vec(0, t) = 0 , lim
S→∞

Vec(S, t)
Se−q(T−t)

= 1, (2.36)

for all t ∈ (0, T ). It means that the option price for large values of the underlying asset
price S approaches the discounted asset price Se−q(T−t).
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The boundary conditions for a European put option follow from similar reasoning as
in the case of a call option. For large asset prices, the put option loses its value and hence
Vep(∞, t) = 0. On the other hand, for the asset in the default state S = 0, the value of the
put option equals the strike price discounted by the interest rate r > 0, i.e.

Vep(0, t) = Ee−r(T−t). (2.37)

In summary, the boundary conditions for a put option can be written as follows:

Vep(0, t) = Ee−r(T−t) , lim
S→∞

Vep(S, t) = 0, (2.38)

for all t ∈ (0, T ), regardless of the fact whether the asset pays or does not pay dividends.

4.2. Boundary conditions for combined option strategies

If our task is to determine boundary conditions for other option strategies different from
plain vanilla call or put options, then we have to decompose the terminal pay–off diagram
(for exercise time t = T ) of the given strategy into a linear combination of several call
respectively put options. Then the boundary conditions for remaining times t ∈ (0, T )
will be exactly the same linear combination of boundary conditions of call and put options
forming the given combined option strategy.

Problem section and exercises

1. In a more detail, derive the formula for the dispersion of a geometric Brownian mo-
tion (2.4), i.e.

V ar(Y (t)) = y2
0e

2µt+σ2t(eσ
2t − 1) .

2. Similarly as in the case of a Brownian motion, the geometric Brownian motion can
be also decomposed into its deterministic part and fluctuations part. Formally, by
differentiating the expression Y (t) = y0e

X(t), where dX(t) = µdt + σdw(t) we
obtain that for the increments dY (t) it holds: dY = y0e

XdX = Y dX . Hence we
formally obtain: dY (t) = µY (t)dt+σY (t)dw(t) should be satisfied. This derivation
is however in contradiction with (2.4). In which point of formal derivation we made
a mistake?

3. Let X be a Brownian motion with parameters µ and σ, i.e., dX(t) = µdt+ σdw(t).
Derive a stochastic differential equation for the following functions of the variableX
and time t: f(x, t) = x2; f(x, t) = ex+t; f(x, t) = ln(1 + x2).

4. Suppose that the underlying asset price follows a geometric Brownian motion with
parameters µ = 0.3750 and σ2 = 0.0669. These are estimates of parameters of the
geometric Brownian motion from daily Google stock prices, from February 7, 2007
to February 7, 2008. On February 14, 2007 the stock price was USD 459.1.
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• Find the expected value and draw a graph of the probability density function of
the asset price in May 7, 2007

• What is the probability that the asset price after one year will be lower than the
present price?

• What is the probability that after a half year the asset price will be higher than
USD 600?

5. The constract between the writer of an option and the buyer (holder) is like follows:
The option gives the holder to buy a stock for the strike price E1 at the expiration
time T . In the moment of exercising the option, the holder has to sell to the writer the
given stock for the strike price E2 where E1 < E2. What is the pay-off diagram of
this strategy at the expiration time T ? To which known strategy it is similar to? Can
this strategy be realized using plain vanilla call or put options?

6. From Itō’s lemma we know that the differential of the process x(t) = exp(w(t)) is
not just the term x(t)dw(t). Find a function x(t) = f(w(t), t), for which dx(t) =
x(t)dw(t). Can f depend on w only?

7. Let the asset price S satisfy the stochastic differential equation dS = µSdt+ σSdw.
Find a stochastic differential equation that is satisfied by its present discounted value
S̃(t) = e−rtS(t).

8. What is the dependence of the price of a European call or put option on the exercise
(strike) price? Is it an increasing or a decreasing function?

9. Denote by c(S,E, τ), p(S,E, τ) the prices of European call and put options with
the strike price E where the underlying asset price is S and the time remaining to
maturity is τ = T − t. The riskless interest rate is r > 0. By constructing a suitable
portfolio and eliminating the arbitrage opportunity prove the following properties:

(a) c(S,E1, τ) ≤ c(S,E2, τ) for E2 ≥ E1,

(b) p(S,E1, τ) ≤ p(S,E2, τ) for E1 ≥ E2,

(c) S −Ee−rτ ≤ c(S,E, τ) ≤ S,

(d) (E2 −E1)e−rτ ≤ c(S,E1, τ)− c(S,E2, τ) for E1 ≥ E2,

(e) c(S,E, τ) and p(S,E, τ) are convex functions of strike price E.

10. Assign the following processes to their trajectories shown by the graphs in Fig. 2.14:

(a) x1(t) = 5 + 2t+ 3w(t),

(b) x2(t) = −2t+ w(t),

(c) x3(t) = 5 + 2t+ w(t),
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(d) x4(t) = 2t+ w(t).

11. Find the probability distribution of the following random variables:

(a) w(2),

(b) w(5)− w(3),

(c) x(t) = 1 + 2t+ 3w(t), where t is an arbitrary positive number, i.e., the distri-
bution function for the value of the process x(t) = 2t+ 3w(t) at time t),

(d) w(1) + w(2) (note that w(1) and w(2) are not independent),

(e) exp(t+ 0.3w(t)) where t is an arbitrary positive number,

(f) exp(0.05w(t)) where t is an arbitrary positive number.

12. Suppose that the underlying asset price S is given by the formula S(t) =
S(0)eµt+σw(t) where µ > 0. Consider the asset price after t years and the proba-
bility that it will be higher than the present price. How does this probability depend
on t?





Chapter 3

European style of options

The aim of this chapter is to derive explicit formulae for pricing European style of
options. The basic characteristic of the European style of option contracts is the fact that
they can be exercised at the predetermined exercise (maturity) time t = T only. We show
that, for this type of option constracts, it is possible to derive an explicit formula for a
solution to the Black–Scholes partial differential equation for pricing options. First, we
concentrate on plain vanilla call and put options. Then we show how to extend the call/put
option pricing formulae to combined option strategies studied in the previous chapter.

1. Pricing plain vanilla call and put options

With regard to the Black–Scholes model for pricing derivative securities (see previous chap-
ter), the partial differential equation describing the evolution of the price of an option written
on a stock paying continuous dividends has the following form

∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0 , (3.1)

V (S, T ) = V̄ (S), S > 0, t ∈ [0, T ] .

The meaning of respective variables is the following: V = V (S, t) is the price of a Euro-
pean option written on the underlying asset having S > 0 its present spot price at a time
t ∈ [0, T ] and T > 0 is the expiration time of the option. The remaining model param-
eters are: σ > 0 is a volatility of the stock, i.e., the standard deviation of the stochastic

35



36 Chapter 3

time evolution of the underlying stock prices, r > 0 is an interest rate a continuously com-
pounded riskless zero-coupon bond and q is a continuous annualized dividend yield paid by
the stock.

Finally, we recall that, in the case of European call option, the terminal condition
V̄ (S) = V (S, T ) at the expiration time is given by the function

V̄ (S) = (S − E)+ =
{
S − E, for S ≥ E
0, for 0 < S < E ,

where E is the expiration (strike) price at which the option contract is signed. In the case
of a put option, the terminal condition reads as follows:

V̄ (S) = (E − S)+ =
{
E − S, for 0 < S ≤ E
0, for E < S .

The main idea of construction of an explicit solution to equation (3.1) with a given
terminal condition consists in a sequence of transformations of this equation into a basic
form of a parabolic equation

∂u

∂t
− a2∂

2u

∂x2
= 0, (x, t) ∈ (−∞,∞)× [0, T ],

with the prescribed initial condition.
1. step - Transformation of time. We transform the time t ∈ [0, T ] such that it flows just

in the opposite direction, i.e., from the expiration time T to the initial time t = 0. To this
end, we introduce a new variable τ = T − t and set

W (S, τ) = V (S, T − τ), and so V (S, t) = W (S, T − t) .

Using the relation dt = −dτ equation (3.1) is transformed into:

∂W

∂τ
− 1

2
σ2S2∂

2W

∂S2
− (r − q)S

∂W

∂S
+ rW = 0, (3.2)

W (S, 0) = V̄ (S), S > 0, τ ∈ [0, T ].

2. step - The logarithmic transformation of the underling stock price. It consists in the
substitution S = ex, x = lnS and introducing a new function

Z(x, τ) = W (ex, τ), and so W (S, τ) = Z(lnS, τ) .

Notice that S ∈ (0,∞) if and only if x ∈ (−∞,∞). Using the chain rule for differentiation
we obtain

∂Z

∂x
= S

∂W

∂S
,

∂2Z

∂x2
= S2∂

2W

∂S2
+ S

∂W

∂S
= S2∂

2W

∂S2
+
∂Z

∂x
.
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Equation (3.2) can be then rewritten in the form:

∂Z

∂τ
− 1

2
σ2∂

2Z

∂x2
+

(
σ2

2
− r + q

)
∂Z

∂x
+ rZ = 0,

Z(x, 0) = V̄ (ex), −∞ < x <∞, τ ∈ [0, T ].

3. step - Transformation into the basic parabolic partial differential equation
∂u
∂t − a2 ∂2u

∂x2 = 0. Terms containing the lower order derivatives Z and ∂Z
∂x can be eliminated

by an exponential transformation

u(x, τ) = eαx+βτZ(x, τ), i.e. Z(x, τ) = e−αx−βτu(x, τ) ,

where constants α, β will be specified later. We obtain

∂Z

∂x
= e−αx−βτ

(
∂u

∂x
− αu

)
,

∂2Z

∂x2
= e−αx−βτ

(
∂2u

∂x2
− 2α

∂u

∂x
+ α2u

)
,

∂Z

∂τ
= e−αx−βτ

(
∂u

∂τ
− βu

)
.

For the new transformed function u we may therefore conclude that it is a solution to the
partial differential equation

∂u

∂τ
− σ2

2
∂2u

∂x2
+A

∂u

∂x
+Bu = 0 ,

u(x, 0) = eαxV̄ (ex),

where the coefficients A,B satisfy

A = ασ2 +
σ2

2
− r + q , a B = (1 + α)r − β − αq − α2σ2 + ασ2

2
.

By a simple algebraic computation, we find that the constants α, β can be chosen in such a
way that the terms A,B are vanishing. Indeed,

α =
r − q

σ2
− 1

2
, β =

r + q

2
+
σ2

8
+

(r − q)2

2σ2
. (3.3)

With this choice of coefficients α, β, the resulting equation for the function u has the form

∂u

∂τ
− σ2

2
∂2u

∂x2
= 0, (3.4)

u(x, 0) = eαxV̄ (ex), −∞ < x <∞ , τ ∈ [0, T ] .
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4. step - Applying the Green formula for a solution to the heat equation. It is well-
known fact (see e.g., [104, Theorem 4.1.1]), that equation (3.4) has an explicit solution
u(x, τ), which can be written as a convolution of the initial condition with the Green func-
tion. The explicit formula has the form of an integral:

u(x, τ) =
1√

2σ2πτ

∫ ∞

−∞
e−

(x−s)2

2σ2τ u(s, 0) ds .

Now, by a sequence of backward substitutions u 7→ Z 7→W 7→ V, we finally obtain:

V (S, T − τ) = e−βτe−α lnSu(lnS, τ),

and hence

V (S, T − τ) =
e−βτ√
2σ2πτ

S−α
∫ ∞

−∞
e−

(ln S−s)2

2σ2τ eαsV̄ (es) ds . (3.5)

For the European call option we have V̄ (S) = (S − E)+ and so the relation (3.5) can be
further simplified as follows:

V (S, T − τ) =
e−βτ√
2σ2τ

S−α
1√
π

∫ ∞

lnE
e−

(ln S−s)2

2σ2τ eαs(es −E) ds .

The substitution y = s− lnS leads to:

V (S, T − τ) =
e−βτ√
2σ2τ

1√
π

∫ ∞

− ln S
E

e−
y2

2σ2τ

(
Se(1+α)y − Eeαy

)
dy . (3.6)

A practical computation using the above formula requires rewriting the price V into a form
containing elementary or special functions.

Recall that the cumulative distribution function N(x) and the error function erf(x) of
the normal distribution are defined by means of the Euler integral as follows:

N(x) =
1√
2π

∫ x

−∞
e−

ξ2

2 dξ ,
1− erf (x)

2
=

1√
π

∫ ∞

x
e−ξ

2
dξ. (3.7)

The following identities are useful:

erf(−x) = −erf(x),
1
2

(
1 + erf

(
x√
2

))
=

1√
2π

∫ x

−∞
e−ξ

2/2dξ = N(x) .

for each x ∈ R.
Let us consider the integral

I1 =
e−βτ√
2σ2τ

1√
π

∫ ∞

− ln S
E

e−
y2

2σ2τ
+(1+α)y dy .



European style of options 39

-4 -2 0 2 4
x

0

0.2

0.4

0.6

0.8

1

N
Hx
L

-3 -2 -1 0 1 2 3
x

-1

-0.5

0

0.5

1

er
fH

xL

Figure 3.1. A graph of the cumulative distribution function N(x) and the error function
erf(x) of a normal distribution.

By introducing a substitution ξ = y√
2σ2τ

− 1+α
2

√
2σ2τ and using relations (3.3) we obtain

− y2

2σ2τ
+ (1 + α)y = −ξ2 + (1 + α)2

σ2τ

2
= −ξ2 + (β − q)τ.

Hence

I1 = e−qτ
1√
π

∫ ∞

− 1+α
2

√
2σ2τ− ln S

E√
2σ2τ

e−ξ
2
dξ

=
e−qτ

2

[
1− erf

(
−1 + α

2

√
2σ2τ − ln S

E√
2σ2τ

)]

=
e−qτ

2

[
1 + erf

(
1√
2

(r − q + σ2

2 )τ + ln S
E

σ
√
τ

)]
.

By introducing another substitution ξ = y√
2σ2τ

− α
2

√
2σ2τ we can compute the integral

I2 =
e−βτ√
2σ2τ

1√
π

∫ ∞

− ln S
E

e−
y2

2σ2τ
+αy dy.

Using α2

2 σ
2 = β − r we simplify the transformed integral using the error function erf as

follows:

I2 =
e−rτ

2

[
1 + erf

(
1√
2

(r − q − σ2

2 )τ + ln S
E

σ
√
τ

)]
.

Substituting above results for the integrals I1 and I2 we can finally state the formula (3.6)
for the call option price V (S, 0):

V (S, T − τ) =
Se−qτ

2

[
1 + erf

(
1√
2

(r − q + σ2

2 )τ + ln S
E

σ
√
τ

)]

−Ee
−rτ

2

[
1 + erf

(
1√
2

(r − q − σ2

2 )τ + ln S
E

σ
√
τ

)]
.
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Figure 3.2. A graph of a solution for pricing the call option V (S, 0) together with its
terminal condition V (S, T ) (left). Solutions V (S, t) are depicted in various times T − t
remaining to expiration (right). Model parameters were chosen as: E = 60, σ = 0.29, r =
0.04, q = 0, T = 0.3.

Using the relations between functions N(x) and erf(x) we finally conclude

V (S, t) = Se−q(T−t)N(d1)−Ee−r(T−t)N(d2) , (3.8)

where

d1 =
(r − q + σ2

2 )(T − t) + ln S
E

σ
√
T − t

, d2 = d1 − σ
√
T − t. (3.9)

Expression (3.8) is called the Black–Scholes formula for pricing European call options. All
parameters appearing in the formula should be known in advance. Here is a typical example
of computation of an option price:

Example. The present spot price of the underlying IBM stock paying no dividends is
S = 58.5 USD. The historical volatility of the asset price process has been estimated to
the value σ = 29%, i.e., σ = 0.29. The annualized interest rate of zero-coupon bonds
is r = 4%, i.e., r = 0.04. We make a derivative contract of the call option type for the
exercise price E = 60 USD at the expiration time T = 0.3 years. Substituting these
variables into the Black–Scholes formula we obtain that the option price V = V (58.5, 0)
is approximately 3.348 USD. Fig. 3.2 and Fig. 3.3 show the prices of call and put options
V (S, 0) as functions of IBM stock price S.

2. Pricing put options using call option prices and forwards,
put-call parity

The procedure of derivation of the explicit formula for pricing a European call option from
the previous section could be easily adapted also to the case of pricing a European put op-
tion. However, a more elegant way is to make use of the so–called put–call parity. The
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Figure 3.3. A graph of a solution for pricing the put option V (S, 0) and its terminal condi-
tion of V (S, T ) (left). Solutions V (S, t) are depicted in selected times T − t to expiration
(right). Model parameters were chosen as: E = 60, σ = 0.29, r = 0.04, q = 0, T = 0.3.

main idea behind derivation of the put–call parity is rather simple. Suppose that our portfo-
lio consists of one call option held in the long position and one sold put option in the short
position. It means that our combined option strategy for such a portfolio (denoted by Vf )
has the terminal pay–off diagram

Vf (S, T ) = Vec(S, T )− Vep(S, T ).

An easy calculation yields the identity

Vf (S, T ) = (S − E)+ − (E − S)+ = S − E . (3.10)

Because of linearity of the Black–Scholes equation and uniqueness of its solution subject
to a given terminal condition, we can conclude that a difference of two solutions is again a
solution. Hence, for any time t ∈ (0, T ), the derivative security Vf satisfies the relationship:

Vf (S, t) = Vec(S, t)− Vep(S, t) .

On the other hand, it should be emphasized that pricing the derivative having its pay–off
diagram Vf (S, T ) = S − E is rather simple. In fact, it is just a difference between the
asset price S and a forward contract with the expiration price E, i.e., a right, but also an
obligation, to buy an asset for the expiration price E at expiration time T . As such, its price
is therefore a difference of the underlying asset price S discounted by a dividend yield q
and the expiration price discounted by the interest rate r, i.e.

Vf (S, t) = Se−q(T−t) −Ee−r(T−t) . (3.11)

This property can be also verified mathematically. Substituting the function (S, t) 7→
Se−q(T−t) − Ee−r(T−t) into the Black–Scholes equation we easily see that it is indeed
a solution satisfying the terminal condition Vf (S, T ) = S − E. Since Vf = Vec − Vep, we
obtain the relation between European call and put option in the form

Vec(S, t)− Vep(S, t) = Se−q(T−t) −Ee−r(T−t) , (3.12)
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Figure 3.4. A graph of a solution for pricing the bullish spread option strategy. The param-
eters were chosen as: E1 = 50;E2 = 60;σ = 0.29; r = 0.04; q = 0;T = 0.3.
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Figure 3.5. A graph of a solution for pricing the bought strangle option strategy. The
parameters were chosen as: E1 = 50;E2 = 70;σ = 0.29; r = 0.04; q = 0;T = 1.

which is also known as the put–call parity. Now, it follows from the put–call parity that the
price of a European put option is given by the formula

Vep(S, t) = Vec(S, t)− Se−q(T−t) +Ee−r(T−t) , (3.13)

which can be further simplified, by using a simple property of the cumulative distribution
function of normal distribution

N(−d) = 1−N(d),

to the form
Vep(S, t) = Ee−r(T−t)N(−d2)− Se−q(T−t)N(−d1) , (3.14)

where the coefficients d1, d2 are given by (3.9).
At the end of this section, we mention an interesting symmetry between European call

and put options prices given by formulae (3.8) and (3.14). Let us denote by Vec(S, t; E, r, q)
and Vep(S, t; E, r, q) the functions given as in (3.8) and (3.14). Then, it follows from the
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Figure 3.6. A graph of a solution for pricing the condor option strategy. The model param-
eters were chosen as: E1 = 50, E2 = 60, E3 = 65, E4 = 70, σ = 0.29, r = 0.04, q =
0, T = 0.3.

relations (3.9) between coefficients d1, d2 and explicit formulae for pricing call and put
options that the put-call symmetry

Vep(S, t; E, r, q) = Vep(E, t; S, q, r) (3.15)

is satisfied. This symmetry can be verbally explained as a transformation of call to put
option when we simultaneously exchange the underlying asset price and exercise price S ↔
E, as well as the interest rate and dividend yield r ↔ q. This relation is a straightforward
consequence of explicit pricing formulae (3.8), (3.14) and transformation d1 ↔ −d2 when
we exchange S ↔ E and r ↔ q.

3. Pricing combined options strategies: spreads, straddles, con-
dors, butterflies and digital options

The aim of this section is to illustrate solutions corresponding to prices of selected op-
tion strategies. In particular, we will consider bullish spreads, bought strangles, condors
and butterflies. We remind ourselves that, with regard to linearity of the Black–Scholes
parabolic partial differential equation, the superposition of solutions is possible. As a con-
sequence of this property, pricing formulae for combined option strategies, whose terminal
pay-off diagrams are linear combinations of call and/or put options, turn to be the same
linear combinations of corresponding call and/or put option prices given in (3.8) and (3.14)
with respective exercise prices. Several illustrative graphs of the solution V (S, 0) for pric-
ing a given option strategy together with terminal pay–off condition V (S, T ) are shown in
Fig. 3.4–3.7 (left). In figures placed in the right position we furthermore show intermediate
solution S 7→ V (S, t) for several times t ∈ [0, T ].
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Figure 3.7. A graph of solution to pricing butterfly option strategy. The parameters were
chosen as: E1 = 50, E2 = E3 = 60, E4 = 70, σ = 0.29, r = 0.04, q = 0, T = 0.3.

4. Comparison of theoretical pricing results to real market data

In this section we present practical comparison of the theoretical Black–Scholes formula
for pricing options to real financial market data. As examples we have chosen the IBM and
Microsoft underlying asset and their respective call option prices. By these examples we try
to convince the reader that as soon as we know the underlying stock spot price and model
parameters r > 0 (interest rate of a zero-coupon bond) and σ > 0 (volatility of the asset
price) then we are in a position to price the call (respectively put) options with the exercise
price E and the expiration time T .
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Figure 3.8. Time evolution (in the scale of minutes) of stock prices of IBM (left) and
Microsoft (right) from May 22, 2002.

In Fig. 3.8 we depict intraday stochastic evolution of the IBM and Microsoft underlying
stock prices from May 22, 2002. The horizontal axis is depicted in the time scale of minutes.
Next, in Fig. 3.9 (left) we show evolution of bid (offers to buy) and ask (offers to sell) prices
of the call option with the expiration time on June 2, 2002. In the right picture we compare
the computed price by the Black–Scholes formula and the mean value of bid and ask prices.
The theoretical Black–Scholes values of the call option were computed for the following
model parameters:
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Figure 3.9. An example of comparison of theoretical Black–Scholes prices of the IBM
call option price with real market call option data. Evolution of bid and ask option prices
(left) and comparison of their mean with the price computed by the Black–Scholes formula
(right).

• interest rate r = 5%,

• expiration price E = 70,

• expiration time T = 11 days,

• volatility σ = 41%.

We assumed that the underlying stock does not pay dividends. The comparison of real
and theoretical data for the case of Microsoft is shown in Fig. 3.10. In this case we have
assumed the following parameters:

• interest rate r = 5%,

• expiration price E = 35,

• expiration time T = 11 days,

• volatility σ = 61%.

It should be obvious that the theoretical Black–Scholes call option price is in a good
agreement with its market value. However, it should be emphasized that the most dis-
putable part of the computation consits in the appropriate choice of the volatility parameter
σ. Notice that, in order to achieve market option values, the volatility σ had to be chosen to
be much higher that it could be indicated from analysis of historical values of the underly-
ing asset. We will address this problem in the next chapter. It is related to the phenomenon
of the so–called implied volatility.
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Figure 3.10. An example of comparison of theoretical computation of a call Microsoft
option price with real market data. Evolution of bid and ask option prices (left) and com-
parison of their mean with computed price by means of the Black–Scholes formula (right).

5. Black–Scholes equation for pricing index options

In this section we turn our attention to the problem of pricing options on underlying virtual
assets represented by stock indices. In what follows, we will derive a multidimensional
generalization of the Black–Scholes parabolic equation whose solution represents the price
of a call or put option on a stock index.

Let us recall that the value of an index depends on n underlying asset prices Si, i =
1, . . . , n. Its value I can be defined as a weighted sum

I =
n∑

i=1

aiSi,

where ai > 0 are prescribed positive weights corresponding to the index definition. For
example, the Dow Jones Industrial Average (DJIA) is a price-weighted index. It consists
of 30 stocks of great American companies representing the U.S. economy. The Index in-
cludes a wide range of companies from financial services over computer companies to retail
companies. The Dow Jones Industrial Average can be calculated by the following formula:

DJIA =
30∑

i=1

Si (3.16)

where Si is the current market price of the i-th stock. Another popular index is the Standard
& Poor’s 500 Index. It is a capitalization-weighted index consisting of 500 stocks. It is
intended to represent a sample of leading companies in leading industries within the U.S.
economy. The formula for evaluation of the S&P 500 reads as:

SP =
500∑

i=1

aiSi, (3.17)
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where Si is the current market price of i-th stock and ai represents the market capitalization
of the i-th asset in the market.

The exact market definitions of the DJIA as well as Standard & Poor’s 500 Index are
divided by a common divisor in order to adjust the index value for events leading to no
change in company’s value but otherwise influencing the index, like e.g., stock splittings,
etc.

In general, index derivatives are contracts to buy or sell the index at the given expira-
tion time T . Examples of index derivatives are call and put index options. A mathematical
model describing the time evolution of the derivative value is well known as the multidi-
mensional Black-Scholes equation. Similarly, as in the case of a single underlying asset,
derivation of the governing equation consists of two steps. In the first step we make use of
the multidimensional variant of Itō’s lemma (see Chapter 2). With this instrument, we can
construct a stochastic differential equation governing the evolution of the derivative value
V as a function of time t and the vector ~S = (S1, . . . , Sn) of assets prices forming the
index. In the next step we construct a self-financing portfolio consisting of assets, an option
written on the index and risk-free bonds.

Concerning stochastic behavior of the underlying asset prices we will suppose that each
of them follows the stochastic differential equation representing the geometric Brownian
motion, i.e.

dSi
Si

= µidt+ σidZi, i = 1, 2, . . . , n,

where µi and σi denote the expected rate of return and the volatility of the asset i, dZi is the
differential of the Wiener process for the i-th asset. Let ρij denote the correlation coefficient
of dZi and dZj , i.e.

E(dZidZj) = ρijdt, i, j = 1, 2, . . . , n.

Notice that ρii = 1 for any i = 1, . . . , n. Our goal is to price the index option by a function

V = V (S1, S2, . . . , Sn, t)

depending on time t ∈ [0, T ] and a vector ~S = (S1, S2, . . . , Sn) ∈ Rn of underlying assets
forming the given index. According to the multidimensional variant of Itō’s lemma (see
Chapter 2) we obtain the following expression for the differential dV :

dV =


∂V

∂t
+

1
2

n∑

i,j=1

∂2V

∂Si∂Sj
ρijσiσjSiSj


 dt+

n∑

i=1

∂V

∂Si
dSi. (3.18)

Let us construct a synthetic portfolio consisting of the amount of QV index options with
the unit price V and amounts of QSi assets of the type i having the unit price Si for i =
1, . . . , n. By B we denote the price of a zero coupon risk-less bond. Similarly as in the
case of derivation of the Black–Scholes model for a single underlying asset, we assume the
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zero net investment in the portfolio, i.e.

n∑

i=1

SiQSi + V QV +B = 0. (3.19)

Furthermore, we assume that our portfolio is self-financed, meaning that

n∑

i=1

SidQSi + V dQV + δB = 0,

where dQSi , dQV and δB stand for respective changes in amounts of underlying assets,
options and the change of the money value in bonds needed for self-financing the portfolio.
Taking a differential of (3.19) we obtain

n∑

i=1

(SidQSi + dSiQSi) + dV QV + V dQV + dB = 0.

The total change dB of the money value in bonds can be expressed as a sum: dB =
rBdt+ δB, where r > 0 is the risk-less interest rate on bonds. Hence

n∑

i=1

dSiQSi + dV QV + rBdt = 0.

If we insert the differential dV given by (3.18) into the above equality and assume that the
amounts of underlying assets and options satisfy the condition:

QSi

QV
= − ∂V

∂Si
,

for i = 1, 2, . . . , n,we achieve a risk-less, delta hedged, self-financing portfolio. Moreover,
the option price V fulfills the multidimensional parabolic partial differential equation of the
form:

∂V

∂t
+

1
2

n∑

i=1

n∑

j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
+ r

n∑

i=1

Si
∂V

∂Si
− rV = 0, (3.20)

defined for 0 < Si <∞, t ∈ (0, T ). Equation (3.20) is called the multidimensional Black–
Scholes equation (cf. Kwok [75]). We also refer the reader for further details of derivation
of the model and numerical analysis based on the additive operator splitting technique to
the paper by Kilianová and Ševčovič [72].

The terminal condition at expiry t = T depends on the type of an option. For example,
if we consider the index call option then its pay–off diagram is given by

V (~S, T ) =

(
n∑

i=1

aiSi − E

)+

,
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where E is the exercise price.
In the rest of this section we focus our attention to the method how to obtain an ana-

lytical solution to the multidimensional Black-Scholes partial differential equation (3.20).
We can construct a solution V (~S, t) in the form of a convolution of the discounted initial
condition V (~S, T ) and the fundamental solution ψ to (3.20), i.e.

V (~S, T − τ) = e−rτ
∫

Rn

V (~ξ, T )ψ(~S − ~ξ, τ)d~ξ. (3.21)

It is easy to verify (see e.g., [104]) that V is a solution to (3.21) if and only if the funda-
mental solution function ψ satisfies the parabolic equation

∂ψ

∂τ
=

1
2

n∑

i=1

n∑

j=1

ρijσiσjSiSj
∂2ψ

∂Si∂Sj
+ r

n∑

i=1

Si
∂ψ

∂Si

and the initial condition ψ(~S − ~ξ, 0) = δ(~S − ~ξ), where δ(~x) stands for the Dirac function
of a vector argument ~x ∈ Rn. It means that

∫

Rn

f(~ξ)δ(~x− ~ξ) d~ξ = f(~x),
∫

Rn

δ(~ξ) d~ξ = 1,

for any smooth compactly supported function f : Rn → R.
In order to find an explicit form of the function ψ we apply a series of transformations

of variables. By using the following transformation:

yi =
1
σi

(
r − σ2

i

2

)
τ +

1
σi

lnSi , i = 1, 2, . . . , n

and putting Φ(~y, τ) = ψ(~S, τ) we conclude that Φ is a solution to the following n-
dimensional diffusion equation

∂Φ
∂τ

=
1
2

n∑

i=1

n∑

j=1

ρij
∂2Φ
∂yi∂yj

, −∞ < yi <∞, τ > 0 . (3.22)

Now we can transform the variable y ∈ Rn into a new variable x ∈ Rn using a linear
transformation given by the n× n matrix Q such that

x = Qy.

Since the coorelation matrix R = (ρij) is symmetric and positive definite there exists a
matrix Q such that

QRQT = I,

where I is the n× n identity matrix. With this transformation we can rewrite the parabolic
equation (3.22) in the standard form of a heat equation for the transformed function
Φ̃(x, τ) = Φ(y, τ) = Φ(Q−1x, τ):

∂Φ̃
∂τ

=
1
2
∆Φ̃,
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where ∆ is the so-called Laplace operator, i.e. ∆Φ̃ =
∑n

i=1
∂2Φ̃
∂x2

n
. A solution to the above

equation is known in the explicit form (cf. [104]). It is given by

Φ̃(~x, τ) =
1

(2πτ)
n
2

exp
(
−‖~x‖|

2

2τ

)
,

where ‖|~x‖|2 =
∑n

i=1 x
2
i . By returning to original variables we finally obtain the solu-

tion V (~S, T − τ) to (3.20) given by formula (3.21) in which we have to insert and the
fundamental solution ψ constructed by the procedure described above.

Although the transformation method for pricing index options lead to the explicit for-
mula (3.21) for the option price V (S, t) it should be emphasized that numerical computation
of a high dimensional integral appearing in the explicit formula (3.21) is a hard task. In or-
der to accurately compute the integral in (3.21) new numerical methods and techniques are
needed. In particular, Monte–Carlo simulations are quite often used when computing high
dimensional integrals. In [95] Reisinger and Wittum presented an efficient sparse grid dis-
cretization of high dimensional options that can be achieved by hierarchical approximation.

Problem section and exercises

1. Compute the value of a bought straddle strategy consisting of purchasing one call
option and one put option written on the same underlying stock with the same exercise
prices E and the same exercise time T . Perform the computation for the following
model parameters: the price of stock not paying dividends is S = 55, the stock
volatility is σ = 0.4, interest rate is r = 0.1, expiration of the options is in 3 months
(i.e., T = 0.25 years), exercise price E = 50.

2. How does the price of a European call option depend on the interest rate r? Plot a
graph of dependence of the call option price on the interest rate, when the price of
the stock paying no dividends is S = 115, volatility of the stock is σ = 0.3, and the
option expires in 6 months with the strike price is E = 110.

3. A contract between the writer of the buyer (holder) of an option is as follows: the
option gives the holder the right to buy the stock at the exercise price E1 at the
expiration time T . However, at the moment of exercising the option the holder has
to sell the writer the stock for the expiration price E2, where E1 < E2. Compute
the value of this strategy for the following data: price of the stock that does not
pay dividends is S = 65, volatility of the stock is σ = 0.5, interest rate is r = 0.06,
expiration time is 6 months, (i.e., T = 0.5 years), strike prices areE1 = 50, E2 = 60.

4. Compute the price of a bullish spread strategy consisting of purchasing a call option
with a lower strike price and selling a call option with a higher strike priceE2 with the
same expiration time. Perform the computation with the following model parameters:
the price of the underlying stock paying no dividends is S = 55, volatility of the stock
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is σ = 0.4, interest rate is r = 0.1, expiration time is 3 months (i.e., T = 0.25 years),
strike prices are E1 = 50, E2 = 60.

5. Compute the price of a bought straddle strategy consisting of purchasing call and put
options with a strike price E. Perform the computation for the following data: the
price of the underlying stock paying no dividends is S = 55, volatility of the stock is
σ = 0.4, interest rate is r = 0.05, dividend rate of the continuously paying dividends
is q = 0.03, expiration time T is 3 months (i.e., T = 0.25 years), the strike price is
E = 60.

6. How does the price of a European put option depend on the volatility σ of the stock
price? Find the expression for the factor Vega, i.e., the derivative of the European
put option price with respect to the volatility. Is it an increasing or a decreasing
dependence? What is the limit of the European put option price when the volatility
approaches zero?

7. Show that a graph of a European call option on the stock paying nontrivial continuous
dividends always intersects its pay–off diagram for all sufficiently large values of the
stock price. It means that Vec(S, t) < S−E for S large enough. Analyze the case of
a European put option.





Chapter 4

Analysis of dependence of option prices
on model parameters

The purpose of this chapter is to study various sensitivity factors of financial deriva-
tives. Using these factors we are able to analyze and better understand behavior of financial
derivatives. In the first part of this chapter, we concentrate on the problem of estimating the
historical volatility of a stochastic process describing the evolution of the underlying asset
price. We discuss the computation of the so–called historical volatility and we show how
to compute its value from real market data. Then we focus on a new concept of volatility
represented by the so–called implied volatility. It is obtained by means of calibration of op-
tion prices to financial market data. Finally, we present and discuss other sensitivity factors
yielding information about the dependence option prices with respect to various model pa-
rameters. These sensitivity factors (often called - according to the Greek alphabet - greeks)
give us a more complete information about the behavior of derivatives prices.

1. Historical volatility of stocks

In this section we focus our attention on the methodology how to obtain an estimate of
the volatility parameter σ. It characterizes the size of random fluctuations of the prices of
underlying stock asset prices. The estimate of σ that can be computed from the known
historical prices of the underlying asset is referred to as the historical volatility.

Assume that the underlying stock price S = S(t) follows a geometric Brownian motion

53
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with a drift µ and volatility σ, i.e.

dS = µSdt+ σSdw. (4.1)

According to Itō’s lemma we know that the stochastic process Xt = lnSt is a Brownian
motion with a drift µ− 1

2σ
2 and volatility σ. It means that

dX =
(
µ− 1

2
σ2

)
dt+ σdw.

Our aim is to estimate the parameter σ of the stochastic process (4.1). Suppose that we
are know historical asset prices Sti , i = 0, 1, . . . , n, at times Tstart = t0 < t1 < · · · <
tn = Tend, over some interval [Tstart, Tend]. We assume time intervals are equidistant, i.e.,
ti+1− ti = τ for all i = 0, 1, . . . , n− 1. Then for the differences X(ti+1)−X(ti) we have

X(ti+1)−X(ti) = (µ− 1
2
σ2)τ + σ(w(ti+1)− w(ti)).

Recall that for increments of the Wiener process w(t) we have w(ti+1) − w(ti) = Φ
√
τ ,

where Φ ∼ N(0, 1) is a standardized normally distributed random variable. Since
X(ti+1)−X(ti) = ln(S(ti+1)/S(ti)), then the sample statistical dispersion of independent
returns {ln(S(ti+1)/S(ti)), i = 0, 1, . . . , n − 1} is an unbiased estimate of the parameter
σ2τ . Thus the estimate of the historical volatility σhist can be expressed by the following
formula:

σ2
hist =

1
τ

1
n− 1

n−1∑

i=0

(
ln
S(ti+1)
S(ti)

− γ

)2

, (4.2)

where γ is an estimate for the mean return, i.e.

γ =
1
n

n−1∑

i=0

ln
S(ti+1)
S(ti)

.

Let us emphasize that the numerical value of the estimated parameter σ depends on a se-
lected time scale. For example, if we express all the time data (hence also the time difference
τ ) in years, the resulting estimate of the historical volatility is also expressed on the yearly
basis, i.e., in percents per annum (p.a.).

In Fig. 4.1 (left) we show prices of the IBM stock. We also plot call option prices with
the strike strike price E = 80. The time series of both stock and options prices are depicted
in a scale of minutes. It means that the length of the time interval τ = 1/(24 × 60 × 365)
years. The data were smoothed by a moving average through a five minute time interval.
Using the formula (4.2) we estimate the historical volatility to be σhist = 0.2306 p.a.

1.1. A useful identity for Black–Scholes option prices

In the remaining part of this section we first recall the formulae for pricing European call
and put options. Moreover, we show some useful mathematical properties, which will be
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Figure 4.1. Minute behavior of prices of the IBM stock from May 21, 2002 (left) and call
option prices of this stock with the strike price E = 80 with expiry on July 2, 2002, i.e.,
T − t = 43/365 years (right).

used later in analysis the derivatives prices from the point of view of their sensitivity with
respect to change of model parameters.

Recall that prices V ec and V ep of the European call and put options are given by closed
form formulae (3.8) and (3.14), i.e.

V ec(S, t) = Se−q(T−t)N(d1)−Ee−r(T−t)N(d2) , (4.3)

V ep(S, t) = Ee−r(T−t)N(−d2)− Se−q(T−t)N(−d1) , (4.4)

where

d1 =
ln S

E + (r − q + σ2

2 )(T − t)
σ
√
T − t

, d2 = d1 − σ
√
T − t. (4.5)

Since the price of a European call and put option depends not only on the underlying
stock asset price S and time t, but also on the parameters of the Black–Scholes model:
E, T, r, q, σ, we can write

V ec(S, t) = V ec(S, t; E, T, r, q, σ),
V ep(S, t) = V ep(S, t; E, T, r, q, σ).

In the following lines, we derive an important identity, which will be used several times
in computations of partial derivatives of a European option price with respect to the stock
price, as well as to other model parameters.

We begin with computing the difference (d2
1 − d2

2)/2. Since d2 = d1 − σ
√
T − t, we

obtain

d2
1 − d2

2

2
=

(d1 + d2)(d1 − d2)
2

=
2 ln S

E + 2(r − q)(T − t)
σ
√
T − t

σ
√
T − t

2

= ln
S

E
+ (r − q)(T − t),
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Figure 4.2. Comparison of an intraday evolution of prices of a European call option price
computed from the Black–Scholes formula V ec(Sreal(t), t;σhist) (dashed line) and real
market prices Vreal(t) (solid line), where σhist = 0.2306 p.a.

and hence
d2

1

2
=
d2

2

2
+ ln

S

E
+ (r − q)(T − t).

For derivative of the cumulative distribution function N ′(d) of the standardized normal
distribution we have

N ′(d) =
1√
2π

exp(−d2/2).

Using the above aidentity for the difference (d2
1 − d2

2)/2 we finally obtain an important
identity:

Se−q(T−t)N ′(d1)−Ee−r(T−t)N ′(d2) = 0 . (4.6)

2. Implied volatility

In Fig. 4.2 we compare the real market data of call options and options computed by the
formula (4.3) for pricing European call option, where the volatility parameter σ was chosen
to be the historical volatility of time evolution of the underlying stock of IBM displayed in
Fig. 4.2. It should be obvious from this figure that the market price (solid line) is under-
estimated by the theoretical Black–Scholes value (dashed line). Since the option price is
an increasing function of volatility σ, it means that the historical volatility σhist is too low
for the theoretical Black–Scholes call option price V ec to match the market data accurately.
This observation leads us to a new concept of the so–called implied volatility.

The implied volatility σimpl > 0 is such a value of the volatility parameter σ, for which
the theoretical call (put) option price V (S, t;σ) for given time t and the stock price S =
Sreal(t) coincides with the market value of the option Vreal(t). It means that the task of
finding the implied volatility σimpl for a given option with given expiration time T and
strike price E consists in solving the following inverse function problem:

Vreal(t) = V (Sreal(t), t;σimpl). (4.7)
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Next we have to discuss the problem of existence and uniqueness of implied volatility
σimpl > 0, which satisfies (4.7). In the first step we show that the price of a call or put
option is an increasing function of the volatility σ. Intuitively this is an obvious fact, since
with increasing volatility of the underlying stock, the role, and consequently also the price,
of a hedging instrument such as a call or put option increases. Analytically we prove this
property by differentiating the functions V ec and V ep with respect to the parameter σ and
to show that this derivative is always positive. From the formula (4.3) we deduce

∂V ec

∂σ
= Se−q(T−t)N ′(d1)

∂d1

∂σ
− Ee−r(T−t)N ′(d2)

∂d2

∂σ

=
(
Se−q(T−t)N ′(d1)− Ee−r(T−t)N ′(d2)

) ∂d1

∂σ

+Ee−r(T−t)N ′(d2)
√
T − t,

because d2 = d1 − σ
√
T − t. With regards to the fundamental formula (4.6), the term

Se−q(T−t)N ′(d1)− Ee−r(T−t)N ′(d2) vanishes and so we obtain

∂V ec

∂σ
= Ee−r(T−t)N ′(d2)

√
T − t.

In the same way, for a European put option we obtain:

∂V ep

∂σ
= Ee−r(T−t)N ′(−d2)

√
T − t.

Since N ′(−d2) = N ′(d2) = exp(−d2
2/2)/

√
2π, we finally conclude that

∂V ec

∂σ
=
∂V ep

∂σ
= Ee−r(T−t)N ′(d2)

√
T − t. (4.8)

Recall that equality (4.8) for a put option also easily follows from the put–call parity.
It means that ∂V ec

∂σ = ∂V ep

∂σ > 0, and hence the price of the European call and put
options is an increasing function with respect to the volatility parameter σ > 0. Graphical
dependence of the option price on the volatility for the model parameters E = 80, r =
0.04, q = 0 and time to expiry T − t = 43/365 years is shown in Fig. 4.3.

In the next step we determine the interval for option prices, in which the existence of
a solution σimpl to equation (4.7) can be guaranteed. The basis for construction of this
interval follows from the computation of the limit of an option price as σ → 0 and σ →∞.
Clearly, it holds

lim
σ→0

d1 = lim
σ→0

d2 =
{−∞ for ln(S/E) + (r − q)(T − t) < 0,

+∞ for ln(S/E) + (r − q)(T − t) > 0.

Since for the distribution function N we have N(−∞) = 0, N(+∞) = 1, we obtain

lim
σ→0

V ec(S, t;σ) = max(Se−q(T−t) −Ee−r(T−t), 0),

lim
σ→0

V ep(S, t;σ) = max(Ee−r(T−t) − Se−q(T−t), 0). (4.9)
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Figure 4.3. A price of European call option as a function of the volatility σ for model
parameters E = 80, S = 84.45, r = 0.04, q = 0, T − t = 43/365.

On the other hand, limσ→∞ d1 = +∞, limσ→∞ d2 = −∞, and hence

lim
σ→∞V

ec(S, t;σ) = Se−q(T−t),

lim
σ→∞V

ep(S, t;σ) = Ee−r(T−t). (4.10)

Using the already proved fact that the option price is an increasing function of volatility σ,
we have shown the following proposition:

Theorem 4.1. If a market price of a European call option V ec
real satisfies the inequalities

(Sreale−q(T−t) − Ee−r(T−t))+ < V ec
real < Sreale

−q(T−t),

where Sreal is a market price of the underlying stock, then there exists the unique implied
volatility σecimpl > 0 such that

V ec
real = V ec(Sreal, t;σecimpl).

If a market price of a European put option V ep
real satisfies the inequalities

(Ee−r(T−t) − Sreale
−q(T−t))+ < V ep

real < Ee−r(T−t),

then there exists the unique implied volatility σepimpl > 0 such that

V ep
real = V ep(Sreal, t;σ

ep
impl).

Notice that the interval of values for which the market price can belong to, is not very
restrictive. For example, for a call option the upper bound Sreale−q(T−t) is higher than the
value of the terminal pay–off diagram (S − E)+ of a call option, in the neighborhood of
which we can expect the option price. An analogous consideration can be done in the case
of restrictions on the put option price.
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Figure 4.4. A graphical solution of the equation Vreal = V ec(Sreal, t;σimpl) for the market
values of the stock price Sreal = 84.45 and the call option Vreal = 7.25 computed for
model parameters E = 80, r = 0.04, q = 0, T − t = 43/365.
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Figure 4.5. A plot of the implied volatility σimpl for the option on IBM stock from 21st May
2002 (tick marks represent scale of minutes). The average implied volatility is σ̄impl =
0.3733 p.a.

An example of a graphical solution of the equation Vreal = V ec(Sreal, t;σimpl) for the
case of finding the implied volatility of the call option on IBM stock is shown in Fig. 4.4.

Another way of computing the implied volatility can be based on considering a longer
time interval of option price. In this case it is not possible to expect that it would be possible
to find one common value of the implied volatility. We can, however, look for an implied
volatility by minimization of the sum of squares of differences between option’s market
prices and their theoretical values obtained from the Black–Scholes formula. This idea
leads us to a problem of minimizing the function U : (0,∞) → (0,∞) defined as:

U(σ) =

(
1
m

m∑

i=1

|Vreal(ti)− V (Sreal(ti), ti;σ)|2
) 1

2

,

where V (S, t;σ) is the price of a European call (put) option, Sreal(t) is the real market
underlying stock price at time t and Vreal(t) is the real market price of a call (put) option at
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Figure 4.6. A graph of the function U = U(σ) for a call option written on the IBM stock
from May 21, 2002. A value of the parameter σ, in which the function U attains its mini-
mum, is σimpl = 0.3734 p.a.
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Figure 4.7. A comparison of values of a European call option V ec(Sreal(t), t;σimpl)
(dashed line) and market prices Vreal(t) (solid line) in the case we take the time averaged
implied volatility σtaimpl = 0.3733 p.a.

time t. The parameter σ corresponds to the volatility of a stochastic process describing the
underlying stock price evolution. The argument of a minimum of this function can be taken
to be an estimate of the time averaged implied volatility σtaimpl based on the time series of
underlying stock and option prices, i.e.

σtaimpl = arg min
σ>0

U(σ).

Notice that in the case of m = 1, the minimum (with a zero optimal value) of the
function U is attained exactly at the value σimpl > 0 corresponding to the solution of
equation (4.7) at the time t.

In Fig. 4.7 we choose the volatility parameter σimpl = 0.3733 obtained by minimiz-
ing the function U over the whole intraday time interval of 360 minutes, i.e., m = 360.
Comparing with results based on the usage of the historical volatility shown in Fig. 4.2 it
is now clear that using the implied volatility results in a more accurate matching between
theoretical and time averaged real market data.
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Figure 4.8. A volatility smile of the implied volatility for IBM options from May 21, 2002
with the maturity July 2, 2002.

3. Volatility smile

In this section we briefly mention an interesting phenomenon closely related to the concept
of implied volatility. At given time t we have only single underlying asset price listed. On
the other hand, several values of options with the same maturity T but written on different
strike prices E1, E2, . . . , Ek are listed at the given time t. Hence, for every option it is
possible to compute the value of implied volatility corresponding to the underlying asset
price S and strike price Ei, i = 1, . . . , k. It is often the case that the computed implied
volatility need not be necessarily the same for all options. This is rather a rare situation. We
often find examples, when dependence of the implied volatility on the ratio S/E of asset
to strike price is a convex function in the neighborhood of the value S/E ≈ 1. In Fig. 4.8
we have a practical example of this phenomenon for the case of call options on IBM stocks
from May 21, 2002 with maturity July 2, 2002 and strike prices E = 65, 70, 75, . . . , 150.
In the neighborhood of S/E ≈ 1 the implied volatility attains its global minimum and the
function is convex in the neighborhood of 1. A slang name volatility smile comes from the
shape of a graph implied volatility reminding us a smile in the neighborhood of S/E ≈ 1.

4. Delta of an option

The basic sensitivity factor, which is often evaluated when analyzing the market data, is
dependence of a change of a derivative price with respect to a change of the price of the
underlying asset stock. In the infinitesimal form this factor can be written as a partial
derivative:

∆ =
∂V

∂S
. (4.11)

The importance of the factor ∆ is especially in its close relation with construction of the
risk-neutral portfolio consisting of amount ofQS underlying stocks with a unit price S, and
QV options with a unit price V written on the stock and the riskless bonds. When deriving
the Black–Scholes partial differential equation, in order to eliminate the stochastic random
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part of the portfolio we came to the conclusion (2.15). It determines the ratio of amounts of
stocks and options in the portfolio, i.e.

QS
QV

= −∂V
∂S

= −∆.

In means that the value of the sensitivity parameter ∆ yields the ratio between the stocks
and options leading to a risk-neutral portfolio. For example, if the factor ∆ for call option
equals 0.7, then in order to obtain a risk-neutral portfolio containing QS = 7 stock, we
need to have QV = −10 call options on that stock.

For European call and put options we are able to derive an explicit formulae for the
factor ∆. We differentiate the functions V ec and V ep with respect to S. For a call option, it
follows from (4.3), the relationship ∂d1/∂S = ∂d2/∂S and the identity (4.6) that:

∆ec =
∂V ec

∂S
= Se−q(T−t)N ′(d1)

∂d1

∂S
− Ee−r(T−t)N ′(d2)

∂d2

∂S

+e−q(T−t)N(d1) = e−q(T−t)N(d1).

Similarly, for a European put option we obtain:

∆ep =
∂V ep

∂S
= Se−q(T−t)N ′(−d1)

∂d1

∂S
−Ee−r(T−t)N ′(−d2)

∂d2

∂S

−e−q(T−t)N(−d1) = −e−q(T−t)N(−d1).

In summary, we derived the following formulae:

∆ec = e−q(T−t)N(d1),
∆ep = −e−q(T−t)N(−d1). (4.12)

A graph of dependence of the factor ∆ on the stock price S for parameters E = 80, r =
0.04, q = 0, T − t = 43/365 is shown in Fig. 4.9.
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Figure 4.9. Dependence of the factor ∆ = ∂V
∂S of a call (left) and put option (right) on the

stock price S.
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Experimentally we can obtain the parameter ∆ from the real market data in such a way
that we approximate the derivative ∂V

∂S at the time ti by a ratio of differences of the option
price with respect to the changes of underlying asset prices, i.e.,

∆ti =
∂V

∂S
(Sti , ti) ≈

Vti − Vti−1

Sti − Sti−1

. (4.13)

However, it is necessary to emphasize that the direct use of the formula (4.13) and taking
into account non-smoothed data from the option market would often lead to unusable re-
sults, since small price differences Sti −Sti−1 in the numerator of the right hand side of the
equality (4.13) will result in high values of the parameter ∆. Hence it is necessary to use
pre-smoothed time series of option and underlying stock asset prices, as well as smoothing
the resulting values of parameter ∆. To smooth the time series data of S it is possible to use
a simple arithmetic averaging of the time series values for some specified period. Fig. 4.10
depicts pre-smooth prices IBM stock and option prices (compare with nonsmoothed data in
Fig. 4.1!). In this example, we have used the arithmetic average with a length of 60 minutes.
A practical computation of the factor ∆ by the formula (4.13) and usage of these smoothed
time series of underlying stock and option prices is depicted in Fig. 4.11 (left).

The factor ∆ can be experimentally determined also by using the explicit formula for
the price of a European call (put) option (see (4.3) and (4.4)). In Fig. 4.11 (right) we show
the time series of the factor ∆ computed as ∆ec

ti = ∂V ec

∂S (Sti , ti;σimpl). Notice that in
Fig. 4.11 (right) we show the behavior of the factor ∆ec scaled to the interval 0.67− 0.72.
These values correspond to the dashed line in the left.
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Figure 4.10. Pre-smoothed time series of IBM stock asset price from May 21, 2002 (left)
and the time series of pre-smoothed call option with the strike priceE = 80 with expiration
on July 21, 2002, i.e., T − t = 43/365. To smooth the time series we have used the
arithmetic average with the length 60 minutes.

5. Gamma of an option

Not less important sensitivity factor, that we often evaluate when analyzing the market data,
is represented by dependence of change of the factor ∆ itself on change of the underlying
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Figure 4.11. Left: pre-smoothed time dependence of the function ∆ computed from the
IBM stock prices from May 21, 2002 using the smoothed data from the Fig. 4.10. To smooth
the function ∆ we have again used the arithmetic average with the length 60 minutes. The
dashed line in the left and in the zoomed graph (right) corresponds to the value ∆ec(t) =
∂V ec

∂S (Sreal(t), t;σimpl).

asset stock price. This factor, denoted as Gamma of the option Γ, can be written in a
differential form as follows:

Γ =
∂∆
∂S

=
∂2V

∂S2
. (4.14)

Since the factor ∆ is the derivative of the option price with respect to the underlying stock
price, the factor Γ is, in fact, the second derivative of the option price with V respect to the
underlying asset price S.

The sensitivity factor Γ indicates the magnitude in change of the factor ∆. Recall that
the factor ∆ represents a ratio of the amount of stocks and amount of options in the risk-
neutral delta hedged portfolio consisting of stocks, options and riskless bonds. Hence, in
the case when the factor ∆ on the option market changes its value it can be interpreted in
such a way, that the options are being sold (purchased). It means that any increase in the
value of the factor Γ can indicate a movement in the volume of sold (purchased) options of
a given type.

Similarly as for the factor ∆, we are able to derive an explicit formula for the factor
Γ for European call and put options. Differentiating formulae (4.12) for the factor ∆ we
obtain

Γec = Γep =
∂∆ec

∂S
= e−q(T−t)N ′(d1)

∂d1

∂S

= e−q(T−t)
exp(−1

2d
2
1)

σ
√

2π(T − t)S
. (4.15)

A graph of dependence of the factor Γ on the underlying stock asset price S for parameters
E = 80, r = 0.04, q = 0, T − t = 43/365 is shown in Fig. 4.12 (left). In the right figure,
we can see evolution of dependence of the factor Γ on S for various times to expiry. The
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smaller is the time to expiry T−t, the higher and narrower is a graph of the factor Γ, having
its maximum near the strike price E.
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Figure 4.12. Dependence of the factor Γec = Γep = ∂2V
∂S2 for call and put options on the

underlying asset stock price S for time T to expiry (left) and several graphs of the factor
Gamma for different times T − t to expiry (right).

6. Other sensitivity factors: Theta, Vega, Rho

6.1. Sensitivity with respect to a change in the interest rate – factor Rho

Factor P (from the capital Greek letter Rho) shows the sensitivity of the derivative price
with respect to a change of the interest rate of a riskless bond r > 0. Factor P is therefore
given as a derivative

P =
∂V

∂r
.

An analytical expression of the factor P can be obtained by differentiating the explicit
formulae for prices of European call and put options (4.3) and (4.4). Using the fundamental
identity (4.6) and the fact that d2 = d1 − σ

√
T − t we obtain:

P ec =
∂V ec

∂r
= Se−q(T−t)N ′(d1)

∂d1

∂r
−Ee−r(T−t)N ′(d2)

∂d2

∂r

+E(T − t)e−r(T−t)N(d2) = E(T − t)e−r(T−t)N(d2),

P ep =
∂V er

∂r
= −Ee−r(T−t)N ′(−d2)

∂d2

∂r
+ Se−q(T−t)N ′(−d1)

∂d1

∂r

−E(T − t)e−r(T−t)N(−d2) = −E(T − t)e−r(T−t)N(−d2).

In Fig. 4.13 we show the factor P for call and put options as a function of the underlying
stock price S. It is important to note that always P ec > 0 and P ep < 0, i.e., the price of a
European call option increases with increasing interest rate and the price of a European put
option decreases with respect to r.
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Figure 4.13. Dependence of the factor P = ∂V
∂r of a call (left) and a put option (right) on

the stock price S.

6.2. Sensitivity to the time to expiration – factor Theta

The factor Θ represents sensitivity of a derivative price with respect to the expiration time of
the derivative T and it is defined as the derivative Θ = −∂V

∂T . Since the price of a derivative
at time t ∈ [0, T ] depends only on the difference T − t, the factor Θ can be expressed as:

Θ =
∂V

∂t
.

An analytical expression of the factor Θ can be again obtained by differentiating the explicit
formulae for the prices of European call and put options (4.3) and (4.4) with respect to time
t. Since d2 = d1 − σ

√
T − t, we obtain ∂d2/∂t = ∂d1/∂t + σ/(2

√
T − t). After some

rearrangements, we finally obtain:

Θec =
∂V ec

∂t
= Sqe−q(T−t)N(d1)− Ere−r(T−t)N(d2)

− Eσ

2
√
T − t

e−r(T−t)N ′(d2),

Θep =
∂V ep

∂t
= Ere−r(T−t)N(−d2)− Sqe−q(T−t)N(−d1)

− Eσ

2
√
T − t

e−r(T−t)N ′(−d2).

In Fig. 4.14 we plot the factor Θ for call and put options as a function of the underlying
stock asset price S. A price of a European option on stock paying no dividends (q = 0) is
always a decreasing function of the time t, and the limit, as t→ T, is given by the pay–off
diagram of the call option. It means that Θec < 0, if q = 0. On the other hand, for the
European put option, its value for the zero stock price S = 0 is always equal to Ee−r(T−t),
and hence V ep(0, t) < E. It means that the function V ep(0, t) increases as t → T, and
hence Θep > 0 for S ≈ 0. However, for the value S > E the price of put option decreases
as t→ T, i.e., Θep < 0. This phenomenon can be seen also in Fig. 4.14 (right).
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Figure 4.14. Dependence of the factor Θ = ∂V
∂t of a call (left) and put option (right) on the

stock price S for the strike price E = 80.

6.3. Sensitivity to a change in volatility – factor Vega
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Figure 4.15. Dependence of the factor Υ = ∂V
∂σ of a call (left) and put option (right) on the

stock price S where the parameter E = 80.

The factor Vega Υ1 describes sensitivity of a derivative security with respect to change
if the volatility of the underlying asset price and hence it is defined as a derivative

Υ =
∂V

∂σ
.

An analytical expression of the factor Υ has been already derived in the formula (4.8). Thus

Υec = Υep = Ee−r(T−t)N ′(d2)
√
T − t. (4.16)

It means that Υec = Υep > 0 and hence the price of a European call or put option is always
an increasing function of the volatility parameter σ > 0. A graph of dependence of the
option price on the volatility for model parameters E = 80, r = 0.04, q = 0 and time to
expiry T − t = 43/365 years is shown in Fig. 4.15.

1Vega is not a Greek letter
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Figure 4.16. Time series (time scale of minutes) of the factors Γecti ,Υ
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IBM call option from May 21, 2002 with the strike price E = 80 and time to expiry
T − t = 43/365 years.

Problem section and exercises

1. The price of the IBM stock is 68.86 USD. The price of the European call option with
the strike price 70 USD and expiration in 2 months is 3.5 USD. The riskless interest
rate is 2% p.a.

a) Compute the implied volatility σimpl from the stock and option prices.

b) Repeat the computation of the implied volatility, but as a basis for the com-
putation consider the call option with the strike price 75 USD, expiration in 2
months, whose market price is 1 USD.

c) Discuss the results obtained in parts a) and b) from the point of view of in-
vestor’s exposure to risk. Which option do you consider to be more favorable
for an investor?

2. How prices of European call and put options depend on the strike price? Is it an
increasing or a decreasing dependence?

3. The present market value of an IBM stock is 64 USD. The value of the European put
option with expiration price 70 USD and expiration time 6 months is 9.5 USD. The
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riskless interest rate is 2% p.a. Compute the implied volatility σimpl from the stock
and option prices.

4. Construct a graph of dependence of the sensitivity factor Γ on the stock price S and
time to expiry t ∈ (0, T ). Display the results for the European call option on stock
paying nod dividends for σ = 0.4, strike price E = 50, time to expiry 4 months and
riskless interest rate r = 0.05.

5. How prices of European call and put options depend on the interest rate r? Plot a
graph of dependence of call and put option prices on the interest rate, assuming the
price of the underlying stock is S = 115, volatility of the stock σ = 0.3, time to
expiry is 6 months and the strike prices of both call and put options are E = 110.

6. Derive an explicit formula and plot dependence of the factor Lambda λ on underlying
asset price S. The factor λ is defined as the logarithmic derivative of the option price
with respect to the stock price, i.e., λ = 1

V
∂V
∂S .

7. Derive an explicit formula and plot dependence of the factor Vanna on the underlysing
asset price S. The factor Vanna measures sensitivity of the factor ∆ with respect to
change in the volatility σ, i.e., Vanna = ∂2V

∂S∂σ .

8. Derive an explicit formula and plot dependence of the factor Speed on the underlysing
asset price S. The factor Speed measures sensitivity of the factor Γ with respect to
change in the underlying asset price S, i.e., Speed = ∂3V

∂S3 .





Chapter 5

Option pricing under transaction costs

The classical Black–Scholes theory presented in the previous chapters is capable of
pricing options and other derivative securities over moderate time intervals in which trans-
action costs are negligible. However, if transaction costs due to e.g., bid–ask spreads of the
underlying asset are taken into account then the classical Black–Scholes theory is no longer
applicable. In order to maintain the delta hedge one has to make frequent portfolio adjust-
ments yielding thus a substantial increase in transaction costs. Our purpose is to present a
systematic way how to modify assumptions of the classical Black–Scholes theory in order
to take into account nontrivial transaction costs. In this chapter we will derive the so-called
Leland model for pricing derivative securities under transaction costs.

1. Leland model, Hoggard, Wilmott and Whalley model

In the paper [78] H. Leland generalized the Black–Scholes model for pricing plain vanilla
call and put options for the case there are nontrivial transaction costs arising from maintain-
ing the delta hedged portfolio by buying or selling underlying assets. The model has been
further generalized to more complex options strategies by Hoggard, Whalley and Wilmott
in [64].

Similarly as in the classical Black–Scholes theory, we assume that the underlying asset
price S = St, t ≥ 0, follows a geometric Brownian motion with a drift µ and volatility
σ > 0. To simplify derivation, we will assume that the asset pays no dividends. It means
that the stochastic differential equation governing the underlying asset price has the form:

dS = µSdt+ σSdW (5.1)

71
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where dW denotes the differential of a standard Wiener process. This assumption is usually
made when deriving the classical Black–Scholes equation (see e.g., [65, 75]).

Following derivation of the Black–Scholes equation we will construct a synthesized
portfolio Π consisting of a one long-positioned option with a price V and δ underlying
assets with a unit price S:

Π = V + δS . (5.2)

It means that the option is in the long position and we maintain delta hedged portfolio by
buying and selling underlying assets. Since the holder of a long positioned option bears
transaction costs the price of such an option should be less than the one corresponding to
the case there are no transaction costs.

We recall that the key step in the Black–Scholes theory is to examine the differential
of equation (5.2). The term V + δS appearing in (5.2) can be differentiated by using Itō’s
formula whereas the change ∆Πt = Πt+∆t−Πt should be equal to the change of a riskless
bond with a risk-free interest rate r > 0 over the time interval ∆t, i.e

∆Π = rΠ∆t. (5.3)

In reality, when selling and buying underlying assets lead to nontrivial transaction costs, a
new term measuring transaction costs should be added to (5.3). More precisely, the change
∆Π of the portfolio Π is composed of two parts:

∆Π = ∆(V + δS)−∆TC,

where the term ∆TC stands for the transaction costs over the time interval of the length
∆t. It means that the balance equation reads as follows:

rΠ∆t = ∆Π = ∆(V + δS)−∆TC . (5.4)

Our next goal is to show how the transaction cost part ∆TC depends on other model pa-
rameters, e.g., σ, S, V, and derivatives of V . In practice, we have to adjust our portfolio
by frequent buying and selling of assets. In the presence of nontrivial transaction costs,
continuous portfolio adjustments may lead to infinite total transaction costs. A natural way
how to consider transaction costs within the framework of the Black–Scholes theory is to
follow the well known Leland approach [78] extended by Hoggard, Whalley and Wilmott
(cf. [78, 64, 75]. In what follows, we recall crucial lines of the Hoggard, Whalley and
Wilmott derivation of Leland’s model in order to show how to incorporate the effect of
transaction costs into the governing equation. More precisely, we will derive the coefficient
of transaction costs ∆TC occurring in (5.4).

Henceforth, we denote by Sask and Sbid the so-called ask and bid prices of the under-
lying asset, i.e., the market price offers for selling and buying assets, respectively. Further-
more, let us denote by C the round trip transaction cost per unit dollar of transaction. By
this we mean that the ask and bid underlying asset prices can be expressed as follows:

Sask = S (1 + C/2) , Sbid = S (1− C/2) , where S =
Sask + Sbid

2
.
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Figure 5.1. Intraday behavior (time scale of minutes) of bid–ask spreads for Microsoft asset
prices, April 19, 2003 (left) and Sun Inc., May 17, 2003 (right). The estimated parameter
C (below).

Hence the parameter C represents relative transaction costs for buying or selling one stock.
Clearly,

C = 2
Sask − Sbid
Sask + Sbid

. (5.5)

It means that transaction costs ∆TC are given by the value C|k|S/2 where k is the
number of sold assets (k < 0) or bought assets (k > 0). Thus

∆TC = C|k|S/2.
Clearly, the number k of bought or sold assets depends on the change k = ∆δ over one
time step ∆t. Hence ∆TC = C|∆δ|S/2. We suppose that the portfolio is maintained by
following the δ-hedging strategy, i.e.

δ = −∂V
∂S

(see Chapter 2). Recall that the underlying asset price fulfills

∆S = µS∆t+ σS∆W,

where ∆W = W (t + ∆t) −W (t) is the increment of the Wiener process. Therefore, in
the lowest order approximation in ∆t, we obtain

∆δ = −σS∂
2V

∂S2
∆W.
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Since W is the Wiener process we have

E(|∆W |) =
√

2/π
√

∆t.

For a situation when the time lag ∆t is small compared to T − t, Leland in [78] suggested
to take the simple approximation: |∆W | ≈ E(|∆W |) (see also [64]). Hence,

∆TC = rTCS∆t (5.6)

where the coefficient rTC of the rate of transaction costs is given by the formula:

rTC =
Cσ√
2π
S

∣∣∣∣
∂2V

∂S2

∣∣∣∣
1√
∆t

(5.7)

(cf. [64]). Clearly, by increasing the time-lag ∆t between portfolio adjustments we can
decrease transaction costs. Now, using Itō’s lemma (see Chapter 2) applied to the function
V we obtain

∆Π = ∆V + δ∆S −∆TC =
(
∂V

∂t
+

1
2
σ2S2∂

2V

∂S2

)
∆t+

(
∂V

∂S
+ δ

)
∆S − rTCS∆t.

Comparing the above expression for ∆Π with equation (5.3) and taking into fact that δ =
−∂V
∂S we finally end up with the equation

∂V

∂t
+

1
2
σ2S2∂

2V

∂S2

(
1− sign

(
∂2V

∂S2

)√
2
π

C

σ
√4t

)
+ r

(
S
∂V

∂S
− V

)
= 0.

The above partial differential equation can rewritten in a compact form

∂V

∂t
+

1
2
σ2S2

(
1− Le sign

(
∂2V

∂S2

))
∂2V

∂S2
+ rS

∂V

∂S
− rV = 0, (5.8)

where Le is the so-called Leland number defined as follows:

Le =

√
2
π

C

σ
√4t . (5.9)

The Leland number depends on the round trip transaction cost coefficient C, the time lag
between two consecutive portfolio adjustments ∆t and on the volatility σ > 0 of the under-
lying asset price.

A solution V = V (S, t) the Leland equation (5.8) is defined for (S, t) ∈ (0,∞)×(0, T ).
The terminal condition V (S, T ) at expiration time t = T corresponds to type of an option.
For example,

V (S, T ) = (S −E)+ for call option,

V (S, T ) = (E − S)+ for put option.
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In the case when we are pricing plain vanilla call or put options the Leland equation
becomes a linear equation with the adjusted volatility. This is due to convexity of the
solution profile S 7→ V (S, t) of a call and puts options. Therefore the second derivative
∂2V
∂S2 is always positive and so for its sign we obtain: sign(∂

2V
∂S2 ) = 1. In this case the Leland

equation reduces to the Black–Scholes equation with a constant volatility σ̂ given by

σ̂2 = σ2(1− Le).

Since a solution to the Black–Scholes equation is an increasing function with respect to the
volatility σ (see Chapter 4) we conclude that, for any positive Leland number Le > 0, the
following inequalities are satisfied:

V ec
lel (S, t) < V ec

bs (S, t), V ep
lel (S, t) < V ep

bs (S, t) for any S > 0, t ∈ (0, T ),

where V ec
bs (S, t), respectively V ep

bs (S, t) is a solution to the Black–Scholes equation for
pricing plain vanilla call, respectively put option and V ec

lel (S, t), respectively V ep
lel (S, t) is a

solution to the Leland equation (5.8) with the same parameters σ > 0, r > 0, E, T .
Let us emphasize that the governing equation (5.8) is a backward parabolic equation

satisfying a terminal condition if and only if the diffusion coefficient

1− Le sign
(
∂2V

∂S2

)
> 0

is positive. For call or put options it yields the restriction for the Leland number

0 ≤ Le < 1.

This condition is achieved by taking moderate time intervals ∆t between two consecutive
portfolio adjustments. On the other hand, if ∆t ¿ 1 is very small, or the round trip
transaction cost C is very large then the above condition is clearly violated and the Leland
approach in modeling transaction costs is doubtful.

Notice that Leland in [78] claimed that, in the presence of transaction costs, a call option
can be perfectly hedged using the Black–Scholes delta hedging with a modified volatility.
Kabanov and Safarian [69] have shown failure of Leland’s statement and they proved that
the limiting hedging error in Leland’s strategy is equal to zero only in the case the level of
transaction costs tends to zero (sufficiently fast) in the limit when the time lag between two
consecutive portfolio adjustments goes to zero. On the other hand, they have shown that
the plain vanilla option is always under-priced (i.e., the hedging error is negative) in such a
limit (see also Grandits and Schachinger [57]). Nevertheless, in the derivation of the Leland
model we have only used Leland’s approximation |∆W | ≈ E(|∆W |) =

√
2/π

√
∆twhich

holds only for sufficiently small 0 < ∆t ¿ 1. Such an approximation can be justified by
the following reasoning (see e.g., [66]). Let us consider another approximation of |∆W | in
the form φ(|∆W |) ≈ E(φ(|∆W |)) where φ is a smooth increasing convex function with
the property φ(0) = 0. For instance, if we take φ(x) = x2 then the approximation of
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|∆W | has the form |∆W | ≈
√
E(|∆W |2) =

√
∆t. For a general function φ we obtain an

approximation
|∆W | ≈ φ−1(E(φ(|∆W |))).

If we insert such an approximation into the formula for rTC ≈ CSσΓ
2∆t |∆W | (see (5.7)) we

obtain
rφTC =

b

∆t
φ−1(E(φ(|∆W |))),

where b = CσS|Γ|/2. The coefficient of transaction costs rφTC now also depends on
the way we approximate |∆W | expressed through the function φ. By Jensen’s inequal-
ity (see Exercise 7) applied to a convex increasing function φ we have E(φ(|∆W |)) ≥
φ(E(|∆W |)) and thus

rφTC ≥ b
E(|∆W |)

∆t
= rTC ,

where rTC is given by (5.7). In other words, Leland’s choice of approximation |∆W | ≈
E(|∆W |) yields lowest possible transaction costs among all admissible approximations of
|∆W | (cf. Jandačka and Ševčovič [66])..

2. Modeling option bid–ask spreads by using Leland’s model

In real market quotes data sets, there are listed two different option prices Vbid < Vask called
bid and ask price representing thus offers for buying and selling options, respectively. In the
Leland model presented in the previous section, a holder of a long positioned option bears
transaction costs for maintaining the delta hedged portfolio by buying and selling assets. It
turned out that the price of an option under the presence of transaction costs is always less
that the option price on asset not paying transaction costs, i.e., Vlel < Vbs. From the point
of view of a perspective holder who wants to buy a long positioned option, the Leland price
Vlel can be therefore identified with the bid price of the option.

If we want to derive a pricing equation for a short positioned call option then we have to
take into account that the pay–off diagram V sp(S, T ) = −(S − E)+ is a concave function
and so does the solution V sp(S, t). Hence, sign

(
∂2V sp

∂S2

)
= −1. The same conclusion

is true for the put option. In this case the governing Leland equation changes slightly.
Namely, in front of the Leland coefficient Le there is a reversed sign. It means that the
Leland equation modeling higher ask option prices reads as follows:

∂V

∂t
+

1
2
σ2S2

(
1 + Le sign

(
∂2V

∂S2

))
∂2V

∂S2
+ rS

∂V

∂S
− rV = 0, (5.10)

where Le is again the Leland number defined as in (5.9). A solution V = V (S, t) is again
defined on the domain (S, t) ∈ (0,∞) × (0, T ). It represents the higher ask option price,
i.e., the offer to sell the option. It is subject to the terminal pay–off diagram representing a
chosen type of an option, e.g., a call or put option.
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Figure 5.2. Graphs of a solution S 7→ V (S, t) of the Leland model for call (left) and put
(right) options. Lower curve represents the option bid price, the middle curve is the Black–
Scholes price, the upper curve is the option ask price. The parameters of the model were
chose as: E = 80, σ = 0.3,Le = 0.15, r = 0.04, D = 0, T − t = 43/365.
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Figure 5.3. A graphical description of the bid–ask spreads between ask and bid call option
prices for various Leland numbers Le = 0.15, 0.1, 0.05. Model parameters were chosen as:
E = 80, σ = 0.3, r = 0.04, T − t = 43/365.

In Fig. 5.2 we plot solutions S 7→ V (S, t) of the Leland model for call (left) and put
(right) options. The lower curve represents the bid price of an option whereas the upper
curve corresponds to its ask price. The curve in the middle is the solution obtained by
means of the classical Black–Scholes model, i.e., Le = 0. In Fig. 5.3 we depict differences
(spreads) between ask and bide prices of a call option as a function of the underlying asset
price S for various values of the Leland number Le. Spreads for a put option are the same
because of the put–call parity (see Chapter 3).

The Leland model for pricing options under transaction costs can be used in order to
capture different bid and ask prices of an option. Therefore, it can be also used for cali-
bration of model parameters obtained from time series of bid and ask prices of option and
underlying asset prices. Indeed, suppose that at the t we know the market underlying asset
price Sreal, the bid and ask prices V bid

real and V ask
real of a call option with maturity T and ex-

piration price E. We furthermore suppose that the interest rate r > 0 is also known. The
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Figure 5.4. A time evolution (time scale of minutes) of the asset price of Microsoft from
May 21, 2002 (upper). Bottom-left: evolution of bid–ask call options prices with expiration
price E = 50 and maturity July 2, 2002 (T − t = 43/365). Bottom-right: evolution of the
average (V ask + V bid)/2 of call option prices.

coefficient C of a round trip transaction costs is given by (5.5). At the given time t it can be
computed from bid and ask prices of the underlying asset where Sreal = (Sask + Sbid)/2.
Then we can compute the implied parameters σ and Le from the Leland model for the bid
price (5.8) and ask price (5.10). Indeed, they are solutions of the system of two equations:

σ2(1 + Le) = σ2
ask, σ2(1− Le) = σ2

bid,

where σask and σbid are uniquely determined implied volatilities of the classical Black–
Scholes model (see Chapter 4), i.e.

V ask
real = V ec

bs (Sreal, t;σask), V bid
real = V ec

bs (Sreal, t;σbid).

In Fig. 5.4 we plot a time evolution of the asset price of Microsoft from May 21, 2002.
We also show bid–ask call options prices and their arithmetic averaged prices. The option
were written on the expiration price E = 50 with the maturity July 2, 2002. In Fig. 5.5
we show time evolution (time scale of minutes) of the implied Leland volatility and Leland
number. We also plot the implied time ∆t between two consecutive portfolio adjustmens
which can be computed from the formula (5.9) as follows:

4t =
2
π

C2

σ2Le2 .
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Figure 5.5. Top: the implied Leland volatility. Bottom: the implied Leland number (left)
and implied transaction time 4t in the scale of minutes (right).

The coefficient C of a round trip transaction cost was chosen C = 0.0004. It corresponds
to the level 0.02 of bid–ask spreads in the underlying asset price (see Fig. 5.1). It follows
from intraday computations of4t during May 21, 2002, that the optimal time between two
consecutive portfolio adjustments is around the value of 50 minutes.

Furthermore, important conclusions can be made when comparing implied Leland
quantities (i.e., the volatility, Leland number and time interval ∆) computed from prices
of options with different maturities. In Fig. 5.6 we present such a comparison. Clearly,
the time 4t between consecutive transaction is bigger for an option with longer expiration
when compared to the one expiring sooner.

Problem section and exercises

1. The bid and ask prices of the asset of IBM are USD 118 and USD 119. It is known
from the data that the historical volatility σhist of the underlying asset price was
σ = 0.2. The price of a call option with expiration price USD 115 and maturity
T = 1/2 (half year) is USD 6. The interest rate of a zero coupon bond is r = 0.02.

a) Consider the classical Black–Scholes model. Compute the implied volatility
from the option price when the asset price is the arithmetic average of the bid
and ask asset prices.

b) In the Leland model for pricing options under transaction cost, compute the
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Figure 5.6. A comparison of intraday behavior of the implied volatility computed from call
option prices on the stock of IBM from May 21, 2002. The expiration price was E = 80
and expiration time July 2, 2002 (top-left) (T − t = 43/365) and October 2, 2002 (top-
right). In the middle and bottom row we plot implied Leland numbers and implied Leland
times between transactions for both maturities.
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coefficient C of a round trip transaction cost for a long positioned call option.
Determine the time step ∆t between two consecutive transactions.

2. Present a detailed derivation of the Leland model for the case of a short positioned
option (see (5.10))

3. Show that for a normally distributed random variable Φ ∼ N(0, 1) we haveE(|Φ|) =√
2/π.

4. How the price of a call or put long positioned option depends on the time ∆t between
two consecutive portfolio adjustmens? Is it an increasing or decreasing function?

5. How the bid–ask spread for a call or put long positioned option depends on the Leland
number Le and the time ∆t between two consecutive portfolio adjustmens? Find the
value S of the underlying asset price for which the spread maximum is attained.

6. In the Leland model, by using the put–call parity show that the difference (spread)
between ask and bid prices of call and put options is the same.

7. Let φ be a smooth convex function. Prove the Jensen inequality φ(
∑n

i=1 fixi) ≤∑n
i=1 fiφ(xi) for a real numbers xi and weights f1, . . . , fn ≥ 0 such that

∑n
i=1 fi =

1. With help of a discrete Jensen’s inequality prove that E(φ(X)) ≥ φ(E(X)) for a
continuous random variable X . Notice that E(φ(X)) =

∫
R φ(x)f(x)dx, where f is

a nonnegative density distribution function of X such that
∫
R f(x)dx = 1.





Chapter 6

Modeling and pricing exotic financial
derivatives

The main purpose of this chapter is to provide a swift introduction into the subject of
pricing the so-called exotic options. Pay–off diagrams of these options often depend on the
entire history of an underlying asset price. They are also referred to as path–dependent op-
tions. For instance, there are Asian options, barrier options, lookback options, Parisian and
Russian options. One of the reasons for introducing path-dependent options was the strong
need for protecting individual call or put option holders from speculative attacks of large
traders on the underlying asset price close to expiry. Furthermore, path-dependent options
play an important role since they are quite common in currency and commodity markets,
e.g., oil trading. In the second part of this chapter, we present an overview of pricing
methods for other types of options including, in particular, binary options and compound
options. Although their pay–off diagrams do not depend on the history of the underlying
asset, pricing of such options is much more tricky and involved when compared to plain
vanilla options.

1. Asian options

Asian options represent a financial derivative depending not only on the underlying asset
spot value but also on the entire time evolution of an asset in the predetermined time interval.
They belong to a class of the so-called path–dependent options. In the case of Asian options,
the terminal pay–off diagram depends on the terminal underlying asset price as well as on

83
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the historical average of asset values.
Classification of Asian options is more complicated because of their dependence on

the way how the averaged underlying asset price enters their pay–off diagrams. We can
distinguish the following basic types of Asian options:

1. According to the way how we average the underlying asset price we can define ei-
ther arithmetically or geometrically averaged Asian options. In the case of discrete
averaging, the average Atn at the time tn can be defined as follows:

arithmetic average geometric average

Atn =
1
n

n∑

i=1

Sti , lnAtn =
1
n

n∑

i=1

lnSti , (6.1)

where t1 < t2 < · · · < tn, is a division of the time interval [0, tn] such that ti+1−ti =
1/n for any i.

In the case of continuous averaging, the average At at the time t can be defined by
means of integrals as follows:

arithmetic average geometric average

At =
1
t

∫ t

0
Sτdτ, lnAt =

1
t

∫ t

0
lnSτdτ. (6.2)

2. According to the way how the averaged asset price enters the pay–off diagram we
can distinguish

• Average rate
call option put option

V arc(S,A, T ) = (A−E)+, V arp(S,A, T ) = (E −A)+. (6.3)

• Average strike
call option put option

V asc(S,A, T ) = (S −A)+, V asp(S,A, T ) = (A− S)+, (6.4)

where E is the predetermined strike price (specified only for average rate options)
and S = ST , A = AT stand for the spot and averaged underlying asset prices at the
time of expiration T .

For example, we can consider an Asian arithmetically averaged strike call option, or
Asian geometrically averaged rate put option, etc. In summary, there are eight subclasses
of Asian options. Let us also notice that the discrete form of a geometric average (6.1) can
be expressed in a standard notation as follows:

Atn =

(
n∏

i=1

Sti

) 1
n

, (6.5)

representing the geometric average of the set of positive numbers - asset prices:
St1 , St2 , . . . , Stn .
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1.1. A partial differential equation for pricing Asian options

In this part, we focus our attention on derivation of the partial differential equation for
pricing Asian average strike call (put) options. Similarly as in the Black–Scholes theory,
we suppose the underlying asset price S is stochastic and it follows the geometric Brownian
motion

dS = (µ− q)Sdt+ σSdw,

where w is the Wiener process, µ is a drift, q ≥ 0 is a continuous dividend yield and σ is a
volatility of the underlying asset price process.

The price V of an Asian option is a now function depending not only on the underlying
asset spot price S and time t but also on the average A of the underlying asset price over
the interval [0, t]. It means that V = V (S,A, t). Since both the price S = St as well as
its average A = At are stochastic variables so does their derivative, i.e., the option price
Vt = V (St, At, t). Before calculating the differential dV we establish the relationship
between the differential of the average A and time t. In the case of arithmetic averaging we
obtain

dA

dt
= − 1

t2

∫ t

0
Sτdτ +

1
t
St =

St −At
t

.

On the other hand, for the case of geometric averaging, we have

1
A

dA

dt
=
d lnA
dt

= − 1
t2

∫ t

0
lnSτdτ +

1
t

lnSt =
lnSt − lnAt

t
.

In both cases, we can conclude that the differential dA is a stochastic variable with the
leading order term of the order dt. It means that

arithmetic average geometric average

dA =
S −A

t
dt, dA = A

lnS − lnA
t

dt. (6.6)

For both types of averaging we can express the differential dA in the form:

dA = Af

(
S

A
, t

)
dt, (6.7)

where the function f has the form: f(x, t) = (x − 1)/t for arithmetic averaging and
f(x, t) = (lnx)/t for the case of geometric averaging.

Applying Itō’s lemma 2.2 for the function V = V (S,A, t) and taking into account the
fact that dA is of the same order as dt, we end up with the following stochastic differential
equation for the option price V :

dV =
∂V

∂S
dS +

∂V

∂A
dA+

(
∂V

∂t
+
σ2

2
S2∂

2V

∂S2

)
dt

=
∂V

∂S
dS +

(
∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+
∂V

∂A
Af

(
S

A
, t

))
dt.
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Next steps in derivation of a partial differential equation for the option price V = V (S,A, t)
are almost identical with derivation of the Black–Scholes equation for plain vanilla options
discussed in Chapter 3. Indeed, by construction of a self-financed delta hedged portfolio
with zero net investments, we can derive the following parabolic partial differential equation
for pricing Asian options:

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
+Af

(
S

A
, t

)
∂V

∂A
− rV = 0. (6.8)

Its solution V = V (S,A, t) is defined on the domain (S,A, t) ∈ (0,∞)× (0,∞)× (0, T )
and satisfies the terminal pay–off diagram depending whether we are pricing call or put
option. In the case of an arithmetically averaged strike call option we have

V (S,A, T ) = (S −A)+, (6.9)

and the function f appearing in equation (6.8) has the form f(x, t) = (x−1)/t. In the case
of geometric averaging we have to take f(x, t) = (lnx)/t. In the case of the average rate
Asian call option the terminal pay–off diagram has the form:

V (S,A, T ) = (A−E)+, (6.10)

where E is a given expiration price at expiration time T .

1.2. Dimension reduction method and numerical approximation of a solution

Let us emphasize that the partial differential equation (6.8) is not a regular parabolic equa-
tion because it does not contain the second derivative of V with respect to A. Therefore its
numerical approximation may lead to complications with stability of a numerical scheme.
However, in the case of an averaged strike option we can perform a dimension reduction
transformation of variables such that the resulting equation is indeed a parabolic equation.
This reduction is possible because of the homothetic structure of the equation and the func-
tion f . More precisely, let us consider the following change of variables:

V (S,A, t) = AW (x, t), where x =
S

A
, x ∈ (0,∞). (6.11)

If we insert these transformed variables into equation (6.8) and the terminal condition (6.9)
then, after straightforward algebraic manipulations we conclude that the transformed func-
tion W = W (x, t) is a solution to the following partial differential equation of parabolic
type:

∂W

∂t
+
σ2

2
x2∂

2W

∂x2
+ (r − q)x

∂W

∂x
+ f(x, t)

(
W − x

∂W

∂x

)
− rW = 0, (6.12)

where a solution W = W (x, t) is defined on the domain (x, t) ∈ (0,∞) × (0, T ). The
terminal pay–off diagram for an Asian averaged strike call or put option for the transformed
function W has the form:

W asc(x, T ) = max(x− 1, 0), respectively, W asp(x, T ) = max(1− x, 0). (6.13)
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Figure 6.1. A 3D plot of a solution W (x, t) to equation (6.12) (left) and its contour plot
(right). Model parameters were chosen as: σ = 0.4, r = 0.04, q = 0, T = 1.
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Figure 6.2. A 3D plot of the price of an Asian averaged strike call option V (S,A, t) =
AW (S/A, t) at the time t = 0.1 (i.e., T − t = 0.9) (left). A contour plot of the function
V (S,A, t) (right). The model parameters are the same as in Fig. 6.1.



88 Chapter 6

Table 6.1. The Mathematica source code for pricing of an Asian arithmetically averaged
call option.'

&

$

%

sigma=0.4; r=0.04; d=0; T=1; t=0.9; xmax=8;

PayOff[x_] := If[x - 1 > 0, x - 1, 0];

solution = NDSolve[{
D[w[x, tau],tau] == (sigmaˆ2/2) xˆ2 D[w[x, tau], x,x]
+ (r - d)*x * D[w[x, tau], x]
+ ((x - 1)/(T - tau))*(w[x, tau] - x*D[w[x, tau], x])

- r*w[x, tau],
w[x, 0] == PayOff[x],
w[0, tau] == 0,
w[xmax, tau] == PayOff[xmax]},

w, {tau, 0, t}, {x, 0, xmax}
];

w[x_, tau_] := Evaluate[w[x, tau] /. solution[[1]] ];
V[tau_, S_, A_] := A w[S/A, tau];
Plot3D[ V[t, S, A], {S, 10, 120}, {A, 50, 80}];

In Fig. 6.1 we depict a solution W to the partial differential equation (6.12). In Fig. 6.2
we show 3D and contour plots of the option price V (S,A, t) as a function of the under-
lying asset spot price S and averaged strike asset price A at a given time t = 0.1. The
function is expressed through the transformed function W, i.e., V (S,A, t) = AW (S/A, t)
(see (6.11)). We also present a short numerical code written in Mathematica language for
computation of the averaged strike Asian call option (see Table 6.1).

Finally, let us mention that in the case of a geometrically averaged rate call or put option
we can explicitly compute the Asian option price (see Exercises 6 and 7).

2. Barrier options

Barrier options can be considered as examples of simple path-dependent options whose
price depend on the history of the underlying asset price. Barrier options are either call or
put options with the possibility of their early exercising in cases when the underlying asset
price hits from above (or from below) the predetermined barrier value B. In the case of
early exercising the writer of a barrier option contract pays the option holder the prescribed
amount of money called a rebate. The rebate may be set to zero as well. After that time the
barrier option contract is no longer valid.

”Out” barrier options are active from the beginning. However, they become null and
void in the event a given knock-out barrier B price is attained. On the other hand, ”in”
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barrier options are void at the beginning of a contract. They become active in the time a
given knock-in barrier B price is attained. Based on this terminology, we can distinguish
four types of barrier options:

• Down-and-out barrier option: in the beginning the underlying asset price is above
the predetermined barrier B. If the underlying asset price moves down and hits the
barrier B from above then the option contract becomes void. The writer of an option
pays the holder a predetermined rebate R ≥ 0.

• Up-and-out barrier option: analogously as in the case of a down-and-out option, the
underlying asset price is below the predetermined barrier B in the beginning. If the
underlying asset price moves up and hits the barrier B from below then the option
contract becomes void. Again, the writer of an option pays the holder a predetermined
rebate R ≥ 0.

• Up-and-in barrier option: the underlying asset price is below the barrier B in the
beginning. The option becomes active in the event when underlying asset moves up
and hits the barrier from below.

• Down-and-in barrier option: the underlying asset price is above the barrier B in the
beginning. The option becomes active in the event when underlying asset moves
down and hits the barrier from above.

In the rest of this section, we will analyze the case of a down-and-out barrier call or
put option. The remaining cases can be treated analogously. Suppose we are given the
barrier B expressed in terms of a function depending time t ∈ [0, T ], i.e., B = B(t). The
terminal condition of a down-and-out call or put option is given by the pay–off diagram of
a call or put option. In the case, the underlying asset price moves down and hits the barrier
B(t) at some time t ∈ (0, T ) then the option contract is void and the holder receives the
predetermined rebateR(t) ≥ 0. Notice that the predetermined rebate can be also prescribed
to zero.

As a typical example of a predetermined barrier function one can consider the exponen-
tial barrier function of the form:

B(t) = bEe−α(T−t), (6.14)

where 0 < b ≤ 1, α ≥ 0, are given constants. In Fig. 6.3 we plot examples of evolution
of the underlying asset price and the case of activation of the down-and-out barrier option.
At the time of activation the holder receives predeterminded rebate R(t) ≥ 0. As a typical
rebate function one can consider a function of the form

R(t) = E
(
1− e−β(T−t)

)
, (6.15)

where β ≥ 0. Notice that such a rebate function R(t) ≥ 0 satisfies a natural terminal
condition R(T ) = 0 at expiry t = T .
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Figure 6.3. An example of an exponential barrier function B(t) for a down-and-out barrier
option (upper). In the left figure we show an example of evolution of the asset for which
the barrier is inactive for the entire interval [0, T ]. An example of activation of the barrier
is shown in the right picture.

Since the down-and-out option is active only in the time dependent domain of under-
lying asset prices S > B(t) we can price such an option by means of the Black–Scholes
theory only in the region in which S > B(t). It means the option price V = V (S, t)
satisfies the following parabolic equation:

∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0, (6.16)

for t ∈ (0, T ), S > B(t). At the boundary of the computational domain S = B(t) the
price V (S, t) is given by the predetermined rebate value R(t). It means that the following
boundary condition

V (B(t), t) = R(t) (6.17)

has to be satisfied for any t ∈ (0, T ).
Finally, depending on type of an option, we have to prescribe the terminal condition

given by the pay–off diagram of a call or put option, i.e.

V bc(S, T ) = (S − E)+, respectively, V bp(S, T ) = (E − S)+, (6.18)

where E is the expiration price at the expiration time T .
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Figure 6.4. A 3D graph of a solution to equation (6.20) for pricing a down-and-out barrier
call option (upper left). A contour plot graph of level sets of the function W (upper right).
Option prices S 7→ V (S, t) for various times t (bottom).

2.1. Numerical and analytical solutions to the partial differential equation
for pricing barrier options

Equation (6.16) can be transformed by the following simple transformation

V (S, t) = W (x, t), where x = ln
(

S

B(t)

)
, x ∈ (0,∞). (6.19)

It is easy to verify that the transformed function W is then a solution of the partial differen-
tial equation:

∂W

∂t
+
σ2

2
∂2W

∂x2
+

(
r − q − σ2

2
− α

)
∂W

∂x
− rW = 0 (6.20)

defined on a fixed domain (x, t) ∈ (0,∞) × (0, T ). The boundary condition (6.17) and
terminal condition (6.18) are transformed as follows:

W (0, t) = R(t), (6.21)
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Table 6.2. The Mathematica source code for pricing a down-and-out barrier call option.'

&

$

%

b = 0.7; alfa = 0.1; beta = 0.05; X = 40;
sigma = 0.4; r = 0.04; q = 0; T = 1;

xmax = 2;

Bariera[t_] := X b Exp[-alfa (T - t)];
Rabat[t_] := X (1 - Exp[-beta(T - t)]);

PayOff[x_] := X*If[b Exp[x] - 1 > 0, b Exp[x] - 1, 0];

solution = NDSolve[{
D[w[x, tau], tau] == (sigmaˆ2/2)D[w[x, tau], x, x]

+ (r - q - sigmaˆ2/2 - alfa )* D[w[x, tau], x]
- r *w[x, tau] ,

w[x, 0] == PayOff[x],
w[0, tau] == Rabat[T - tau],
w[xmax, tau] == PayOff[xmax]},

w, {tau, 0, T}, {x, 0, xmax}
];

w[x_, tau_] := Evaluate[w[x, tau] /. solution[[1]] ];
Plot3D[w[x, tau], {x, 0, xmax}, {tau, 0, T}];

V[S_, tau_] :=
If[S > Bariera[T - tau],

w[ Log[S/Bariera[T - tau]], tau],
Rabat[T - tau]

];

Plot[
{V(S,0.2 T],V(S,0.4 T], V(S,0.6 T], V(S,0.8 T], V(S,T]},
{S,20,50}];
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W bc(x, T ) = Emax(bex− 1, 0), respectively, W bp(x, T ) = Emax(1− bex, 0). (6.22)

In Fig. 6.4 we depict a graph of a solution to the partial differential equation (6.20) with
a rebate function defined as in (6.15). We again present a simple Mathematica code for
computation of the price of a down-and-out barrier call option (see Table 6.2).

Notice that equation (6.20) together with the terminal condition (6.22) and boundary
condition (6.21) can be solved analytically. Its explicit solution obtained by the transforma-
tion method based on the so-called Duhamel integral is presented in the exercise section. As
far as practical implementation is concerned, the explicit formula is however rather involved
and its numerical computation turns to be equally hard when compared to the numerical so-
lution of (6.20).

3. Binary options

Binary options (also referred to as digital options) represent very simple form of exotic
options. The pay–off diagram of a binary option is given by

V bin(S, T ) =
{

1, if S ∈ [E1, E2],
0, otherwise,

where 0 < E1 < E2 are prescribed values (see Fig. 2.13). It is easy to derive the following
explicit solution to a binary option:

V bin(S, t) = e−r(T−t)(N(dE1
2 )−N(dE2

2 )),

where

dE2 =
ln(S/E) + (r − q − σ2/2)(T − t)

σ
√
T − t

.

The above formula follows from the fact that the pay–off diagram can be obtained as
a limit, when ε → 0+, of a combination of four plain vanilla call options written on the
different exercise prices E1, E1 + ε,E2, E2 + ε:

V bin(S, T ) ≈ (−V ec(S, T ;E1 + ε) + V ec(S, T ;E1))
ε

−(−V ec(S, T ;E2 + ε) + V ec(S, T ;E2))
ε

.

Hence

V bin(S, t) = −∂V
ec

∂E
(S, t;E1) +

∂V ec

∂E
(S, t;E2)

and the pricing formula for a binary option follows from the identity (4.6). A graphical
description of the price V bin(S, t) of a binary option is depicted in Fig. 6.5.
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Figure 6.5. Left: a plot of the profile S 7→ V bin(S, t) of a binary option for times t = T
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the model parameters: E1 = 10, E2 = 20, r = 0.04, q = 0.02, T = 1. Right: a plot of the
corresponding factor ∆ = ∂V bin

∂S .

4. Compound options

A compound option is a financial derivative on the underlying asset represented again by
another option. We restrict ourselves to the class of plain call or put options written on
underlying call or put options. We can distinguish four types of plain compound options:

1. a call option on a call option,

2. a put option on a call option,

3. a call option on a put option,

4. a put option on a put option.

The compound options were introduced and studied by Geske in [53] in the context of
pricing of an option on the underlying stock asset where the stock asset of a firm itself is
priced as an option written on the underlying value of the firm.

In this section, we will present the methodology of pricing a compound option on a par-
ticular example of a call option written on another call option. The other cases of compound
options can be treated analogously.

Let us consider a compound call option A with the expiration time TA and expiration
price EA. Its underlying asset is another call option B written on the underlying stock asset
S paying no dividends (q = 0) and having the expiration time TB > TA and expiration
price EB . Hence the terminal pay–off diagram of such a call on call option has the form:

VA(S, TA) = (VB(S, TA)−EA)+ .

We suppose that the underlying stock asset process S for the option B follows a geometric
Brownian motion of the form:

dS = µSdt+ σSdw,
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with some drift µ and volatility σ. Then a price of the underlying asset for a compound
option, i.e., the call option B at the time t < TB is known and it is given by the explicit
formula (4.3),

VB(S, t) = SN(dB1 )− EBe
−r(TB−t)N(dB2 ) , 0 ≤ t < TB, (6.23)

where

dB1 =
ln

(
S
EB

)
+ (r + σ2

2 )(TB − t)

σ
√
TB − t

, dB2 = dB1 − σ
√
TB − t.

Moreover, VB = VB(S, t) is a solution to the Black–Scholes equation

∂VB
∂t

+
1
2
σ2S2∂

2VB
∂S2

+ rS
∂VB
∂S

− rVB = 0. (6.24)

Now, by using Itō’s lemma (2.2), we can derive the stochastic differential equation for the
stochastic process VB(St, t):

dVB = µ̃VBdt+ σ̃VBdw, (6.25)

where

µ̃(S, t) =
1
VB

(
∂VB
∂t

+
1
2
σ2S2∂

2VB
∂S2

+ µS
∂VB
∂S

)
, σ̃(S, t) = σ

S

VB

∂VB
∂S

and VB = VB(S, t). The compound option A, considered now as a derivative of the under-
lying asset VB, is therefore a solution to the Black–Scholes equation with variable volatility
σ̃(S, t), i.e.

∂VA
∂t

+
1
2
σ̃2(S, t)V 2

B

∂2VA
∂V 2

B

+ rVB
∂VA
∂VB

− rVA = 0. (6.26)

In what follows, we will derive a PDE for the compound option price VA = VA(S, t)
considered as a function of the stock asset price S. To this end, we calculate the partial
derivatives:

∂VA
∂S

=
∂VA
∂VB

∂VB
∂S

,
∂2VA
∂S2

=
∂2VA
∂V 2

B

(
∂VB
∂S

)2

+
∂VA
∂VB

∂2VB
∂S2

.

Inserting partial derivatives of VA with respect to VB into (6.26), taking into account the
expression for σ̃(S, t) and using the fact that the function VB is a solution to (6.24) we
conclude VA = VA(S, t) is a solution to the Black–Scholes equation with a right hand side:

∂VA
∂t

+
1
2
σ2S2∂

2VA
∂S2

+ rS
∂VA
∂S

− rVA = c(S, t)
∂VA
∂S

, where c(S, t) = −
∂VB
∂t
∂VB
∂S

, (6.27)

satisfying the terminal pay–off diagram VA(S, T ) = (VB(S, TA) − EA)+. The explicit
solution to the above parabolic equation has been derived by Geske in the seminal paper
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Figure 6.6. A graph of the IBM stock price from May 21, 2002 plotted with one minute
time stepping (left). The price VB of a call option with EB = 80, TB = 1, σ = 0.23, r =
0.04, q = 0 (right).

[53]. It is a straightforward but very long verification that the unique solution to (6.27) is
given by the following formula:

VA(S, t) = SM(dA1 , d
B
1 , ρ)−EBe

−r(TB−t)M(dA2 , d
B
2 , ρ)−EAe

−r(TA−t)N(dA2 ). (6.28)

Here
M(x, y, , ρ) =

1

2π
√

1− ρ2

∫ x

−∞

∫ y

−∞
e
− 1

2(1−ρ2)
(ξ2−2ρξη+η2)

dηdξ

denotes the bivariate normal distribution function with a correlation coefficient

ρ =
√

(TA − t)/(TB − t) ∈ [0, 1)

and

dA1 =
ln

(
S
S∗

)
+ (r + σ2

2 )(TA − t)
σ
√
TA − t

, dA2 = dA1 − σ
√
TA − t,

where S = S∗ is the unique root of the equation

VB(S∗, TA) = EA.

In Fig. 6.6 we plot the intraday behavior of the IBM stock from May 21, 2002. We
also plot the prices of a call option VB which are considered as the underlying asset for the
compound call option VA. The behavior of the compound option VA is depicted in Fig. 6.7.

5. Lookback options

Lookback options represent financial derivatives whose price depend not only on the under-
lying asset spot price but also on the maximum value of the underlying asset process during
the prescribed time period. We can distinguish two types of lookback options:
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• floating maximum strike lookback put options,

• floating maximum rate lookback call options.

Notice that it is meaningless to consider the case of a call lookback option on a floating
maximum strike because the terminal underlying stock price ST is always less or equal
to the floating strike price MT = maxt∈[0,T ] St. Hence the price of such a call option is
always zero.

Analogously, if we consider minimum value of the underlying asset process during the
prescribed time period we can distinguish:

• floating minimum strike lookback call options,

• floating minimum rate lookback put options.

Again, it is meaningless to consider the case of a put lookback option on a floating
minimum strike because the terminal underlying stock price ST is always greater or equal
to the floating minimum strike price mT = mint∈[0,T ] St and therefore a price of such a
put option is always zero. Notice that for floating maximum or minimum rate options we
consider both call as well as put options.

In the rest of this section we will present a method how to derive an explicit formula
for pricing lookback options. We concentrate on derivation of the pricing formula for the
floating maximum strike lookback put option. The procedure of derivation in remaining
cases is similar and therefore omitted.

A floating maximum strike lookback put option has the exercise price M given by a
maximum of the underlying asset price over the entire time interval [0, T ], i.e.

M = max
t∈[0,T ]

St.

It means that the terminal pay–off of such a lookback put option is given by:

V lp(S,M, T ) = (M − S)+, (6.29)
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where S = ST is the price of an underlying asset at the expiration time T .
Let us emphasize that the maximal value of a positive function Sτ taken over the interval

[0, t] can be computed as a limit

Mt = max
0≤τ≤t

Sτ = lim
p→∞Ap,t, where Ap,t =

(
1
t

∫ t

0
Spτdτ

) 1
p

(see Exercise 5 below). Therefore we can approximate the maximum Mt by the p-integral
average Ap,t, where p À 1 is large enough. Notice that the differential dAp,t of the p-
integral average can be easily computed as follows:

dAp,t
Ap,t

= fp(x, t), x =
St
Ap,t

, where fp(x, t) =
xp − 1
pt

.

In the limit p → ∞, the floating maximum strike lookback put option can be therefore
viewed as an Asian put option with a floating strike given by the p-integral average Ap,t.
By introducing the following change of variables

V lp(S,A, t) = AW (x, t), where x =
S

A
, x ∈ (0,∞),

we end up with the parabolic equation for the transformed function W

∂W

∂t
+
σ2

2
x2∂

2W

∂x2
+ rx

∂W

∂x
+ fp(x, t)

(
W − x

∂W

∂x

)
− rW = 0, (6.30)

defined for 0 < x <∞, 0 < t < T . Clearly, for 0 < x < 1 we have limp→∞ fp(x, t) = 0.
Hence, in the limit p→∞, the Black–Scholes equation for W reads as follows:

∂W

∂t
+
σ2

2
x2∂

2W

∂x2
+ rx

∂W

∂x
− rW = 0, 0 < x < 1, 0 < t < T. (6.31)

On the other hand, if 1 < x we have limp→∞ fp(x, t) = ∞. By dividing equation (6.30)
by the term fp and passing to the limit as p→∞ we deduce that

W (x, t)− x
∂W

∂x
= 0, 1 < x, 0 < t < T.

By taking the limit x→ 1+, from the latter equation we can deduce the boundary condition
for the solution W (x, t) at x = 1, i.e.

W (1, t) =
∂W

∂x
(1, t), 0 < t < T. (6.32)

A solution W is subject to the terminal pay–off diagram of a put option, i.e., W (x, T ) =
(1− x)+. Since 0 < x < 1 we simply have

W (x, T ) = 1− x, 0 < x < 1. (6.33)
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After long, but very straightforward algebraic computations (see also Exercises 8,9), one
can verify that the solution W to equation (6.30) satisfying the boundary and initial condi-
tions (6.32) and (6.33) can be explicitly found in the form:

W (x, t) = W ep(x, t) +
σ2

2r

[
xN(d1)− e−r(T−t)x1− 2r

σ2N(d3)
]
, (6.34)

where W ep(x, t) is the price of an European put option with a unit strike price, i.e.

W ep(x, t) = e−r(T−t)N(−d2)− xN(−d1)

and

d1 =
lnx+ (r + σ2/2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t, d3 = d1 − 2r

σ

√
T − t.

Problem section and exercises

1. Using transformation of variables and the method of the Duhamel integral applied to
equation (6.20) derive the following explicit formula:

w(x, t) = E
eλx+Q(T−t)

σ
√

2π(T − t)

∫ ∞

− ln b

(
be−(λ−1)ξ − e−λξ

)

×
(
e−(x−ξ)2/(2σ2(T−t)) − e−(x+ξ)2/(2σ2(T−t))

)
dξ

+
xeλx

σ
√

2π

∫ T−t

0

eQse−x2/(2σ2s)

s
3
2

R(T − t− s) ds,

for the price of a down-and-out barrier call option with a given rebate function R(t).
Here λ = 1

2 + α−r
σ2 , Q = −λ2σ2

2 − r.

2. Compute numerically the price of an Asian arithmetically averaged strike call option
for model parameters: σ = 0.4, r = 0.04, q = 0, T = 1, t = 0.9. Compare the price
of such an Asian call option with the price of the plain vanilla call option with a strike
price E equal to the averaged price A. Which price is higher?

3. Following the derivation of the price of a compound call on a call derive formulae for
all three remaining cases of compound options.

4. Derive the pricing formula for the asset-or-nothing option (see Chapter 2) with the
pay–off diagram V (S, T ) = S if S > E and V (S, T ) = 0, otherwise.
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5. Show that the maximum of positive numbers St1 , St2 , . . . , Stn can be expressed as
the limit

max
i=1,...,n

Sti = lim
p→∞

(
1
n

n∑

i=1

Spti

) 1
p

.

For a continuous function Sτ , τ ∈ [0, T ], show that

max
τ∈[0,t]

Sτ = lim
p→∞

(
1
t

∫ t

0
Spτdτ

) 1
p

.

6. Assume the underlying stock price follows the geometric Brownian motion dS =
µSdt+ σSdw. Show that the geometric average defined by lnAt = 1

t

∫ t
0 lnSτdτ is

again a solution to the SDE of the geometric Brownian motion. More precisely, show
that

dA = µ̃Adt+ σ̃Adw,

where µ̃ = 1
2(µ− σ2

2 + σ̃2) and σ̃ = σ√
3
.

7. With regard to the previous example, find an explicit solution for pricing the Asian
style geometrically averaged rate call option.

8. Prove the identity
N ′(d2)− x1− 2r

σ2N ′(d3) = 0,

where

d1 =
lnx+ (r + σ2/2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t, d3 = d1 − 2r

σ

√
T − t.

With help of this identity show that the functionW (x, t) defined as in (6.34) is indeed
a solution to the parabolic equation (6.31). Notice that the European put option price
W ep solves this equation as well.

9. Show that d3 = −d2 for x = 1, where d2, d3 are defined as in the previous exam-
ple. Using this fact prove that the function W (x, t) defined as in (6.34) satisfies the
boundary condition (6.32).



Chapter 7

Short interest rate modeling

In the following two chapters we will deal with modeling of interest rates and their sim-
ple derivatives. In this chapter, we present analysis of the so-called short rate models for
description of the instantaneous (or short) interest rate. The instantaneous interest rate will
be described by a solution to the stochastic differential equation. We will discuss the role of
model parameters. With regards to the coefficients of the governing stochastic differential
equation, we will distinguish between various types of interest rate models. In the modeling
of short rate processes, the important role is played by knowledge of the probability distribu-
tion of the short rate stochastic process. Therefore we present the mathematical framework
of the Fokker-Planck equation describing the time dependent probability distribution func-
tion for a stochastic process satisfying the prescribed stochastic differential equation. At
the end of the chapter, we will show how the information about this distribution can be used
in order to calibrate the interest rate models.

In Fig. 7.1 we present an example of the time evolution of the instantaneous (short)
interest rate of the term structure BRIBOR (BRatislava Interbank Offered Rate) from Slo-
vakia. It is obvious from the displayed behavior that the evolution of the short interest rate
can be considered as a stochastic process fluctuating within the interval of 2% up to 6%
p.a. In contrast to stochastic behavior of stock prices (see Chapter 2), the short interest rate
process exhibits the so-called mean reversion property. Loosely speaking, by this we mean
that the interest rate is fluctuating around long term interest rate θ (3.5% in our example)
and upward and downward deviations from this value are reverted towards θ with some

101
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Figure 7.1. Time evolution of the short interest rate from the BRIBOR term structure in the
year 2007.

speed κ > 0.

1. One-factor interest rate models

In one-factor models it is assumed that the instantaneous interest rate r is characterized by
the solution to the stochastic differential equation that has a general form

dr = µ(t, r)dt+ σ(t, r)dw. (7.1)

The deterministic part of the process µ(t, r) represents the trend (or drift) of the short rate
behavior whereas the volatility σ(t, r) measures the size of random fluctuations that are
modulated around the deterministic (trend) part.

A usual choice of the drift function is a linear decreasing function µ(t, r) = κ(θ − r),
where κ, θ are positive constants. The parameter θ is called the long term limiting interest
rate and κ is called the speed (or rate) of mean reversion. It measures a speed of return
of the short rate towards the limiting interest rate θ. Stochastic processes with such a
specific form of the deterministic part are also referred to as the Ornstein–Uhlenbeck mean
reversion processes. The essence of the drift of the form µ(t, r) = κ(θ − r) is that the
mean value of the short rate process is attracted towards the limit value θ with a speed of
attraction proportional to the parameter κ. Indeed, for the mean value E(rt) it holds:

dE(rt) = E(drt) = κ(θ − E(rt))dt+E(σ(t, r)dw) = κ(θ − E(rt))dt.

It follows from the construction of Itō’s integral (see Chapter 2) that

E(σ(t, r)dw) = 0.

Now it is easy to verify that a solution to the differential equation

d

dt
E(rt) = κ(θ − E(rt))



Short interest rate modeling 103

is uniquely given by
E(rt) = θ + (E(r0)− θ)e−κt. (7.2)

Clearly, it means that limt→∞E(rt) = θ.
In the rest of this section we restrict our attention on the class of Orstein–Uhlenbeck

processes of mean reversion type. Depending on the form of volatility σ(r, t) we distinguish
particular the short interest rate models. Assuming a constant volatility, i.e., σ(t, r) = σ,
we obtain the so-called Vasicek model

dr = κ(θ − r)dt+ σdw. (7.3)

It was derived by O. A. Vasicek in [120]. The Vasicek model is one of the first and most
simple models for short interest rates. The analysis of the stochastic properties of the short
rate process driven by Vasicek’s model is relatively simple. It will turn out (see the next
section) that the random variable r at a given time t is just a normally distributed random
variable with mean and variance depending on time. However, one of principal disadvan-
tages of the Vasicek model is the fact, that it allows negative interest rates. Indeed, even
if the short rate is close to zero, its volatility is always equal to the given constant σ and
therefore the process rt can become negative.

The Cox–Ingersoll–Ross model (abbreviated as the CIR model) derived by the authors
in [31], eliminates the possibility of negative short rate for certain range of model param-
eters. The model still preserves the assumption on the drift κ(θ − r) in the form of a
mean-reversion process. Unlike the Vasicek model, the volatility of the CIR process is no
longer assumed to be constant, but it is proportional to the square root of r, i.e.

dr = κ(θ − r)dt+ σ
√
rdw. (7.4)

A stochastic process for a random variable r of the form (7.4) where the differential of the
Wiener process dw is multiplied by the square root of r is also referred to as the Bessel
square root process. It means that, for small values r of interest rates, the whole volatility
term σ

√
r is also as well. Furthermore, if the zero value of r is attained then the volatility of

r is vanishing as well. The further evolution of r is therefore deterministic and is described
just by the drift function, which is positive for r = 0. It means that the interest rate increases
and again attains positive values. Moreover, if coefficients of the CIR process satisfy the
inequality

2κθ ≥ σ2,

then the process r attains a zero value with zero probability. Intuitively, this property can
be seen by applying the transformation x = ln r. The value r = 0 then corresponds to
x = −∞ for the new variable x. From Itō’s lemma it follows that

dx = (e−x(κθ − σ2/2)− κ)dt+ e−x/2σdw.

Now, if 2κθ < σ2 then for x→ −∞ the drift of the above stochastic process tends to −∞.
The process x is therefore driven to towards −∞ without possibility of reversion. More
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Table 7.1. An overview of one-factor short rate models having a form of the Chan, Karolyi,
Longstaff and Sanders (CKLS) process.

Model Stochastic equation for r
CKLS dr = κ(θ − r)dt+ σrγdw
Vasicek dr = κ(θ − r)dt+ σdw
Dothan dr = σrdw
Brennan–Schwartz dr = κ(θ − r)dt+ σrdw
Cox–Ingersoll–Ross dr = κ(θ − r)dt+ σ

√
rdw

Cox–Ross dr = βrdt+ σrγdw

precisely, for the mean value E(x) of the process x we have

dE(x) = (E(e−x)(κθ − σ2/2)− κ)dt

because E(e−x/2σdw) = 0 (see Chapter 2). Using Jensen’s inequality E(e−x) > e−E(x)

applied for the convex function x 7→ e−x, we deduce

d

dt
E(x) < (κθ − σ2/2)e−E(x).

Hence, eE(xt) ≤ eE(x0) − (σ2/2 − κθ)t and so E(xt) → −∞ as t → Tmax :=
r0/(σ2/2 − κθ), where r0 = ex0 = eE(x0). On the other hand, the condition 2κθ ≥ σ2

clearly eliminates such an undesirable behavior.
Notice that there are several other models that are generalizations of the previously

mentioned Vasicek and CIR models. For example, another popular model for the short rate
process was proposed by Chan, Karolyi, Longstaff and Sanders in [23]. Their model is
given by a solution to the SDE:

dr = κ(θ − r)dt+ σrγdw, (7.5)

where γ ≥ 0 is a constant. A brief and incomplete overview of other interest rate models is
presented in Table 7.1.

Let us recall that there are also other possibilities how to design a short rate model with
the property of nonnegativity of the short rate. For example, if we use a process of the type
(7.3) for an auxiliary process xt and we define the short rate by rt = ext then resulting
model is called the exponential Vasicek model. It has a SDE representation:

d ln r = κ(θ − ln r)dt+ σdw.

The short rate rt at a time t is almost surely a positive random variable. Since the variable
x = ln r is a solution to (7.3), by using Itō’s lemma, we deduce that the exponential Vasicek
process r satisfies the SDE:

dr = κ(θ + σ2/2− ln r)rdt+ σrdw.
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It has the same volatility term σrdw as the Brennan-Schwartz process (see Table 7.1). The
drift term is however a nonlinear function of r. Taking the expected value E(rt) of the
exponential Vasicek process at a time t we conclude

d

dt
E(rt) = κ

(
(θ + σ2/2)E(rt)− E(rt ln rt)

)

because E(σrtdwt) = 0. Since the function (0,∞) 3 r 7→ r ln r is convex we have, by
Jensen’s inequality, E(rt ln rt) > E(rt) lnE(rt). Solving the differential inequality

d

dt
E(rt) < κ

(
(θ + σ2/2)E(rt)− E(rt) lnE(rt)

)

yields the upper estimate for the expected value E(rt):

lnE(rt) < lnE(r0)e−κt + (θ + σ2/2)
(
1− e−κt

)
.

On the other hand, as the auxiliary function x = ln r is a solution to (7.3) we can deduce

E(ln rt) = E(ln r0)e−κt + θ
(
1− e−κt

)

(see (7.2) with r replaced by x variable). Now, as the function (0,∞) 3 r 7→ ln r is
concave, again by Jensen’s inequality, we obtain the lower estimate E(ln rt) < lnE(rt).
Combining the above upper and lower inequalities for lnE(rt) we obtain, for the limit
of the expected value E(rt) of the exponential Vasicek model, the following inequality
bounds:

θ ≤ lim
t→∞ lnE(rt) ≤ θ +

σ2

2
. (7.6)

We end this section by recalling the model of Black and Karasinski. If the parame-
ters κ, θ, σ are not constants, but they are allowed to be functions of time, we obtain the
governing SDE for the short rate process:

dr = κ(t)(θ(t)− r)dt+ σ(t)rγdw.

We refer the reader for detailed survey of qualitative and quantitative properties of various
short rate models to the books of Brigo and Mercurio [20] and Kwok [75].

2. The density of Itō’s stochastic process and the Fokker–Plank
equation

In this section we address the question what is the probability distribution of the random
variable xt, which is a solution to the general stochastic Itō’s process of the form:

dx = µ(x, t)dt+ σ(x, t)dw, (7.7)
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having a drift µ(x, t) and volatility σ(x, t). Denote the cumulative distribution function
G = G(x, t) = Prob(xt < x |x0) of the process xt, t ≥ 0, which satisfies the stochastic
differential equation (7.7) and starts almost surely from the initial condition x0. Then the
cumulative distribution function G can be computed from the probability density function
g = ∂G/∂x, which is a solution to the so-called Fokker–Planck equation:

∂g

∂t
=

1
2
∂2

∂x2

(
σ2g

)− ∂

∂x
(µg) , g(x, 0) = δ(x− x0). (7.8)

By δ(x − x0) we have denoted Dirac delta function located at a point x0. Recall that the
Dirac delta function is not a function in a classical sense, but it is a distribution. For our
needs we can represent it as a function satisfying

δ(x− x0) =
{

0, if x 6= x0,
+∞, if x = x0

and
∫ ∞

−∞
δ(x− x0)dx = 1. (7.9)

In our case it means that for the distribution function G(x, 0) at the time t = 0 we have

G(x, 0) =
∫ x

−∞
δ(ξ − x0)dξ =

{
0, if x < x0,
1, if x ≥ x0,

i.e., the process xt is at time t = 0 almost surely at the point x0.
An intuitive proof of the fact that the density g satisfies the Fokker-Planck equation can

be done in a following way: Let V = V (x, t) be a smooth function with a compact support,
i.e., V ∈ C∞0 (R × (0, T )). It means that for any such a function V there exists a compact
set [−R,R]× [α, β] ⊂ R× (0, T ) with the property V = 0 outside of this set. According
to Itō’s lemma we have

dV =
(
∂V

∂t
+
σ2

2
∂2V

∂x2
+ µ

∂V

∂x

)
dt+ σ

∂V

∂x
dw.

Since the differential of the Wiener process dwti ≈ wti+1 − wti and the variable
σ(xi, ti)∂V∂x (xi, ti) are at the time ti independent, we obtain Et

(
σ(., t)∂V∂x (., t)dwt

)
= 0,

where Et is the expected value with respect to the density g(., t). Then

dEt(V (., t)) = Et(dV (., t)) = Et

(
∂V

∂t
+
σ2

2
∂2V

∂x2
+ µ

∂V

∂x

)
dt.

Notice that the function V (x, t) ∈ C∞0 is zero for t = 0 and t = T and for |x| > R, where
R > 0 is sufficiently large. Using this fact and integration by parts in x and t-variables, we
obtain

0 =
∫ T

0

d

dt
Et(V (., t))dt =

∫ T

0
Et

(
∂V

∂t
+
σ2

2
∂2V

∂x2
+ µ

∂V

∂x

)
dt

=
∫ T

0

∫

R

(
∂V

∂t
+
σ2

2
∂2V

∂x2
+ µ

∂V

∂x

)
g(x, t) dxdt

=
∫ T

0

∫

R
V (x, t)

(
−∂g
∂t

+
1
2
∂2

∂x2

(
σ2g

)− ∂

∂x
(µg)

)
dx dt.
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Recall that the function V ∈ C∞0 (R× (0, T )) was arbitrary. Hence the differential expres-
sion for the function g in the brackets has to be identically equal to zero. This way we have
shown that the function g satisfies the Fokker–Planck equation (7.8). As we have already
noted, the initial value g(x, 0) = δ(x − x0) is equivalent to the fact that the process xt
almost surely starts at the point x0 in the initial time t = 0.

2.1. Multidimensional version of the Fokker-Planck equation

In this part we briefly present derivation of the multidimensional generalization of the
Fokker–Planck equation for vector random processes.

Let {~xt, t ≥ 0} be a vector stochastic process where ~x = (x1, x2, . . . , xn)T and such
that its increments dxi, i = 1, . . . , n, satisfy the system of stochastic differential equations

dxi = µi(~x, t)dt+
n∑

k=1

σik(~x, t)dwk .

Here ~w = (w1, w2, . . . , wn)T is a vector of Wiener processes having mutually independent
increments

E(dwi dwj) = 0, for i 6= j , E((dwi)2) = dt .

It can be rewritten in a vector form of the system of SDEs

d~x = ~µ(~x, t)dt+K(~x, t)d~w ,

where K is an n× n matrix

K(~x, t) = (σij(~x, t))i,j=1,...,n.

Now, let us suppose that f = f(~x, t) = f(x1, x2, . . . , xn, t) : Rn × [0, T ] → R is at least
a C2 smooth function. The multidimensional version of Itō’s lemma (see Chapter 2) yields
the SDE for the composite function f = f(~x, t):

df =
(
∂f

∂t
+

1
2
K : ∇2

xf K

)
dt+∇xf d~x,

where

K : ∇2
xf K =

n∑

i,j=1

∂2f

∂xi∂xj

n∑

k=1

σikσjk.

Now, for the joint density distribution function g(x1, x2, . . . , xn, t),

g(x1, x2, . . . , xn, t) = P (x1(t) = x1, x2(t) = x2, . . . , xn(t) = xn, t)

conditioned to the initial condition state x0
1, x

0
2, . . . , x

0
n one can follow the same procedure

as in the scalar case to obtain the parabolic partial differential equation

∂g

∂t
+∇.(~µg) =

1
2

n∑

i,j=1

∂2

∂xi∂xj
(aijg), where aij =

n∑

k=1

σikσjk.
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g(~x, 0) = δ(~x− ~x0).

The above parabolic partial differential equation for the multidimensional density function
g is refereed to as the multidimensional Fokker–Planck equation.

As an example, let us derive the multidimensional Fokker–Planck equation for a system
of uncorrelated SDEs

dx1 = µ1(~x, t)dt+ σ̄1dw1,

dx2 = µ2(~x, t)dt+ σ̄2dw2,

...
...

...

dxn = µn(~x, t)dt+ σ̄ndwn,

with mutually independent increments of Wiener processes

E(dwi dwj) = 0, for i 6= j , E((dwi)2) = dt .

The corresponding Fokker–Planck equation reads as follows:

∂g

∂t
+∇.(~µg) =

1
2

n∑

i=1

∂2

∂x2
i

(
σ̄2
i g

)
.

This is a scalar parabolic advection–diffusion equation for g.

In the rest of this section we analyze the probabilistic distribution corresponding to short
interest rate SDEs discussed in the first section of this chapter. Using the technique based
on the solution to the Fokker–Planck equation we will be able to derive the probability
distribution of the random variable xt for the time t→∞.

As a first example of application of the Fokker-Planck equation we will find a distribu-
tion of the Vasicek stochastic process rt at a time t when conditioned by the given initial
value r0 at time t = 0. The Fokker-Planck equation for this process reads as follows:

∂f

∂t
=
σ2

2
∂2f

∂r2
− ∂

∂r
(κ(θ − r)f) (7.10)

with the initial condition f(r, 0) = δ(r − r0). Its solution is the density function f(r, t) of
the random variable rt subject almost surely to the initial condition r0. Instead of the density
function f, we will construct the characteristic function φ(s, t) of the random variable.
Recall that the characteristic function φ(s) of a random variableX is defined as the expected
value E(eisX), where i is an imaginary unit, i2 = −1. Hence

φ(s, t) = E
(
eisrt

)
=

∫ ∞

−∞
eisrf(r, t) dr.

We also recall that the characteristic function of the normal distribution N(µ, σ2) is
exp

(
iµs− σ2

2 s
2
)

.
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Now we multiply equation (7.10) by the expression eisr and integrate it with respect to
r from −∞ to ∞. We obtain
∫ ∞

−∞
eisr

∂f

∂t
dr =

σ2

2

∫ ∞

−∞
eisr

∂2f

∂r2
dr−κθ

∫ ∞

−∞
eisr

∂f

∂r
dr+κ

∫ ∞

−∞
reisr

∂f

∂r
dr+κ

∫ ∞

−∞
eisrfdr.

For the density function f we have f(r, t) → 0 and ∂f
∂r (r, t) → 0 for r → ±∞. Hence we

can use
∫ ∞

−∞
eisr

∂f

∂t
dr =

∂φ

∂t
,

∫ ∞

−∞
eisr

∂f

∂r
dr = −isφ,

∫ ∞

−∞
eisr

∂2f

∂r2
dr = −s2φ,

∫ ∞

−∞
reisr

∂f

∂r
dr = −

(
φ+ s

∂φ

∂s

)
.

As a consequence, we obtain the equation

∂φ

∂t
+ κs

∂φ

∂s
= −

(
σ2

2
s2 − κθis

)
φ,

which is a quasilinear partial differential equation of the first order. Using method of char-
acteristics (see e.g., [104]) we can construct its general solution φ given in the implicit
form

F

(
se−κt, lnφ+

σ2

4κ
s2 − θis

)
= 0. (7.11)

For the initial time t = 0 we have

φ(s, 0) =
∫ ∞

−∞
eisrδ(r − r0)dr = eisr0 .

By substituting it into (7.11) we find implicit relation, i.e., the function F :

F (ξ1, ξ2) = ir0ξ1 +
σ2

4κ
ξ21 − θiξ1 − ξ2.

It means that the solution φ is given by

φ(s, t) = exp
(
−s

2

2

[
σ2

2κ
(1− e−2κt)

]
+ is

[
θ(1− e−κt) + r0e

−κt]
)
.

Clearly, this function φ(s, t) is the characteristic function of the normal distribution
N(r̄t, σ̄2

t ), where

r̄t = θ(1− e−κt) + r0e
−κt, σ̄2

t =
σ2

2κ
(1− e−2κt).

In this way we have shown that the expected value is a weighted average of the initial value
r0 and the limit value θ. Note that the weight of the starting values r0 is decreasing with the
strength of the mean-reversion of the process, i.e., with the increasing parameter κ.



110 Chapter 7

0 2 4 6 8 10 12
month

0.02

0.03

0.04

0.05

0.06

0.07

0.08

sh
or

tr
at

e

0 2 4 6 8 10 12
month

-0.1

-0.05

0

0.05

0.1

0.15

sh
or

tr
at

e

Figure 7.2. Simulation of one year data of the short rate evolution according to the Va-
sicek model. Left: parameters estimated from data in 2007 using the maximum likelihood
method, right: 5-time higher volatility.

Considering the limit for t→∞ we obtain the limiting distribution of the short rate:

r∞ ∼ N

(
θ,
σ2

2κ

)
.

Another way how to deduce the limit density is based on a solution to the stationary
Fokker-Planck equation. Indeed, in the case when we expect that the density function
g(x, t) of a random variable xt is stabilized at some limiting density g̃(x) as t → ∞,
i.e., limt→∞ g(x, t) = g̃(x) we obtain ∂g

∂t (x, t) → 0 for t → ∞. It means that the limiting
density g̃(x) has to satisfy the stationary Fokker–Planck equation:

1
2
∂2

∂x2

(
σ2g̃

)− ∂

∂x
(µg̃) = 0 (7.12)

and the normalization condition on the density distribution, i.e.,
∫
R g̃(x)dx = 1.

In the case of the Vasicek model, the stationary Fokker–Planck equation reads as fol-
lows:

σ2

2
∂2g̃

∂r2
− ∂

∂r
(κ(θ − r)g̃) = 0.

Its solution can be easily found in the explicit form

g̃(r) = C exp
(
− κ

σ2
(r − θ)2

)
, C =

√
κ

πσ2
, (7.13)

where C > 0 is a normalization constant, such that g̃ is probability density, i.e.,∫
R g̃(r)dr = 1. Notice that the density (7.13) is a density of a random variable with a

normal distribution having the expected value θ and variance σ2

2κ .
As an another example we consider the Cox–Ingersoll–Ross model for a short interest

rate rt. Similarly as in the case of the Vasicek model, we will compute the limiting density
function of the distribution of rt for t →∞. In the CIR model we assume that the process
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Figure 7.3. Left: limiting distribution of the short rate in the Vasicek model with param-
eters θ = 0.0364, κ = 41.9624, σ = 0.0888 and with 5-times larger volatility. Right: a
distribution of the short rate in the Vasicek model with parameters estimated from data and
initial value r0 = 0.02 - in 1 day, 1 week, limit distribution (dotted line).

for the short rate r satisfies the stochastic differential equation of the Bessel square root
process (7.4). The corresponding stationary Fokker–Planck equation has the form

σ2

2
∂2

∂r2
(rg̃)− ∂

∂r
(κ(θ − r)g̃) = 0. (7.14)

Suppose that the parameters of the process satisfy

2κθ
σ2

> 1.

Then, by integrating equation (7.14), we can find the explicit solution

g̃(r) =

{
1
C r

2κθ
σ2 −1 exp

(−2κr/σ2
)
, r > 0,

0, r ≤ 0,
(7.15)

where C =
(
σ2

2κ

) 2κθ
σ2

Γ
(

2κθ
σ2

)
is the normalization constant and Γ is the Gamma function.

In this case the limiting density (7.15) is the density of a random variable with a Gamma
distribution. The limiting random variable r does not attain the zero value almost surely.
This is one of the main reasons why the Cox–Ingersoll–Ross model is considered to be
more realistic when compared to the Vasicek model of the short rate.

In Fig. 7.3 (left) we plotted the limiting distribution of the short rate that evolves ac-
cording to the Vasicek process. The densities correspond to model parameters by which
we generated simulations shown in Fig. 7.2. We can see that, for very large value of the
volatility, we obtain a distribution which has negative values with a high probability. In
Fig. 7.3 (right) we consider the parameters of the process as they were estimated from the
real data. Suppose that the current level of the short rate is 0.02. We computed the dis-
tribution of the short rate in the future. Further examples of these distributions for 1 day
and 1 week are also depicted in the figure. Together with these densities, the density of
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Figure 7.4. Limiting distribution of the short rate in the Vasicek model with parameters
θ = 0.0364, κ = 41.9624, σ = 0.0888 and CIR model with θ = 0.0364, κ = 44.9889, σ =
0.4917

the limiting distribution is drawn. In Fig. 7.4 we compare the limiting distributions of the
short rate according to the Vasicek a CIR models. The parameters of the both models were
estimated from the same market data.

3. Two- and multi-factor interest rate models

The basic idea of two-factor interest rate models consits in the assumption that the short
rate r is a function of two factors which we can denote in general as x, y. It means that
r = r(x, y) and the stochastic equation for the factor x can also depend on the factor y.
This class of models contains the models in which:

• The short rate is a sum of two factors x and y. These factors can be interpreted as a
systematic and a speculative component of the short rate. In this case r(x, y) = x+y;

• A stochastic equation for the short rate depends on other stochastic variables. For
example r is a short rate in a certain country and we assume that it also depends on
the European short interest rate re. Hence x = r, y = re and r(x, y) = x;

• Some of the parameters from the one-factor model is not constant, but stochastic. Ex-
amples are represented by stochastic volatility models, where r = x and the volatility
of the process r is described by another stochastic factor y.

In a general case of a two-factor model we assume that the factors x, y satisfy the following
system of stochastic differential equations:

dx = µx(x, y)dt+ σx(x, y)dw1,

dy = µy(x, y)dt+ σy(x, y)dw2,

where the correlation of differentials dw1 and dw2 of the Wiener processes w1 and w2 is a
constant ρ, i.e., E(dw1dw2) = ρdt.
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Let us present a couple of examples. In the two-factor Vasicek and CIR models the short
rate is considered to be a sum of two independent factors. Each of them evolves according
to a stochastic differential equation of the same form as is the equation for the short rate in
the corresponding one-factor model. It means that r = r1 + r2, where r1 and r2 are given
by the following processes:

• in the two-factor Vasicek model

dr1 = κ1(θ1 − r1)dt+ σ1dw1,

dr2 = κ2(θ2 − r2)dt+ σ2dw2, (7.16)

• in the two-factor CIR model

dr1 = κ1(θ1 − r1)dt+ σ1
√
r1dw1,

dr2 = κ2(θ2 − r2)dt+ σ2
√
r2dw2. (7.17)

In the convergence model proposed by Corzo and Schwartz in [27], the European short
rate is modelled by using one-factor stochastic differential equation. It is assumed that the
evolution of the domestic rate is stochastic and it depends on the stochastic European short
rate also. The European rate is modelled by the one-factor Vasicek model

dre = c(d− re)dt+ σedwe.

The process for the domestic short rate1 is given by the stochastic differential equation

drd = (a+ b(re − rd))dt+ σddwd,

which can be written as

drd = b
(a
b

+ re − rd

)
dt+ σddw2. (7.18)

As it can be seen from the form of the process (7.18), the domestic rate rd is pulled towards
the value a

b + re. The differentials of the Wiener processes w1 a w2 can be correlated with
a constant correlation ρ, i.e., E(dw1dw2) = ρdt.

In stochastic volatility models the first factor is the short rate itself and the second factor
defines its volatility. There are several possibilities for choosing this second factor. One of
the them is the so-called Fong–Vasicek model. In this model we consider

dr = κ1(θ1 − r)dt+
√
ydw1,

dy = κ2(θ2 − y)dt+ v
√
ydw2.

It means that the stochastic volatility of the short rate r is the square root of the second
stochastic factor y. In this model the increments of the Wiener processes w1 and w2 can be
correlated, E(dw1dw2) = ρdt.

1In the model of Corzo and Schwartz it is Spanish interest rate before adoption of EURO currency.
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4. Calibration of short rate models

In this section we present one of the possible approaches to the calibration of the short
rate models of the form (7.5). Firstly, we derive estimates of the parameters κ, θ, σ of
the Vasicek model using the maximum likelihood methodology. Then, we generalize this
method for the CIR stochastic process.

4.1. Maximum likelihood method for estimation of the parameters in the Va-
sicek and CIR models

We already computed the conditional distribution of the short rate in the Vasicek model
by solving a Fokker-Planck partial differential equation. Hence we know the distribution of
rt+∆t when conditioned to the initial state rt at time t. Here ∆t > 0 is a time step evaluated
on a yearly basis, e.g., ∆t = 1/365. Now we derive this result in another way, which will
turn to be useful when estimating models with nonconstant volatility (see Chapter 13).

We multiply the equation for the short rate drs = κ(θ − r)ds+ σdws by the term eκs.
Using Itō’s lemma for f(s, t) = eκsr we obtain the expression for the differential

d (eκsrs) = κθeκsds+ σeκsdws.

Integrating it from the time t to time t+ ∆t we obtain

eκ(t+∆t)rt+∆t − eκtrt = κθ

∫ t+∆t

t
eκsds+ σ

∫ t+∆t

t
eκsdws

= (eκ(t+∆t) − eκt)θ + σ

∫ t+∆t

t
eκsdws.

Therefore rt+∆t = e−κ∆trt + (1− e−κ∆t)θ + σe−κ(t+∆t)
∫ t+∆t
t eκsdws. The conditional

distribution rt+∆t conditioned to the state rt at time t is a normal distribution. Its first two
moments can be evaluated as

E(rt+∆t|rt) = e−κ∆trt + (1− e−κ∆t)θ,

V ar(rt+∆t|rt) = σ2e−2κ(t+∆t)V ar

(∫ t+∆t

t
eκsdws

)

= σ2e−2κ(t+∆t)E

([∫ t+∆t

t
eκsdws

]2
)

= σ2e−2κ(t+∆t)

∫ t+∆t

t
(eκs)2 ds =

σ2

2κ
(1− e−2κ∆t),

where we have used Itō’s isometry from Chapter 2. Hence

rt+∆t|rt ∼ N

(
e−κ∆trt +

(
1− e−κ∆t

)
θ,

σ2

2κ
(
1− e−2κ∆t

))
.
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Let us consider that the statistical data for the short rate are: r0, r∆t, . . . , rN∆t evaluated at
times: 0,∆t, . . . , N∆t. We define

ν2
t =

σ2

2κ
(
1− e−κ∆t

)
, εt = rt − θ

(
1− e−κ∆t

)− e−κ∆trt−∆t. (7.19)

Then the likelihood function L of the random vector ε is a product of normal distributions
(see [96])

f(εt) =
1√
2πν2

t

e
− ε2t

2ν2
t .

Up to an additive constant not influencing the optimum, the logarithm of likelihood function
L can be written as

lnL = −1
2

N∑

t=2

ln ν2
t +

ε2t
ν2
t

. (7.20)

Maximizing this function we obtain the estimates of the parameters κ, θ, σ2.

Table 7.2. August 2003 European short rates in percent p.a.

PRIBOR BUBOR BRIBOR EURIBOR
5.1 9.42 5.21 2.08
5.16 9.41 5.15 2.07
5.12 9.38 5.27 2.07
5.07 9.36 6.51 2.06
4.94 9.21 6.48 2.06
5.1 8.74 6.41 2.06
5.2 8.73 6.45 2.06
5.28 8.75 6.38 2.06
5.45 9.19 5.73 2.06
5.7 9.33 5.35 2.06
5.34 9.94 5.295 2.07
5.22 10.00 5.575 2.07
5.16 9.99 5.65 2.07
5 10.33 5.22 2.09
4.95 10.50 5.14 2.15
4.65 10.53 5.16 2.45
4.28 10.51 5.12 2.1
4.23 9.82 5.13 2.1
4.08 10.48 6.9 2.09
5 10.57 7.385 2.09
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Problem section and exercises

1. Consider the Vasicek model with parameters θ = 0.0364, κ = 41.9624, σ = 0.0888
(estimated from BRIBOR overnight rates from the year 2007). Find the density func-
tion of the short rate in a month, if its current value is 3.5% p.a. What is its expected
value and its standard deviation? Find 95% confidence interval for its value.

2. Solving the stationary Fokker-Planck equation find the limiting distribution of CKLS
model of short rate, in which

dr = κ(θ − r)dt+ σrγdw,

for γ > 0, γ 6= 1/2.

3. By using the maximum likelihood method, estimate the parameters κ, θ, σ of the Va-
sicek and CIR models for the short rate data of several different European countries:
PRIBOR – the Czech Republic, BUBOR – Hungary, BRIBOR – Slovakia and EU-
RIBOR – Eurozone, which are collected in Table 7.2. Compare the value of the long
term interest rate θ for both models.
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Pricing of interest rate derivatives

In this chapter, we investigate methods for pricing derivatives of the short interest rate.
At present, these derivatives belong among the category of most traded derivatives in finan-
cial markets. In this category of financial derivatives there are bonds, swaps, caps, floors,
options on bonds and others. When analyzing interest rate derivatives (e.g., bonds), it is
necessary to consider not only the underlying asset itself (e.g., the interest rate) but also the
entire yield curve describing the term structure of interest rates for different maturities. In-
terest rate derivatives are characterized by the property that their pay–off diagrams depend
on value of the short rate. A contract, according to which we obtain at the specified time
T the specified amount of money X, is called a zero-coupon bond. The value X is called
a par value and time T is called the maturity. If the bond pays coupons at specified time
intervals, the bond is called a coupon bond and the payments are called coupons. Since a
coupon bond is equivalent to a portfolio of zero coupon bonds (cf. Kwok [75], Dewynne et
al. [122] or Melicherčı́k [83]), we will only investigate pricing of zero-coupon bonds.

1. Bonds and term structures of interest rates

A zero-coupon bond is one of the basic derivative contracts based on the interest rate as an
underlying asset. A bond is an agreement to pay a certain amount today against the promise
to obtain a higher amount in the future. The maturity of the bond is usually denoted by T .
The price of a bond P (t, T ) is therefore a function of the current time t and the maturity
T . Naturally, it depends also on the underlying asset - the interest rate. The most simple
derivative is therefore a bond which pays its holder a unit amount of money at the maturity

117
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Table 8.1. Quarterly descriptive statistics for different European term structures of interest
rates. The mean and standard deviation are given for the short rate (o.n.) and yield on a
bond with one year maturity in percents p.a.

1/4 2003 2/4 2003 3/4 2003 4/4 2003
Mean STD Mean STD Mean STD Mean STD

BRIBOR o.n. 5.75 1.041 6.27 1.279 5.63 0.802 5.48 0.992
1y 5.48 0.205 5.42 0.208 5.80 0.066 5.50 0.033

WIBOR o.n. 6.65 0.761 5.76 0.359 5.22 0.438 5.17 0.438
1y 5.95 0.138 5.19 0.255 4.97 0.053 5.79 0.380

BUBOR o.n. 5.42 1.813 7.08 0.879 9.58 0.547 10.52 1.213
1y 6.57 0.433 6.76 0.773 8.80 0.207 10.02 1.334

PRIBOR o.n. 2.52 0.107 2.44 0.045 2.06 0.135 1.94 0.032
1y 2.43 0.130 2.33 0.084 2.13 0.063 2.19 0.061

EURIBOR o.n. 2.77 0.188 2.44 0.199 2.07 0.120 2.02 0.169
1y 2.54 0.140 2.23 0.189 2.20 0.106 2.36 0.081

EUROLIB o.n. 2.79 0.196 2.47 0.196 2.08 0.101 2.02 0.139
1y 2.54 0.139 2.23 0.187 2.20 0.105 2.35 0.085

T . Bond prices determine time structure of interest rates R(t, T ), which are given by the
formula

P (t, T ) = e−R(t,T )(T−t),

where P (t, T ) is the bond price, R(t, T ) is the interest rate at present day t with maturity at
expiration day T . It means that the term structure of the interest rate can be computed from
bond prices as follows:

R(t, T ) = − lnP (t, T )
T − t

.

The instantaneous interest rate (or short rate) rt at time t is then the interest rate R(t, T )
with instantaneous maturity T = t, i.e.

rt = R(t, t).

In Fig. 8.1 we plot four sample term structures of interest rates for various countries from
5/27/2008. It is important to note that the term structure can have different behavior, as far
as the increasing or decreasing property of yields as functions of maturity, are concerned.

The data sets contained in Table 8.1 are taken from the paper Ševčovič and Urbánová-
Csajková [105]. One can see descriptive statistics for short rates and yields of bonds with
one year maturity for different European countries. The base for the term structure of in-
terest rates in the countries of Eurozone is EURIBOR and the overnight (or short rate)
EONIA. Recall that the short rate substitute called EONIA is computed as a weighted av-
erage from 48 European banks. Term structures of interest rates in Central European coun-
tries are based on the first letters of their capital cities: Bratislava – BRIBOR, Prague –
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Figure 8.1. The term structure of interest rates of government bonds yields in percent from
the day t =5/27/2008, as a function of the maturity T (in years) for various countries:
Australia, Brazil, Japan and United Kingdom.

PRIBOR, Warsaw – WIBOR, Budapest – BUBOR. Among widely known term structures
there are: London LIBOR, European EURIBOR and EUROLIBOR. In typical cases, these
term structures consist of the instantaneous interest rate (called also overnight or short rate)
and interest rates with maturities from 1, 2, 3 weeks up to 1, 3, 6, 12 months.

1.1. One–factor equilibrium models, Vasicek and CIR models

We begin our analysis of one-factor equilibrium models by the description of the short rate
stochastic process. Recall that the short rate plays a role of an underlying asset for its
derivative which is, for instance, a zero-coupon bond. For this description we will use a
general one-factor model (7.1) from the previous chapter, which can be expressed as a SDE
for the short rate r = rt:

dr = µ(t, r)dt+ σ(t, r)dw.

In what follows, we will derive a partial differential equation for the bond price P with a
maturity at time T . This price depends on time t, maturity T as well as on the value of the
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short rate process r, i.e., P = P (r, t, T ). From Itō’s formula (see Chapter 2) we conclude

dP =
(
∂P

∂t
+ µ

∂P

∂r
+
σ2

2
∂2P

∂r2

)
dt+ σ

∂P

∂r
dw

= µB(t, r)dt+ σB(t, r)dw, (8.1)

where µB(r, t) and σB(r, t) denote the drift and volatility of the bond price stochastic pro-
cess. Next we construct a portfolio consisting of bonds with two different maturities. It
contains one bond with maturity T1 and ∆ bonds with maturity T2. Its value π is therefore

π = P (r, t, T1) + ∆P (r, t, T2). (8.2)

We can express the change dπ of its value as follows:

dπ = dP (r, t, T1) + ∆dP (r, t, T2)
= (µB(r, t, T1) + ∆µB(r, t, T2)) dt+ (σB(r, t, T1) + ∆σB(r, t, T2)) dw.

If we choose the ratio of the number of the bonds ∆ such that

∆ = −σB(t, r, T1)
σB(t, r, T2)

, (8.3)

then the stochastic part in (8.3) is eliminated and we obtain a riskless portfolio having the
deterministic part only.

dπ =
(
µB(t, r, T1)− σB(t, r, T1)

σB(t, r, T2)
µB(t, r, T2)

)
dt.

In order to avoid a possibility of arbitrage opportunities, the yield of this portfolio should
be equal to the instantaneous riskless interest rate r, i.e. dπ = rπdt. Hence

µB(t, r, T1)− σB(t, r, T1)
σB(t, r, T2)

µB(t, r, T2) = rπ .

Substituting the value of the portfolio π from (8.2) and (8.3) we obtain

µB(t, r, T1)− σB(t, r, T1)
σB(t, r, T2)

µB(t, r, T2)

= r

(
P (t, r, T1)− σB(t, r, T1)

σB(t, r, T2)
P (t, r, T2)

)
.

From the above equality it follows that

µB(t, r, T1)− rP (t, r, T1)
σB(t, r, T1)

=
µB(t, r, T2)− rP (t, r, T2)

σB(t, r, T2)
.
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Since the maturities T1 and T2 were chosen arbitrarily we conclude that the above expres-
sion does not depend on the maturity, i.e., there must exists a function λ(r, t) such that the
following identity holds:

λ(r, t) =
µB(r, t, T )− rP (r, t, T )

σB(r, t, T )
(8.4)

for every maturity T . This function λ is called a market price of risk since it measures
increase of the yield µB(r, t, T )− rP (r, t, T ) on a bond with respect to the risk expressed
by the volatility σB(r, t, T ) of the bond. Substituting the functions µB and σB into (8.4)
we finally obtain a partial differential equation for the bond price P (r, t, T ):

∂P

∂t
+ (µ(r, t)− λ(r, t)σ(r, t))

∂P

∂r
+
σ2(r, t)

2
∂2P

∂r2
− rP = 0. (8.5)

At the time of maturity the value of the bond is equal to unity, regardless of the current
value of the short rate. Hence the price P (r, t, T ) has to satisfy the terminal condition

P (r, T, T ) = 1, for all r > 0.

Vasicek model

One of the first term structure models was proposed by mathematician and statistician
O. A. Vasicek. The basis for this models is a description of the short rate with the model
(7.3), i.e.

dr = κ(θ − r)dt+ σdw.

We will look for a bond price as a function of the instantaneous (short) interest rate r and
the time τ remaining to maturity, i.e., τ = T − t. Therefore we can seek the bond price P
in the form of a function of two variables: r and τ = T − t. It means P = P (r, τ). For a
constant market price of risk λ it satisfies the partial differential equation

−∂P
∂τ

+ (κ(θ − r)− λσ)
∂P

∂r
+
σ2

2
∂P

∂r2
− rP = 0

and initial condition P (r, 0) = 1, for all r > 0. In what follows, we will show that there
is an exact solution to the above bond pricing equation. We will search the solution in the
form

P (r, τ) = A(τ)e−B(τ)r,

where the time dependent functionsA,B satisfy the initial conditionsA(0) = 1, B(0) = 0.
Next we compute all the partial derivatives appearing in the bond pricing PDE:

∂P

∂τ
= e−Br(Ȧ−AḂr),

∂P

∂r
= −BAe−Br, ∂2P

∂r2
= B2Ae−Br.
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Here we have denoted by

φ̇ =
d

dτ
φ

the time derivative of a function φ = φ(τ). Substituting them into the governing partial
differential equation we obtain:

(Ȧ−AḂr) +
σ2

2
B2A− (κ(θ − r)− λσ)AB − rA = 0.

Collecting all the terms containing r and those that do not contain r we obtain:
(
−Ȧ+

σ2

2
AB2 − (κθ − λσ)AB

)
+ rA

(
Ḃ + κB − 1

)
= 0.

To satisfy this equation for all r, both parentheses have to be identically zero. This way we
obtain a system of ODEs for the function A,B:

−Ȧ+
σ2

2
AB2 − (κθ − λσ)AB = 0,

Ḃ + κB − 1 = 0.

The ordinary differential equation for B is linear and so its solution satisfying the initial
condition B(0) = 0 can be easily constructed. We have

B(τ) =
1− e−κτ

κ
. (8.6)

Knowing the function B, we are yet able to compute the remaining function A. Integrating
the equation for A yields

lnA =
∫
d lnA
dτ

=
∫
σ2

2
B2 − (κθ − λσ)Bdτ.

By substituting the function B(τ), evaluating the integral and using the initial condition
A(0) = 1 we deduce

lnA(τ) =
[

1
κ

(1− e−κτ )− τ

]
R∞ − σ2

4κ3
(1− e−κτ )2, (8.7)

where

R∞ = θ − λσ

κ
− σ2

2κ2
.

If we use the notation R(r, t, t + τ) for the term structure of interest rates at time t with
a maturity at time t + τ, in which the short rate is r, then, for Vasicek model, the term
structure R(r, t, t+ τ) can be expressed as follows:

R(r, t, t+ τ) = − lnP (r, τ)
τ

=
(

1− 1− e−κτ

κτ

)
R∞ +

σ2

4κ3

(1− e−κτ )2

τ
+

1− e−κτ

κτ
r.

Furthermore, the following limit limτ→∞R(r, t, t+ τ) = R∞ holds.
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Figure 8.2. The term structure of interest ratesR(r, t, T ) computed from the Vasicek model
for two values of the short rate (r = 0.03 and r = 0.05) at a given time t.

Cox–Ingersoll–Ross model

Another popular one-factor model describing the bond price as a derivative of the short rate
is the so-called Cox–Ingersoll–Ross model, abbreviated as the CIR model. It is based on
the description (7.4) of the short rate model, i.e.

dr = κ(θ − r)dt+ σ
√
rdw.

Recall that in the case the parameters of the short rate process satisfy the inequality
2κθ/σ2 > 1, then the random variable rt representing the short rate at time t is posi-
tive almost surely. We also remind ourselves that the Vasicek model does not possess this
property since the statistical distribution of the short rate rt is a normal distribution allowing
for negative values of rt. As usual, we express the bond price as a function of the variable
τ, denoting time to maturity i.e., τ = T − t. For a specific choice of the market price of
risk λ

√
r the partial differential equation for the bond price P = P (r, τ) takes the form

−∂P
∂τ

+ (κ(θ − r)− λσr)
∂P

∂r
+
σ2

2
r
∂2P

∂r2
− rP = 0, (8.8)

with the initial condition P (r, 0) = 1, for every r > 0. We can again look for a solution in
the the form

P (r, τ) = A(τ)e−B(τ)r,

where the functions A, B satisfy the initial conditions A(0) = 1 and B(0) = 0. Inserting
this form of a solution into the governing (8.8) we obtain the equality

(
−Ȧ− κθAB

)
+

(
Ḃ + (κ+ λσ)B +

σ2

2
B2 − 1

)
Ar = 0,

which has to be satisfied for all r > 0 and τ > 0. Similarly as in the case of the Vasicek
model we obtain the system of ODEs

Ȧ+ κθAB = 0,

Ḃ + (κ+ λσ)B +
σ2

2
B2 − 1 = 0.
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Together with the conditionsA(0) = 1 andB(0) = 0 it represents an initial problem for the
system of ordinary differential equations for unknown functionsA and B. From the second
equation we can compute the function B. Indeed, it is a separable ordinary differential
equation and therefore we obtain

dB

−σ2

2 B
2 − (κ+ λσ)B + 1

= dτ. (8.9)

In order to simplify further notation we let denote

ψ = κ+ λσ, φ =
√
ψ2 + 2σ2 =

√
(κ+ λσ)2 + 2σ2. (8.10)

Then

1
−σ2

2 B
2 − (κ+ λσ)B + 1

= − 2
σ2

1(
B + ψ+φ

σ2

) (
B + ψ−φ

σ2

)

= − 1
φ

(
1

B + ψ−φ
σ2

− 1

B + ψ+φ
σ2

)
.

Integrating the equation (8.9) we obtain

− 1
φ

ln

(
B + ψ−φ

σ2

B + ψ+φ
σ2

)
= τ + c1,

where c1 is a constant. We write in the form

B(τ) + ψ+φ
σ2

B(τ) + ψ−φ
σ2

= eφτc2,

from which we compute the constant c2 using the initial condition B(0) = 0 at time τ = 0,
i.e., c2 = ψ+φ

ψ−φ . We obtain the expression

B(τ) =
ψ+φ
σ2

(
eφτ − 1

)

1− ψ+φ
ψ−φe

φτ
,

which can be written in the following form commonly known in the literature:

B(τ) =
2

(
eφτ − 1

)

(ψ + φ) (eφτ − 1) + 2φ
. (8.11)

Since the functionB is already known the functionA can be easily computed by integrating
the equation Ȧ+ κθAB = 0:

lnA(τ) = −
∫ τ

0
κθB(s)ds,
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from which, after computing the integral and straightforward algebraic manipulations, we
obtain

A(τ) =

(
2φe(φ+ψ)τ/2

(φ+ ψ)(eφτ − 1) + 2φ

) 2κθ
σ2

. (8.12)

Similarly as in the case of the Vasicek model, the term structure of interest rates R(r, t, t+
τ) = − lnP (r,τ)

τ a linear function of the short rate r. We have

R(r, t, t+ τ) = −1
τ

2κθ
σ2

ln

(
2φe(φ+ψ)τ/2

(φ+ ψ)(eφτ − 1) + 2φ

)

+
1
τ

2
(
eφτ − 1

)

(ψ + φ) (eφτ − 1) + 2φ
r. (8.13)

The limit of the term structure as time to maturity τ = T − t approaches infinity does not
depend on the short rate r. More precisely, we have

lim
τ→∞

1
τ

2
(
eφτ − 1

)

(ψ + φ) (eφτ − 1) + 2φ
= 0,

lim
τ→∞

1
τ

ln

(
2φe(φ+ψ)τ/2

(φ+ ψ)(eφτ − 1) + 2φ

)
= − σ2

φ+ ψ
.

We have used the l’Hospital rule to compute the second limit. In summary, it means that the
limit of the term structures, for a maturity tending to infinity, exists and it can be expressed
as follows:

lim
τ→∞R(r, t, t+ τ) =

2κ
φ+ ψ

θ.

1.2. Two-factor equilibrium models

In derivation of a general two-factor model of the term structure of interest rates we assume
that the factors x and y satisfy the following stochastic differential equations:

dx = µx(x, y)dt+ σx(x, y)dw1,

dy = µy(x, y)dt+ σy(x, y)dw2,

where the correlation of dw1 and dw2 isE(dw1dw2) = ρdtwhere ρ ∈ [−1, 1] is a constant.
As it was already mentioned in Chapter 7, we assume that the short rate is a function of
these two factors, r = r(x, y). In what follows, we derive a partial differential equation
for the price of bond as a derivative of the short rate. We will use the same approach as
in the one-factor case. We construct a risk-less portfolio consisting of bonds with different
maturities.
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Let us denote by P = P (x, y, t) the price of a bond depending on the factors x, y and
time t. Using the multidimensional Itō’s lemma (see Chapter 2) we obtain

dP = µdt+ σ1dw1 + σ2dw2, (8.14)

where µ = µ(x, y, t) and σi = σi(x, y, t) are given by

µ =
∂P

∂t
+ µx

∂P

∂x
+ µy

∂P

∂y
+
σ2
x

2
∂2P

∂x2
+
σ2
y

2
∂2P

∂y2
+ ρσxσy

∂2P

∂x∂y
,

σ1 = σx
∂P

∂x
, σ2 = σy

∂P

∂y
.

Next we construct a portfolio π consisting of bonds with maturities T1, T2 and T3. We
denote the amounts of bonds in the portfolio by V1, V2 and V3. Hence π = P (T1)V1 +
P (T2)V2 + P (T3)V3, where by P (Ti) we have denoted the price of a bond with maturity
Ti, i = 1, 2, 3. Therefore, change in the portfolio value π can be expressed as follows:

dπ = V1dP (T1) + V2dP (T2) + V3dP (T3)
= (V1µ(T1) + V2µ(T2) + V3µ(T3)) dt

+(V1σ1(T1) + V2σ1(T2) + V3σ1(T3)) dw1

+(V1σ2(T1) + V2σ2(T2) + V3σ2(T3)) dw2. (8.15)

The basic principle of derivation of the model for pricing a bond is again a construction of
a risk-less portfolio. It means that we want to eliminate the randomness in evolution of the
price of a portfolio. Therefore we choose the amounts of bonds V1, V2, V3 in such a way
that

V1σ1(T1) + V2σ1(T2) + V3σ1(T3) = 0,
V1σ2(T1) + V2σ2(T2) + V3σ2(T3) = 0.

The second principle is nonexistence of arbitrage opportunities. This principle says that the
yield of the risk-less portfolio has to be equal to the risk-less interest rate r, i.e.

dπ = rπdt.

This way we have deduced the third identity

V1µ(T1) + V2µ(T2) + V3µ(T3) = πr

that has to be satisfied for amounts of bonds V1, V2, V3. The last equality can be also
rewritten in the form

V1(µ(T1)− rP (T1)) + V2(µ(T2)− rP (T2)) + V3(µ(T3)− rP (T3)) = 0.
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In summary, we have derived the following system of equations for quantities V1, V2, V3:



σ1(T1) σ1(T2) σ1(T3)
σ2(T1) σ2(T2) σ2(T3)

µ(T1)− rP (T1) µ(T2)− rP (T2) µ(T3)− rP (T3)






V1

V2

V3


 =




0
0
0


 .

The above system of linear equation has a nonzero solution (V1, V2, V3) if and only if the
rows of the matrix are linearly dependent. If the second row is a multiple of the first one
(or vice versa), then there is only one source of randomness in the model. This would lead
us to a previously studied one-factor interest rate model. Therefore, the third row has to be
a linear combination of the previous ones. It means that there are real numbers λ1, λ2 such
that

µ(Ti)− rP (Ti) = λ1σ1(Ti) + λ2σ2(Ti), for i = 1, 2, 3.

Since the maturities Ti were arbitrary, the functions λ1, λ2 cannot depend on maturities of
the bonds. Hence

λ1 = λ1(x, y, t), λ2 = λ2(x, y, t).

Substituting µ, σ1 and σ2 we finally obtain the partial differential equation for the bond
price:

∂P

∂t
+ (µx − λ1σx)

∂P

∂x
+ (µy − λ2σy)

∂P

∂y

+
σ2
x

2
∂2P

∂x2
+
σ2
y

2
∂2P

∂y2
+ ρσxσy

∂2P

∂x∂y
− r(x, y)P = 0. (8.16)

We remind ourselves that the functions λ1, λ2 are called the market prices of risk of corre-
sponding factors.

Two-factor Vasicek and CIR models

In this part we consider two-factor models of the term structure of interest rates that are
based on the assumption on the evolution of the short rate r. In the Vasicek two-factor
model we assume that the short rate is a sum of two factors, i.e., r = r1 + r2, where the
factors r1, r2 are solutions to the following stochastic differential equations

dr1 = κ1(θ1 − r1)dt+ σ1dw1,

dr2 = κ2(θ2 − r2)dt+ σ2dw2.

The correlation ρ between the differentials dw1, dw2 is assumed to be zero. Now we derive
the bond price P (r1, r2, τ) in the two-factor Vasicek model under the assumption that the
market prices of risk λ1, λ2 are constants. With regard to the previous section, the function
P is a solution to the following partial differential equation:

−∂P
∂τ

+ (κ1(θ1 − r1)− λ1σ1)
∂P

∂r1
+ (κ2(θ2 − r2)− λ2σ2)

∂P

∂r2

+
σ2

1

2
∂2P

∂r21
+
σ2

2

2
∂2P

∂r22
− (r1 + r2)P = 0,
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where τ = T − t represents the time to maturity of a bond. We look for a solution P in the
separated form

P (r1, r2, τ) = P1(r1, τ)P2(r2, τ).

From the initial condition P (r1, r2, 0) = 1, for all r1, r2 > 0 we can derive the initial
condition for the functions P1 and P2. We obtain P1(r1, 0) = 1, P2(r2, 0) = 1. Substi-
tuting the expression P (r1, r2, τ) = P1(r1, τ)P2(r2, τ) into the equation we obtain, after
straightforward algebraic calculation,

P1

[
−∂P2

∂τ
+ (κ2(θ2 − r2)− λ2σ2)

∂P2

∂r2
+
σ2

2

2
∂2P2

∂r22
− rP2

]

+P2

[
−∂P1

∂τ
+ (κ1(θ1 − r1)− λ1σ1)

∂P1

∂r1
+
σ2

1

2
∂2P1

∂r21
− rP1

]
= 0.

Since P1 depends only on r1, τ and P2 depends only on r2, τ, the last identity holds if and
only if both the parentheses are zero, i.e.

∂P1

∂τ
+ (κ1(θ1 − r1)− λ1σ1)

∂P1

∂r1
+
σ2

1

2
∂2P1

∂r21
− rP1 = 0,

∂P2

∂τ
+ (κ2(θ2 − r2)− λ2σ2)

∂P2

∂r2
+
σ2

2

2
∂2P2

∂r22
− rP2 = 0.

It means that Pi, i = 1, 2, are solutions to the one-factor Vasicek model with the parameters
κi, θi, σi and market price of risk λi, for i = 1, 2. Hence the price P can be expressed in a
closed form:

P (r1, r2, τ) = A1(τ)A2(τ)e−B1(τ)r1−B2(τ)r2 , (8.17)

where the functions Ai(τ), Bi(τ) are given by the formulae (8.7) and (8.6).

An analogous result can be obtained for the two-factor CIR model. In this model, the
factors r1, r2 satisfy the stochastic differential equation (7.17) with zero correlation of the
increments ρ = 0. In this case the bond price can be again constructed as a product of solu-
tions from the one-factor CIR model in the form (8.17), where the functions Ai(τ), Bi(τ)
are given by the formulae (8.12) and (8.11).

Term structure of interest rates is then in both models sum of the interest rates from
corresponding one-factor models:

R(r1, r2, t, t+ τ) = − lnP (r1, r2, τ)
τ

= − lnP1(r1, τ)
τ

− lnP2(r2, τ)
τ

.

In particular, it means that the interest rate with maturity τ is a linear function of the short
rate components r1 and r2. Functions P1 and P2 have the form Pi = Aie

−Biri and hence

R(r1, r2, t, t+ τ) = − lnA1A2

τ
+
B1

τ
r1 +

B2

τ
r2.
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Convergence models

Recall that in the convergence model due to Corzo and Schwartz [27], the assumption made
on the domestic interest rate rd is, that its evolution is stochastic and it satisfies the stochastic
differential equation

drd = (α+ β(re − rd))dt+ σddw2,

where re represents the European interest rate1 It itself is assumed to follow a stochastic
process given by

dre = γ(δ − re)dt+ σedwe.

We show that, under the assumption of constant market prices of risk λd, λe, the bond
prices can be computed in closed form. Prices of European bonds are then obtained from
the one-factor Vasicek model in a closed form. Prices of domestic bonds are solutions to
the partial differential equation

−∂P
∂τ

+ (α+ β(r2 − rd)− λdσd)
∂P

∂rd
+ (γ(δ − re)− λeσe)

∂P

∂re

+
σ2
d

2
∂2P

∂r2d
+
σ2
e

2
∂2P

∂r2e
+ ρσdσe

∂2P

∂rd∂re
− rdP = 0.

Its solution can be written in the form

Pd(rd, re, τ) = eA(τ)−rdB(τ)−reC(τ),

where τ = T − t and functions A,B,C satisfy the initial conditions A(0) = 0, B(0) =
0, C(0) = 0. Substituting this ansatz form of the solution into the partial differential equa-
tion we obtain the following identity

rd

(
Bβ + Ḃ − 1

)
+ re

(
Cγ −Bβ + Ċ

)
− αB + λdσdB − γδC

+λeσeC +
σ2
d

2
B2 +

σ2
e

2
C2 + ρσdσeBC − Ȧ = 0.

This identity has to be satisfied for all rd, re. This is possible if and only if

Bβ + Ḃ − 1 = 0, Cγ −Bβ + Ċ = 0,

−αB + λdσdB − γδC + λeσeC +
σ2
d

2
B2 +

σ2
e

2
C2 + ρσdσeBC − Ȧ = 0.

A solution to the above system of ordinary differential equations is given by

B(τ) =
1− exp(−bτ)

b
,

1As an example, one can consider the EURIBOR term structure - EURopean Interbank Offered Rate.
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C(τ) =

{
b
c−b

(
1−exp(−bτ)

b − 1−exp(−cτ)
c

)
, if b 6= c

1−exp(−cτ)
c − τ exp(−cτ), if b = c

and the function A(τ) can be easily obtained in the closed form by evaluating the integral

A(τ) =
∫ τ

0

[
(−a+ λdσd)B(s) + (−cd+ λeσe)C(s) +

σ2
d

2
B(s)2

+
σ2
e

2
C(s)2 + ρσdσeB(s)C(s)

]
ds.

Domestic interest rates are linear functions of domestic and European short rates:

R(rd, re, t, t+ τ) = − lnP (τ, re, rd)
τ

=
A(τ)
τ

+
B(τ)
τ

rd +
C(τ)
τ

re.

Two-factor equilibrium models. The Fong-Vasicek model

In this section we recall the Fong–Vasicek model with stochastic volatility derived in the
paper by Fong and Vasicek [48]. The short rate r is described by a stochastic differential
equation in which the volatility itself is a solution to another stochastic differential equation.
More precisely, we have:

dr = κ1(θ1 − r)dt+
√
ydw1,

dy = κ2(θ2 − y)dt+ v
√
ydw2

(see Chapter 7). Increments dw1, dw2 of the Wiener processesw1 and w2 can be correlated,
E(dw1dw2) = ρdt. Furthemore we assume that the market prices of risk are given by
λ1
√
y, respectively, λ2

√
y, where λ1, λ2 are some constants. Then the bond price P =

P (τ, r, y), where τ = T − t is a solution to the following partial differential equation:

−∂P
∂τ

+ (κ1(θ1 − r)− λ1y)
∂P

∂r
+ (κ2(θ2 − y)− λ2vy)

∂P

∂y

+
y

2
∂2P

∂r2
+
v2y

2
∂2P

∂y2
+ ρvy

∂2P

∂r∂y
− rP = 0, (8.18)

satisfying the initial condition P (0, r, y) = 1. Again we look for a solution in the separated
form

P (τ, r, y) = A(τ)e−B(τ)r−C(τ)y.

Inserting this form into the partial differential equation we obtain that the functionsA,B,C
are solutions to the following system of ordinary differential equations:

Ȧ = −A (κ1θ1B + κ2θ2C) ,
Ḃ = −κ1B + 1,

Ċ = −λ1B − κ2C − λ2vC − B2

2
− v2C2

2
− vρBC (8.19)
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and satisfy the initial conditionsA(0) = 1, B(0) = 0, C(0) = 0. Notice that the differential
equation for B can be explicitly solved. Knowing the solution B, the differential equation
for C can be solved numerically by means of the Runge–Kutta method. Resulting functions
B,C are then inserted into the equation for the function A. In summary, we obtain

B =
1
κ1

(
1− e−κ1τ

)
,

Ċ = −λ1B − B2

2
− (κ2 + λ2v + vρB)C − v2

2
C2, C(0) = 0,

A = exp
(
−θ1τ + θ1B − κ2θ2

∫ τ

0
C(s)ds

)
.

1.3. Non-arbitrage models, the Ho-Lee and Hull–White models

One of principal disadvantages of equilibrium models is the fact that they are not able to
exactly fit the present term structure of interest rates. The reason is, that there are just few
parameters and so they are able to provide an approximation of the present term structure
only. This was a motivation for construction of the so-called nonarbitrage models. These
models are constructed in such a way that they give the exact present term structure in
the market. The price paid for this property is the necessity to introduce time dependent
parameters into the process of the short rate.

Ho–Lee model

Historically the first nonarbitrage model was proposed by Ho and Lee in [62]. A price of
bond is again given by compounded interest rate, i.e.

P (t, T ) = e−R(t,T )(T−t) .

In this model the short rate is assumed to follow the stochastic process with time depending
drift:

dr = θ(t)dt+ σdw . (8.20)

It means that the process is described by a constant volatility σ and time dependent drift
θ(t). The drifet is chosen in such a way that the resulting term structure of interest rates
R(t, T ), T ≥ 0 at the present date (i.e., t = 0) is equal to the present term structure
{R(0, T ), T ≥ 0} known from the market data at t = 0. Similarly, as in the case of
equilibrium models, we obtain the partial differential equation for the bond price P =
P (r, t, T )

∂P

∂t
+ (θ(t)− λ(t)σ)

∂P

∂r
+
σ2

2
∂2P

∂r2
− rP = 0

with the time dependent parameters. Here λ(t) denotes the market price of risk. The termi-
nal condition is again given by

P (r, T, T ) = 1 .
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We will search the solution in the closed form

P (r, t, T ) = A(T − t)e−B(T−t)r,

where A(0) = 1, B(0) = 0. Substituting it into the partial differential equation for the
price P and comparing the coefficients of the orders of r and 1 we finally obtain that A,B
are solutions to the system of ordinary differential equations

Ḃ(τ) = 1, Ȧ(τ) = A(τ)
(
σ2

2
B(τ)2 − φ(T − τ)B(τ)

)
,

where φ(t) = θ(t) − λ(t)σ and τ = T − t is time to maturity of a bond. Then B(τ) = τ .
For the function A we then obtain

d lnA
dτ

(τ) =
σ2

2
τ2 − φ(T − τ)τ.

Our aim is to find such a function φ (and consequently θ), for which the known present
term structure of interest rates {R(0, T ), T ≥ 0} is identical to the one corresponding to
P (r, 0, T ). Hence the following equality has to be satisfied:

e−R(0,T )(T−0) = P (r, 0, T ) = A(T − 0)e−B(T−0)r = A(T )e−R(0,0)T ,

since r = R(0, 0). By comparing the terms in this identity we conclude

lnA(T ) = (R(0, 0)−R(0, T ))T,

for all T > 0. Hence

d lnA
dτ

(τ) = R(0, 0)−R(0, τ)− τ
∂R

∂T
(0, τ).

It means that the drift function φ(t) can be written as

φ(t) =
σ2

2
(T − t) +

∂R

∂T
(0, T − t) +

R(0, T − t)−R(0, 0)
T − t

. (8.21)

Hull and White model

Another nonarbitrage model for interest rates was proposed by Hull and White (cf. [65]).
Unlike the Ho–Lee model, here we assume the following stochastic differential equation
for the short rate:

dr = θ(t)(a(t)− r)dt+ σ(t)rγdw , (8.22)

where γ = 0 or γ = 1
2 . In this model, it is also possible to find a closed form solution to the

corresponding partial differential equation such that the resulting term structure of interest
rates coincides with the real one, observed on the market.
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2. Other interest rate derivatives

Interest rate swaps

An interest rate swap is an agreement between two traders. A party A commits to paying
a party B the fixed interest rate r∗ from the specified amount which can be assumed to be
unity. The party B is committed to pay to the party A a floating interest rate r. Assume that
the short rate r follows a stochastic process of the form (7.1) and that payments are realized
continuously. We can reformulate the interest rate swap agreement as follows: the party A
holds a bond paying a coupon r − r∗. At the maturity T, i.e., the time of the end of the
swap agreement, the bond has the zero value. Derivation of a governing equation for the
price P (t, r) of such a bond is very similar to the one of a zero-coupon bond. Using Itō’s
lemma we obtain a stochastic differential equation for the bond price

dP = µP (t, r)dt+ σP (t, r)dw,

where

µP =
∂P

∂t
+ µ

∂P

∂r
+

1
2
σ2∂

2P

∂r2
, σP = σ

∂P

∂r
.

We can construct a portfolio consisting of one bond with maturity T1 and ∆ bonds with
maturity T2. Its value is therefore equal to: π = P (T1) + ∆P (T2). A change in the value
due to the change of bond prices equals dP (T1) + ∆dP (T1). In addition to this, there is a
change (1 + ∆)(r − r∗)dt due to coupon payments. In summary, we have

dπ = dP (T1) + ∆dP (T1) + (1 + ∆)(r − r∗)dt (8.23)

= (µP (T1) + ∆µP (T2) + (1 + ∆)(r − r∗)) dt+ (σP (T1) + ∆σP (T2)) dw.

We make our portfolio risk-neutral by choosing ∆ such that −σP (T1)
σP (T2) . Then

dπ =
(
µP (T1) +−σP (T1)

σP (T2)
µP (T2) + (1 + ∆)(r − r∗)

)
dt.

In order to avoid possibility of an arbitrage opportunity, the yield of the portfolio should be
equal to the riskless interest rate r, i.e.

dπ = rπdt = r

(
P (T1)− σP (T1)

σP (T2)
P (T2)

)
dt.

Hence

µP (T1) +−σP (T1)
σP (T2)

µP (T2) + (1 + ∆)(r − r∗) = r

(
P (T1)− σP (T1)

σP (T2)
P (T2)

)

from which we obtain

µP (T1) + (r − r∗)− rP (T1)
σP (T1)

=
µP (T2) + (r − r∗)− rP (T2)

σP (T2)
.
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It means that the above expressions are independ of the maturity T . Hence there is a func-
tion λ = λ(r, t) such that

µP (T ) + (r − r∗)− rP (T )
σP (T )

= λ

for all maturities T . Similarly as in the case of pricing zero-coupon bonds, this function is
called a market price of risk. Finally, substituting µP and σP yields the partial differential
equation for the bond price (and hence for the swap price) P (t, r)

∂P

∂t
+ (µ− λσ)

∂P

∂r
+

1
2
σ2∂

2P

∂r2
− rP + r − r∗ = 0. (8.24)

The terminal condition P (T, r) = 0 follows from the fact that the bond pays only the
coupon and there is no such a payment at maturity (see e.g., Kwok [75]).
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Figure 8.3. A 3D and contour plots of the function P (r, t) describing a price of the interest
rate swap.

Equation (8.24) can be solved numerically. For example, let us consider the short rate
follows the stochastic differential equation for the CIR process, i.e.

dr = κ(θ − r)dt+ σ
√
rdw.

It means that µ(r, t) = κ(θ− r) and σ(r, t) = σ
√
r. If we consider the market price of risk

λ(r, t) = λ
√
r then the governing equation for the price P (t, r) reads as follows:

∂P

∂t
+ (κ(θ − r)− λσr)

∂P

∂r
+

1
2
σ2r

∂2P

∂r2
− rP + r − r∗ = 0, r > 0, t ∈ (0, T ),

P (r, T ) = 0, r > 0.
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Figure 8.4. A graph of dependence of the interest rate swap price P (r, 0) on the floating
interest rate r > 0.

Its numerical solution for model parameters σ = 0.4, r∗ = 0.05, κ = 1, θ = 0.02, λ =
0, T = 1 is shown in Fig. 8.3. In Fig. 8.4 we show dependence of the solution P (r, 0) on
the floating interest rate r > 0 at t = 0. The Mathematica source code for pricing interest
rate swaps is shown in Table 8.2.

The boundary condition for large values of r can be deduced from the limit of the PDE
(8.24) when r → ∞. By dividing (8.24) by r, assuming µ, σ growth at most linearly in r
and supposing that P (r, t) → P (∞, t) as r →∞ we can postulate the Neumann boundary
condition ∂P

∂r (rM , t) = 0 for right end-point rM À 1 of the finite computational domain
r ∈ (0, rM ). Interestingly enough, in the case when the structural condition

2κθ
σ2

≥ 1

is satisfied, we do not need to prescribe the boundary condition for our numerical solution at
r = 0. This is a consequence of the well-known Fichera condition. Recall that in the paper
[46] Fichera introduced the so-called Fichera condition in order to determine wheather it is
necessary or not to specify the boundary conditions (b.c.) on the boundary of the domain.
In particular, for a parabolic PDE of the form

−∂P
∂τ

+
1
2
σ2(r, τ)

∂2P

∂r2
+ β(r, τ)

∂P

∂r
+ c(r, τ)P = d(r, τ), r > 0, τ > 0,

where σ(0, τ) = 0, the Fichera condition at r = 0 reads as follows: if

lim
r→0+

[
β(r, τ)− 1

2
∂

∂r
σ2(r, τ)

]{ ≥ 0 then no b.c. at r = 0 is needed,
< 0 then a b.c. at r = 0 must be prescribed,

(8.25)

in order to guarantee uniqueness of a solution P . In our case when β(r, τ) ≡ κ(θ−r)−λσr
and σ(r, t) ≡ σ

√
r the Fichera condition reduces to the inequality κθ − 1

2σ
2 ≥ 0.
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Table 8.2. The Mathematica source code for pricing the interest rate swap.'

&

$

%

sigma = 0.4; rstar = 0.05; kappa = 1;
theta = 0.02; lambda = 0; T = 1;
rmax = 2;

PayOff[r_] := 0;

solution = NDSolve[{
D[P[r, tau], tau] == (sigmaˆ2/2)r D[P[r, tau], r, r]
+ (kappa*(theta - r) - lambda*sigma*r)* D[P[r, tau], r]
- r *P[r, tau] + r - rstar,

P[r, 0] == PayOff[r],
(D[P[r, tau],r]/.r -> rmax) == 0 },
P, {tau, 0, T}, {r, 0, rmax}

];

P[r_, tau_] := Evaluate[P[r, tau] /. solution[[1]] ];
Plot3D[P[r, tau], {r, 0., 0.2}, {tau, 0, T}];

Swaptions

A swaption is a right, but not an obligation, to enter the swap contract at time T < Ts for
the exercise priceX . It can be shown (see Kwok [75]) that the price of this right V (r, t) is a
solution to the same partial differential equation as in the case of the one-factor bond pricing
equation. The only difference is the terminal condition. In the case of a call swaption it is
given by

V (r, T ) = (W (r, T )−X)+

and for a put swaption,
V (r, T ) = (X −W (r, T ))+.

The term W (r, t) is the value of the swap contract at the time t ∈ [0, T ). In fact, it is an
underlying asset for the swaption.

Problem section and exercises

1. Consider the Vasicek model with parameters θ = 0.0364, κ = 41.9624, σ = 0.0888
(estimated from BRIBOR overnight rates from the year 2007). Construct the yield
curves for different values of market prices of risk λ. How do interest rates depend
on this parameter?

2. Consider the CIR model with parameters θ = 0.0364, κ = 44.9889, σ = 0.4917
(estimated from BRIBOR overnight rates from the year 2007). Construct the yield
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curves for different values of parameter λ from market prices of risk. How do interest
rates depend on this parameter?

3. Derive a closed form expression for the bond price computed by means of the two-
factor CIR model if the market prices of risk are given by λ1

√
r1 and λ2

√
r2.

4. Compute the limit of the domestic interest rates as time to maturity approaches zero
in the convergence model due to Corzo and Schwartz, i.e. limτ→∞R(rd, re, t, t+τ).
What is the relation of this limit and the corresponding limit of the European interest
rates?

5. In the Hull and White model (8.22) construct a solution P in the closed form
P (r, t) = A(T−t)e−B(T−t)r and derive the system of ordinary differential equations
for the functions A(τ) and B(τ) where τ = T − t.

6. For the Chan, Karolyi, Longstaff and Sanders short rate interest rate model dr =
κ(θ − r)dt + σrγdw (see (7.5) derive a partial differential equation for pricing a
zero coupon bond P (r, t). Using the Fichera condition (8.25) show that no boundary
conditions at r = 0 are needed provided that γ > 1

2 . In the case 0 < γ < 1
2 (or γ = 1

2
and 2κθ/σ2 < 1) prove that the boundary condition at r = 0 has to be prescribed.





Chapter 9

American style of derivative securities

In this chapter, we are interested in mathematical modeling of American style of deriva-
tive contracts. Unlike European style of derivative contracts, the American style of deriva-
tives is characterized by the possibility of early exercising of an option contract at some
time t∗ ∈ [0, T ) prior the obligatory expiration time T . For instance, the American call or
put option can be exercised anytime before the obligatory expiration time T . It should be
noted that most of derivative contracts traded nowadays are of the American style.

An American call (put) option is an agreement (contract) between the writer and the
holder of an option. It represents the right but not the obligation to purchase (sell) the
underlying asset at the prescribed exercise priceE anytime in the forecoming interval [0, T ]
with the specified time of obligatory expiration at t = T .

Similarly as in the case of European style of options we ask the question: what is
the price of such an option (the option premium) at the time t = 0 of contracting. In
other words, how much should the holder of the option pay the writer for such a derivative
security. For the American call (put) option the problem is to price the contract, i.e., to
find a price V ac(S, t) of the American call option (V ap(S, t) for the put option), at the time
t ∈ [0, T ].

Since American options give the holder more rights when compared to corresponding
European options their price should be higher, i.e.

V ac(S, t) ≥ V ec(S, t), V ap(S, t) ≥ V ep(S, t),

for any time t ∈ [0, T ] and underlying asset price S ≥ 0. Moreover, a price of the American
call and put options should be greater or equal than their price at expiry given by the pay-off

139
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Figure 9.1. Graphs of solutions corresponding to the European call option (left) on as-
set paying nontrivial dividends and the European put option on asset paying no dividends
(right).

diagram:
V ac(S, t) ≥ V ec(S, T ) = (S − E)+,

V ap(S, t) ≥ V ep(S, T ) = (E − S)+,

for any time t ∈ [0, T ] and S ≥ 0. Indeed, if the price V ac(S, t) of an American call option
at the time t < T before the expiry T is less by one dollar than its terminal pay–off diagram
(S − E)+ then by buying such an option and its immediate exercising (which is allowed
for American style of options) we can receive from the writer the underlying asset for the
exercise price E. If we sell it on the market we receive its spot price S. This way the holder
can earn one dollar without bearing any risk. Such a situation obviously would lead to an
arbitrage opportunity. Since there is a demand for such an option the market will increase
its price to the level that is greater or equal to the pay-off diagram.

In Fig. 9.1 (left) we can observe that the price of the European call option on the un-
derlying asset paying continuous dividends with a rate q > 0 always intersects the pay-off
diagram. It is easy to justify such a behavior since it follows from the explicit formula (3.8)
for pricing a European call option that

lim
S→∞

V ec(S, t)
S

= e−q(T−t) < 1.

Hence V ec(S, t) < S −E for a sufficiently large S À E and 0 ≤ t < T . Similarly, for the
European put option on the asset with a dividend rate q ≥ 0) we can deduce from (3.14)
the following inequality: V ep(0, t) = Ee−r(T−t) < E. Therefore the solution V ep(S, t)
always intersects the pay–off diagram of the put option. In Fig. 9.1 (right) we can see a
graph of a solution representing the European put option and its comparison with the pay-
off diagram.

In the case of an American call option on the underlying asset paying no dividends
(q = 0), its pricing is simple and the price coincides with the European one, i.e.

if q = 0 then V ac(S, t) = V ec(S, t), for each S ≥ 0, t ∈ [0, T ]. (9.1)
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Figure 9.2. A comparison of solutions of the European and American call options at some
time 0 ≤ t < T . The position of the early exercise boundary is labeled by Sf (t).

The reason is that it is not worth to exercise the American call option before the expiry T .
Indeed, if we early exercise the option at the time t ∈ [0, T ) then its value falls down to the
value given by the pay–off diagram (S − E)+. It means that its value is strictly less than
the value of the European call option because V ec(S, t) > (S − E)+ for the case q = 0.

The situation is more complicated in the case of an American call option on the un-
derlying asset paying nontrivial dividends (q > 0). In such a case, the solution V ec(S, t)
intersects the pay–off diagram (S−E)+. Hence we are unable to follow the same argument
as in the case of vanishing dividends q = 0. Furthermore, holding an American call option
until the expiry t = T would mean that its value is identical with the European style of a
call option. But this is not possible because V ec(S, t) < (S − E)+ for large values of the
underlying asset price S À E. Therefore the price of the American call option is strictly
higher than that of the European call option, i.e.

if q > 0, r > 0, then V ac(S, t) > V ec(S, t), for each S > 0, t ∈ [0, T ). (9.2)

Since the graph of a solution of the European put option always intersects the pay-off
diagram of a put option for q ≥ 0 we obtain the strict inequality:

if q ≥ 0, r > 0, then V ap(S, t) > V ep(S, t), for each S ≥ 0, t ∈ [0, T ). (9.3)

1. Pricing of American options by solutions to free boundary
problems

In the previous section we presented an analysis of basic properties of the American call
and put options. We showed that pricing of American style options leads to a free boundary
problem for pricing the American call option on the underlying asset paying continuous
dividends q > 0. In addition to a function V (S, t) = V ac(S, t) we have to find the free
boundary position, i.e., the function Sf (t) depending on time t ∈ [0, T ]. This function
forms the so-called early exercise boundary having the following properties:
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1. If S < Sf (t) for t ∈ [0, T ] then V ac(S, t) > (S − E)+ and we hold the call option
because its value is strictly higher than the pay-off diagram of a call option. In order
to hedge the portfolio we make use of the Black–Scholes model, i.e., for 0 < t < T
and S < Sf (t) the Black–Scholes equation holds true.

2. If S ≥ Sf (t) for t ∈ [0, T ] then V ac(S, t) = (S − E)+ and we have to exercise the
call option because its value coincides with the terminal pay-off diagram.

In Fig. 9.2 we can see the behavior of a price of the American call option S 7→ V ac(S, t)
at some time t ∈ [0, T ). We also plot a comparison with the pay-off diagram S 7→ (S−E)+

and the lower price of the European call option on asset paying continuous dividends. The
value Sf (t) splits the interval of underlying asset prices into two subintervals: 0 < S <
Sf (t) in which we hold the call option and S ≥ Sf (t) in which the call option has to be
exercised at the time t.

Now we are in a position to state a mathematical formulation of the problem of pricing
American style of a call option. The problem is to find a function V = V ac(S, t) and
the function Sf : [0, T ] → R determining the early exercise boundary with the following
properties:

(the free boundary problem for pricing the American call option)

1. The function V (S, t) is a solution to the Black–Scholes partial differential equation :

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0 (9.4)

defined on a time dependent domain 0 < t < T, 0 < S < Sf (t).

2. It satisfies the terminal pay-off diagram:

V (S, T ) = (S − E)+ (9.5)

3. and the boundary conditions:

V (0, t) = 0, V (Sf (t), t) = Sf (t)−E,
∂V

∂S
(Sf (t), t) = 1, (9.6)

at S = 0 and S = Sf (t).

So far, we did not explain a financial meaning of the boundary condition ∂V
∂S (Sf (t), t) = 1

imposed on a solution at the point S = Sf (t) of the early exercise of a call option. Notice
that this condition together with the continuity condition V (Sf (t), t) = Sf (t)−E guarantee
the C1 continuity in the S variable of the function V ac(S, t) at the point S = Sf (t) for each
0 < t < T . It should be obvious that prescribing Dirichlet boundary conditions V (0, t) = 0
at S = 0 and V (Sf (t), t) = Sf (t)−E at S = Sf (t) is not sufficient for unique solvability
of the free boundary problem. Indeed, it follows from the basic properties of solutions to
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parabolic equations (see e.g., Ševčovič [104]), that for any function t 7→ Sf (t) we can find
a (unique) solution to the Black–Scholes equation satisfying the above mentioned Dirichlet
conditions at S = 0 and S = Sf (t). Hence we would have no other condition determining
the free boundary profile t 7→ Sf (t). Therefore an additional condition that connects the
free boundary position Sf (t) and the solution (S, t) is needed.

In what follows, we will show that the condition ∂V
∂S (Sf (t), t) = 1 guaranteeing C1

continuity of the contact of a solution V (S, t) and its pay-off diagram (S − E)+ is indeed
the boundary condition fullfiled by an American call option. We will follow the idea of
derivation of the boundary condition due to Merton (cf. Kwok [75]). It is based on the
financial argument stating that the price V ac(S, t) of an American call option should be
given as the maximal value among all call option prices whose early exercise boundary is
prescribed by a continuous function of time. More precisely,

V ac(S, t) = max
η

V (S, t; η),

where the maximum is taken over all positive continuous functions η : [0, T ] → R+. Here
V (S, t; η) denotes the price of a call option given by a solution to the Black–Scholes equa-
tion on a time dependent domain 0 < t < T, 0 < S < η(t) and satisfying the Dirichlet
boundary conditions V (0, t; η) = 0, V (η(t), t; η) = η(t) − E, for t ∈ [0, T ]. The early
exercise boundary function Sf is then the argument of maximum of the above variational
problem. This is indeed a variational problem since our aim is to find a maximum of the
functional η 7→ V (S, t; η) defined on the infinite dimensional Banach space of all continu-
ous functions. The first order necessary condition read as follows:

DηV (S, t;Sf )ξ = 0, for any function ξ ∈ C([0, T ]),

whereDηV (S, t; η) : C([0, T ]) → R is a linear operator representing the Fréchet derivative
of V with respect to η. Here C([0, T ]) is a Banach space of all continuous functions defined
on the interval [0, T ] endowed with the maximum norm. Let t ∈ [0, T ) be a fixed time.
Since for any function η ∈ C([0, T ]) we have V (η(t), t; η) − η(t) + E = 0 then, by
differentiating this equality with respect to the function η in the direction ξ ∈ C([0, T ]), we
conclude, for any t ∈ (0, T ), the following identity:

∂V

∂S
(η(t), t; η)ξ(t) +DηV (η(t), t; η)ξ − 1.ξ(t) = 0.

With regard to the first order necessary condition DηV (S, t;Sf )ξ = 0 we obtain
∂V
∂S (Sf (t), t;Sf )ξ(t) = ξ(t) at the maximizer η = Sf . As the function ξ ∈ C([0, T ])
was arbitrary, we end up with the desired boundary condition that has to be fullfiled by the
solution V (S, t) and the early exercise boundary function Sf :

∂V

∂S
(Sf (t), t;Sf ) = 1.

In the case of the American put option one can argue similarly. The free boundary
problem for pricing the American put option consists in construction of a function V =
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Figure 9.3. A plot of the early exercise boundary function t 7→ Sf (t) for an American call
(left) and put (right) options.

V ap(S, t) together with the early exercise boundary profile Sf : [0, T ] → R satisfying the
following conditions:

(the free boundary problem for pricing the American put option)

1. The function V (S, t) is a solution to the Black–Scholes partial differential equation:

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0 (9.7)

defined on the time dependent domain S > Sf (t) where 0 < t < T .

2. It satisfies the terminal pay-off diagram:

V (S, T ) = (E − S)+ (9.8)

3. and boundary conditions for the put option:

V (+∞, t) = 0, V (Sf (t), t) = E − Sf (t),
∂V

∂S
(Sf (t), t) = −1, (9.9)

for S = Sf (t) and S = ∞.

Next, we shall present several useful facts concerning the early exercise boundary po-
sition for American call and put options. First, we will consider the case of a call option.
Notice that the early exercise boundary position should be greater or equal than the exercise
price E. Indeed, it is not reasonable to exercise a call option with the expiration price E
when the spot price S of the underlying asset is less than E.

Since the function S 7→ V (S, t) is continuously differentiable with respect to the S
variable at S = Sf (t) we obtain, by differentiating the identity V (Sf (t), t) = Sf (t) − E



American style of derivative securities 145

with respect to time t, the identity: ∂V∂S (Sf (t), t)Ṡf (t)+ ∂V
∂t (Sf (t), t) = Ṡf (t). Taking into

account the boundary conditions ∂V
∂S (S, t) = 1 for S = Sf (t) we conclude1

∂V

∂t
(Sf (t), t) = 0, for each t ∈ (0, T ).

Using the above expression and the fact that the Black–Scholes equation is valid within the
interval 0 < S < Sf (t) we obtain, by passing to the limit S → Sf (t):

qSf (t)− rE = −(r − q)Sf (t)
∂V

∂S
(Sf (t), t) + rV (Sf (t), t)

=
σ2

2
Sf (t)2

∂2V

∂S2
(Sf (t), t) ≥ 0, (9.10)

because the function S 7→ V (S, t) has nonnegative second derivative at S = Sf (t). Indeed,
if ∂2V

∂S2 (S, t) < 0 at S = Sf (t) then, with regard to the boundary condition ∂V
∂S (Sf (t), t) =

1, we would obtain V (S, t) < (S − E)+ for all S < Sf (t), where S is close to Sf (t), a
contradiction. Now, it follows from (9.10) that

Sf (t) ≥ Emax
(
r

q
, 1

)
, for each t ∈ [0, T ]. (9.11)

It remains to determine the terminal value Sf (T ) at the expiration T . Either Sf (T ) = E or
Sf (T ) > E. If Sf (T ) > E then, with regard to the limit V (S, t) → S − E for t→ T, we
can deduce that the second derivative ∂2V

∂S2 converges to zero for S = Sf (t) > E as t→ T .
Taking into account identity (9.10) we obtain, in the limit t → T, E < Sf (T ) = rE/q.
But this is possible only if r > q > 0. In both cases we conclude

Sf (T ) = Emax
(
r

q
, 1

)
. (9.12)

In the case of an American put option one can argue similarly as before. It can be shown
that the early exercise boundary position Sf (t) has the following properties:

Sf (T ) = E, Sf (t) ≤ E, for each t ∈ [0, T ]. (9.13)

One of important problems in the field of mathematical finance is the analysis of the
early exercise boundary Sf (t) and the optimal stopping time (an inverse function to Sf (t))
for American call (or put) options on assets paying a continuous dividend yield with a rate
q > 0 (or q ≥ 0). However, an exact analytical expression for the free boundary profile is
not known yet. Many authors have investigated various approximation models leading to
approximate expressions for valuing American call and put options: analytic approxima-
tions (Barone–Adesi and Whaley [12], Kuske and Keller [74], Dewynne et al. [36], Geske
et al. [54, 55], MacMillan [79], Mynemi [85]); methods of reduction to a nonlinear integral

1A proof of the identity for the put option is similar.
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equation (Alobaidi [5], Kwok [75], Mallier et al. [80, 81], Ševčovič [102], Stamicar et al.
[109]). In recent papers [125, 126], Zhu derived a closed form of the analytic approximation
of the free boundary position in terms of an infinite parametric integral. We also refer to a
survey paper by Chadam [22] focusing on free boundary problems in mathematical finance.
For example, in the case of an American call option, it follows from the detailed analysis
of the early exercise boundary behavior close to expiry T that its asymptotic expression has
the form

Sf (t) ≈ K
(
1 + 0.638σ

√
T − t

)
, K = Emax(r/q, 1) (9.14)

for t → T . The above asymptotic formula has been derived by Dewynne et al. in [36] and
by Ševčovič in [102]. In the latter reference one can furthermore find a nonlinear integral
equation for the early exercise boundary position Sf (t) for the entire interval t ∈ [0, T ].

In the case of the American put option the profile of the early exercise boundary has a
different asymptotics. The function Sf (t) can be expressed as:

Sf (t) = Ee−(r−σ2

2
)(T−t)eσ

√
2(T−t)η(t).

In the above formula the auxiliary function η can be approximated for t → T by the fol-
lowing expression:

η(t) ≈ −
√
− ln

[
2r
σ

√
2π(T − t)er(T−t)

]
. (9.15)

The asymptotic formula (9.15) has been derived by Stamicar, Chadam and Ševčovič in
[109]. In Fig. 9.3 we present a graph of the early exercise boundary function for the call
option (left) and put option (right) computed by means of the approximative formulae (9.14)
and (9.15) for the model parameters T = 1, E = 80, r = 0.04, σ = 0.37 and q = 0.02
for the call option and q = 0 for the put option. Notice that we present a survey of the
transformation methods for calculating the early exercise boundary for American style of
options in the forecoming Chapter 12.

2. Pricing American style of options by solutions to a linear
complementarity problem

The purpose of this section is to analyze the Black–Scholes partial differential equation for
the entire range of values 0 < S <∞ of the underlying asset price. In contrast to the case
of European style of options, we will show that, for American options the Black–Scholes
inequality holds true. More precisely, we will show that, for the American call (put) option
the following partial differential inequality is satisfied:

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV ≤ 0, (9.16)
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for each 0 < S <∞, 0 < t < T .
First, let us consider the case of an American call option. According to the results

from the previous section, we know that the Black–Scholes equation is satisfied on the time
dependent spatial interval 0 < S < Sf (t) in which we hold the option, i.e., we have the
equality sign in (9.16). At the same time, for such values of the underlying asset S we
have the strict inequality V (S, t) > (S − E)+. On the other hand, if S ≥ Sf (t) then
V (S, t) = (S − E)+ = S − E because Sf (t) ≥ E. Now, if we insert the linear function
S − E into the Black–Scholes equation we obtain

∂V

∂t
+

σ2

2
S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV

= (r − q)S − r(S − E) = rE − qS ≤ rE − qSf (t) ≤ 0,

because Sf (t) ≥ Emax( rq , 1).
In the case of an American put option on the underlying asset paying no dividends

(q = 0) we can argue similarly. In the continuation interval S > Sf (t) where we hold
the put option the Black–Scholes equation is satisfied. Hence the equality is fulfilled in
equality (9.16). At the same time we have the strict inequality V (S, t) > (E − S)+. Now,
if 0 < S ≤ Sf (t) then V (S, t) = (E − S)+ = E − S because Sf (t) ≤ E. If we insert the
linear function E − S into the Black–Scholes equation we obtain

∂V

∂t
+

σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV

= −rS − r(E − S) = −rE < 0.

In summary, we have shown the following property of a solution to the problem of
pricing the American style of call and put options:

Linear complementarity formulation for American options (9.17)

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV ≤ 0, V (S, t) ≥ V̄ (S),

(
∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV

)(
V (S, t)− V̄ (S)

)
= 0,

for any 0 < S <∞, 0 < t < T, where V̄ denotes the terminal pay–off diagram, i.e.

V̄ (S) =
{

(S − E)+, for the call option,
(E − S)+, for the put option.

(9.18)

Pricing an American call (put) option by means of a solution to the linear complementarity
problem can be mathematically stated as follows: find a continuously differentiable function
V (S, t) such that it is a solution to (9.17) and it satisfies the terminal condition (9.18) and
corresponding boundary conditions.
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At the end of this chapter, we will show how to transform the linear complementarity
problem for pricing American call or put options in terms of a solution to a parabolic vari-
ational inequality. Similarly as in Chapter 3, we can transform the Black–Scholes equation
by using the following change of independent variables (see (3.4)):

S = Eex, t = T − τ,

where x ∈ (0,∞), τ ∈ (0, T ) and transformed function

V (S, t) = Ee−αx−βτu (x, τ) ,

where

α =
r − q

σ2
− 1

2
, β =

r + q

2
+
σ2

8
+

(r − q)2

2σ2
. (9.19)

After straightforward algebraic calculations we conclude that the Black–Scholes equation
can be rewritten in the form:

∂u

∂τ
=
σ2

2
∂2u

∂x2
, (9.20)

for each x ∈ R, τ ∈ (0, T ). Since the American call (put) option should satisfy the con-
dition V (S, t) ≥ V (S, T ) ≡ V̄ (S) we end up with the following condition for the trans-
formed function:

u(x, τ) ≥ g(x, τ), (9.21)

for each x ∈ R, τ ∈ (0, T ). The function g corresponds to the transformed pay-off diagram
of the call (put) option, i.e.

g(x, τ) = eαx+βτ max(ex − 1, 0), for a call option,

g(x, τ) = eαx+βτ max(1− ex, 0), for a put option. (9.22)

The initial condition for the function u reads as follows:

u(x, 0) = g(x, 0) (9.23)

for each x ∈ R. As for the boundary conditions for a call option we obtain

u(−∞, τ) = g(−∞, τ) = 0, lim
x→∞u(x, τ)/g(x, τ) = 1, (9.24)

for each τ ∈ (0, T ). In the case of a put option we have

lim
x→−∞u(x, τ)/g(x, τ) = 1, u(+∞, τ) = g(+∞, τ) = 0, (9.25)

for each τ ∈ (0, T ).
Summarizing, the linear complementarity problem for pricing the American call (put)

option can be written in the form of a parabolic variational inequality:

∂u

∂τ
− σ2

2
∂2u

∂x2
≥ 0, u(x, τ)− g(x, τ) ≥ 0, (9.26)

(
∂u

∂τ
− σ2

2
∂2u

∂x2

)
(u(x, τ)− g(x, τ)) = 0,
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for each x ∈ R, 0 < τ < T . The problem is to find a function u : R × (0, T ) →
R such that u is a continuously differentiable function satisfying the transformed linear
complementarity (9.26) and corresponding initial and boundary conditions.

3. Pricing perpetual options

In this concluding section we discuss the problem of pricing the so-called perpetual call
and put options. Perpetual options are options with a very large maturity T →∞. In what
follows, we will show that perpetual American options can be priced by an explicit formula.
Indeed, suppose there exists a limit V̄ (S) of a solution V (S, t) for the maturity T → ∞.
Then, setting τ = T − t, we obtain limτ→∞ V = limT→∞ V = V̄ . Hence

lim
T→∞

∂V

∂t
= lim

τ→∞
∂V

∂τ
= 0.

Furthermore, we suppose that the early exercise boundary Sf tends to its limiting value
Sf (∞) as T → ∞. It means that for the function ρ(τ) = Sf (T − t) we have
limτ→∞ ρ(τ) = ρ∞ = Sf (∞).

In the case of an American put option on the underlying asset paying no dividends, the
price V̄ (S) and the limiting early exercise boundary position ρ∞ of a perpetual option is a
solution to the stationary Black–Scholes partial differential equation:

σ2

2
S2∂

2V̄

∂S2
+ rS

∂V̄

∂S
− rV̄ = 0, S > ρ∞, (9.27)

and

V̄ (+∞) = 0, V̄ (ρ∞) = E − ρ∞,
∂V̄

∂S
(ρ∞) = −1. (9.28)

Fortunately, the above boundary value problem for the function V̄ and the limiting early
exercise boundary position ρ∞ has a simple explicit solution discovered by Merton. Its
explicit form reads as follows:

V̄ (S) = CS−γ , S > ρ∞.

whereC, γ > 0 are positive constants. If we insert this ansatz into (9.27) we obtain a simple
relationship for the constant γ:

σ2

2
γ(γ + 1)− rγ − r = 0.

This is a quadratic equation for γ. Its positive solution γ > 0 is given by

γ =
2r
σ2
.
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Figure 9.4. A plot of a perpetual American put option S 7→ V̄ (S) for the parameters:
E = 100, σ = 0.3, r = 0.1.

The constant C > 0 and the limiting value ρ∞ can be deduced from the smooth pasting
boundary conditions (9.28). It leads to a system of two equations:

−γC(ρ∞)−γ−1 = −1, Cρ−γ∞ = E − ρ∞,

from which we deduce
ρ∞ = E

γ

1 + γ
, C =

1
γ
ργ+1
∞ .

A graph of a perpetual American put option is shown in Fig. 9.4.
In the case of a perpetual American call option on the underlying asset paying nontrivial

dividends q > 0 one can proceed similarly as in the case of the put option (see Exercise 7).

Problem section and exercises

1. Show that the early exercise boundary function Sf (t) for the American call option
is a decreasing function of the time t. On the other hand, the function Sf (t) is an
increasing function for the American put option.

2. Show that the put–call parity (see Chapter 3) need not to be satisfied for the American
style of call and put options.

3. How the early exercise boundary Sf (t) for the American call option depends on the
volatility σ of the underlying asset price? Is it an increasing or decreasing function?

4. Denote by V ac(S, t;E, r, q, σ) and V ap(S, t;E, r, q, σ) the price of American call
and put options for the underlying asset price S, time t, expiration price E, interest
rate r and dividend yield q. Derive the so-called call–put symmetry relation for prices
of the American call and put options, i.e., prove the equality:

V ap(S, t;E, r, q, σ) = V ac(E, t;S, q, r, σ).
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5. In the case of European call and put options prove the call–put symmetry by using
the explicit formulae for their prices derived in Chapter 3.

6. Using the approximative formulae for the early exercise boundary position for the
American call and put options show that, in the case of a call option, we obtain the
following limit of the time derivative limt↓T Ṡf (t) = −∞ whereas limt↓T Ṡf (t) =
+∞ for a put option. Based on these limits discuss option holder’s behavior for times
t close to expiry T .

7. Derive an explicit formula for pricing a perpetual American call option on the un-
derlying asset paying nontrivial dividends q > 0. Find a solution V̄ (S) in the form
V (S) = CSγ , where C, γ > 0 are positive constants.

8. Derive an explicit formula for pricing a perpetual American put option on the under-
lying asset paying nontrivial dividends q > 0.





Chapter 10

Numerical methods for pricing of
simple derivatives

The aim of this chapter is to propose and discuss effective numerical methods for the
valuation of selected types of derivatives. We focus our attention to the valuation of Eu-
ropean and American call and put options. However, numerical techniques and method
discussed in this chapter can be easily extended to other types of financial derivatives. At
the beginning of this chapter, we analyze explicit and implicit numerical schemes for pric-
ing European types of derivatives. Although there exist explicit formulae for solutions to
the Black–Scholes equation (see Chapter 3), the reason for presentation of numerical meth-
ods for pricing European style options consists in the fact that it provides a possibility of
qualitative and quantitative comparison of a numerical approximate solution and the exact
one. Such an information can be useful in the case when we try to extend numerical meth-
ods for derivatives for which an analytical solution is not known. For example, it is the
case of American style of derivatives. In the second part of this chapter we present efficient
numerical methods for pricing American types of call and put options in a more detail. In
the process of numerical discretization of the Black-Scholes equation it will turn out that
efficient and fast numerical methods and techniques for solving systems of linear equations
are needed. This is why we also discuss efficient numerical algorithms for solving linear
systems of equations and linear complementarity problems.
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1. Explicit numerical finite difference method for solving the
Black–Scholes equation

In this section, we present a numerical scheme for construction of an approximation of a
solution to the Black–Scholes partial differential equation for pricing European types of
derivatives. The numerical scheme is based on finite difference approximation of all partial
derivatives entering the Black–Scholes equation. Knowledge of an explicit solution to the
Black–Scholes equation (see Chapter 3) enables us to compare a numerical approximate
solution with the exact one. Such a comparison will enable us to extend the numerical
approximation scheme also to the case of other financial derivatives for which an explicit
solution is not know like, e.g., American style options or some exotic types of derivatives.

At the beginning of this section, we recall the transformation of the Black–Scholes
equation to a parabolic heat equation ∂tu = ∂2

xu . The transformation will be subsequently
used as a basis for construction of explicit and implicit in time numerical schemes based on
finite differences approximation of partial derivatives entering the Black–Scholes equation.

Recall that by introducing new independent variables x, τ and the transformed function
u (see (3.4) or (9.19)):

x = ln (S/E) ∈ (−∞,∞), τ = T − t ∈ (0, T ), V (S, t) = Ee−αx−βτu(x, τ),

where α = r−q
σ2 − 1

2 , β = r+q
2 + σ2

8 + (r−q)2
2σ2 , the Black–Scholes partial differential

equation
∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0

can be transformed into a form of the standard parabolic equation

∂u

∂τ
=
σ2

2
∂2u

∂x2
. (10.1)

The initial condition for the transformed function u depends on the terminal pay–off di-
agram of a chosen financial derivative. For plain vanilla call and put options, the initial
conditions have the form:

u(x, 0) =
{
eαx max(ex − 1, 0), for a call option,
eαx max(1− ex, 0), for a put option.

(10.2)

In what follows, we shall present key ideas of a finite difference approximation of the
partial differential equation (10.1). The proposed numerical approximation method consists
in considering a discrete mesh of points in the domain of independent variables (x, τ) ∈
R × (0, T ) and replacement of a solution u and its partial derivatives by finite differences
in each nodal point of the discretization mesh.

Choose a spatial step h > 0 and a time step k > 0 so that k = T/m, where m ∈ N
is a number of time discretization steps in the interval [0, T ]. In the domain of independent
variables (x, τ) ∈ R× (0, T ) we consider a mesh of grid points

xi = ih, i = . . . ,−2,−1, 0, 1, 2, . . . , τj , j = 0, 1, . . . ,m.
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By uji we denote an approximation of a solution u in the grid point (xi, τj), i.e.

uji ≈ u(xi, τj).

Derivation of a finite difference numerical scheme for approximation of equation (10.1)
is based on replacement of all partial derivatives by finite differences, which can be easily
derived by expanding of a function into Taylor series. In a grid point (xi, τj), let us consider
the Taylor series expansion of the function u up to the third order. Since xi+1−xi = h and
xi − xi−1 = h we have

u(xi+1, τj) ≈ u(xi, τj) +
∂u

∂x
h+

1
2!
∂2u

∂x2
h2 +

1
3!
∂3u

∂x3
h3, (10.3)

u(xi−1, τj) ≈ u(xi, τj)− ∂u

∂x
h+

1
2!
∂2u

∂x2
h2 − 1

3!
∂3u

∂x3
h3, (10.4)

where the approximation error is of the orderO(h4) for h→ 0. Subtracting equation (10.4)
from (10.3), dividing by 2h, we obtain the so-called central finite difference approximation
of the first partial derivatives u with respect to x:

∂u

∂x
(xi, τj) ≈

uji+1 − uji−1

2h
, (10.5)

with an approximation error of the order O(h2) for small values of h. By summing equa-
tions (10.3) and (10.4) we end up with the approximation of the second partial derivative of
u with respect to the variable x:

∂2u

∂x2
(xi, τj) ≈

uji+1 − 2uji + uji−1

h2
(10.6)

with an approximation error of the second derivative of the order O(h2) as h → 0. Analo-
gously, for the time derivative ∂u

∂τ , we can deduce, from Taylor series expansion at the point
(xi, τj), the following approximation:

u(xi, τj+1) ≈ u(xi, τj) + k
∂u

∂τ
(xi, τj)

for which the order of the approximation is equal to O(k2) for k → 0. Taking into account
the above expansion, we obtain the forward in time approximation of the time derivative:

∂u

∂τ
(xi, τj) ≈ uj+1

i − uji
k

, (10.7)

with an approximation error in the τ variable of the order O(k). Now, if we insert approxi-
mations of partial derivatives at the nodal point (xi, τj) into the parabolic partial differential
equation (10.1) then we conclude that the approximate solution uji at (xi, τj) satisfies the
equation

uj+1
i − uji
k

=
σ2

2
uji+1 − 2uji + uji−1

h2
, (10.8)
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where an approximation error of the equation is of the order O(k + h2) for k, h → 0. It
means that the value of uj+1

i for a new time level j+1 can be explicitly expressed by using
the values of the solution from the previous time level j as follows:

uj+1
i = γuji−1 + (1− 2γ)uji + γuji+1, where γ =

σ2k

2h2
, (10.9)

for i = . . . ,−2,−1, 0, 1, 2, . . . , and j = 0, 1, . . . ,m− 1.
Let us choose N ∈ N such that the interval of the spatial discretization (−L,L) =

(x−N+1, xN−1) is sufficiently large and the values uj−N and ujN can be approximated by
the Dirichlet boundary conditions. From the practical point of view, it is sufficient to choose
L ≈ 1.2. Indeed, it means that the original financial variable S then belongs to a sufficiently
wide interval (Ee−L, EeL) = (0.3E, 3.32E).

For a European call option we have V (0, t) = 0 and V (S, t)/S → e−q(T−t) for S →
∞. On the other hand, for a European put option it holds: V (0, t) = Ee−r(T−t) and
V (S, t) → 0 as S → ∞. It means that, for a large value of N, the boundary values uj−N
and ujN can be approximated by taking the limiting values of the transformed solution, i.e.

uj−N = φj :=
{

0, for a European call option,
e−αNh+(β−r)jk, for a European put option,

(10.10)

ujN = ψj :=
{
e(α+1)Nh+(β−q)jk, for a European call option,
0, for a European put option.

If we denote by uj approximation of a solution at the time level τj , i.e.

uj = (uj−N+1, . . . , u
j
−1, u

j
0, u

j
1, . . . , u

j
N−1) ∈ Rn,

where n = 2N−1, then we can rewrite the explicit numerical approximation scheme (10.9)
in the vector form as follows:

uj+1 = Auj + bj , for j = 0, 1, . . . ,m− 1, (10.11)

where A is a tridiagonal matrix given by

A =




1− 2γ γ 0 · · · 0

γ 1− 2γ γ
...

0 · · · 0
... γ 1− 2γ γ
0 · · · 0 γ 1− 2γ



, bj =




γφj

0
...

0
γψj



.

The advantage of the vector notation consists in simplification of the stability and con-
vergence analysis of the explicit numerical scheme (10.11) by means of the qualitative
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properties of the matrix A. Under the so-called Courant–Fridrichs–Lewy (CFL) stability
condition:

0 < γ ≤ 1
2
, i.e.

σ2k

h2
≤ 1, (10.12)

the numerical discretization scheme (10.11) is stable. It means that

lim
k → 0
h→ 0

σ2k ≤ h2

ũk,h(x, τ) = u(x, τ), (10.13)

where u(x, τ) is a solution to the parabolic partial differential equation (10.1) and ũk,h is a
piece-wise linear function with values ũk,h(xi, τj) = uji in nodal points (xi, τj). The above
limit is considered for values of parameters h, k satisfying the CFL condition (10.12).

The iteration matrix A entering recurrent relation (10.11) has an important property for
the parameter value γ satisfying the CFL condition (10.12). Its maximum L∞-norm is at
most one. It is worth noting that the coefficients in the matrix A are non-negative, i.e.,
γ > 0, 1 − 2γ ≥ 0. If u ∈ Rn, then for the i-th component of the vector (Au)i we have
(Au)i = γui−1 +(1−2γ)ui+γui+1 and so |(Au)i| ≤ γ|ui−1|+(1−2γ)|ui|+γ|ui+1| ≤
(γ + (1 − 2γ) + γ)‖u‖∞ = ‖u‖∞, where ‖u‖∞ = maxi |ui| is the maximum L∞-norm
of the vector u. Hence,

‖Au‖∞ ≤ ‖u‖∞, for each u ∈ Rn. (10.14)

If we denote mj = mini u
j
i ,Mj = maxi u

j
i the minimum and maximum of the vector uj ,

then, for 0 < γ ≤ 1/2, we obtain

M j+1 ≤ max(M j , φj , ψj), mj+1 ≥ min(mj , φj , ψj), (10.15)

for j = 0, 1, . . . ,m− 1. Indeed, for inner indices i = −N +2, . . . , N − 2 we have uj+1
i =

γuji−1 +(1−2γ)uji +γuji+1 ≤M j . For outer indices i = −N +1 andN −1 we moreover
have to take into account the boundary conditions φj and ψj (see (10.10)). The above
system of inequalities (10.15) is referred to as the discrete maximum (minimum) principle,
which is a discrete counterpart of the maximum principle for solutions to parabolic partial

differential equations.
A numerical solution for pricing European call options by means of the explicit nu-

merical scheme is depicted in Fig. 10.1. We chose the following financial and numerical
parameters: σ = 0.4, r = 0.04, q = 0.12, T = 1, E = 50 and N = 100,m = 20 (see
the source code shown in Table 10.1). It is important to emphasize that the explicit scheme
works fine only in the case when the CFL condition γ ≤ 1/2 is satisfied (see Fig. 10.1
(left)). On the other hand, if γ > 1/2 then the numerical solution need not to converge to
the exact analytical solution. It may oscillate as it can be obvious from Fig. 10.1 (right),
where we computed a solution for the parameter value γ = 0.56 > 1/2. Notice that in this
case the discrete maximum principle is violated.
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Table 10.1. The Mathematica source code for an explicit numerical scheme for pricing the
European call option.'

&

$

%

sigma = 0.4; r = 0.04; q = 0.12;
T = 1; X = 50;

alfa = (r - q)/sigmaˆ2 - 1/2;
beta = (r + q)/2 + sigmaˆ2/8 + (r - q)ˆ2/(2sigmaˆ2);

NN = 100; n = 2 NN - 1;
m = 20;

k = T/m;
gama = 0.5;
h = sigma Sqrt[k/(2 gama)];

A=Table[Table[If[i==j, 1 - 2gama,
If[i==j-1, gama, If[i==j+1, gama, 0 ]]],

{j, 1, n}], {i, 1, n}];

u0 = Table[Exp[alfa i h] Max[Exp[i h] - 1, 0],
{i, -NN + 1, NN - 1}];
phi[j_] := 0.;
psi[j_] := Exp[(alfa + 1)NN h + (beta - q)j k];

uold = u0;
For[j = 0, j <= m - 1, 1,
{
b = Table[If[i == -NN + 1, gama phi[j],

If[i == NN - 1, gama psi[j], 0]],
{i, -NN + 1, NN - 1}];

unew = A.uold + b;
uold = unew;
Vnew = Table[
{X Exp[i h],
X Exp[-alfa i h - beta j k] unew[[i+NN]]
},
{i,-NN+1, NN-1}];
j++;
}];

ListPlot[Vnew];
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Figure 10.1. A solution S 7→ V (S, t) for the price of a European call option obtained by
means of the binomial tree method with γ = 1/2 (left) and comparison with the exact
solution (dots). The oscillating solution S 7→ V (S, t) which does not converge to the exact
solution for the parameter value γ = 0.56 > 1/2, where γ > 1/2, does not fulfill the CFL
condition.

1.1. Discrete methods based on binomial and trinomial trees

In this part, we focus our attention to a special case of the explicit numerical scheme (10.9).
If we choose the ratio between the spatial and time discretization steps such that

h = σ
√
k, (10.16)

i.e., γ = 1/2, then the term 1 − 2γ vanishes in (10.9). The explicit scheme has a simpler
form:

uj+1
i =

1
2
uji−1 +

1
2
uji+1. (10.17)

It means that the solution uj+1
i at the time τj+1 is the arithmetic average between values

uji−1 and uji+1 calculated at the previous time τj . A graphical illustration of the algorithm
is depicted in Fig. 10.2. Since there is a similarity with a binomial tree we will henceforth
refer to the explicit method with γ = 1/2 to as the binomial tree method. In general, if
0 < γ < 1

2 , the explicit method is referred to as the trinomial tree method.

Risk neutral probabilities and the binomial tree method

We summarize the discussion on the binomial tree method by pointing out its relation
to the discrete binomial model proposed by Cox, Ross and Rubinstein in 1979 (see e.g.,
Melicherčı́k et al. [83]). The key idea of the binomial model consists in construction of the
so-called risk-neutral option price V j+1 at the time tj+1 = T −τj+1 by means of the option
and underlying stock price at the time tj = T − τj . Suppose that the underlying stock price
at the time tj+1 has a price S and, with a probability p ∈ (0, 1), it attains a higher value
S+ > S and, with a complementary probability 1 − p ∈ (0, 1), it attains a lower value
S− < S at the time tj . Denote by V+ and V−, respectively, the option prices corresponding
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Figure 10.2. A binomial tree as an illustration of the algorithm for solving a parabolic
equation by an explicit method with 2γ = σ2k/h2 = 1.

to the upward and downward movement of underlying prices. Let us construct a portfolio
consisting of one option in a long position and δ underlying stocks in a short position. The
principle of nonexistence of long lasting arbitrage opportunities enables us to conclude that
the value of the portfolio at the time tj+1 < tj , (when discounted by the risk-free interest
rate r of a zero coupon bond over the time interval of the length k) should be equal to the
value of the portfolio at the time tj , i.e.

erk (V − δS) = V− − δS− = V+ − δS+.

Hence,

δ =
V+ − V−
S+ − S−

,

and the price V can be expressed as follows:

V = e−rk (q+V+ + q−V−) , where q+ =
Serk − S−
S+ − S−

, q− = 1− q+ (10.18)

(see [75, Chapter 2.1]). Again, using the principle of nonexistence of long lasting arbitrage
opportunities, we can conclude that S− < Serk < S+. It means that q+ > 0 and so the
values q+, q− can be interpreted as the so-called risk-neutral probabilities. Notice that the
pricing formula (10.18) does not contain any information regarding the real probabilities p
and 1− p of upward and downward change of the underlying stock price S to the value S+

or S−, respectively. It is in accordance with the fact that the option price is independent of
the deterministic drift of the underlying stock price (see Chapter 3). In Fig. 10.3, we present
an illustration of the option price computation by means of a binomial model. The one stage
binomial model can be recursively applied for the entire term structure t0 = T, . . . , tm = 0
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Figure 10.3. A binomial tree illustrating a solution to a parabolic equation by the explicit
scheme with the parameter 2γ = σ2k/h2 = 1.

in order to compute the option price at the time option contract tm = 0. Recall that the
price of the option at the expiration time t0 = T is given by its pay–off diagram.

The binomial model can be also derived from the explicit numerical scheme (10.17).
Indeed, let us denote

V j
i ≈ V (Si, T − τj), where Si = Eexi = Eeih.

Taking into account the transformation V (S, t) = Ee−αx−βτu(x, t), we obtain V j
i =

Ee−αih−βjkuji . In terms of the original variable V j
i , the numerical scheme (10.17) can

be expressed as follows:

V j+1
i = e−rk

(
q−V

j
i−1 + q+V

j
i+1

)
, where q± =

1
2
e±αh−(β−r)k. (10.19)

Since σ2k/(2h2) = γ = 1/2, then, with regard to relations determining the constants α, β,
we obtain

α2

2
h2 − (β − r)k =

(
σ2α

2

2
− (β − r)

)
k = 0.

It means that, for sufficiently small values of the time step k, it holds that:

e±αh−(β−r)k ≈ 1± αh− (β − r)k +
α2

2
h2 +O(k

3
2 ) = 1± αh+O(k

3
2 ),

for k → 0 and h = σ
√
k → 0. Thus,

q+ =
1 + αh

2
, q− =

1− αh

2
, q− + q+ = 1. (10.20)

Since q− + q+ = 1, q± > 0, these constants are again referred to as risk-neutral probabili-
ties.



162 Chapter 10

2. Implicit numerical method for solving the Black–Scholes
equation

In the previous section, we have derived and analyzed the explicit numerical scheme for
solving the Black–Scholes equation. The method was based on approximation of partial
derivatives by means of finite differences. In this part, we focus our attention to the time
implicit finite difference approximation of the transformed Black–Scholes equation. The
idea behind the construction of the time implicit method is based on approximation of the
partial derivative ∂u/∂τ in the nodal point xji by means of the backward time difference,
i.e.

∂u

∂τ
(xi, τj) ≈ uji − uj−1

i

k
. (10.21)

Hence we can conclude that the approximation uji of a solution at (xi, τj) satisfies the
equation

uji − uj−1
i

k
=
σ2

2
uji+1 − 2uji + uji−1

h2
. (10.22)

Therefore, the values uji−1, u
j
i , u

j
i+1 at the new time level j can be implicitly expressed in

terms of the value of the solution at the previous time level j − 1,

−γuji−1 + (1 + 2γ)uji − γuji+1 = uj−1
i , where γ =

σ2k

2h2
, (10.23)

for i = . . . ,−2,−1, 0, 1, 2, . . . , and j = 1, . . . ,m. If we restrict ourselves to a finite
number of spatial nodal points xi, i = −N + 1, . . . ,−1, 0, 1, . . . , N − 1, we can rewrite
the implicit scheme (10.23) in the matrix form as follows:

Auj = uj−1 + bj−1, for j = 1, 2, . . . ,m, (10.24)

where A is a tridiagonal n× n square matrix, n = 2N − 1,

A =




1 + 2γ −γ 0 · · · 0

−γ 1 + 2γ −γ ...
0 · · · 0
... −γ 1 + 2γ −γ
0 · · · 0 −γ 1 + 2γ



, bj =




γφj+1

0
...

0
γψj+1



.

Here γ = σ2k/(2h2). In Fig. 10.4 we present the shape of the solution S 7→ V (S, t)
representing the price of the European call option for model parameters σ = 0.4, r =
0.04, q = 0.12, T − t = 1, E = 50. In the left figure we plot a solution corresponding to
the parameter γ = 1/2, whereas the right figure depicts a solution for larger value of the
parameter, γ = 20. Both numerical examples almost coincide with the exact analytical so-
lution, which is available for the European style of plain vanilla options. The Mathematica
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Figure 10.4. A solution S 7→ V (S, t) for pricing a European call option obtained by means
of the implicit finite difference method with γ = 1/2 (left) and comparison with the ex-
act analytic solution (dots). The numerical scheme is also stable for a large value of the
parameter γ = 20 > 1/2 not satisfying the CFL condition (right).

source code for a numerical implicit scheme for pricing a European call option is presented
in Table 10.2.

It is worth noting that the advantage of the implicit numerical scheme consists in remov-
ing the restrictive assumption σ2k/(2h2) = γ ≤ 1/2, which is necessary for the stability
of the explicit scheme and constitutes a too restrictive relationship between the time and
spatial discretization steps k and h, respectively. Furthermore, it can be shown (see Vitásek
[121] or Faddeev, Faddeeva [45]) that the implicit numerical approximation scheme (10.24)
is unconditionally stable. It means that the following limit holds true:

lim
(k,h)→(0,0)

ũk,h(x, τ) = u(x, τ), (10.25)

where the piece-wise linear function ũk,h(x, τ) has the same meaning as in the case of the
explicit scheme (10.11). Therefore, by using the implicit approximation scheme, we can
numerically solve the parabolic equation with a larger time discretization step k keeping
the discretization step h sufficiently small enough in order to capture a fine spatial resolu-
tion of the underlying asset price. This advantage is however negatively compensated by
the requirement of solving systems of linear equations. As it will be shown in the subse-
quent section, there are efficient and fast numerical methods for solving sparse systems of
linear equations. In particular, we will discuss the LU decomposition method and Gauss–
Seidel iterative method. In contrast to the classical Gauss elimination method, for sparse
linear systems, these methods have lower memory requirements and they are faster than the
elimination method.

Similarly as in the case of the explicit finite difference scheme (10.11), we are yet able
to derive several useful properties of a solution obtained by the implicit numerical scheme
(10.24) from which we can derive unconditional stability of the scheme. Using the inverse
matrix A−1, the implicit scheme can be rewritten in the form:

uj+1 = A−1uj + A−1bj .
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Table 10.2. The Mathematica source code for an implicit method for pricing the European
call option.'

&

$

%

sigma = 0.4; r = 0.04; q = 0,12; T = 1; X = 50;
alfa = (r - q)/sigmaˆ2 - 1/2;
beta = (r + q)/2 + sigmaˆ2/8 + (r - q)ˆ2/(2sigmaˆ2);

NN = 100; n = 2 NN - 1;
m = 20;

k = T/m;
gama = 20;
h = sigma Sqrt[k/(2 gama)];

A = Table[Table[ If[i == j, 1 + 2gama,
If[i == j - 1, -gama, If[i == j + 1, -gama, 0 ]]],
{j, 1, n}], {i, 1, n}];

u0 = Table[Exp[alfa i h] Max[Exp[i h] - 1, 0],
{i,-NN+1, NN-1}];

phi[j_]:=0.; psi[j_]:=Exp[(alfa + 1)NN h + (beta-q) j k];

uold = u0;
For[j = 0, j <= m-1, 1,
{
b = Table[If[i == -NN + 1, gama phi[j+1],

If[i==NN-1, gama psi[j+1], 0]],{i,-NN+1, NN-1}];
unew = LinearSolve[A, uold + b];
uold = unew;
Vnew = Table[{ X Exp[i h],

X Exp[-alfa i h -beta j k] unew[[i+NN]]},
{i, -NN+1, NN-1}];

j++;
}];

ListPlot[Vnew];
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First, we will show that the inverse matrix A−1 has the maximum L∞-norm ‖A−1‖∞
bounded by one, independently of the parameter γ > 0. Indeed, let Au = b, i.e., u =
A−1b. Let us denote M = maxi |ui|. As

−γui−1 + (1 + 2γ)ui − γui+1 = bi,

we obtain

(1 + 2γ)|ui| = |bi + γui−1 + γui+1| ≤ |bi|+ 2γM.

Hence (1 + 2γ)M = (1 + 2γ)maxi |ui| ≤ maxi |bi|+ 2γM ≤ ‖b‖∞ + 2γM from which
we can easily deduce the inequality: M ≤ ‖b‖∞. It means that

‖A−1b‖∞ ≤ ‖b‖∞, for each b ∈ Rn. (10.26)

If we again denote by mj = mini u
j
i , Mj = maxi u

j
i the minimum and maximum of the

vector uj , respectively, then, for arbitrary value of the parameter γ > 0, we obtain

M j+1 ≤ max(M j , φj , ψj), mj+1 ≥ min(mj , φj , ψj), (10.27)

for j = 0, 1, . . . ,m− 1. Indeed, suppose that the maximum M j+1 is attained for the index
io, i.e., M j+1 = uj+1

io
. Then, for the case = −N + 2 ≤ io ≤ N − 2 (io is an inner index),

we obtain (1 + 2γ)M j+1 = (1 + 2γ)uj+1
io

= ujio + γuj+1
io−1 + γuj+1

io+1 ≤ M j + 2γM j+1,
and so M j+1 ≤ M j . For boundary indices i = −N + 1 and N − 1 we have to take
into account the boundary conditions φj and ψj (see (10.10)). The system of inequalities
(10.15) is again referred to as the discrete maximum (minimum) principle for the implicit
numerical method for solving parabolic partial differential equations.

3. Compendium of numerical methods for solving systems of
linear equations

The purpose of this section is to present to the reader a survey of basic numerical methods
for solving systems of linear equations. We focus our attention to the problem of numerical
computation of the system of linear equations:

Au = b, (10.28)

where A is a square n × n matrix of real numbers, b ∈ Rn is a given vector and u ∈ Rn
is a solution of the system (10.28). For a detailed overview of numerical methods of linear
algebra we refer the reader to books by Faddeev and Faddeeva [45], Vitásek [121] or Fiedler
[47].



166 Chapter 10

3.1. LU decomposition method

A key idea of the method of the so-called LU decomposition is rather simple and it consists
in multiplicative decomposition of the matrix A into a product of two matrices, i.e., A =
L.U. Here, L is a lower triangle matrix. It means that Lij = 0 for i < j. The matrix U
is an upper triangular matrix, i.e., Uij = 0 for i > j. Now, problem (10.28) can be easily
rewritten into the form LUu = b. Therefore, the solution vector u can be constructed by
means of solutions to lower and upper diagonal systems of linear equations:

Ly = b and Uu = y.

Notice that a linear problem with an upper or lower diagonal matrix can be easily solved
by backward or forward substitution of the solution vector components. The method of LU
decomposition is suitable for linear problems having tridiagonal matrix A, i.e.

A =




α1 γ1 0 · · · 0

β2 α2 γ2
...

0 · · · 0
... · · · βn−1 αn−1 γn−1

0 · · · 0 βn αn



. (10.29)

Suppose that the tridiagonal matrix A is diagonally dominant. It means that

αi > |βi|+ |γi|, for each i = 1, 2, . . . , n. (10.30)

For such a matrix, there exists a unique LU decomposition with matrices L and U of the
form

L =




1 0 0 · · · 0

l2 1 · ...
0 · · · 0
... · · 0
0 · · · 0 ln 1



, U =




d1 γ1 0 · · · 0

0 d2 γ2
...

0 · · · 0
... · dn−1 γn−1

0 · · · 0 0 dn



,

where the entries of matrices L and U can be expressed as follows:

d1 = α1, di = αi − γi−1βi
di−1

, li =
βi
di−1

, for 2 ≤ i ≤ n.

It can be shown by a recursive argument that the assumption of diagonal dominance (10.30)
enables us to conclude that the diagonal elements d1, d2, . . . , dn are nonzero. A solution y
of the system of equations Ly = b with a lower diagonal matrix L can be constructed as
follows:

y1 = b1, yi = bi − liyi−1, for i = 2, . . . , n.

Finally, a solution to the system of equations Uu = y with the upper diagonal matrix U
can be constructed as follows:

un =
yn
dn
, ui =

yi − γiui+1

di
, for i = n− 1, . . . , i.
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Figure 10.5. Carl Friedrich Gauss (1777-1855).

3.2. Gauss–Seidel successive over-relaxation method

The method of the LU decomposition described in the previous section yields the exact
solution to a system of linear equations. Nevertheless, in many practical situations, we do
not need the exact solution and an approximate solution is sufficient. This is often the case
when the linear solver is just a part of other numerical approximations. In such situations,
we can take an approximate solution to a system of linear equations because its approxima-
tion error can be lower when compared to errors of other numerical approximation used in
the algorithm.

The Gauss–Seidel successive over-relaxation method1 (SOR method) is a popular iter-
ative method for solving linear systems of equations. Its idea consists in construction of an
approximative solution by means of a recursively constructed sequence of approximations.
In what follows, we shall explain the SOR method in more details.

A matrix A can be additively decomposed into a sum of a lower-diagonal, upper-
diagonal and diagonal matrices, i.e.

A = L + D + U,

where

Lij = Aij , for j < i, otherwise Lij = 0,
Dij = Aij , for j = i, otherwise Dij = 0,
Uij = Aij , for j > i, otherwise Uij = 0.

Concerning the diagonal matrix D, we shall assume its invertibility. It means that Aii 6= 0
for i = 1, . . . , n. Let ω > 0 be a given relaxation parameter. A solution to the system of
linear equations Au = b is equivalent with a solution to the problem

Du = Du+ ω(b−Au).
1Carl Friedrich Gauss, 1777-1855, mathematician, physicist, geophysicists and astronomer. He worked in

the field of mathematical analysis, differential geometry, probability theory (Gauss normal distribution, least
square regression method). He developed one of the first theories of electromagnetism.
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Figure 10.6. A graph of the spectral norm of the operator ‖Tω‖ as a function of the relax-
ation parameter ω.

With regard to the decomposition A = L + D + U, we obtain, after straightforward
calculations, that u is a solution to the linear problem

(D + ωL)u = (1− ω)Du+ ω(b−Uu). (10.31)

The matrix D+ωL is invertible becauseAii 6= 0. Therefore, u is a solution to the following
problem:

u = Tωu+ cω, where Tω = (D + ωL)−1 ((1− ω)D− ωU) , (10.32)

and cω = ω(D+ωL)−1b. Using the linear iteration operator Tω, we can define a recursive
sequence of approximate solutions to the problem Au = b:

u0 = 0, up+1 = Tωu
p + cω for p = 1, 2, . . . . (10.33)

Notice that the initial condition u0 can be also chosen differently respecting the character
of the underlying problem. Clearly, if the sequence of approximate solution vectors up

converges (in the Euclidean space Rn) to a vector u for p → ∞, then, with regard to the
continuity of the linear operator Tω, we obtain u = Tωu + cω. Hence, the vector u is a
solution to the original system of linear equations Au = b.

It is worthwile noting, that the condition

‖Tω‖ < 1 (10.34)

imposed on the norm of the linear operator Tω enables us to conclude contractivity of the
mapping Rn 3 u 7→ Tωu + cω ∈ Rn. According to the Banach fixed point theorem (see
e.g., [26]), a sequence of vectors up indeed converges to the vector u as p→∞.

With regard to (10.31), we can compute the sequence of approximate solutions as fol-
lows:

up+1
i =

ω

Aii


bi −

∑

j<i

Aiju
p+1
j −

∑

j>i

Aiju
p
j


 + (1− ω)upi , (10.35)
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for p = 1, 2, . . . , and i = 1, 2, . . . , n. At the end of this part, we discuss the problem of
optimal choice of the relaxation parameter ω 6= 0. Taking into account the above condition
guaranteeing the convergence of a recurrently defined sequence (10.33), it is important
to choose optimal relaxation parameter ω in such way that the norm ‖Tω‖ of the linear
operator Tω is minimal.

As a norm of the linear operator B = Tω we can consider, for instance, the so-
called Frobenius matrix norm defined as: ‖B‖ = (

∑n
i,j=1 B2

ij)
1
2 or the spectral norm

‖B‖ = maxλ∈σ(B) |λ|, where σ(B) is the set of eigenvalues of the matrix B. In Fig. 10.6,
we show the dependence of the spectral norm of the operator Tω as a function of the relax-
ation parameter ω. As a matrix A we considered the tridiagonal matrix having the form of
(10.29), where αi = 2, βi = γi = −1 and n = 10. It should be obvious from Fig. 10.6 that
there is an optimal choice of the relaxation parameter ω ≈ 1.5 for our matrix A such that
the spectral norm of the operator Tω is minimal. In general, for tridiagonal and diagonally
dominant matrices, there exists an optimal choice of the relaxation parameter

ω ∈ (1, 2),

for which the norm ‖Tω‖ is minimal and such that ‖Tω‖ < 1 (see e.g., Vitásek [121]).

4. Methods for solving linear complementarity problems

The aim of this part is to recall the basic facts concerning solution of the so-called linear
complementarity problem. As we have already mentioned in Chapter 9, solving the lin-
ear complementarity problem is a key tool for construction of a solution to the problem of
pricing American style of derivatives. In the first part, we will present a simple modifica-
tion of the SOR method yielding a solution to the linear complementarity problem. In the
second part, of this section we will concentrate on practical examples of application of the
numerical method for solving linear complementarity problem.

Our aim is to solve numerically the following linear complementarity problem:

Au ≥ b, u ≥ g, (10.36)

(Au− b)i(ui − gi) = 0, for i = 1, . . . , n.

Notations Au ≥ b and u ≥ g, respectively, mean that the inequalities between vectors are
fulfilled component-wise. We shall suppose that the matrix A is diagonally dominant and
satisfying the condition (10.30).

4.1. Projected successive over-relaxation method

A modification of the Gauss–Seidel SOR method is the basis for construction of an effi-
cient numerical method for solving the linear complementarity problem (10.36). In each
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iteration step p we shall modify the approximate solution up+1 in such a way that it satis-
fies the constraint condition u ≥ g. Finally, we shall prove that the limit of such iterative
approximation is indeed a solution of the linear complementarity problem (10.36).

Let us define a recurrent sequence of approximate solutions of the linear complemen-
tarity problem as follows:

u0 = 0, up+1 = max (Tωu
p + cω, g) , for p = 1, 2, . . . , (10.37)

where the maximum is again taken component-wise, i.e.

up+1
i = max

(
(Tωu

p + cω)i, gi
)
, for each i = 1, 2, . . . , n.

For a moment, let us suppose that convergence of the sequence of vectors up towards a
vector u ∈ Rn as p→∞ is guaranteed. Since up ≥ g, so does the limit u = limp→∞ up ≥
g. Taking into account the relation (10.35), we obtain

up+1
i = max

(
ω

Aii

(
bi −

∑

j<i

Aiju
p+1
j −

∑

j>i

Aiju
p
j

)
+ (1− ω)upi , gi

)
, (10.38)

for each i = 1, 2, . . . , n. It means that, in the limit p → ∞, the following inequality holds
true:

ui ≥ ω

Aii

(
bi −

∑

j<i

Aijuj −
∑

j>i

Aijuj
)

+ (1− ω)ui.

With regard to the diagonal dominance of the matrix A we have Aii > 0. Hence

Aiiui ≥ ω

(
bi −

∑

j<i

Aijuj −
∑

j>i

Aijuj

)
+ (1− ω)Aiiui.

Since ω > 0, then, after a short manipulation, we conclude the inequality

(Au)i ≥ bi, for each i = 1, 2, . . . , n.

Finally, if for some index i the strict inequality ui > gi holds then for all sufficiently large
values of the iteration index p we also have up+1

i > gi. Now, it follows from the definition
of the sequence of vectors up that

up+1
i =

ω

Aii

(
bi −

∑

j<i

Aiju
p+1
j −

∑

j>i

Aiju
p
j

)
+ (1− ω)upi

for all sufficiently large iteration indices p. Passing to the limit p → ∞ we conclude the
equality (Au)i = bi for the index i. It means that (Au− b)i(ui− gi) = 0 and so the vector
u is indeed a solution to the linear complementarity problem (10.36).

At the end of this part, we discuss the question regarding the convergence of the se-
quence recurrently defined as in (10.37). Let us denote

F (u) = max (Tωu
p + cω, g) .
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Figure 10.7. Left: the bold curve represents a solution ũ of the unconstrained problem
−ũ′′(x) = b(x), ũ(0) = ũ(1) = 0. Right: the bold curve represents a solution u of the
constrained problem with a constraint given by a function g (dashed curve).

Clearly, F : Rn → Rn is a nonlinear mapping. In what follows, we will prove that it is a
contractive mapping. Consequently, by using the Banach fixed point theorem, the sequence
up has a limit in Rn. For arbitrary two vectors u, v ∈ Rn it holds:

F (u)i − F (v)i =





φi − ψi, if φi, ψi ≥ gi,
0, if φi, ψi ≤ gi,

φi − gi, if φi ≥ gi, ψi < gi,
gi − ψi, if φi < gi, ψi ≥ gi,

where φ = Tωu + cω, ψ = Tωv + cω. In the case φi ≥ gi and ψi < gi we have 0 ≤
φi− gi < φi−ψi. Analogously, for ψi ≥ gi and φi < gi we obtain 0 ≤ ψi− gi < ψi−φi.
In both cases, we may conclude that, for each i = 1, . . . , n, it holds

|F (u)i − F (v)i| ≤ |φi − ψi| ≤ |(Tωu)i − (Tωv)i|.
Therefore ‖F (u)− F (v)‖ ≤ ‖Tωu−Tωv ‖ = ‖Tω(u− v)‖ ≤ ‖Tω‖‖u− v‖. This way
we have shown the following result:

if ‖Tω‖ < 1 then F is contractive in Rn,
the sequence up converges to u for p→∞, (10.39)

the vector u ∈ Rn is a solution to the problem (10.36).

Iterative method for solving the problem (10.36) described by the recurrent relation
(10.37) and (10.38), respectively, is called the Projected successive over-relaxation method
(PSOR for short). It has been proposed and analyzed by Elliott and Ockendon [42] in the
context of solutions to variational inequalities.

4.2. Numerical solutions of the obstacle problem

In this part, we present a basic idea how to solve free boundary problems. Recall that the
pricing of American style of options can be also transformed into a free boundary problem
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(see Chapter 9). Notice that free boundary problems often arise in other applied fields
including, in particular, physics or mechanics. One of the simplest examples is the obstacle
problem, which is directly connected to the problem of pricing American options with early
exercise opportunities.

We consider an elastic spring (or a thin beam) extended over the interval [0, 1]. There is
an external force with the size b pushing the spring in the downward direction. If we denote
by function u : [0, 1] → R the vertical displacement of the spring clamped in the boundary
points x = 0, 1, then it follows from the theory of elasticity that the equation describing the
displacement has the form of the boundary value problem:

−u′′(x) = b(x), for x ∈ [0, 1], u(0) = u(1) = 0.

Recall that the above equation can be derived as the solution to the so-called variational
problem in which the goal is to minimize the total energy composed from the energy of
deformation and potential energy: Φ(u) = 1

2

∫ 1
0 |ux|2dx−

∫ 1
0 bu dx. A numerical solution

to the above boundary value problem can be easily constructed by a finite difference ap-
proximation. Let us denote xi = i/n, i = 0, 1, . . . , n, points of a partition of the interval
[0, 1] into n equidistant subintervals. The displacement u(xi) at the point xi will be de-
noted by ui. Then the numerical solution can be constructed by solving the system of linear
equations:

−ui−1 − 2ui + ui+1

h2
= bi, for i = 1, . . . , n− 1,

where h = 1/n, bi = b(xi) and the second derivative u′′(x) at the point xi has been
approximated by means of finite differences. Notice that u0 = 0 = un. The system of
equation can be rewritten in the matrix form:

Au = b,

where the matrix A is a (n − 1) × (n − 1) tridiagonal matrix having the form of (10.29)
with entries αi = 2/h2, βi = γi = −1/h2. A graph of a parabolic-like solution for the
constant gravitational-like force b = −1 is depicted in Fig. 10.7 (left).

Now, let us consider a situation where we have given a constraint described by a func-
tion g defined on [0, 1]. We require that the solution of our elastic spring problem should be
above the prescribed constraint, i.e.

u(x) ≥ g(x), for x ∈ (0, 1).

If the spring is strictly above the constraint u(x) > g(x) at x then we require that the
differential equation is satisfied at x, i.e., −u′′(x) = b(x). In any case (including the
equality u(x) = g(x)) we require that the solution solves a differential inequality−u′′(x) ≥
b(x). Such a linear complementarity formulation for the constrained elastic spring can be
rigorously derived by inspecting the first order conditions for a minimizer of the total energy
functional Φ restricted to the set {u ∈ C1(0, 1), u(x) ≥ g(x), for x ∈ (0, 1)}. If we denote
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gi = g(xi) then the discrete approximation of the solution u can be represented by a solution
to the linear complementarity problem of the form (10.36). More precisely,

Au ≥ b, u ≥ g, (Au− b)i(ui − gi) = 0, for i = 1, . . . , n.

An illustrative description of a solution obtained by the Projected SOR method is shown in
Fig. 10.7 (right). Notice that the solution of constrained problem is continuously differen-
tiable at the point of pasting of the spring and constraint. This feature is in analogy with
a C1 smooth pasting principle valid for a solution to the American style of vanilla options
(see Chapter 9).

5. Numerical methods for pricing of American style options

In what follows, we shall present a numerical scheme for solving the linear complementarity
problem arising in the problem of pricing the American style of options. We will make
use of the PSOR algorithm discussed and analyzed in the previous section. We remind
ourselves (see Chapter 9) that the problem of pricing American call and put options can be
transformed into the form of a linear complementarity problem (9.26). More precisely,

(
∂u

∂τ
− σ2

2
∂2u

∂x2

)
(u(x, τ)− g(x, τ)) = 0,

∂u

∂τ
− σ2

2
∂2u

∂x2
≥ 0, u(x, τ)− g(x, τ) ≥ 0,

for each x ∈ R, 0 < τ < T . Our goal is to find a continuously differentiable function
u : R × (0, T ) → R solving the above linear complementarity problem. Recall that the
function g(x, τ) represents the transformed pay–off diagram of the option, i.e.

g(x, τ) = eαx+βτ max(ex − 1, 0), for a call option,

g(x, τ) = eαx+βτ max(1− ex, 0), for a put option,

where α = r−q
σ2 − 1

2 , β = r+q
2 + σ2

8 + (r−q)2
2σ2 . The initial condition for the function u is

given by
u(x, 0) = g(x, 0), for each x ∈ R.

Next we shall discretize the linear complementarity problem by means of finite dif-
ferences. By symbols uj and gj we shall denote approximation of a solution u and the
transformed pay–off diagram at the time level τj . It means that

uj = (uj−N+1, . . . , u
j
−1, u

j
0, u

j
1, . . . , u

j
N−1) ∈ Rn,

gj = (gj−N+1, . . . , g
j
−1, g

j
0, g

j
1, . . . , g

j
N−1) ∈ Rn,

where n = 2N − 1. Choose N ∈ N sufficiently large and such that the interval of spatial
discretization (x−N+1, xN−1) is large enough in order to approximate the boundary values
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uj−N and ujN by Dirichlet boundary conditions. With regard to the boundary conditions
(9.24) and (9.25) occurring in the continuous formulation of the problem of pricing Ameri-
can call and put options, we can postulate the following boundary conditions for the discrete
solution:

uj−N = φj := g(x−N , τj), ujN = ψj := g(xN , τj). (10.40)

Now the problem of linear complementarity can be restated in its discrete form as follows:

Auj+1 ≥ uj + bj , uj+1 ≥ gj+1, for j = 0, 1, . . . ,m− 1,
(Auj+1 − uj − bj)i(uj+1 − gj+1)i = 0, for each i, (10.41)

where u0 = g0. The matrix A is the same (n − 1) × (n − 1) tridiagonal matrix as the
one appearing in the implicit numerical scheme for pricing the European style of vanilla
options, i.e.

A =




1 + 2γ −γ 0 · · · 0

−γ 1 + 2γ −γ ...
0 · · · 0
... −γ 1 + 2γ −γ
0 · · · 0 −γ 1 + 2γ



, bj =




γφj+1

0
...

0
γψj+1



,

where γ = σ2k/(2h2). The discrete form of the linear complementarity problem can be
solved by using the PSOR (Projected SOR) method discussed in section 4.1. In Fig. 10.8
we depict a graph of a solution S 7→ V (S, t) describing the price of American call and put
options. We chose the following financial parameters: σ = 0.4, r = 0.04, q = 0.12, T−t =
1, E = 50 in the case of the call option and σ = 0.6, r = 0.08, q = 0, T − t = 1, E = 50 in
the case of the put option. In both cases, we chose numerical parametersN = 100,m = 20
whereas σ2k/(2h2) = γ = 1. At each time level, we used 20 iterations of the PSOR
algorithm with a relaxation parameter ω = 1.7. A simplified Mathematica source code for
solving the American call option problem can be found in Table 10.3.

5.1. Identification of the early exercise boundary for American options

The main purpose of this section is to identify a position of the early exercise boundary for
American call and put options. Notice that the Projected SOR algorithm for solving the
problem of pricing American options does not provide explicit information concerning the
early exercise boundary position function Sf (t). On the other hand, it should be obvious
that the value of Sf (t) can be a posteriori calculated from the solution V (S, t). Suppose
that we already know the solution V (S, t) at the time t ∈ [0, T ]. Then the early exercise
position Sf (t) is uniquely determined through the relation:

Sf (t) =
{

min (S > 0, V (S, t) = S −E) , for a call option,
max (S > 0, V (S, t) = E − S) , for a put option.

(10.42)
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Table 10.3. The Mathematica source code for the PSOR method for pricing American call
options.'

&

$

%

sigma = 0.4; r = 0.04; q = 0.12; T = 1; X = 50;
alfa = (r - q)/sigmaˆ2 - 1/2;
beta = (r + q)/2 + sigmaˆ2/8 + (r - q)ˆ2/(2sigmaˆ2);

NN=100; n=2 NN-1; m=20; MaxSORiter = 20; omega = 1.7;
gama = 1; k = T/m; h = sigma Sqrt[k/(2 gama)];

A = Table[Table[ If[i == j, 1 + 2gama,
If[i == j-1, -gama, If[i == j+1, -gama, 0 ]]],

{j, 1, n}], {i, 1, n}];

g[x_, tau_] := Exp[alfa x + beta tau] Max[Exp[x]-1, 0];
uold = Table[g[i h, 0], {i, -NN + 1, NN - 1}];
phi[j_] := g[-NN h, j k];
psi[j_] := g[NN h, j k];

For[j = 1, j <= m, 1,
{
b = Table[If[i == -NN + 1, gama phi[j],

If[i == NN - 1, gama psi[j], 0]],
{i, -NN + 1, NN - 1}];

gvec = Table[g[i h, j k], {i, -NN + 1, NN - 1}];
unew = uold;
For[p = 1, p <= MaxSORiter, 1,
{
For[ii = 1, ii <= n, 1,
{
upom = (1 - omega) unew[[ii]]
+ (omega/A[[ii, ii]])*(b[[ii]] + uold[[ii]]
- If[ii > 1, A[[ii, ii - 1]]*unew[[ii - 1]], 0]
- If[ii < n, A[[ii, ii + 1]]*unew[[ii + 1]], 0] );

unew=ReplacePart[unew, Max[upom, gvec[[ii]] ], ii];
ii++;}];

p++;}];
uold = unew;
Vnew = Table[
{X Exp[i h], X Exp[-alfa i h -beta j k] unew[[i+NN]]},
{i, -NN+1, NN-1}];
j++;}];

ListPlot[Vnew];
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Figure 10.8. A solution S 7→ V (S, t) describing the price of an American call option (left)
and put option (right) obtained by means of the Projected SOR algorithm. Corresponding
solutions to the problem of pricing European call and put options are plotted by dots.

Using a numerical approximation, we obtain values of the approximate solution evaluated
in the nodal points (Si, T − τj), where Si = Eeih and τj = jk. In order to construct the
position of the early exercise boundary, we can make use of the following algorithm:

Sf (T − τj) =





min
(
Si > 0, |V (Si, T − τj)− (Si − E)| < ε

)
for a call option,

max
(
Si > 0, |V (Si, T − τj)− (E − Si)| < ε

)
for a put option,

(10.43)

where 0 < ε¿ 1 is a prescribed tolerance level. In practical examples in which the exercise
price E ≈ 10, it is usually sufficient to take ε ≈ 10−5.

0 0.2 0.4 0.6 0.8 1
t

20

20.5

21

21.5

22

22.5

S
fH

tL

Figure 10.9. A comparison of the early exercise boundary position computed by the
PSOR algorithm when using (10.43) and the analytic approximation discussed in Chap-
ter 9 (dashed line).

In Fig. 10.9, we plot the early exercise boundary for an American call option and we
compare it with an analytic approximation introduced and analyzed in Chapter 9. The
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computation was performed by using financial parameters σ = 0.2, r = 0.1, q = 0.05, E =
10, T = 1. The value Sf (0) = 22.3893 of the early exercise boundary position for the call
option at t = 0 is almost identical (the relative error is less than 0.1%) to the one computed
using a different method in the paper [102] by Ševčovič. In Fig. 10.10 we present a 3D graph
of a solution (S, t) 7→ V (S, t) for the price of an American call option. We also depict
the early exercise boundary position. The computation was realized for the parameters:
σ = 0.6, r = 0.1, q = 0.09, E = 10, T = 1.
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Figure 10.10. Two different view points on the 3D graph of the solution (S, t) 7→ V (S, t)
describing the price of an American call option. Five selected solution profiles are compared
with the pay-off diagram surface.

At the end of this section, we present an example of computation of price of the Amer-
ican binary option. Such type of an option was discussed in Chapter 6.4 for the case of a
European style of option. Let us recall that the pay-off diagram of a binary option is given
by:

V bin(S, T ) =
{

1, if S ∈ [E1, E2],
0, otherwise,

where 0 < E1 < E2. The formula for pricing the European style of a binary option at the
time t ∈ [0, T ] has the following form: V bin(S, t) = e−r(T−t)(N(dE1

1 ) −N(dE2
1 )). If we

consider the transformed pay–off diagram

g(x, τ) = eαx+βτV bin(S, T ),

where S = ex, then, by using the PSOR algorithm for pricing the American style of a
binary option, we obtain numerical results shown in Fig. 10.11. Notice that, in comparison
to the European style of a binary option, the value of the American binary option is always
above the pay–off diagram.

5.2. Implied volatility for American options

Similarly as in section 2., for the American style of an option we can also find the value of
the volatility parameter σ > 0 such that the calculated price of the American style of an
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Figure 10.11. A comparison of solutions corresponding to American and European style
(dashed line) of a binary option for the parameters: E1 = 10, E2 = 20, r = 0.04, q =
0.02, T = 1.

option coincides with the market one. The implied volatility σimpl > 0 is therefore such a
value of the volatility parameter for which the theoretical price of the American call (put)
option V (S, t;σ) at the time t and the underlying asset price S = Sreal(t) is identical with
the real market value of the American call (put) option Vreal(t). In other words, in order to
find the implied volatility σimpl of a given option we have to solve the implicit equation

Vreal(t) = V (Sreal(t), t;σimpl). (10.44)

To calculate the theoretical price of the American option V (Sreal(t), t;σ) for known values
of the underlying asset price Sreal(t) at the time t ∈ [0, T ), we make use of the PSOR
algorithm. The option price for Si < Sreal(t) < Si+1 can be calculated by a piece-
wise linear interpolation of the option prices at points Si, Si+1 of a numerical discretiza-
tion mesh. Since the price of the American option is again an increasing function of the
volatility, we can repeat the calculation of the option price for a discrete set of volatilities
0 < σ1 < σ2 < · · · < σP . The discrete set of volatilities should represent a sufficiently fine
mesh of values. The value σp, for which the matching error |Vreal(t) − V (Sreal(t), t;σp)|
is minimal, can be identified with the implied volatility of an American option.

5.3. Source codes for numerical algorithms

Source codes of all numerical algorithms presented in this and other chapters of this book
can be found and freely downloaded from the address:

www.iam.fmph.uniba.sk/institute/sevcovic/derivaty.

As the login name use: derivaty and as the password: opcie. In the archive repository
you can find samples of numerical codes written in Mathematica and Matlab programming
environments.
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Problem section and exercises

1. Calculate the value of the American call option on a dividend paying asset with a
dividend yield q = 5% p.a. (q = 0.05). It is known that the historical volatility
of the underlying asset has been estimated to σ = 20% p.a. and the riskless bond
interest rate r = 10%. The call option is written on the exercise price E = 10 with
the expiration time T = 1 (one year). Calculate the option price at t = 0 for the
asset prices S = 24, S = 23, S = 21, S = 20, S = 18. Based on these calculations,
estimate the position of the early exercise boundary at t = 0.

2. Calculate the value of the bought straddle strategy consisting of purchasing one call
and one put option with the same exercise price E for a) European type of call and
put options, b) American type of call and put options. It is known that the price of the
underlying asset S = 55 paying continuous dividends with q = 0.03, its historical
volatility is σ = 0.4, interest rate of a risk-less bond r = 0.05. Expiration time is
three months, i.e., T = 0.25 and E = 60.

3. The present market price of IBM shares is USD 118.86. The value of the European
put option written for the exercise price E = 120 with exercise time two months is
equal to USD 5.5. The interest rate of riskless bond is 5% p.a., the dividend yield q =
2% p.a. Calculate the implied volatility for the European style put option. Compare
the value of the implied volatility to the one calculated with an assumption that the
put option is of the American style.





Chapter 11

Nonlinear extensions of the
Black–Scholes pricing model

In this chapter, we deal with various generalizations of the classical linear Black–
Scholes equation for pricing derivative securities. We will analyze generalized option pric-
ing models which are capable of capturing several important phenomena like e.g., transac-
tion costs, investor’s risk from unprotected portfolio, investor’s expected utility maximiza-
tion, illiquid markets, large traders feedback influence, etc. We will show that these gener-
alizations can be mathematically stated in the form of a nonlinear Black–Scholes equation
in which the volatility is adjusted to be a function of the option price itself.

1. Overview of nonlinear extensions to the Black–Scholes option
pricing model

According to the classical theory due to Black, Scholes and Merton discussed in Chapter
2, the price of an option in an idealized financial market can be computed from a solution
to the well-known Black–Scholes linear parabolic equation derived by Black and Scholes
in [14], and, independently by Merton (cf. Kwok [75], Dewynne et al. [36], Hull [65],
Wilmott et al. [122]). Recall that a European call (put) option is the right but not obligation
to purchase (sell) an underlying asset at the expiration price E at the expiration time T .
Assuming that the underlying asset S follows a geometric Brownian motion

dS = (%− q)Sdt+ σSdW, (11.1)

181
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where % is a drift, q is the asset dividend yield rate, σ is the volatility of the asset and W
is the standard Wiener process (cf. [75]), one can derive a governing partial differential
equation for the price of an option. With regard to Chapter 2, the mathematical model for
the price V (S, t) of an option is the following parabolic PDE:

∂V

∂t
+ (r − q)S

∂V

∂S
+
σ2

2
S2∂

2V

∂S2
− rV = 0, (11.2)

where σ is the volatility of the underlying asset price process, r > 0 is the interest rate of a
zero-coupon bond, q ≥ 0 is the dividend yield rate. A solution V = V (S, t) represents the
price of an option if the price of an underlying asset is S > 0 at time t ∈ [0, T ].

The case when the diffusion coefficient σ > 0 in (11.2) is constant represents a classical
Black–Scholes equation originally derived by Black and Scholes in [14]. On the other hand,
if we assume the volatility coefficient σ > 0 to be a function of the solution V itself then
(11.2) with such a diffusion coefficient represents a nonlinear generalization of the Black–
Scholes equation. It is a purpose of this chapter to focus our attention to the case when the
diffusion coefficient σ2 may depend on the time T − t to expiry, the asset price S and the
second derivative ∂2

SV of the option price (hereafter referred to as Γ), i.e.

σ = σ(S2∂2
SV, S, T − t) . (11.3)

A motivation for studying the nonlinear Black–Scholes equation (11.2) with a volatility σ
having a general form of (11.3) arises from option pricing models taking into account non-
trivial transaction costs, market feedbacks and/or risk from a volatile (unprotected) portfo-
lio. Recall that the linear Black–Scholes equation with constant σ has been derived under
several restrictive assumptions like e.g., frictionless, liquid and complete markets, etc. We
also recall that the linear Black–Scholes equation provides a perfectly replicated hedging
portfolio. In the last decades some of these assumptions have been relaxed in order to
model, for instance, the presence of transaction costs (see e.g., Leland [78], Hoggard et al.
[64], Avellaneda and Paras [10]), feedback and illiquid market effects due to large traders
choosing given stock-trading strategies (Frey [50], Frey and Patie [51], Frey and Stremme
[52], During et al.[39], Schönbucher and Wilmott [99]), imperfect replication and investor’s
preferences (Barles and Soner [11]), risk from unprotected portfolio (Kratka [73], Jandačka
and Ševčovič [66] or [103]). One of the first nonlinear models is the so-called Leland model
(cf. [78]) for pricing call and put options under the presence of transaction costs. It has been
generalized for more complex option strategies by Hoggard, Whaley and Wilmott in [64].
In this model the volatility σ is given by

σ2(S2∂2
SV, S, τ) = σ̂2(1 + Le sgn(∂2

SV )), (11.4)

where σ̂ > 0 is a constant historical volatility of the underlying asset price process and
Le > 0 is the so-called Leland constant given by Le =

√
2/πC/(σ̂

√
∆t) where C > 0 is

a constant round trip transaction cost per unit dollar of transaction in the assets market and
∆t > 0 is the time-lag between portfolio adjustments. We refer the reader to discussion in
Chapter 5 for details of derivation of the Leland model.
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Notice that dependence of volatility adjustment on the second derivative of the price
is quite natural. Indeed, in the idealized Black–Scholes theory, the delta hedging strategy
yields δ = ±∂SV depending on the type of an option. Therefore one may expect more
frequent transaction in regions with the high second derivative ∂2

SV (cf. [14]).
Another nonlinear generalization of the Black–Scholes equation has been proposed by

Avellaneda, Levy and Paras [9] for description of incomplete markets and uncertain but
bounded volatility. In their model we have

σ2(S2∂2
SV, S, τ) =

{
σ̂2

1, if ∂2
SV < 0,

σ̂2
2, if ∂2

SV > 0,
(11.5)

where σ1 and σ2 represent a lower and upper a-priori bound on the otherwise unspecified
asset price volatility.

If transaction costs are taken into account perfect replication of the contingent claim
is no longer possible and further restrictions are needed in the model. By assuming that
investor’s preferences are characterized by an exponential utility function Barles and Soner
derived a nonlinear Black–Scholes equation with the volatility σ given by

σ2(S2∂2
SV, S, τ) = σ̂2

(
1 + Ψ(a2erτS2∂2

SV )
)

(11.6)

where Ψ is a solution to the ODE: Ψ′(x) = (Ψ(x) + 1)/(2
√
xΨ(x) − x),Ψ(0) = 0

and a > 0 is a given constant representing investor’s risk aversion (see [11]). Notice that
Ψ(x) = O(x

1
3 ) for x→ 0 and Ψ(x) = O(x) for x→∞.

A generalized nonlinear Black–Scholes model has been also derived for the case when
the asset dynamics takes into account the presence of feedback and illiquid market effects.
Frey and Stremme (cf. [52, 51]) introduced directly the asset price dynamics in the case
when a large trader chooses a given stock-trading strategy (see also [99]). The diffusion
coefficient σ is again nonconstant and it can be expressed as:

σ2(S2∂2
SV, S, τ) = σ̂2

(
1− %λ(S)S∂2

SV
)−2

, (11.7)

where σ̂2, % > 0 are constants and λ(S) is a strictly convex function, λ(S) ≥ 1. Interest-
ingly enough, explicit solutions to the Black–Scholes equation with varying volatility as in
(11.7) have been derived by Bordag and Chankova[16] and Bordag and Frey [17]. The non-
linear model with λ ≡ 1 has been derived by Frey in [50]. It describes the option price in
a stylized market where a large investor can influence the underlying stock price by his/her
stock-holding strategy.

The last example of the Black–Scholes equation with a nonlinearly depending volatility
is the so-called Risk Adjusted Pricing Methodology model proposed by Kratka in [73] and
revisited by Jandačka and Ševčovič in [66]. In order to maintain (imperfect) replication of
a portfolio by the delta hedge one has to make frequent portfolio adjustments leading to a
substantial increase in transaction costs. On the other hand, rare portfolio adjustments may
lead to an increase of the risk arising from a volatile (unprotected) portfolio. In the Risk
adjusted pricing methodology (RAPM) model our purpose is to optimize the time-lag ∆t
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between consecutive portfolio adjustments. By choosing ∆t > 0 in such way that the sum
of the rate of transaction costs and the rate of a risk from unprotected portfolio is minimal
one can find the optimal time lag ∆t > 0. In the RAPM model, it turns out that the volatility
is again nonconstant and it has the following form:

σ2(S2∂2
SV, S, τ) = σ̂2

(
1 + µ(S∂2

SV )
1
3

)
. (11.8)

Here σ̂2 > 0 is a constant historical volatility of the asset price returns and µ =
3(C2R/2π)

1
3 , where C,R ≥ 0 are nonnegative constants representing the transaction cost

measure and the risk premium measure, respectively. (see [66] for details).
Notice that all the above mentioned nonlinear models are consistent with the original

Black–Scholes equation in the case the additional model parameters (e.g., Le, a, %, µ) are
vanishing. If plain call or put vanilla options are concerned then the function V (S, t) is
convex in S variable and therefore each of the above mentioned models has a diffusion
coefficient strictly larger than σ̂2 leading to a larger values of computed option prices. They
can be therefore identified with higher ask option prices, i.e., offers to sell an option.

2. Risk adjusted pricing methodology model

The aim of this section is to present, in a more detail, one of nonlinear generalizations of
the classical Black–Scholes equation with a volatility σ of the form (11.3) . We focus on
the so-called Risk adjusted pricing methodology model due to Kratka [73] and its general-
ization by Jandačka and Ševčovič [66] (see also [103]). In this model both the risk arising
from nontrivial transaction costs as well as the risk from unprotected volatile portfolio are
taken into account. Their sum representing the total risk is subject of minimization. The
original model was proposed by [73]. In [66] we modified Kratka’s approach by consid-
ering a different measure for risk arising from unprotected portfolio in order to construct a
model, which is scale invariant and the resulting partial differential equation is tracktable
and mathematically well posed. These two important features were missing in the original
model of Kratka. The model is based on the Black–Scholes parabolic PDE in which trans-
action costs are described by the Hoggard, Whalley and Wilmott extension of the Leland
model (cf. [64, 75, 65]) whereas the risk from a volatile portfolio is described by the av-
erage value of the variance of the synthesized portfolio. Transaction costs as well as the
volatile portfolio risk depend on the time-lag between two consecutive transactions. We
define the total risk premium as a sum of transaction costs and the risk cost from the un-
protected volatile portfolio. By minimizing the total risk premium functional we obtain the
optimal length of the hedge interval.

Concerning the dynamics of an underlying asset we will assume that the asset price
S = S(t), t ≥ 0, follows a geometric Brownian motion (11.1) with a drift ρ, standard
deviation σ̂ > 0 and it may pay continuous dividends, i.e., dS = (ρ − q)Sdt + σ̂SdW
where dW denotes the differential of the standard Wiener process and q ≥ 0 is a continuous
dividend yield rate. This assumption is made when deriving the classical Black–Scholes
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equation (see e.g., [65, 75]). Similarly as in the derivation of the classical Black–Scholes
equation we construct a synthesized portfolio Π consisting of a one option with a price V
and δ assets with a price S per one asset:

Π = V + δS . (11.9)

We recall that the key idea in the Black–Scholes theory is to examine the differential ∆Π of
equation (11.9). The right-hand side of (11.9) can be differentiated by using Itō’s formula
whereas portfolio’s increment ∆Π(t) = Π(t + ∆t) − Π(t) of the left-hand side can be
expressed as follows:

∆Π = rΠ∆t− δqS∆t, (11.10)

where r > 0 is a risk-free interest rate of a zero-coupon bond. In the real world, such a
simplified assumption is not satisfied and a new term measuring the total risk should be
added to (11.10). More precisely, the change of the portfolio Π is composed of two parts:
1) the risk-free interest rate part rΠ∆t and the dividend yield term δqS∆t and 2) the total
risk premium: rRS∆t where rR is a risk premium per unit asset price. We consider a short
positioned call option. Therefore the writer of an option is exposed to this total risk. Hence
we are going to price the higher ask option price – an offer to sell an option. It means that
∆Π = rΠ∆t−δqS∆t−rRS∆t. The total risk premium rR consists of the transaction risk
premium rTC and the portfolio volatility risk premium rV P , i.e. rR = rTC + rV P . Hence

∆Π = rΠ∆t− δqS∆t− (rTC + rV P )S∆t . (11.11)

Our next goal is to show how these risk premium measures rTC , rV P depend on the time lag
and other quantities, like e.g., σ̂, S, V and derivatives of V. The problem can be decomposed
in two parts: modeling the transaction costs measure rTC and volatile portfolio risk measure
rV P .

We begin with modeling transaction costs. In practice, we have to adjust our portfolio
by frequent buying and selling of assets. In the presence of nontrivial transaction costs,
continuous portfolio adjustments may lead to infinite total transaction costs. A natural way
how to consider transaction costs within the frame of the Black–Scholes theory is to follow
the well known Leland approach extended by Hoggard, Whalley and Wilmott (cf. [64, 75]).
Next we recall an idea how to incorporate the effect of transaction costs into the governing
equation. More precisely, we will derive the coefficient of transaction costs rTC occurring
in (11.11). Let us denote by C the round trip transaction cost per unit dollar of transaction.
Then

C = (Sask − Sbid)/S, (11.12)

where Sask and Sbid are the so-called ask and bid prices of the asset, i.e., the market price
offers for selling and buying assets, respectively. Here S = (Sask + Sbid)/2 denotes the
mid value of the underlying asset price.

In order to derive the term rTC in (11.11) measuring transaction costs we will assume,
for a moment, that there is no risk from volatile portfolio, i.e., rV P = 0. Then ∆V +
δ∆S = ∆Π = rΠ∆t+ δqS∆t+ rTCS∆t. Following Leland’s approach (cf. [64]), using
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Itō’s formula and assuming δ-hedging of a synthetised portfolio Π one can derive that the
coefficient rTC of transaction costs is given by the formula:

rTC =
Cσ̂S√

2π

∣∣∂2
SV

∣∣ 1√
∆t

(11.13)

(see [64, Eq. (3)]). It leads to the well known Leland generalization of the Black–Scholes
equation (11.2) in which the diffusion coefficient is given by (11.4) (see Chapter 5 for
details).

Next we focus our attention to the problem how to incorporate a risk from a volatile
portfolio into the model. In the case when a portfolio, consisting of options and assets, is
highly volatile, an investor usually asks for a price compensation. Notice that exposure to
risk is higher when the time-lag between portfolio adjustments is higher. We shall propose a
measure of such a risk based on the volatility of a fluctuating portfolio. It can be measured
by the variance of relative increments of the replicating portfolio Π = V + δS, i.e., by
the term V ar((∆Π)/S). Hence it is reasonable to define the measure rV P of the portfolio
volatility risk as follows:

rV P = R
var

(
∆Π
S

)

∆t
. (11.14)

In other words, rV P is proportional to the variance of a relative change of a portfolio per
time interval ∆t. The constantR represents the so-called risk premium coefficient. It can be
interpreted as the marginal value of investor’s exposure to risk. If we apply Itō’s formula to
the differential ∆Π = ∆V+δ∆S we obtain ∆Π = (∂SV + δ) σ̂S∆W+ 1

2
σ̂2S2Γ(∆W )2+

G, where Γ = ∂2
SV and G = (∂SV + δ)ρS∆t + ∂tV∆t is a deterministic term, i.e., its

expected value E(G) = G in the lowest order ∆t - term approximation. Thus

∆Π−E(∆Π) = (∂SV + δ) σ̂Sφ
√

∆t+
1
2
σ̂2S2(φ2 − 1)Γ∆t,

where φ is a random variable with the standard normal distribution such that ∆W = φ
√

∆t.
Hence the variance of ∆Π can be computed as follows:

var(∆Π) = E
(
[∆Π− E(∆Π)]2

)

= E
(
[(∂SV + δ)σ̂Sφ

√
∆t+ 1

2
σ̂2S2Γ

(
φ2 − 1

)
∆t]2

)
.

Similarly, as in the derivation of the transaction costs measure rTC we assume the δ-hedging
of portfolio adjustments, i.e., we choose δ = −∂SV . SinceE((φ2−1)2) = 2 for a normally
distributed random variable φ ∼ N(0, 1),we obtain an expression for the risk premium rV P
in the form:

rV P =
1
2
Rσ̂4S2Γ2∆t . (11.15)

Notice that in our approach the increase in the time-lag ∆t between consecutive transac-
tions leads to a linear increase of the risk from a volatile portfolio where the coefficient
of proportionality depends the asset price S, option’s Gamma, Γ = ∂2

SV, as well as the
constant historical volatility σ̂ and the risk premium coefficient R via equation (11.15).
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Dtopt
Dt

rR

Figure 11.1. The total risk premium rR = rTC + rV P as a function of the time-lag ∆t
between two consecutive portfolio adjustments.

2.1. Nonlinear Black–Scholes equation for the risk adjusted pricing model

The total risk premium rR = rTC + rV P consists of two parts: transaction costs premium
rTC and the risk from a volatile portfolio rV P premium defined as in (11.13) and (11.15),
respectively. We assume that an investor is risk aversive and he/she wants to minimize the
value of the total risk premium rR. For this purpose one has to choose the optimal time-lag
∆t between two consecutive portfolio adjustments. As both rTC as well as rV P depend on
the time-lag ∆t so does the total risk premium rR. In order to find the optimal value of ∆t
we have to minimize the following function:

∆t 7→ rR = rTC + rV P =
C|Γ|σ̂S√

2π
1√
∆t

+
1
2
Rσ̂4S2Γ2∆t .

The unique minimum of the function ∆t 7→ rR(∆t) depicted in Fig. 11.1 is attained at the
time-lag ∆topt = K2/(σ̂2|SΓ| 23 ) where K = (C/(R

√
2π)

1
3 . Therefore, for the minimal

value of the function ∆t 7→ rR(∆t) we have

rR(∆topt) =
3
2

(
C2R

2π

) 1
3

σ̂2|SΓ| 43 . (11.16)

Taking into account both transaction costs as well as risk from a volatile portfolio effects
we have shown that the equation for the change ∆Π of a portfolio Π read as:

∆V + δ∆S = ∆Π = rΠ∆t− δqS∆t− rRS∆t,

where rR represents the total risk premium, rR = rTC + rV P . Applying Itō’s lemma
to a smooth function V = V (S, t) and assuming the δ-hedging strategy for the portfolio
adjustments we finally obtain the following generalization of the Black–Scholes equation
for valuing options:

∂V

∂t
+
σ̂2

2
S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV − rRS = 0 .
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By taking the optimal value of the total risk coefficient rR derived as in (11.16) the option
price V is a solution to the following nonlinear parabolic equation:

(Risk adjusted pricing methodology Black–Scholes equation)

∂V

∂t
+
σ̂2

2
S2

(
1 + µ(S∂2

SV )
1
3

) ∂2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0 , (11.17)

where µ = 3
(
C2R
2π

) 1
3 and Γp with Γ = S∂2

SV and p = 1/3 stands for the signed power

function, i.e., Γp = |Γ|p−1Γ. In the case there are neither transaction costs (C = 0) nor the
risk from a volatile portfolio (R = 0) we have µ = 0. Then equation (11.17) reduces to the
original Black–Scholes linear parabolic equation (11.2). We note that equation (11.17) is a
backward parabolic PDE if and only if the function

β(H) =
σ̂2

2
(1 + µH

1
3 )H (11.18)

is an increasing function in the variable H := SΓ = S∂2
SV . It is clearly satisfied if µ ≥ 0

and H ≥ 0.

2.2. Derivation of the Gamma equation

Our next goal is to transform the fully nonlinear parabolic equation (11.17) into a quasi-
linear parabolic equation for which one can construct an effective numerical scheme for
approximation of the solution V (S, t). Equation (11.17) can be rewritten in the form

∂tV + Sβ(SΓ) = (r − q) (V − S∂SV ) + qV , S > 0, t ∈ (0, T ) , (11.19)

where Γ = ∂2
SV . Using the standard change of independent variables: x = ln(S/E), x ∈

R, τ = T − t, τ ∈ (0, T ). Since the above equation contains the term SΓ = S∂2
SV it is

convenient to introduce the following transformation:

H(x, τ) = SΓ = S∂2
SV (S, t). (11.20)

Now we are in position to derive an equation for the function H . It turns out that the
function H(x, τ) is a solution to a nonlinear parabolic equation subject to the initial and
boundary conditions. More precisely, by taking the second derivative of equation (11.17)
with respect to x we obtain, after some calculations, that H = H(x, τ) is a solution to the
quasilinear parabolic equation

∂H

∂τ
=

∂2

∂x2
β(H) +

∂

∂x
β(H) + (r − q)

∂H

∂x
− qH , (11.21)

τ ∈ (0, T ), x ∈ R (see [66]). Henceforth, we will refer to (11.21) as the Γ equation. A
solution H to (11.21) is subjected to the initial condition at τ = 0:

H(x, 0) = H̄(x) , x ∈ R , (11.22)
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where H̄(x) is the Dirac δ function H̄(x) = δ(x). Recall that the Dirac function is a
function in distributional sense such that

∫ ∞

−∞
δ(x− x0)φ(x)dx = φ(x0),

∫ ∞

−∞
δ(x)dx = 1,

for any smooth function φ. For the purpose of construction of a numerical scheme we
approximate the initial Dirac delta function by the function H̄(x) = N ′(d)/(σ̂

√
τ∗) where

τ∗ > 0 is sufficiently small, N(d) is the cumulative distribution function of the normal
distribution, and d =

(
x+ (r − q − σ̂2/2)τ∗

)
/σ̂
√
τ∗. It corresponds to the value H =

S∂2
SV of a call (put) option valued by a linear Black–Scholes equation with a constant

volatility σ̂ > 0 at the time T−τ∗ close to expiry T when the time parameter 0 < τ∗ ¿ 1 is
sufficiently small. In the case of call or put options the function H is subjected to boundary
conditions at x = ±∞,

H(−∞, τ) = H(∞, τ) = 0 , τ ∈ (0, T ) . (11.23)

It is important to emphasize that the solution V (S, t) can be directly computed from the
function H = H(x, τ) defined in (11.20). Indeed, in the case of a call option we have

∂SV (S, t) = ∂SV (0, t) +
∫ S

0

1
s
H(ln(s/E), T − t)ds =

∫ ln(S/E)

−∞
H(x, T − t)dx

from which we deduce, by integration,

(call option) V (S, t) =
∫ ∞

−∞
(S − Eex)+H(x, T − t)dx, (11.24)

because ∂SV (0, t) = V (0, t) = 0 for the call option. Similarly, for the put option we have

(put option) V (S, t) =
∫ ∞

−∞
(Eex − S)+H(x, T − t)dx. (11.25)

2.3. Pricing of European style of options by the RAPM model

Let us denote V (S, t;C, σ̂, R) the value of a solution to (11.17) with parameters C, σ̂, R.
Suppose that the coefficient of transaction costs C is known from the analysis of bid-ask
spreads of the underlying stock price. The constant C ≥ 0 is given by (11.12). In real
option market data we can observe different bid and ask prices for an option, Vbid < Vask,
respectively. Let us denote by Vmid the mid value, i.e., Vmid = 1

2
(Vbid + Vask). By the

RAPM model we are able to explain such a bid-ask spread in option prices. The higher
ask price corresponds to a solution of the RAPM model with some nontrivial risk premium
R > 0 and C > 0 whereas the mid value Vmid corresponds to a solution V (S, t) for
vanishing risk premium R = 0, i.e., to a solution of the linear Black–Scholes equation
(11.2). An illustrative example of bid-ask spreads captured by the RAPM model is shown
in Fig. 11.2.
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Figure 11.2. A comparison of bid and ask option prices computed by means of the RAPM
model. The middle dotted line is the option price computed from the Black–Scholes equa-
tion. We chose σ = 0.3, µ = 0.2, r = 0.011, E = 25 and T = 1 (left) and T = 0.3 (right).
Source: Jandačka and Ševčovič [66].

To calibrate the RAPM model we seek for a couple (σ̂RAPM , R) of implied RAPM
volatility σ̂RAPM and the risk premium R such that Vask = V (S, t;C, σ̂RAPM , R) and
Vmid = V (S, t;C, σ̂RAPM , 0). Such a system of two nonlinear equations for unknowns
σ̂RAPM and R can be easily solved by means of the Newton-Kantorovich iterative method
(cf. [66]). Notice that σ̂RAPM is, in fact, the implied volatility computed from the mid
option price Vmid (see Chapter 4).

As an example we considered sample data sets for call options on Microsoft stocks.
We considered a flat interest rate r = 0.02, a constant transaction cost coefficient C =
0.01 estimated from (11.12) and we assumed that the underlying asset pays no dividends,
i.e., q = 0. In Fig. 11.3 we present results of calibration of implied couple (σ̂RAPM , R).
Interestingly enough, two call options with higher strike prices E = 25, 30 had almost
constant implied risk premium R. On the other hand, the risk premium R of an option with
lowest E = 23 was highly fluctuating.

Finally, in Fig. 11.4 we present one week behavior of implied volatilities and risk pre-
mium coefficients for the Microsoft call option on E = 25 expiring at T = April 19, 2003.
In the beginning of the investigated period the risk premium coefficient R was rather high
and fluctuating. On the other hand, it tends to a flat value of R ≈ 5 at the end of the week.
Interesting feature can be observed at the end of the second day when both stock and option
prices went suddenly down. The time series analysis of the implied volatility σ̂RAPM from
first two days was unable to predict such a behavior. On the other hand, high fluctuation
in the implied risk premium R during first two days can send a signal to an investor that
sudden changes can be expected in the near future.

2.4. Explanation of the volatility smile by the RAPM model

One of the most striking phenomena in the Black-Scholes theory is the so-called volatility
smile phenomenon. Notice that derivation of the classical Black-Scholes equation relies on
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Figure 11.3. Intra-day behavior of Microsoft stocks (April 4, 2003) and shortly expiring
call options with expiry date April 19, 2003. Computed implied volatilities σ̂RAPM and
risk premium coefficients R. Source: Jandačka and Ševčovič [66].

Figure 11.4. One week behavior of Microsoft stocks (March 20 - 27, 2003) and call op-
tions with expiration date April 19, 2003. Computed implied volatilities σ̂RAPM and risk
premiums R. Source: Jandačka and Ševčovič [66].
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Figure 11.5. Explanation of the volatility smile by the RAPM model. Dependence of
σ̄(S, t) on S is depicted in (top-left) for t close to T and, in (top-right), for a time 0 < t¿
T . The mapping (S, t) 7→ σ̄(S, t) is shown in (bottom). Source Jandačka and Ševčovič
[66].

the assumption of a constant value of the volatility σ. On the other hand, as it might be
documented by many examples observed in market options data sets (see e.g., [10, 118])
such an assumption is often violated. More precisely, the implied volatility σimpl is no
longer constant and it can depend on the asset price S, the strike price E as well as the time
t.

Following Kratka [73] and Jandačka and Ševčovič [66], we are able to explain the
volatility smile analytically by taking into account the RAPM approach. The Risk adjusted
Black-Scholes equation (11.17) can be viewed as an equation with a variable volatility
coefficient, i.e.

∂tV +
σ̄2(S, t)

2
S2Γ = r (V − S∂SV )

where Γ = ∂2
SV and the volatility σ̄2(S, t) depends itself on a solution V = V (S, t) as

follows:

σ̄2(S, t) = σ2
(
1− µ(SΓ)1/3

)
. (11.26)

In Fig. 11.5 we show the dependence of the function σ̄(S, t) on the asset price S and time
t. It should be obvious that the function S 7→ σ̄(S, t) has a convex shape near the exercise
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price E. We have used the RAPM model in order to compute values of Γ = ∂2
SV . We

chose µ = 0.2, σ = 0.3, r = 0.011, and T = 0.5.
With regard to scale invariance property of the RAPM model (see section 2.7) if we

express both the asset price S as well as the option price V in terms of units of E (i.e., we
introduce scaling s ↔ S/E and v ↔ V/E) then the volatility σ̄ defined as in (11.26) is a
function of the ratio s = S/E and time t only.

3. Modeling feedback effects

In this section we present the model for pricing derivative securities in the presence of
feedback effects. The model was derived by Frey in [50]. Its mathematical representation is
again a nonlinear generalization of the Black–Scholes equation with a volatility depending
on the second derivative of the option prices itself. We follow the derivation of the model
as it was presented in [50].

The classical Black–Scholes equation was derived under the crucial assumption made
on the completeness and perfect liquidity of financial markets (see Chapter 3). The standard
perfect liquid market assumption of the Black–Scholes theory claiming that an investor
can trade any large amount of assets without influencing the underlying asset price may
fail. However, debacles of derivative contracts pointed out the importance of the market
liquidity, which is of high concern to large investors and risk managers.

In a stylized market with riskless assets like e.g., bonds and risky stocks we consider a
trader whose goal is to replicate a derivative contract with expiration T by using a dynamic
trading strategy given by a pair of adapted processes (αt, βt). Here αt (βt) denotes the
number of risky shares (riskless bonds) in the portfolio at time t. We will construct a model
for the case when our hedger is a large trader who can influence the price of the stock by
her hedging strategy.

We will assume that the stock-holding process αt is left continuous, i.e., αt =
lims→t− αs and the right continuous process α+

t := lims→t+ αs is a semimartingale (cf.
[50]). Furthermore, we will suppose that the downward jumps of the stock-holding strategy
are bounded from bellow,

α+
t − αt > −1

%̄
,

for some constant %̄ > 0. Next, suppose that our large trader uses stock-holding strategy αt
and the underlying stock prices process satisfies the following SDEs

dSt = µStdt+ σStdWt + %Stdαt, (11.27)

where µ is a drift parameter, σ > 0 is the volatility of the process and 0 ≤ % < %̄ is the
so-called market liquidity parameter. It is worth noting that the quantity 1/(%St) measures
the size of the change in the stock-holding position of our large trader. Notice that if αt ≡ 0
or % = 0 then the stock price St follows the geometric Brownian motion as described in
Chapter 2.
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The dynamic hedging strategy αt of our large trader is assumed to be a smooth function
φ(St, t) of the time t and the current stock price St,

αt = φ(St, t).

In order to guarantee nondegeneracy of the stochastic differential equation for S we will
suppose that the following regularity assumption %S ∂φ

∂S (S, t) < 1 holds for any S > 0, t ∈
(0, T ).

Let us emphasize that the differential of the underlying stock price dSt is given implic-
itly in equation (11.27) because dαt depends on dSt via the hedging strategy αt = φ(St, t).
In what follows, we will show that the stock process for St satisfies the SDE having the
explicit form:

dSt = b(St, t)Stdt+ v(St, t)StdWt . (11.28)

To derive the form of the volatility function v(S, t) and the drift term b(S, t) we make use
of Itō’s lemma applied to the function αt = φ(St, t). We have

dαt =
(
∂φ

∂t
+
v2

2
S2
t

∂2φ

∂S2

)
dt+

∂φ

∂S
dSt. (11.29)

Inserting the differential dαt into (11.27) we obtain
[
1− %St

∂φ

∂S

]
dSt = µStdt+ σStdWt + %St

(
∂φ

∂t
+
v2

2
S2
t

∂2φ

∂S2

)
dt .

Therefore

v(S, t) =
σ

1− %S ∂φ
∂S

,

b(S, t) =
1

1− %S ∂φ
∂S

(
µ+ %

(
∂φ

∂t
+
v2

2
S2 ∂

2φ

∂S2

))
. (11.30)

We can derive the partial differential equation for the option price V = V (S, t) as a deriva-
tive security of the underlying stock price St driven by the stochastic process (11.28). It
can be readily done by following the derivation of the classical Black–Scholes equation in
Chapter 3 and replacing the constant volatility σ by the volatility function v = v(S, t). The
resulting equation for the option price V (S, t) has the form

∂V

∂t
+

1
2
v(S, t)2S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0 .

In order to simplify further notations, in the rest of this section, we shall assume that the
risk-free interest rate and dividend yield are zero, i.e., r = 0, q = 0. In such case, the
Black–Scholes equation reduces to:

∂V

∂t
+

1
2
v(S, t)2S2∂

2V

∂S2
= 0, S > 0, t ∈ (0, T ). (11.31)
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The solution is subject to the terminal pay-off diagram V (S, T ) at expiry T corresponding
to either call option (V (S, T ) = (S − E)+) or put option (V (S, T ) = (E − S)+).

Our purpose is to specify the trading stock-holding strategy αt of our large trader. Fol-
lowing the idea due to Frey [50], we will construct the hedging strategy αt = φ(St, t)
taking into account the goal of vanishing the so-called tracking error of the strategy. By
definition (see [50, (3.1)]), the tracking error eMT of the strategy αt is given by

eMT = V (ST , T )− VM
T := V (ST , T )−

(
V0 +

∫ T

0
αtdSt

)
. (11.32)

By superscript M we have denoted mark-to-market values not accounting for liquida-
tion costs. It should be obvious that a positive (negative) value of the tracking error indicates
loss (profit) in hedge done by αt strategy. Therefore, it measures the profit or loss (P&L)
function of a trader who is using the hedging strategy αt.

3.1. The case of the standard Black–Scholes delta hedging strategy

First we consider the standard Black–Scholes delta hedging strategy as it was introduced
in Chapter 3. Let V bs be the solution of the linear Black–Scholes equation with a constant
volatility σ of the underlying stock process σ. It means that the function V bs is a solution
to the equation:

∂V bs

∂t
+
σ2

2
S2∂

2V bs

∂S2
= 0 , S > 0, t ∈ (0, T ). (11.33)

Notice that we have assumed zero risk-free interest rate and dividend yield. The solution
V bs is subject to the terminal pay-off diagram V (S, T ) representing the chosen derivative
security, e.g., a call or put option.

Now suppose that a large trader chooses the trading strategy αt = φ(St, t) given by the
simple delta hedging strategy based on the V bs - a solution to the Black–Scholes equation
(11.33), i.e.

φ(S, t) =
∂V bs

∂S
(S, t).

Following [50, Proposition 3.2] we will show that the tracking error eMT at expiry T for the
large trader is always positive. Indeed, the difference between the terminal pay-off value
VT = V (ST , T ) and the initial value V0 = V (S0, 0) can be expressed by the integral

V (ST , T )− V (S0, 0) =
∫ T

0
dV bs(St, t).

Now assuming the process St follows the SDEs (11.28) and applying Itō’s lemma to the
differential dV bs(St, t) we obtain

V (ST , T )− V (S0, 0) =
∫ T

0

∂V bs

∂S
(St, t)dSt

+
∫ T

0

(
∂V bs

∂t
(St, t) +

v2(St, t)
2

S2
t

∂2V bs

∂S2
(St, t)

)
dt.
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If we express the derivative ∂V bs

∂t from the Black–Scholes equation (11.33) and insert the
expression (11.30) for v(S, t) we obtain

eMT =
σ2

2

∫ T

0

[ 1(
1− %S ∂

2V bs

∂S2

)2 − 1
]
S2
s

∂2V bs

∂S2
(Ss, s)ds.

For % > 0, it is easy to verify that the above integrand term is always positive for both
positive or negative values of ∂2V bs

∂S2 . Hence the tracking error eMT for the standard Black–
Scholes delta hedging strategy is always positive. In other words, in non-perfectly liquid
markets the Black–Scholes delta hedging is a costly strategy for a large trader (cf. [50, 52]).

3.2. Zero tracking error strategy and the nonlinear Black–Scholes

Now the idea of derivation of the nonlinear Black–Scholes equation comes very quickly. It
is based on construction of the zero tracking error strategy αt given by the delta of the price
V solving a nonlinear generalization of the Black–Scholes equation. More precisely, it is
given by function αt = φ(St, t), where

φ(S, t) =
∂V

∂S
(S, t)

and V is a solution of the Black–Scholes equation (11.31) with the volatility function v(S, t)
given by

v(S, t) =
σ

1− %S ∂
2V
∂S2 (S, t)

.

Suppose that the option price V = V (S, t) is a solution to the nonlinear parabolic equation

∂V

∂t
+

1
2

σ2

[
1− %S ∂

2V
∂S2

]2S
2∂

2V

∂S2
= 0 , S > 0, t ∈ (0, T ) (11.34)

and it is subjected to the terminal pay-off diagram V (S, T ) corresponding to the chosen
type of derivative security, e.g., a call or put option. According to [50, Proposition 4.2] the
self-financing strategy αt = ∂V

∂S (St, t) is a perfect replication strategy, i.e., its tracking error
eMT is equal to zero.

For further details concerning the model and its qualitative and quantitative analysis
the reader is referred to the paper by Frey [50]. Notice that a characterization of option
replicating strategies for a large trader in terms of a nonlinear parabolic differential equation
have been also obtained by other authors including Schönbucher and Wilmott [99], Frey
[49] and Sircar and Papanicolaou [108].

3.3. The gamma equation for Frey’s nonlinear model

Similarly as in the case of the RAPM model (see section 2.2.) we can construct a quasilinear
parabolic equation for the new variable H(x, τ) = S∂2

SV (S, t)(= SΓ).
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Figure 11.6. A comparison of the call option price V (S, 0) computed by the linear Black–
Scholes equation (dashed line) and that of the nonlinear Frey’s model (solid line). The
corresponding profile of the ∆ = ∂V

∂S of the call option (right).

Equation (11.34) can be rewritten in the form

∂tV + Sβ(SΓ) = 0 , S > 0, t ∈ (0, T ) , (11.35)

where Γ = ∂2
SV and

β(H) =
σ2

2
H[

1− %H
]2 . (11.36)

Again using the change of independent variables: x = ln(S/E), x ∈ R, τ = T − t, τ ∈
(0, T ), we end up with the following quasilinear parabolic equation for the transformed
variable H = H(x, τ):

∂H

∂τ
=

∂2

∂x2
β(H) +

∂

∂x
β(H) , (11.37)

τ ∈ (0, T ), x ∈ R. In the case of a call or put option the solution H to (11.37) is subjected
to the initial condition at τ = 0:

H(x, 0) = H̄(x) , x ∈ R , (11.38)

where H̄(x) is the Dirac delta function H̄(x) = δ(x). The solution H is subjected to
boundary conditions at x = ±∞,

H(−∞, τ) = H(∞, τ) = 0 , τ ∈ (0, T ) . (11.39)

Once the solution H(x, τ) is known then the option price V = V (S, t) is given by the
formula (11.24) for the call option case or (11.25) for the put option case. A numerical
discretization scheme of the Γ equation (11.37) will be derived and discussed in subsequent
section 6.

In Fig. 11.6 we present a comparison of the call option price profile V (S, 0) and its delta
∆ = ∂V

∂S for the linear Black–Scholes equation and the nonlinear Frey’s model with the
parameter % = 0.1. We chose the model parameters: E = 25, σ = 0.3, T = 1, r = q = 0.
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4. Modeling investor’s preferences

In this section we recall a nonlinear model derived by Barles and Soner in [11]. It again
leads to a nonlinear generalization of the Black–Scholes pricing equation. The model is
derived for a market with transaction costs. In general, there is no nontrivial portfolio
dominating a contingent claim. Following the ideas adopted from the paper by Hodges
and Neuberger [63], they introduced investor’s preferences into the pricing model. The
investor’s preferences are described by a given utility function with a constant investor’s
risk aversion. The resulting pricing equation is a nonlinear Black-Scholes equation with an
adjusted volatility. Similarly as in the case of the Risk adjusted methodology and Frey’s
model the adjusted volatility is a function of the second derivative of the option price itself.

We again assume that the underlying stock price pays no dividends (q = 0) and it
follows a geometric Brownian motion

dS = %Sdt+ σ̂SdW, (11.40)

with a drift % is a drift, σ̂ is the volatility of the asset price and W is the standard Wiener
process.

We follow the original derivation of the model due to Barles and Soner [11]. In order
to model trading strategies, let us introduce two stochastic processes Xt and Yt describing
dollar holdings in the money market and the number of shares of stocks owned. By a trading
strategy on the time interval [t, T ] we will understand a pair (Lt,Mt) of left continuous and
nondecreasing functions such that Lt = Mt = 0. These functions can be interpreted as,
respectively, the cumulative transfers (measured in the number of shares of a stock) from
money market to stock (the function Lt) and vice versa (the function Mt). Let µ ∈ (0, 1)
be a parameter describing proportional transaction costs when selling or buying assets. It
means that, the ask price Sask (an offer to sale) and the bid price Sbid are related as follows:

Sask = (1 + µ)S, Sbid = (1− µ)S,

where S = (Sask + Sbid)/2 is the average between ask and bid prices. The increments
dX and dY in the dollar amount money market instruments and number of shares in the
portfolio, respectively, are then expressed as follows:

dX = −S(1 + µ)dL+ S(1− µ)dM, (11.41)

dY = dL− dM. (11.42)

In the case when there are no option liabilities, investor’s terminal wealth at t = T of
the portfolio will be equal to the value

XT + YTST .

On the other hand, in the case we have sold N European call options the terminal wealth at
t = T of the portfolio will be

XT + YTST −N(ST − E)+.
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The idea how to price a European call option is based on the utility maximization ap-
proach of Hodges and Neuberger [63]. Consider a given utility function U . We will assume
that the function U is an increasing and concave function and it corresponds to the so-called
constant absolute risk aversion function for which we have

−U
′′(r)

U ′(r)
= γ, for all r > 0.

The constant γ > 0 is referred to as the constant absolute risk aversion parameter. In what
follows, we will assume that the investor’s utility function U ε is given by

U ε(ξ) = U(ξ/ε), for ξ > 0,

where
U(r) = 1− exp(−r)

and the parameter

ε =
1
γN

(11.43)

is considered as a small parameter, 0 < ε ¿ 1. Clearly, the exponential function U ε is a
constant absolute risk aversion utility function.

Following Hodges and Neuberger [63], we shall price the European call option with
maturity T and the strike price E by taking into account the goal of maximization of in-
vestor’s utility function. In the first case when there are no option liabilities, investor’s
value (wealth) function vf = vf (x, y, s, t) is given by a solution to the stochastic dynamic
optimization problem

vf (x, y, s, t) = sup
L,M

E(U(XT + YTST )) (11.44)

for maximization of the terminal expected utility from the final wealth with respect to all
trading strategies (Lτ ,Mτ ), τ ∈ [t, T ], subject to the initial state conditions:

Xt = x, Yt = y, St = s.

In the second case when we have sold N European call options, investor’s value (wealth)
function v(x, y, s, t) is given by a solution to the stochastic dynamic optimization problem

v(x, y, s, t) = sup
L,M

E(U(XT + YTST −N(ST −E)+)). (11.45)

The maximization of the expected utility from investor’s final wealth is again taken with
respect to all trading strategies (Lτ ,Mτ ), τ ∈ [t, T ], and the initial conditionsXt = x, Yt =
y, St = s at time t.

Hodges and Neuberger in [63] postulate that the price of the call option can be identified
to the maximal solution Λ = Λ(x, y, s, t; γ,N) of the algebraic equation

v(x+NΛ, y, s, t) = vf (x, y, s, t). (11.46)
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It is worth noting that the state equations (11.41) are linear. As a consequence we can
deduce the following scaling property of the option price Λ(x, y, s, t; γ,N):

Λ(x, y, s, t; γ,N) = Λ(Nx,Ny, s, t; γN, 1).

In what follows, we will define two auxiliary functions zε(x, y, s, t) and zf,ε(x, y, s, t)
using the following implicit equations:

v(x, y, s, t) = U ε(x+ ys− zε), (11.47)

vf (x, y, s, t) = U ε(x+ ys− zε,f ). (11.48)

At the terminal time t = T we have

zε(x, y, s, T ) = (s−E)+, zε,f (x, y, s, T ) = 0, for any x, y, s.

Now, it follows from equation (11.46) that the option price Λ is a solution to the equation
U ε(x+ ΛN + ys− zε) = U ε(x+ ys− zε,f ). Since U ε is an increasing function we have

Λ(x, y, s, t;
1
ε
, 1) = zε(x, y, s, t)− zf,ε(x, y, s, t). (11.49)

Our next goal is to determine the equation for the value functions v and vf . The idea is to
adopt the Bellman optimality principle according to which we have

v(x, y, s, t) = sup
L,M

E(v(Xt+dt, Yt+dt, St+dt, t+ dt)),

where the maximization of the expected utility is taken with respect to all trading strategies
(Lτ ,Mτ ), τ ∈ [t, t+ dt] and the initial conditions Xt = x, Yt = y, St = s. Here dt > 0 is
an arbitrary time increment. A similar equation holds for the value function vf .

Using Itō’s lemma for the increment dv = v(Xt+dt, Yt+dt, St+dt, t+ dt)− v(x, y, s, t)
over the time interval [t, t+ dt] we obtain

dv =
(
∂v

∂t
+ %s

∂v

∂s
+
σ̂2s2

2
∂2v

∂s2
+
∂v

∂x

dX

dt
+
∂v

∂y

dY

dt

)
dt+ σ̂s

∂v

∂s
dW.

Taking into account equations (11.41) we have

dX

dt
= −s(1 + µ)L̇+ s(1− µ)Ṁ,

dY

dt
= L̇− Ṁ,

where L̇ = dL
dt and Ṁ = dM

dt . As the trading strategies L,M are assumed to be nondecreas-
ing we have L̇, Ṁ ≥ 0. With regard to the construction of Itō’s integral (see Chapter 2) we
have E(σ̂s∂v∂sdW ) = 0. Since E(v(Xt+dt, Yt+dt, St+dt, t+ dt)) = v(x, y, s, t)+E(dv) we
obtain

0 = inf
L̇,Ṁ≥0

−∂v
∂t
−%s∂v

∂s
− σ̂

2s2

2
∂2v

∂s2
+

(
s(1 + µ)

∂v

∂x
− ∂v

∂y

)
L̇+

(
∂v

∂y
− s(1− µ)

∂v

∂x

)
Ṁ.
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It is straightforward to verify the following simple implication:

inf
L̇,Ṁ≥0

A+ BL̇+ CṀ = 0 ⇒ min (A,B, C) = 0.

As a consequence, we obtain the governing equation for the value function v in the follow-
ing form:

min
(
−∂v
∂t
− %s

∂v

∂s
− σ̂2s2

2
∂2v

∂s2
; s(1 + µ)

∂v

∂x
− ∂v

∂y
;
∂v

∂y
− s(1− µ)

∂v

∂x

)
= 0.

Using the implicit equation for the auxiliary function z(x, y, s, t) and taking into account
the fact that the utility function U ε is increasing we deduce the dynamic programming
equation for the function z, i.e.

max
(
−∂z
∂t
− σ̂2s2

2
∂2z

∂s2
− σ̂2s2

2ε

(
∂z

∂s
− y

)2

− %s

(
∂z

∂s
− y

)
;

−∂z
∂y

− µs+ s(1 + µ)
∂z

∂x
; (11.50)

∂z

∂y
− µs− s(1− µ)

∂z

∂x

)
= 0.

Since neither the terminal condition at t = T for the function z nor the coefficients of
(11.50) depend on the x variable one can prove that so does the solution z to (11.50), i.e.,
z = z(y, s, t). Hence equation (11.50) can be further simplified:

max

(
−∂z
∂t
− σ̂2s2

2
∂2z

∂s2
− σ̂2s2

2ε

(
∂z

∂s
− y

)2

− %s

(
∂z

∂s
− y

)
;

∣∣∣∣
∂z

∂y

∣∣∣∣− µs

)
= 0.

(11.51)
Similarly, for the function zf we can prove that zf = zf (y, s, t) and zf is a solution to the
dynamic programming equation

max

(
−∂z

f

∂t
− σ̂2s2

2
∂2zf

∂s2
− σ̂2s2

2ε

(
∂zf

∂s
− y

)2

− %s

(
∂zf

∂s
− y

)
;

∣∣∣∣
∂zf

∂y

∣∣∣∣− µs

)
= 0.

(11.52)
Solutions z = zε, zf = zε,f are subject to the terminal conditions

zε(y, s, T ) = (s−E)+, zε,f (y, s, T ) = 0, for any y, s.

Concerning the transaction cost measure µ we will henceforth assume the following struc-
tural assumption

µ = a
√
ε, (11.53)

where a > 0 is a given constant. The next step of derivation of the Barles and Soner model
is to prove the limits

zε,f (y, s, t) → 0, zε(y, s, t) → V (s, t) as ε→ 0+, (11.54)
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where V = V (s, t) is a solution to the nonlinear Black–Scholes equation (11.2) with the
adjusted volatility σ according to (11.6). Consequently, in the limit ε → 0, the call option
price Λ (see (11.49)) converges to V . The rigorous proof of convergences (11.54) is rather
technical and involved. We refer the reader to the paper [11] for details. A formal derivation
of the limit is however rather intuitive and straightforward. Indeed, as a consequence of the
terminal condition zε,f (y, s, T ) = 0, one can prove by applying a parabolic comparison
principle the following estimate for the function zε,f :

− ε%
2

2σ̂2
(T − t) ≤ zε,f (y, s, t) ≤ µs|y| ≡ a

√
εs|y|

from which the limit zε,f (y, s, t) → 0 as ε → 0 easily follows (see [11, Prop. 2.1]). The
formal derivation of the limit (11.54) of the function zε is based on the asymptotic analysis.
We assume the following asymptotic expansion of zε:

zε(y, s, t) = V (s, t) + εC(r,A) + o(ε) as ε→ 0+,

where

r =
as√
ε

(
∂V

∂s
− y

)
, A = a2s2

∂2V

∂s2
.

Then we can compute the asymptotic expansions of all the terms entering the dynamic
programming equation (11.51). We obtain

∂zε

∂t
=
∂V

∂t
+O(

√
ε),

∂zε

∂s
=
∂V

∂s
+
√
ε
A

as

∂C

∂r
+ o(

√
ε),

∂zε

∂y
= −√εas∂C

∂r
+ o(

√
ε),

∂2zε

∂s2
=
∂2V

∂s2
+

A2

a2s2
∂2C

∂r2
+ o(

√
ε),

as ε→ 0. If we insert the above expressions into (11.51) and neglect the terms of the order
O(
√
ε) we obtain the dynamic programming equation

max

(
−∂V
∂t

− σ̂2s2

2
∂2V

∂s2
− σ̂2

2a2

(
A2∂

2C

∂r2
+

[
r +A

∂C

∂r

]2
)

;
∣∣∣∣
∂C

∂r

∣∣∣∣− 1

)
= 0.

(11.55)
The above dynamic programming equation is fullfiled for arbitrary value of y (and conse-
quently for all r) and therefore there must exist a function Ψ = Ψ(A) such that

−∂V
∂t

− σ̂2s2

2
∂2V

∂s2
=
Aσ̂2

2a2
Ψ(A) (11.56)

and the function C(r,A) is a solution of the dynamic programming equation

max

(
AΨ(A)−A2∂

2C

∂r2
−

[
r +A

∂C

∂r

]2

;
∣∣∣∣
∂C

∂r

∣∣∣∣− 1

)
= 0. (11.57)
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Figure 11.7. A profile of a solution Ψ(A) to ODE (11.58).

Finally, in [11, Appendix A] Barles and Soner have constructed an explicit solution
C = C(r,A) and the function Ψ(A) to problem (11.57) satisfying additional boundary
conditions

C(0, A) =
∂C

∂r
(0, A) = 0, lim

|r|→∞
1
|r|
∂C

∂r
(r,A) = 1

for all A. We skip most of the details of the construction of the function C by referring
to [11, Appendix A]. We only recall that the function Ψ = Ψ(A) can be constructed as a
solution to the nonlinear ODE:

dΨ
dA

(A) =
Ψ(A) + 1

2
√

Ψ(A)A−A
, Ψ(0) = 0. (11.58)

Having constructed the function Ψ we end up with the nonlinear Black–Scholes equation
(11.56) with the term Aσ̂2

2a2
Ψ(A) ≡ σ̂2

2 Ψ(a2s2∂2
sV ). It corresponds to the case when the

risk-free interest rate r = 0. In the case when r > 0 one can derive the resulting nonlinear
Black–Scholes equation for the call option price by taking into account a comparison of the
portfolio with a risk-less bond with an interest rate r > 0. The final form of the pricing
equation reads as

∂V

∂t
+ rs

∂V

∂s
+

1
2
σ2(s2∂2

sV, T − t)s2
∂2V

∂s2
− rV = 0, s > 0, t ∈ [0, T ), (11.59)

where
σ2(s2∂2

sV, T − t) = σ̂2
(
1 + Ψ(a2er(T−t)s2∂2

sV )
)
, (11.60)

is an adjusted volatility nonlinearly depending on ∂2
SV . Here where σ̂ > 0 is a constant

volatility of the underlying stock price. The solution V (s, t) is subject to the terminal pay-
off condition for the call option, i.e.

V (s, T ) = (s− E)+, s > 0. (11.61)

A graph of the function Ψ = Ψ(A) solving the ODE (11.58) is depicted in Fig. 11.7.
We complete the discussion on the Barles and Soner model by pointing out the asymptotic
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behavior of the solution Ψ(A) of the ODE (11.58). Plugging the ansatz Ψ(A) = c|A|α−1A
with α > 0 into (11.58) we obtain

2αc
3
2 |A| 3α−1

2 ∼ 1 + (1 + cα)|A|α−1A, as A→ 0.

Therefore α = 1
3 and c =

(
3
2

) 2
3 . It is interesting to note that the behavior of the

adjusted volatility for the Barles and Soner and the Risk adjusted pricing methodology
model discussed in the previous section is the same and it exhibits a cube root depen-
dence of the volatility on the second derivative ∂2

sV of the option price for small values of
0 ≤ |∂2

sV | ¿ 1.

4.1. The gamma equation and a numerical approximation scheme

Similarly as in the case of the RAPM model (see section 2.2.) we can construct a quasilinear
parabolic equation for the new variable H(x, τ) = S∂2

SV (S, t)(= SΓ).
Equation (11.59) can be rewritten in the form

∂tV + Sβ(SΓ, ln(S/E), T − t) = r (V − S∂SV ) , S > 0, t ∈ (0, T ) , (11.62)

where Γ = ∂2
SV and

β(H,x, τ) =
σ2

2
(
1 + Ψ(Ea2erτ+xH)

)
H . (11.63)

The transformed quasilinear parabolic equation for the function H = H(x, τ) where x =
ln(S/E), x ∈ R, τ = T − t, τ ∈ (0, T ) reads as follows:

∂H

∂τ
=
∂2β

∂x2
+
∂β

∂x
+ r

∂H

∂x
, (11.64)

where β = β(H(x, τ), x, τ) and τ ∈ (0, T ), x ∈ R. In the case of a call or put option the
solution H to (11.37) is subjected to the initial condition at τ = 0:

H(x, 0) = δ(x) , x ∈ R (11.65)

(δ is the Dirac function) and the boundary conditions

H(−∞, τ) = H(∞, τ) = 0 , τ ∈ (0, T ) . (11.66)

The option price V = V (S, t) is given by the formula (11.24) for the call option case
or (11.25) for the put option case.

In Fig. 11.8 we compare the call option price profile V (S, 0) and its delta ∆ = ∂V
∂S

for the linear Black–Scholes equation and the nonlinear Barles and Soner model with the
parameter a = 0.1.
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Figure 11.8. A comparison of the call option price V (S, 0) computed by the linear Black–
Scholes equation (dashed line) and that of the nonlinear Barles and Soner model (solid line).
The corresponding profile of the ∆ = ∂V

∂S of the call option (right).

5. Jumping volatility model and Leland’s model

In this section we present results of numerical analysis for the nonlinear generalization
of the Black–Scholes equation proposed by Avellaneda, Levy and Paras [9]. Recall that
the idea behind the model is to describe option pricing in incomplete markets where the
volatility σ of the underlying stock process is uncertain but bounded from bellow and above
by given constants σ1 < σ2. In their model the volatility can switch between σ1 and σ2

depending on the second derivative of the option price, i.e.

σ2(S2∂2
SV, S, τ) =

{
σ̂2

1, if ∂2
SV < 0,

σ̂2
2, if ∂2

SV > 0.
(11.67)

It is worth noting that the Leland model discussed in Chapter 5 (cf. [78]) and its general-
ization for more complex option strategies by Hoggard, Whaley and Wilmott in [64] can be
also written as model with a jumping volatility. We remind ourselves that the volatility in
Leland’s model for pricing a short positioned call option is modified as follows:

σ2(S2∂2
SV, S, τ) = σ̂2(1 + Le sgn(∂2

SV )),

where Le =
√

2/πC/(σ̂
√

∆t) is the so-called Leland number depending on the transaction
costs measure C and the time ∆t between two consecutive portfolio adjustments. Clearly,
the Leland volatility function can be treated as a jumping volatility model (11.67) where

σ̂2
1 = σ̂2(1− Le),
σ̂2

2 = σ̂2(1 + Le). (11.68)

Similarly as in previously studied nonlinear Black–Scholes models, we can introduce the
new variable H(x, τ) = S∂2

SV, where x = ln(S/E) and τ = T − t. We obtain

∂H

∂τ
=
∂2β

∂x2
+
∂β

∂x
+ r

∂H

∂x
, (11.69)
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Figure 11.9. Plots of the initial approximation of the functionH(x, 0) (left) and the solution
profile H(x, T ) at τ = T (right).

where β = β(H(x, τ)) is given by

β(H) =





σ̂2
1
2 H if H < 0,

σ̂2
2
2 H if H > 0.

(11.70)

In the rest of this section we present results of numerical approximation of the jumping
volatility model for the case of the bullish spread. Recall that the bullish spread strategy
consists of buying one call option with a lower exercise price E = E1 and selling one
call option with a higher exercise price E2 > E1 (see Chapter 3). Its pay-off diagram is
therefore given by the function

V (S, T ) = (S − E1)+ − (S − E2)+.

The bullish spread option price V (S, t) can be computed from the function H =
H(x, τ) solving the Gamma equation (11.69). The initial condition H(x, 0) can be de-
duced from the bullish spread terminal pay-off diagram. As for the initial condition we
have

H(x, 0) = δ(x− x0)− δ(x− x1), x ∈ R,
where x0 = 0, x1 = ln(E2/E1). We have to impose the boundary conditions

H(−∞, τ) = H(∞, τ) = 0 , τ ∈ (0, T ) .

Applying the same procedure as in derivation of (11.24) we end up with the explicit formula
for the bullish spread option price

V (S, t) =
∫ ∞

−∞
(S − Eex)+H(x, T − t)dx, (11.71)

where E = E1.
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Figure 11.10. A comparison of the call option price V (S, 0) (left) and its delta (right) com-
puted from the jumping volatility model (solid line) by the linear Black–Scholes. Option
prices obtained from the linear Black–Scholes equation are depicted by dashed curved (for
volatility σ1) and fine-dashed curve (for volatility σ2).

In Fig. 11.9 we plot the initial approximation of the function H(x, 0) = δ(x − x0) −
δ(x − x1) and the solution H(x, T ) at τ = T corresponding to the case of bullish spread
option strategy. In Fig. 11.10 we plot the bullish spread option price V (S, 0) computed
by the jumping volatility model with volatility bounds σ1 = 0.2, σ2 = 0.4 and model
parameters r = 0.011, E1 = 25, E2 = 30, T = 1. The solution V (S, 0) is greater than
both European bullish spread prices (see Chapter 3) with constant volatilities σ1 (dashed
line) and σ2 (fine dashed line), respectively.

6. Finite difference scheme for solving the Γ equation

The aim of this section is to propose an efficient numerical discretization of the Γ equation
for a general function β = β(H,x, τ) including, in particular, the case of the RAPM,
Frey’s as well as Barles and Soner model. Our numerical scheme of the Γ equation (11.64)
is based on the finite volume approximation of the partial derivatives entering (11.64). We
will construct a scheme, which is semi-implicit in time.

In order to find a numerical solution to equation (11.21) we have to restrict ourselves to
a finite spatial interval x ∈ (−L,L) where L > 0 is sufficiently large. Since S = Eex the
restricted interval of underlying stock values to S ∈ (Ee−L, EeL). From a practical point
of view, it is sufficient to take L ≈ 1.5 in order to include important range of values of S.
Subsequently, we also have to modify boundary conditions (11.66). Instead of (11.66) we
will consider Dirichlet boundary conditions at x = ±L, i.e.

H(−L, τ) = H(L, τ) = 0 , τ ∈ (0, T ) .

We take a uniform division {τj , j = 0, 1, . . . ,m}, τj = jk, of the time interval [0, T ]
with a time step k = T

m and a uniform division xi = ih, i = −n, . . . , n, of the interval
[−L,L] with a step h = L

n . To construct numerical approximation of a solution H to
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(11.64) we derive a system of difference equations corresponding to (11.64) to be solved at
every discrete time step. Difference equations involve discrete values of Hj

i ≈ H(ih, jk)
where j = 0, . . . ,m.

Our numerical algorithm is semi-implicit in time. Notice that the term ∂2
xβ, where

β = β(H(x, τ), x, τ) can be expressed in the form

∂2
xβ = ∂x

(
β′H(H,x, τ)∂xH + β′x(H,x, τ),

)

where β′H and β′x are partial derivatives of the function β(H,x, τ) with respect to H
and x, respectively. In our discretization scheme, the non-linear terms β′H(H,x, τ) and
β′x(H,x, τ) are evaluated from the previous time step τj−1 whereas linear terms are solved
at the current time level. Such a discretization leads to a solution of linear systems of
equations at every discrete time level. Now, by replacing the time derivative by the time
difference, approximating H in nodal points by the average value of neighboring seg-
ments, collecting all linear terms at the new time level j and taking all the remaining terms
from the previous time level j − 1 we obtain a tridiagonal system for the solution vector
Hj = (Hj

−n+1, . . . , H
j
n−1) ∈ R2n−1:

ajiH
j
i−1 + bjiH

j
i + cjiH

j
i+1 = dji , Hj

−n = 0, Hj
n = 0 , (11.72)

where i = −n + 1, . . . , n − 1 and j = 1, . . . ,m. The solution is subject to homogeneous
Dirichlet boundary conditions imposed on new discrete values of the vector and initial con-
dition H0

i = H̄(xi) where xi = ih. The coefficients of the tridiagonal matrix are given by

aji = − k

h2
β′H(Hj−1

i−1 , xi−1, τj−1) +
k

2h
r ,

cji = − k

h2
β′H(Hj−1

i , xi, τj−1)− k

2h
r ,

bji = 1− (aji + cji ) ,

dji = Hj−1
i +

k

h

(
β(Hj−1

i , xi, τj−1)− β(Hj−1
i−1 , xi−1, τj−1)

+β′x(H
j−1
i , xi, τj−1)− β′x(H

j−1
i−1 , xi−1, τj−1)

)
.

It means that the vectorHj at the time level τj is a solution to the system of linear equations
Aj Hj = dj , where the (2n− 1)× (2n− 1) matrix Aj is defined as

Aj =




bj−n+1 cj−n+1 0 · · · 0

aj−n+2 bj−n+2 cj−n+2

...
0 · · · 0
... · · · ajn−2 bjn−2 cjn−2

0 · · · 0 ajn−1 bjn−1



. (11.73)

Since tridiagonal systems admit a simple LU – matrix decomposition (see Chapter 10) we
can solve the above tridiagonal system in every time step in a fast and effective way.
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Table 11.1. The Mathematica source code for implicit method of the solution to the Gamma
equation.'

&

$

%

Needs["LinearAlgebra‘Tridiagonal‘"];

mu = 0.4; bfun[H_, x_, tau_] := (sigmaˆ2/2) ( 1 + mu Hˆ(1/3)) H;

bfunH[H_, x_, tau_] = D[bfun[H, x, tau], {H, 1}];
bfunx[H_, x_, tau_] = D[bfun[H, x, tau], {x, 1}];

n = 500; m = 200; h = 0.005; k = T/m;
sigma = 0.3; r = 0.011; q = 0.; T = 1; X = 25;

taustar = 0.001;
Hinit[x_] :=
Exp[- ((x + (r-q- sigmaˆ2/2)taustar)/(sigma Sqrt[taustar]))ˆ2/2]/
(sigma Sqrt[taustar]Sqrt[2 Pi]);

Hfn = Table[Hinit[i h], {i, -n + 1, n - 1}]; Hsol[0] = Hfn;
For[j = 1, j <= m, 1,

{
a = Table[

If[i == -n + 1,
-(k/hˆ2)bfunH[ 0. , (i - 1) h, j k] + 0.5(k/h) r,
-(k/hˆ2)bfunH[ Hfn[[ i + n - 1]] , (i - 1) h, j k]

+ 0.5(k/h) r ], { i, -n + 1, n - 1} ];
c = Table[

-(k/hˆ2)bfunH[ Hfn[[ i + n]] , i h, j k ]
- 0.5(k/h) r, { i, -n + 1, n - 1} ];

b = Table[1 - a[[i + n]] - c[[i + n]], {i, -n + 1, n - 1}];

a = Table[a[[i]], {i, 2, 2 n - 1}];
c = Table[c[[i]], {i, 1, 2n - 2}];
d = Hfn + (k/h) Table[

If[
i == -n + 1, (bfun[ Hfn[[1]], i h, j k ] -

bfun[0, i h, j k]),
(bfun[ Hfn[[i + n ]], i h, j k] -

bfun[Hfn[[i - 1 + n]], i h, j k ])
], {i, -n + 1, n - 1}]

+ (k/h) Table[
If[ i == -n + 1, (bfunx[ Hfn[[1]], i h, j k ] -

bfunx[0, i h, j k]),
(bfunx[ Hfn[[i + n ]], i h, j k] -

bfunx[Hfn[[i - 1 + n]], i h, j k ])
], {i, -n + 1, n - 1}];

Hfn = TridiagonalSolve[a, b, c, d]; Hsol[j] = Hfn; j++;
}];

ListPlot[Hfn];
V[S_]:=h Sum[Max[S-X Exp[i h], 0] Hsol[m][[i+n]], {i,-n+1,n-1}];
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According to (11.24) and (11.25) the option price V (S, T −τj) can be constructed from
the discrete solution Hj

i as follows:

(call option) V (S, T − τj) = h
n∑

i=−n
(S − Eexi)+Hj

i ,

(put option) V (S, T − τj) = h
n∑

i=−n
(Eexi − S)+Hj

i ,

for j = 1, . . . ,m.
In Table 11.1 we present a simple source code in the Mathematica language for fi-

nite difference approximation of the Gamma equation. The function β corresponds to the
RAPM model. For other nonlinear Black–Scholes models one has to modify the function
β = β(H,x, τ) accordingly.



Chapter 12

Transformation methods for pricing
American options

In this chapter we continue our discussion on analytical and numerical methods for
pricing American options initiated in Chapters 9 and 10. In these preceding chapters, we
presented basic concepts of pricing American plain vanilla call and put options. In Chap-
ter 10 we furthermore discussed the classical Projected successive over relaxation method
(PSOR) for their valuation. The PSOR method is based on a solution to the variational
inequality. The purpose of this chapter is to investigate the problem of pricing American
options by means of the analysis of the early exercise boundary or, equivalently, the opti-
mal stopping time. We will show how to transform the problem of valuation of American
options into a solution to a parabolic partial differential equation defined on a fixed spatial
domain. We will present the transformation method for call and put options as well as for
nonlinear Black–Scholes models described in Chapter 11 and for American style of average
strike Asian options.

1. Transformation methods for plain vanilla options

One of the important problems in the field of pricing derivative securities is the analysis of
the early exercise boundary and the optimal stopping time for American options. In Chap-
ter 9 we showed how it can be reduced to a problem of solving a certain free boundary
problem for the Black–Scholes equation. However, the explicit analytical expression for
the free boundary profile is not known yet. Many authors have investigated various approx-
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imate models leading to approximate expressions for the price and early exercise boundary
position for American call and put options (see e.g. [54, 55, 68, 70, 74, 85, 97] and re-
cent papers by Zhu [125, 126], Alobaidi et al. [5, 80, 81], Stamicar et al. [109] and the
survey paper by Chadam [22]. In this section we will present results based on the fixed
domain transformation method as it was presented in a series of papers by Ševčovič et al.
[102, 109, 106].

Let us recall that the equation governing time evolution of the price V (S, t) of the
American call option is the following parabolic PDE:

∂V

∂t
+ (r − q)S

∂V

∂S
+
σ2

2
S2∂

2V

∂S2
− rV = 0 , 0 < S < Sf (t), 0 < t < T ,

V (0, t) = 0, V (Sf (t), t) = Sf (t)− E ,
∂V

∂S
(Sf (t), t) = 1 , (12.1)

V (S, T ) = (S − E)+ ,

defined on a time-dependent domain S ∈ (0, Sf (t)), where t ∈ (0, T ) (see Chapter 9). As
usual, S > 0 denotes the underlying stock price, E > 0 is the exercise price, r > 0 is the
risk-free rate, q > 0 is the continuous stock dividend rate and σ ≡ const > 0 is a constant
historical volatility of the underlying stock process.

The main purpose of this section is to derive an integral equation for the early exer-
cise boundary position Sf (t). We will show that the integral equation provides an accu-
rate numerical method for calculating the early exercise boundary near the expiry T . The
derivation of the nonlinear integral equation is based on application the Fourier and inverse
Fourier transforms. Here we present a method developed by Ševčovič in [102] of reducing
the free boundary problem for (12.1) to a nonlinear integral equation with a singular kernel.

Throughout this section we restrict our attention to the case when r > q > 0. It is
well known (cf. Dewynne et al. [36], Kwok [75]) that, for r > q > 0, the free boundary
%(τ) = Sf (T − τ) starts at %(0) = rE/q, whereas %(0) = E for the case r ≤ q. Thus, the
free boundary profile develops an initial jump in the case r > q > 0.

1.1. Fixed domain transformation for the American call option

In this section we will perform a fixed domain transformation of the free boundary problem
(12.1) yielding a parabolic equation defined on a fixed spatial domain. As it will be shown
below, imposing of the free boundary condition will result in a nonlinear time-dependent
term involved in the resulting equation. To transform equation (12.1) defined on a time
dependent spatial domain (0, Sf (t)), we introduce the following change of variables:

τ = T − t, x = ln
(
%(τ)
S

)
, where %(τ) = Sf (T − τ). (12.2)

Clearly, τ ∈ (0, T ) and x ∈ (0,∞) whenever S ∈ (0, Sf (t)). Let us furthermore define the
auxiliary function Π = Π(x, τ) as follows:

Π(x, τ) = V (S, t)− S
∂V

∂S
(S, t). (12.3)
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The transformed function Π has an important financial meaning as it represents a synthetic
portfolio consisting of one long positioned option and the total of δ = ∂V

∂S sold underlying
stocks. It is straightforward to verify the following identities:

∂Π
∂x

= S2∂
2V

∂S2
,

∂2Π
∂x2

+ 2
∂Π
∂x

= −S3∂
3V

∂S3
,

∂Π
∂τ

+
%̇

%

∂Π
∂x

= S
∂2V

∂S∂t
− ∂V

∂t
, (12.4)

where %̇ = d%/dτ . Now assuming that V = V (S, t) is a sufficiently smooth solution
of (12.1), we may differentiate (12.1) with respect to S. Plugging expressions (12.4) into
(12.1), we finally obtain that the function Π = Π(x, τ) is a solution of the parabolic equa-
tion

∂Π
∂τ

+ a(τ)
∂Π
∂x

− σ2

2
∂2Π
∂x2

+ rΠ = 0, (12.5)

x ∈ (0,∞), τ ∈ (0, T ), with a time-dependent coefficient

a(τ) =
%̇(τ)
%(τ)

+ r − q − σ2

2
.

It follows from the boundary condition V (Sf (t), t) = Sf (t)−E and ∂V
∂S (Sf (t), t) = 1 that

Π(0, τ) = −E, Π(+∞, τ) = 0 . (12.6)

The initial condition Π(x, 0) can be deduced from the pay-off diagram for V (S, T ). Indeed,
we conclude

Π(x, 0) =

{
−E for x < ln

(
%(0)
E

)
,

0, otherwise.
(12.7)

In what follows, we will show how the function a(τ) depends upon a solution Π itself.
This dependence is non-local in the spatial variable x. Moreover, the initial position of
the interface %(0) enters the initial condition Π(x, 0). Therefore we have to determine the
relationship between the solution Π(x, τ) and the free boundary function %(τ) first. To this
end, we make use of the boundary condition imposed on V at the interface S = Sf (t).
Since Sf (t)− E = V (Sf (t), t) we have

d

dt
Sf (t) =

∂V

∂S
(Sf (t), t)

d

dt
Sf (t) +

∂V

∂t
(Sf (t), t) .

As ∂V
∂S (Sf (t), t) = 1 we obtain ∂V

∂t (S, t) = 0 at S = Sf (t). Assuming the function
Πx has a trace at x = 0 and taking into account (12.4), we may conclude that, for any
t = T − τ ∈ [0, T ),

S2∂
2V

∂S2
(S, t) → ∂Π

∂x
(0, τ), S

∂V

∂S
(S, t) → %(τ) as S → Sf (t)− .
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If ∂V
∂t (S, t) → ∂V

∂t (Sf (t), t) = 0 as S → Sf (t)−, then it follows from the Black–Scholes
equation (12.1) that

(r − q)%(τ) +
σ2

2
∂Π
∂x

(0, τ)− r(%(τ)− E)

= lim
S→Sf (t)−

(
∂V

∂t
(S, t) + (r − q)S

∂V

∂S
(S, t) +

σ2

2
S2∂

2V

∂S2
(S, t)− rV (S, t)

)
= 0.

As a consequence, we obtain a nonlocal algebraic constraint between the free boundary
function %(τ) and the boundary trace ∂xΠ(0, τ) of the derivative of the solution Π itself:

%(τ) =
rE

q
+
σ2

2q
∂Π
∂x

(0, τ), for 0 < τ ≤ T. (12.8)

It remains to determine the initial position of the interface %(0). According to Dewynne
et al. [36] (see also Kwok [75]), the initial position %(0) of the free boundary is equal to
the value rE/q, for the case 0 < q < r. Alternatively, we can derive this condition from
(12.5)–(12.7) by assuming the continuity of ∂xΠ at (x, τ) = (0, 0). In this case we have

lim
τ→0+

∂Π
∂x

(0, τ) = lim
τ→0+,x→0+

∂Π
∂x

(x, τ) = lim
x→0+

∂Π
∂x

(x, 0) = 0

because Π(x, 0) = −E for x close to 0+. From (12.8) we obtain

%(0) =
rE

q
. (12.9)

In summary, we have shown that, under suitable regularity assumptions imposed on a solu-
tion Π to (12.5), (12.6), (12.7), the free boundary problem (12.1) can be transformed into
the initial boundary value problem for parabolic PDE

∂Π
∂τ

+ a(τ)
∂Π
∂x

− σ2

2
∂2Π
∂x2

+ rΠ = 0,

Π(0, τ) = −E, Π(+∞, τ) = 0, x > 0, τ ∈ (0, T ), (12.10)

Π(x, 0) =
{ −E for x < ln (r/q) ,

0 otherwise,

where a(τ) = %̇(τ)
%(τ) + r − q − σ2

2 and

%(τ) =
rE

q
+
σ2

2q
∂Π
∂x

(0, τ), %(0) =
rE

q
. (12.11)

We emphasize that the problem (12.10) constitutes a nonlinear parabolic equation with a
nonlocal constraint given by (12.11).
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1.2. Reduction to a nonlinear integral equation

The main purpose of this section is to show how the fully nonlinear nonlocal problem
(12.10)–(12.11) can reduced to a single nonlinear integral equation for %(τ) giving the
explicit formula for the solution Π(x, τ) to (12.10). The idea is to apply the Fourier sine and
cosine integral transforms (cf. Stein and Weiss [117]). Let us recall that for any Lebesgue
integrable function f ∈ L1(R+) the sine and cosine transformations are defined as follows:

FS(f)(ω) =
∫ ∞

0
f(x) sinωxdx, FC(f)(ω) =

∫ ∞

0
f(x) cosωxdx.

Their inverse transforms are given by

F−1
S (g)(x) =

2
π

∫ ∞

0
g(ω) sinωxdω, F−1

C (g)(x) =
2
π

∫ ∞

0
g(ω) cosωxdω.

Now we suppose that the function %(τ) and subsequently a(τ) are already know. Let Π =
Π(x, τ) be a solution of (12.10) corresponding to a given function a(τ). Let us denote

p(ω, τ) = FS(Π(., τ))(ω), q(ω, τ) = FC(Π(., τ))(ω), (12.12)

where ω ∈ R+, τ ∈ (0, T ). By applying the sine and cosine integral transforms, taking
into account their basic properties and (12.11), we finally obtain a linear non-autonomous
ω-parameterized system of ODEs

d

dτ
p(ω, τ)− a(τ)ωq(ω, τ) + α(ω)p(ω, τ) = −Eωσ

2

2
,

d

dτ
q(ω, τ) + a(τ)ωp(ω, τ) + α(ω)q(ω, τ) = −Ea(τ)− q%(τ) + rE, (12.13)

where
α(ω) =

1
2
(σ2ω2 + 2r).

The system of equations (12.13) is subject to initial conditions at τ = 0, p(ω, 0) =
FS(Π(., 0))(ω), q(ω, 0) = FC(Π(., 0))(ω). In the case of the call option, we deduce
from the initial condition for Π (see (12.10)) that

p(ω, 0) =
E

ω

(
cos

(
ω ln

r

q

)
− 1

)
, q(ω, 0) = −E

ω
sin

(
ω ln

r

q

)
. (12.14)

Taking into account (12.14) and by using the variation of constants formula for solving
linear non-autonomous ODEs, we obtain an explicit formula for p(ω, τ) = −Eω−1 +
p̃(ω, τ), where

p̃(ω, τ) =
E

ω
e−α(ω)τ cos(ω(A(τ, 0) + ln(r/q)))

+
∫ τ

0
e−α(ω)(τ−s)

[
rE

ω
cos(ωA(τ, s)) + (rE − q%(s)) sin(ωA(τ, s))

]
ds. (12.15)
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Here we have denoted by A the function defined as

A(τ, s) =
∫ τ

s
a(ξ) dξ = ln

%(τ)
%(s)

+
(
r − q − σ2

2

)
(τ − s) . (12.16)

As F−1
S (ω−1) = 1 we have Π(x, τ) = F−1

S (p(ω, τ)) = −E + 2
π

∫∞
0 p̃(ω, τ) sin(ωx) dω.

From (12.11) we conclude that the free boundary function % satisfies the following equation:

%(τ) =
rE

q
+
σ2

qπ

∫ ∞

0
ωp̃(ω, τ) dω. (12.17)

With regard to (12.15) and (12.17) we obtain the following nonlinear singular integral equa-
tion for the free boundary function %(τ):

%(τ) =
rE

q

(
1 +

σ

r
√

2πτ
exp

(
−rτ − (A(τ, 0) + ln(r/q))2

2σ2τ

)
(12.18)

+
1√
2π

∫ τ

0

[
σ +

1
σ

(
1− q%(s)

rE

)
A(τ, s)
τ − s

]exp
(
−r(τ − s)− A(τ,s)2

2σ2(τ−s)
)

√
τ − s

ds

)
,

where the function A depends on the free boundary position % via equation (12.16). To
simplify the above integral equation, we introduce a new auxiliary function H : [0,

√
T ] →

R as follows:
%(τ) =

rE

q

(
1 + σ

√
2H(

√
τ)

)
. (12.19)

Using the change of variables s = ξ2 cos2 θ, one can rewrite the integral equation (12.17)
in terms of the function H as follows:

H(ξ) = fH(ξ)

+
1√
π

∫ π
2

0
[ξ cos θ − 2cotg θ H(ξ cos θ)gH(ξ, θ)] e−rξ

2 sin2 θ−g2H(ξ,θ) dθ, (12.20)

where

gH(ξ, θ) =
1

σ
√

2
1

ξ sin θ
ln

(
1 + σ

√
2H(ξ)

1 + σ
√

2H(ξ cos θ)

)

+
Λ√
2
ξ sin θ, Λ =

r − q

σ
− σ

2
, (12.21)

for ξ ∈ [0,
√
T ], θ ∈ (0, π/2), and

fH(ξ) =
1

2r
√
πξ

e−rξ
2−
“
gH(ξ,π

2
)+ 1

ξ
1

σ
√

2
ln(r/q)

”2

. (12.22)

Notice that equations (12.18) and (12.20) are integral equations with a singular kernel (cf.
Gripenberg et al. [58]).
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Remark 12.1. Kwok [75] derived another integral equation for the early exercise boundary
for the American call option on a stock paying continuous dividend. According to Kwok [75,
Section 4.2.3], %(τ) satisfies the integral equation

%(τ) = E + %(τ)e−qτN(d)−Ee−rτN(d− σ
√
τ)

+
∫ τ

0
q%(τ)e−qξN(dξ)− rEe−rξN(dξ − σ

√
ξ)dξ, (12.23)

where

d =
1

σ
√
τ

ln
(
%(τ)
E

)
+ Λ

√
2τ , dξ =

1
σ
√
ξ

ln
(

%(τ)
%(τ − ξ)

)
+ Λ

√
2ξ

and N(u) is the cumulative distribution function for the normal distribution. The above
integral equation covers both cases: r ≤ q as well as r > q. However, in the case r > q
this equation becomes singular as τ → 0+.

In the rest of this section we derive a formula for pricing American call options based
on the solution % to the integral equation (12.20). With regard to (12.3), we have

∂

∂S

(
S−1V (S, t)

)
= −S−2Π

(
ln

(
S−1%(T − t)

)
, T − t

)
.

Taking into account the boundary condition V (Sf (t), t) = Sf (t) − E and integrating the
above equation from S to Sf (t) = %(T − t), we obtain

V (S, T − τ) =
S

%(τ)

(
%(τ)− E +

∫ ln
%(τ)

S

0
exΠ(x, τ) dx

)
. (12.24)

It is straightforward to verify that V given by (12.24) is indeed a solution to the free bound-
ary problem (12.1). Inserting the expressions (12.15) and (12.17) (recall that Π(x, τ) =
−E + 2

π

∫∞
0 p̃(ω, τ) sinωxdω) into (12.24), we end up with the formula for pricing the

American call option:

V (S, T − τ) = S − E +
S

%(τ)
E I2(A(τ, 0) + ln(r/q), ln(%(τ)/S), τ)

+
S

%(τ)

∫ τ

0

[
rE I2(A(τ, s), ln(%(τ)/S), τ − s)

+(rE − q%(s)) I1(A(τ, s), ln(%(τ)/S), τ − s)
]
ds (12.25)

for any S ∈ (0, Sf (t)) and t ∈ [0, T ], where A(τ, s) = ln %(τ)
%(s) + (r − q − σ2

2 )(τ − s), and
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the functions I1, I2 are defined as follows:

I1(A,L, τ) =
e−(r−σ2/2)τ

2

[
eAM

(−A− σ2τ

σ
√

2τ
,

L

σ
√

2τ

)
(12.26)

−e−AM
(
A− σ2τ

σ
√

2τ
,

L

σ
√

2τ

)]
,

I2(A,L, τ) =
e−rτeL

2
M

(
A− L

σ
√

2τ
,

2L
σ
√

2τ

)
(12.27)

−e
−(r−σ2/2)τ

2

[
eAM

(−A− σ2τ

σ
√

2τ
,

L

σ
√

2τ

)

+e−AM
(
A− σ2τ

σ
√

2τ
,

L

σ
√

2τ

)]

and

M(x, y) = erf(x+ y)− erf(x) =
2√
π

∫ x+y

x
e−ξ

2
dξ.

We will refer to (12.25) as the semi-explicit formula for pricing the American call option.
We use the term ‘semi-explicit’ because (12.25) contains the free boundary function %(τ) =
Sf (T − τ) which has to be determined first by solving the nonlinear integral equation
(12.20).

1.3. Numerical experiments

In this section we focus on numerical experiments. We will compute the free boundary
profile

Sf (t) = %(T − t) =
rE

q

(
1 + σ

√
2H(

√
T − t)

)
(12.28)

(see (12.14)) by solving the nonlinear integral equation (12.20). We will also present a com-
parison of the results obtained by our methods to those obtained by other known methods
for solving the American call option problem.

We first examine the leading order term of the function H(ξ). Since H(0) = 0 we can
write H(ξ) = hξ + O(ξ2) as ξ → 0. Plugging this ansatz into (12.20) and taking into
account the limit

lim
ξ→0+

gH(ξ, θ) = h
1− cos θ

sin θ

we obtain the following transcendental equation for the derivative H ′(0) = h:

h =
1√
π

∫ π
2

0

[
cos θ − 2h2cotg2 θ (1− cos θ)

]
e−h

2(1−cos θ)2/ sin2 θ dθ .

Solving the above equation for h ∈ R we obtain h ≈ 0.451723. It yields the well-known
first order approximation of a solution H(ξ) in the form

H0(ξ) = 0.451723 ξ,



Transformation methods for pricing American options 219

i.e., %0(τ) = rE
q (1 + 0.638833σ

√
τ) (cf. Ševčovič [102]). This asymptotics is also in

agreement with that of Dewynne et al. [36].
The computation of a solution of the nonlinear integral equation is based on an iterative

method. We will construct a sequence of approximate solutions to (12.20). Let H0(ξ) :=
hξ be an initial approximation of a solution to (12.20). Then, for n = 0, 1, . . . , we will
recurrently define the n+ 1 approximation Hn+1 as follows:

Hn+1(ξ) = fHn(ξ)

+
1√
π

∫ π
2

0
[ξ cos θ − 2cotg θ Hn(ξ cos θ)gHn(ξ, θ)] e−rξ

2 sin2 θ−g2Hn (ξ,θ) dθ , (12.29)

for ξ ∈ [0,
√
T ]. With regard to (12.21) and (12.22), we have

gHn(ξ, θ) =
1

σ
√

2
1

ξ sin θ
ln

(
1 + σ

√
2Hn(ξ)

1 + σ
√

2Hn(ξ cos θ)

)
+

Λ√
2
ξ sin θ ,

fHn(ξ) =
1

2r
√
πξ

e
−rξ2−

“
gHn(ξ,π

2
)+ 1

ξ
1

σ
√

2
ln
“

r
q

””2

.

Notice that the function gH is bounded provided that H is nonnegative and Lipschitz con-
tinuous on [0,

√
T ]. Recall that we have assumed r > q > 0. Then the function ξ 7→ fH(ξ)

is bounded for ξ ∈ [0,
√
T ] and it vanishes at ξ = 0. Moreover, if H is smooth then fH is

a flat function at ξ = 0, i.e., fH(ξ) = o(ξn) as ξ → 0+ for all n ∈ N . From the numerical
point of view such a flat function can be omitted from computations. For small values of θ,
we approximate the function cotg θ gHn(ξ, θ) entering the integrand in (12.29) by its limit
when θ → 0+. It yields the approximation of the singular term in (12.29) in the form

cotg θgH(ξ, θ) ≈ 1
2

H ′(ξ)
1 + σ

√
2H(ξ)

+
Λ√
2
ξ for 0 < θ ¿ 1,

where H = Hn.
In what follows, we present several computational examples. In Fig. 12.1 (left) we

show five iterates of the free boundary function Sf (t), where the auxiliary function H(ξ)
is constructed by means of successive iterations of the nonlinear integral operator defined
by the right-hand side of (12.20). This sequence converges to a fixed point of such a map,
i.e., to a solution of (12.20). Parameter values were chosen as E = 10, r = 0.1, σ =
0.2, q = 0.05, T = 1. Fig. 12.1 (right) depicts the final tenth iteration of approximation
of the function Sf (t). The mesh contained 100 grid points. One can observe very rapid
convergence of iterates to a fixed point. In practice, no more than six iterates are sufficient
to obtain the fixed point of (12.20). It is worth noting that in all our numerical simulations
the convergence was monotone, i.e., the curve moves only upwards in the iteration process.

In Fig. 12.2 we show the long time behavior of the free boundary Sf (t), t ∈ [0, T ],
for large values of the expiration time T . For the parameter values T = 50, r = 0.1, q =
0.05, σ = 0.35 and E = 10 the theoretical value of Sf (0) for T = +∞ is equal to 36.8179
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Figure 12.1. Five successive approximations of the free boundary Sf (t) obtained from
equation (12.20) (left). The profile of the solution Sf (t). Source: Ševčovič [102] (right).
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Figure 12.2. Long-time behavior of Sf (t) for a large maturity. Source: Ševčovič [102].

(see Dewynne et al. [36]). This value corresponds to the price %(+∞) − E = 26.8179 of
the so-called perpetual call option.

In Table 12.1 we show a comparison of results obtained by the method based on the
semi-explicit formula (12.25) and those obtained by known methods based on trinomial
trees (both with the depth of the tree equal to 100), finite difference approximation (with
200 spatial and time grids) and analytic approximation of Barone-Adesi and Whalley (cf.
[12], [65, Ch. 15, p. 384]), respectively. It also turned out that the method based on solving
the integral equation (12.20) is 5-10 times faster than other methods based on trees or finite
differences. The reason is that the computation of V (S, t) for a wide range of values of
S based on the semi-explicit pricing formula (12.25) is very fast provided that the free
boundary function % has already been computed.

In Fig. 12.3 the early exercise boundary Sf (t) is computed for various values of the
dividend yield parameter q. In these computations we chose E = 10, T = 0.01, σ = 0.45.
Of interest is the case where q is close to r (q = 0.09 and r = 0.1).
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Table 12.1. Comparison of the method based on formula (12.25) with other numerical
methods for the parameter values E = 10, T = 1, σ = 0.2, r = 0.1, q = 0.05. The
position Sf (0) = %(T ) of the free boundary at t = 0 (i.e., at τ = T ) was computed as
Sf (0) = %(T ) = 22.3754. Source: Ševčovič [102].

Method \ The asset value S 15 18 20 21 22.3754
Integral formula (12.25) 5.15 8.09 10.03 11.01 12.37
Trinomial tree 5.15 8.09 10.03 11.01 12.37
Finite differences 5.49 8.48 10.48 11.48 12.48
Analytic approximation 5.23 8.10 10.04 11.02 12.38
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Figure 12.3. The early exercise boundary Sf (t) = %(T − t) for parameters r = 0.1, q =
0.05 (left) and for r = 0.1, q = 0.09 (right). Source: Ševčovič [102].

1.4. Early exercise boundary for the American put option

In this section, we will review the fixed domain transformation method applied to con-
struction of the early exercise boundary for American style of a put option. The method
was derived and analyzed by Stamicar, Ševčovič and Chadam in [109] (see also the survey
paper [106] by Ševčovič).

According to Chapter 9, the early exercise boundary problem for American put option
can be formulated in terms of a solution to the parabolic partial differential equation

∂V

∂t
+ rS

∂V

∂S
+
σ2

2
S2∂

2V

∂S2
− rV = 0 , 0 < t < T, Sf (t) < S <∞ ,

V (+∞, t) = 0, V (Sf (t), t) = E − Sf (t) ,
∂V

∂S
(Sf (t), t) = −1 , (12.30)

V (S, T ) = (E − S)+ ,

defined on a time-dependent domain S ∈ (Sf (t),∞), where t ∈ (0, T ) (cf. Chapter 9 or
Kwok [75]). Again S > 0 stands for the underlying stock price, E > 0 is the exercise
price, r > 0 is the risk-free rate and σ > 0 is the volatility of the underlying stock process.
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Throughout this section we shall assume that the underlying stock pays no dividends, i.e.,
q = 0. In order to perform a fixed domain transformation of the free boundary problem
(12.31) we introduce the following change of variables

x = ln
(

S

%(τ)

)
, where τ = T − t, %(τ) = Sf (T − τ).

Similarly as in the case of a call option we define a synthetised portfolio Π for the put
option Π(x, τ) = V (S, t) − S ∂V∂S (S, t). Then it is easy to verify that Π is a solution to the
following the parabolic equation

∂Π
∂τ

− a(τ)
∂Π
∂x

− σ2

2
∂2Π
∂x2

+ rΠ = 0, x > 0, τ ∈ (0, T ),

Π(0, τ) = E, Π(∞, τ) = 0, (12.31)
σ2

2
∂Π
∂x

(0, τ) = −rE for τ ∈ (0, T ), (12.32)

Π(x, 0) = 0 for x > 0,

where a(τ) = %̇(τ)
%(τ) + r− σ2

2 . Following calculations described in the previous sections 1.1.
and 1.2. one can construct the Fourier image of the function Π in terms of the free boundary
position %. The resulting equation for the free boundary position reads as σ2

2
∂Π
∂x (0, τ) =

−rE, from which the expression for the function % can be found by using the inverse
Fourier transform. We refer the reader to the paper by Stamicar et al. [109] for details.
After straightforward calculations, it turns out that the function %(τ) can be computed from
the equation:

%(τ) = Ee−(r−σ2

2
)τ+σ

√
2τη(τ), (12.33)

where the auxiliary function η(τ) is a solution to the following nonlinear integral equation

η(τ) = −
√√√√− ln

[
r
√

2πτ
σ

erτ
(

1− Fη(τ)√
π

)]
, for τ ∈ [0, T ], (12.34)

with the function Fη depending on η through the expression

Fη(τ) = 2
∫ π/2

0
e−rτ cos2 θ−g2η(τ,θ)

(
σ
√
τ√
2

sin θ + gη(τ, θ) tan θ
)
dθ, (12.35)

gη(τ, θ) =
1

cos θ
[
η(τ)− η(τ sin2 θ) sin θ

]
, (12.36)

for τ ∈ [0, T ], θ ∈ [0, π2 ]. According to [109], the asymptotic analysis of the above integral
equation for the unknown function η(τ) enables us to conclude the asymptotic approxima-
tion formula for η(τ) as τ → 0. The early exercise behavior of %(τ) for τ → 0 can be then
deduced from the second order iteration to the system (12.34) and (12.35) when starting

from the initial guess η0(τ) = (r − σ2

2 ) τ
1
2

σ
√

2
corresponding to the constant early exercise
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Figure 12.4. Left: asymptotic approximation vs. binomial method for σ = 0.25, r =
0.1, E = 10 and T − t = 8.76 hrs. (0.001 of a year), MBW approximation vs. the
asymptotic solution (12.37) for T − t = 0.876 hrs (right). Source: Stamicar, Ševčovič and
Chadam [109].

boundary Sf0(t) ≡ E. One can iteratively compute Fη0 , η1 and Fη1 , η2. It turned out from
calculation performed in [109] that the second consecutive iterate η2 is the lowest order (in
τ ) approximation of η. Namely,

η(τ) = −
√
− ln

[
2r
σ

√
2πτerτ

]
+ o(

√
τ
√
− ln τ) as τ → 0+. (12.37)

Interestingly enough, it has been shown just recently by Chen et al. [24] that the early
exercise boundary function % is convex (see also Chadam [22], Ekström and Tysk [40],
[41]). Moreover, the approximation formula (12.37) derived by Stamicar, Ševčovič and
Chadam [109] provides the right asymptotic behavior for τ → 0+. Furthermore, Chen et
al. in [24] derived sixth-th order Taylor expansion of the function α,

α(τ) = −ξ − 1
2ξ

+
1

8ξ2
+

17
24ξ3

− 51
64ξ4

− 287
120ξ5

+
199
32ξ6

+O(ξ−7), (12.38)

expressed in terms of the variable ξ = ln
√

8πr2τ
σ2 → −∞ as τ → 0+ where the function α

is given by the formula:

%(τ) = Ee−σ
√

2τα(τ). (12.39)

In Fig. 12.4 (left) we examine how accurately our asymptotic approximation matches
the data from the binomial method (cf. Kwok [75]). Near expiry at about one hour, the
asymptotic approximation matches the data from the binomial method. With σ = 0.25, r =
0.1, E = 10 at 8.76 hours the approximation gives an overestimate but of only 0.4 cents
(see [109]). In Fig. 12.4 (right) we also compared our asymptotic solution with MacMillan,
Barone-Adesi, and Whalley’s [12], [79] numerical approximation of the American put free
boundary. We remind ourselves that the method due to MacMillan et al. is based on a
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transformation that results in a Cauchy-Euler equation that can be solved analytically. For
times very close to expiry, one can see that approximation of the free boundary by Stamicar,
Ševčovič and Chadam developed in [109] matches the data from the binomial and trinomial
methods more accurately.

1.5. Analytical approximation valuation formula by Zhu

In this section we show that the numerical and analytical results obtained by the transfor-
mation method due to Stamicar, Ševčovič and Chadam (see [109] and the previous section)
are in agreement with those obtained recently by Zhu [125, 126]. In [125] Zhu derived a
new analytical approximation formula of the early exercise boundary by application of the
Laplace and inverse Laplace integral transforms to a dimensionless form of the governing
parabolic PDE. He obtained a closed analytic approximation formula for the early exercise
boundary position as a sum of a perpetual option and integral that valuates early exercise
boundary position (see also [126]). The resulting formula for the early exercise boundary
Sf (t) = %(T − t) reads as follows:

%Zhu(τ) =
γE

1 + γ
+

2E
π

∫ ∞

0

ζe−τ
σ2

2
(a2+ζ2)

a2 + ζ2
e−f

∗
1 (ζ) sin(f∗2 (ζ))dζ, (12.40)

where γ = 2r
σ2 , a = 1+γ

2 , b = 1−γ
2 and

f∗1 (ζ) =
1

b2 + ζ2

[
b ln

(
1
γ

√
a2 + ζ2

)
+ ζ arctan(ζ/a)

]
,

f∗2 (ζ) =
1

b2 + ζ2

[
ζ ln

(
1
γ

√
a2 + ζ2

)
− b arctan(ζ/a)

]
. (12.41)

Notice that the first summand in (12.40) represents the constant value of a perpetual put
option i.e., the limit limτ→∞ %(τ) = γE/(1 + γ).

In a recent paper by Lauko and Ševčovič [77] we presented qualitative and quanti-
tative comparison of analytical and numerical approximation methods for computation
of the early exercise boundary of the American put option paying zero dividends. We
compared asymptotic formulae by Evans, Kuske and Keller [44], Stamicar, Ševčovič and
Chadam [109] and the analytic approximation formula by Zhu [125, 125]. In Fig. 12.5
(left) we present a comparison of the analytic solution %Zhu(τ) (12.40) for τ ∈ [0, T ] and
E = 100, σ = 0.3, r = 0.1, T = 10−4. In [77] we furthermore proposed a new local itera-
tive numerical scheme for construction of the entire early exercise boundary, which is based
on a solution to the nonlinear integral equation (12.34). A comparison of numerical results
obtained by the new method to those of the projected successive over relaxation method
and the analytical approximation formula by Zhu is depicted in Fig. 12.5 (right).
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Figure 12.5. The profile the function %Zhu (left) close to expiry. A comparison of the early
exercise boundary position computed by various methods in the long time horizon (right).
Source: Lauko and Ševčovič [77].

2. Transformation method for a class of nonlinear equations of
the Black–Scholes type

In Chapter 11 we have recalled and discused various nonlinear generalizations of the Black–
Scholes equation. The main purpose of this section is to present the fixed domain transfor-
mation methodology adopted for pricing American style of options whose price is described
by a solution to a generalized Black–Scholes equation with a volatility nonlinearly depend-
ing on a solution itself. We shall assume that the governing nonlinear Black–Scholes equa-
tion has the form

∂V

∂t
+ (r − q)S

∂V

∂S
+
σ2

2
S2∂

2V

∂S2
− rV = 0, (12.42)

where
σ = σ(S2∂2

SV, S, T − t)

is the volatility function which may depend on the second derivative of the option price
V = V (S, t), S > 0 is the price of an underlying asset and T − t stands for the time to
expiry. As usual, r > 0 is the interest rate of a zero-coupon bond, q ≥ 0 is the dividend
yield rate.

In the case of an American call option a solution to equation (12.42) is defined on a time
dependent domain 0 < S < Sf (t), 0 < t < T . It is subject to the boundary conditions

V (0, t) = 0 , V (Sf (t), t) = Sf (t)−E ,
∂V

∂S
(Sf (t), t) = 1 , (12.43)

and terminal pay-off condition at expiry t = T,

V (S, T ) = (S − E)+, (12.44)

where E > 0 is a strike price. Analogously, one can construct boundary and terminal
pay-off condition corresponding to the American put option (see Chapter 9).
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The goal of this section is to present an iterative numerical algorithm for solving the free
boundary problem. The algorithm was derived in the paper [103] by Ševčovič. Similarly as
in the case of American style of plain vanilla options, the key idea of this method consists
in transformation of the free boundary problem into a semilinear parabolic equation defined
on a fixed spatial domain coupled with a nonlocal algebraic constraint equation for the free
boundary position. It has been proposed and analyzed by Ševčovič in [109, 102, 103, 106].
The method has been also investigated and analyzed by Ehrhardt and Ankudinova in [8, 7].
In contrast to the transformation method presented in previous sections 1.1. and 1.4. we are
unable to solve the resulting parabolic equation explicitly. This is due to the nonconstant
character of the volatility function σ = σ(S2∂2

SV, S, T − t). Instead we have to compute
the solution numerically. Since the resulting parabolic equation contains a strong convec-
tive term we make use of the operator splitting method in order to overcome numerical
difficulties. A full space-time discretization of the problem leads to a system of semi-linear
algebraic equations that can be solved by an iterative procedure at each time level. We ap-
ply the transformation method for calculations of the early exercise boundary for various
nonlinear generalization of the Black–Scholes equation, including, in particular, the Risk
adjusted pricing methodology model, Frey’s model and the model by Barles and Soner
studied in Chapter 11.

For the sake of simplicity we will present a detailed derivation of an equation only
for the case of an American call option. Derivation of the corresponding equation for the
American put option is similar. We shall again consider the following change of variables:

τ = T − t, x = ln (%(τ)/S) , where %(τ) = Sf (T − τ).

Clearly, τ ∈ (0, T ) and x ∈ (0,∞) iff S ∈ (0, Sf (t)). The boundary value x = 0
corresponds to the free boundary position S = Sf (t) whereas x = +∞ corresponds to the
default value S = 0 of the underlying asset. Following ideas from section 1.1. we construct
the transformed function Π = Π(x, τ) defined as follows:

Π(x, τ) = V (S, t)− S
∂V

∂S
(S, t) . (12.45)

Again, it represents a synthetic portfolio consisting of one long positioned option and ∆ =
∂V
∂S underlying short stocks. Similarly as in section 1.1. we have

∂Π
∂x

= S2∂
2V

∂S2
,
∂Π
∂τ

+
%̇

%

∂Π
∂x

= − ∂

∂t

(
V − S

∂V

∂S

)
,

where we have denoted %̇ = d%/dτ . Assuming sufficient smoothness of a solution V =
V (S, t) to (12.42) we can deduce from (12.42) the following parabolic equation for the
synthetic portfolio function Π = Π(x, τ):

∂Π
∂τ

+ (b(τ)− σ2

2
)
∂Π
∂x

− 1
2
∂

∂x

(
σ2∂Π
∂x

)
+ rΠ = 0,
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defined on a fixed domain x ∈ R, t ∈ (0, T ), with a time-dependent coefficient

b(τ) =
%̇(τ)
%(τ)

+ r − q, (12.46)

and a diffusion coefficient σ2 given by: σ2 = σ2(∂xΠ(x, τ), %(τ)e−x, τ). It may depend
on τ, x and the gradient ∂xΠ of a solution Π. Now the boundary conditions V (0, t) =
0, V (Sf (t), t) = Sf (t)− E and ∂V

∂S (Sf (t), t) = 1 imply

Π(0, τ) = −E, Π(+∞, τ) = 0 , 0 < τ < T , (12.47)

and, from the terminal pay-off diagram for V (S, T ), we deduce

Π(x, 0) =

{
−E for x < ln

(
%(0)
E

)
,

0, otherwise.
(12.48)

In order to close the system of equations determining the value of a synthetic port-
folio Π we have to construct an equation for the free boundary position %(τ). In-
deed, both the coefficient b as well as the initial condition Π(x, 0) depend on the func-
tion %(τ). Similarly as in the case of a constant volatility σ (see [102, 109]) we pro-
ceed as follows: since Sf (t) − E = V (Sf (t), t) and ∂SV (Sf (t), t) = 1 we have
d
dt
Sf (t) = ∂SV (Sf (t), t) d

dt
Sf (t) + ∂tV (Sf (t), t) and so ∂tV (S, t) = 0 along the free

boundary S = Sf (t). Moreover, assuming ∂xΠ is continuous up to the boundary
x = 0 we obtain S2∂2

SV (S, t) → ∂xΠ(0, τ) and S∂SV (S, t) → %(τ) as S → Sf (t)−.
Now, by taking the limit S → Sf (t)− in the Black–Scholes equation (11.2) we obtain
(r − q)%(τ) + 1

2
σ2∂xΠ(0, τ)− r(%(τ)− E) = 0. Therefore

q%(τ) = rE +
1
2
σ2(∂xΠ(0, τ), %(τ), τ)

∂Π
∂x

(0, τ),

for 0 < τ ≤ T . The value of %(0) can be derived from the smoothness assumption made
on ∂xΠ at the origin (x, τ) = (0, 0) under the structural assumption

0 < q ≤ r

made on the interest and dividend yield rates r, q (cf. [102, 103]). The assumption
on continuity of ∂xΠ at the origin (0, 0) implies limτ→0+ ∂xΠ(0, τ) = ∂xΠ(0, 0) =
limx→0+ ∂xΠ(x, 0) = 0 because Π(x, 0) = −E, for x close to 0+ provided ln(r/q) > 0.
From the above equation for %(τ) we deduce %(0) = rE

q by taking the limit τ → 0+.
Putting all the above equations together we end up with a closed system of equations for
Π = Π(x, τ) and % = %(τ)

∂Π
∂τ

+
(
b(τ)− σ2

2

)
∂Π
∂x

− 1
2
∂

∂x

(
σ2∂Π
∂x

)
+ rΠ = 0,

Π(0, τ) = −E , Π(+∞, τ) = 0 , x > 0 , τ ∈ (0, T ),

Π(x, 0) =
{ −E for x < ln(r/q),

0, otherwise,
(12.49)
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where σ2 = σ2(∂xΠ(x, τ), %(τ)e−x, τ) , b(τ) = %̇(τ)
%(τ) +r−q and the free boundary position

%(τ) = Sf (T − τ) satisfies the implicit algebraic equation:
(Algebraic part)

%(τ) =
rE

q
+
σ2(∂xΠ(0, τ), %(τ), τ)

2q
∂Π
∂x

(0, τ) , with %(0) =
rE

q
, (12.50)

where τ ∈ (0, T ). In order to guarantee parabolicity of equation (12.49) we have to assume
that the function p 7→ σ2(p, %(τ)e−x, τ)p is strictly increasing. More precisely, we shall
assume that there exists a positive constant γ > 0 such that

σ2(p, ξ, τ) + p∂pσ
2(p, ξ, τ) ≥ γ > 0 (12.51)

for any ξ > 0, τ ∈ (0, T ) and p ∈ R. Notice that condition (12.51) is satisfied for the
RAPM model in which σ2 = σ̂2(1 + µp

1
3 ξ−

1
3 ) for any µ ≥ 0 and p ≥ 0. Clearly p =

S2∂2
SV > 0 for the case of plain vanilla call or put options. As far as the Barles and

Soner model is concerned, we have σ2 = σ̂2(1+Ψ(a2erτp)) and condition (12.51) is again
satisfied because the function Ψ is a positive and increasing function in the Barles and Soner
model.

Finally, by following exactly the same argument as in (12.24) one can derive an explicit
expression for the option price V (S, t):

V (S, T − τ) =
S

%(τ)

(
%(τ)− E +

∫ ln
%(τ)

S

0
exΠ(x, τ) dx

)
.

2.1. Alternative representation of the early exercise boundary

Although equation (12.50) provides an algebraic formula for the free boundary position
%(τ) in terms of the derivative ∂xΠ(0, τ) such an expression is not quite suitable for con-
struction of a robust numerical approximation scheme. The reason is that any small inac-
curacy in approximation of the value ∂xΠ(0, τ) is transferred in to the entire computational
domain x ∈ (0,∞) making thus a numerical scheme very sensitive to the value of the
derivative of a solution evaluated in one point x = 0. In what follows, we present an equiv-
alent equation for the free boundary position %(τ),which is more robust from the numerical
approximation point of view.

By Integration the governing equation (12.49) with respect to x ∈ (0,∞) we obtain

d

dτ

∫ ∞

0
Πdx+

∫ ∞

0

(
b(τ)− σ2

2

)
∂Π
∂x

dx− 1
2

∫ ∞

0

∂

∂x

(
σ2

2
∂Π
∂x

)
dx+ r

∫ ∞

0
Πdx = 0.

Now, taking into account the boundary conditions Π(0, τ) = −E,Π(∞, τ) = 0 and conse-
quently ∂xΠ(∞, τ) = 0 we obtain, by applying condition (12.50), the following differential
equation:
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(Integral form of the algebraic part)

d

dτ

(
E ln %(τ) +

∫ ∞

0
Π(x, τ)dx

)
+ q%(τ)− qE

+
∫ ∞

0

(
−1

2
σ2(∂xΠ(x, τ), %(τ)e−x, τ)

∂Π
∂x

(x, τ) + rΠ(x, τ)
)
dx = 0. (12.52)

2.2. Numerical iterative algorithm for approximation of the early exercise
boundary

The idea of the iterative numerical algorithm for solving the problem (12.49), (12.50) is
rather simple: we use the backward Euler method of finite differences in order to discretize
the parabolic equation (12.49) in time. At each time level we find a new approximation
of a solution pair (Π, %). First we determine a new position of % from the algebraic equa-
tion (12.50). We remind ourselves that (even in the case σ is constant) the free boundary
function %(τ) behaves like rE/q + O(τ1/2) for τ → 0+ (see e.g. [36] or [102]) and
so b(τ) = O(τ−1/2). Hence the convective term b(τ)∂xΠ becomes a dominant part of
equation (12.49) for small values of τ . In order to overcome this difficulty we employ the
operator splitting technique for successive solving of the convective and diffusion parts of
equation (12.49).

Now we present our algorithm in more details. We restrict the spatial domain x ∈
(0,∞) to a finite interval of values x ∈ (0, L) where L > 0 is sufficiently large. For practi-
cal purposes one can take L ≈ 3 as it corresponds to the interval S ∈ (Sf (t)e−L, Sf (t)) in
the original asset price variable S. The value Sf (t)e−L is then could be a good approxima-
tion for the default value S = 0 if L ≈ 3. Let us denote by k > 0 the time step, k = T/m
and by h > 0 the spatial step, h = L/n where m,n ∈ N stand for the number of time and
space discretization steps, respectively. We denote by Πj

i an approximation of Π(xi, τj),
%j ≈ %(τj), bj ≈ b(τj) where xi = ih, τj = jk. We approximate the value of the volatility
σ at the node (xi, τj) by the finite difference approximation as follows:

σji = σji (%
j ,Πj) = σ((Πj

i+1 −Πj
i )/h, %

je−xi , τj) .

Then for the Euler backward in time finite difference approximation of equation (12.49) we
have

Πj −Πj−1

k
+

(
bj − 1

2
(σj)2

)
∂

∂x
Πj − 1

2
∂

∂x

(
(σj)2

∂

∂x
Πj

)
+ rΠj = 0 (12.53)

and the solution Πj = Πj(x) is subject to the Dirichlet boundary conditions at x = 0 and
x = L. We set Π0(x) = Π(x, 0). Next we decompose the above problem into two parts - a
convection part and a diffusive part by introducing an auxiliary intermediate step Πj− 1

2 :

(Convective part)
Πj− 1

2 −Πj−1

k
+ bj

∂

∂x
Πj− 1

2 = 0 , (12.54)
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(Diffusive part)

Πj −Πj− 1
2

k
− (σj)2

2
∂

∂x
Πj − 1

2
∂

∂x

(
(σj)2

∂

∂x
Πj

)
+ rΠj = 0 . (12.55)

The idea of the operator splitting technique consists in comparison the sum of solutions
to convective and diffusion part to a solution of (12.53). Indeed, if ∂xΠj ≈ ∂xΠj− 1

2 then
it is reasonable to assume that Πj computed from the system (12.54)–(12.55) is a good
approximation of the system (12.53).

The convective part can be approximated by an explicit solution to the transport equa-
tion:

∂τ Π̃ + b(τ)∂xΠ̃ = 0, for x > 0, τ ∈ (τj−1, τj ], (12.56)

subject to the boundary condition Π̃(0, τ) = −E and initial condition Π̃(x, τj−1) =
Πj−1(x). For American style of call option the free boundary %(τ) = Sf (T − τ) must
be an increasing function in τ . Since we have assumed 0 < q < r we conclude
b(τ) = %̇(τ)/%(τ) + r − q > 0 and so prescribing the in-flowing boundary condition
Π̃(0, τ) = −E is consistent with the transport equation. Let us denote by B(τ) the primi-
tive function to b(τ), i.e., B(τ) = ln %(τ) + (r − q)τ . Equation (12.56) can be integrated
to obtain its explicit solution:

Π̃(x, τ) =
{

Πj−1(x−B(τ) +B(τj−1)), if x−B(τ) +B(τj−1) > 0 ,
−E, otherwise.

(12.57)

Thus the spatial approximation Π
j− 1

2
i can be constructed from the formula

Π
j− 1

2
i =

{
Πj−1(ξi) if ξi = xi − ln %j + ln %j−1 − (r − q)k > 0 ,
−E, otherwise,

(12.58)

where a piecewise linear interpolation between discrete values Πj−1
i , i = 0, 1, . . . , n, is

being used to compute the value Πj−1(xi − ln %j + ln %j−1 − (r − q)k).
The diffusive part can be solved numerically by means of finite differences. Using

central finite difference for approximation of the derivative ∂xΠj we obtain

Πj
i −Π

j− 1
2

i

k
+ rΠj

i − (σji )
2

2
Πj
i+1 −Πj

i−1

2h

− 1
2h

(
(σji )

2 Πj
i+1 −Πj

i

h
− (σji−1)

2 Πj
i −Πj

i−1

h

)
= 0 .

Hence, the vector of discrete values Πj = {Πj
i , i = 1, 2, . . . , n} at the time level j ∈

{1, 2, . . . ,m} satisfies the tridiagonal system of equations:

αjiΠ
j
i−1 + βjiΠ

j
i + γjiΠ

j
i+1 = Π

j− 1
2

i , (12.59)
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for i = 1, 2, . . . , n, where

αji ≡ αji (%
j ,Πj) = − k

2h2
(σji−1)

2 +
k

2h
(σji )

2

2
,

γji ≡ γji (%
j ,Πj) = − k

2h2
(σji )

2 − k

2h
(σji )

2

2
, (12.60)

βji ≡ βji (%
j ,Πj) = 1 + rk − (αji + γji ) .

The initial and boundary conditions at τ = 0 and x = 0, L, respectively., can be approxi-
mated as follows:

Π0
i =

{ −E for xi < ln (r/q) ,
0 for xi ≥ ln (r/q) ,

for i = 0, 1, . . . , n and Πj
0 = −E, Πj

n = 0.
Next we proceed by approximation of equation (12.50) which introduces a nonlinear

constraint condition between the early exercise boundary function %(τ) and the trace of the
solution Π at the boundary x = 0 (S = Sf (t) in the original variable). Taking a finite
difference approximation of ∂xΠ at the origin x = 0 we obtain

(Algebraic part)

%j =
rE

q
+

1
2q
σ2

(
(Πj

1 −Πj
0)/h, %

j , τj

) Πj
1 −Πj

0

h
. (12.61)

Recall that the above discretization of the algebraic constraint (12.50) can be replaced by
its integral form derived in section 2.1.. The formula (12.52) can be discretized as follows:

(Integral form of the algebraic part)

E ln %j = E ln %j−1 + I0(Πj−1)− I0(Πj) + k
(
qE − q%j − I1(%j ,Πj)

)
, (12.62)

where I0(Π) stands for numerical trapezoid quadrature of the integral
∫∞
0 Π(ξ)dξ whereas

I1(%j ,Π) is a trapezoid quadrature of the second integral in (12.52), i.e.

I1(%j ,Π) ≈
∫ ∞

0

(
−1

2
σ2(∂xΠ(x), %je−x, τj)

∂Π
∂x

(x) + rΠ(x)
)
dx .

Now, equations (12.58), (12.59) and (12.61) can be rewritten in the abstract operator
form:

%j = F(Πj , %j),

Πj− 1
2 = T (Πj , %j), (12.63)

A(Πj , %j)Πj = Πj− 1
2 ,

where F(Πj , %j) is the right-hand side of the algebraic equation (12.61). Alternatively,
F(Πj , %j) can be computed by using (12.62). The operator T (Πj , %j) is the transport
equation solver given by the right-hand side of (12.58) and A = A(Πj , %j) is a tridiagonal
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matrix with coefficients given by (12.60). The system (12.63) can be approximately solved
by means of successive iterations procedure. We define, for j ≥ 1, Πj,0 = Πj−1, %j,0 =
%j−1. Then the (p + 1)-th approximation of Πj and %j is obtained as a solution to the
system:

%j,p+1 = F(Πj,p, %j,p),

Πj− 1
2
,p+1 = T (Πj,p, %j,p+1), (12.64)

A(Πj,p, %j,p+1)Πj,p+1 = Πj− 1
2
,p+1 .

Notice that the last equation represents a tridiagonal system of linear equation for the vector
Πj,p+1 whereas %j,p+1 and Πj− 1

2
,p+1 can be directly computed from (12.61) and (12.58),

respectively. If the sequence of approximate solutions {(Πj,p, %j,p)}∞p=1 converges to some
limiting value (Πj,∞, %j,∞) as p → ∞ then this limit is a solution to a nonlinear system
of equations (12.63) at the time level j and we can proceed by computing the approximate
solution the next time level j + 1.

2.3. Numerical approximations of the early exercise boundary

In this section we focus on numerical experiments based on the iterative scheme described
in the previous section. All numerical examples are borrowed from the paper [106] by
Ševčovič. The main purpose is to compute the free boundary profile Sf (t) = %(T − t)
for different nonlinear generalizations of the Black–Scholes models discussed in Chapter
11. A solution (Π, %) has been computed by our iterative algorithm for the following basic
model parameters: E = 10, T = 1 (one year), r = 0.1 (10% p.a) , q = 0.05 (5% p.a.) and
σ̂ = 0.2. We used n = 750 spatial points and m = 225000 time discretization steps. Such
a time step k = T/m corresponds to 140 seconds between consecutive time levels when
expressed in real time scale. In average, we needed p ≤ 6 micro-iterates (12.64) in order to
solve the nonlinear system (12.63) with the precision 10−7.

The case of a constant volatility. A comparison study

In our first numerical experiment we make attempt to compare our iterative approxima-
tion scheme for solving the free boundary problem for an American call option to known
schemes in the case when the volatility σ > 0 is constant. We compare our solution to
the one computed by means of a solution to a nonlinear integral equation for %(τ) (see
also [102, 109]). This comparison can be also considered as a benchmark or test exam-
ple for which we know a solution that can be computed by another justified algorithm.
In Fig. 12.6, part a), we show the function % computed by our iterative algorithm for
E = 10, T = 1, r = 0.1, q = 0.05, σ = 0.2. At the expiry T = 1, the value of %(T )
was computed as: %(T ) = 22.321. The corresponding value %(T ) computed from the inte-
gral equation (12.18) (cf. [102]) was %(T ) = 22.375. The relative error is less than 0.25%.
In the part b) we present 7 approximations of the free boundary function %(τ) computed
for different mesh sizes h (see Tab. 12.2 for details). The sequence of approximate free
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Figure 12.6. a) A comparison of the free boundary function %(τ) computed by the iterative
algorithm (solid curve) to the integral equation based approximation (dashed curve); b) free
boundary positions computed for various mesh sizes; c) solution profiles Π(x, τ) for τ = 0,
τ = T/2, τ = T ; d) 3D plot and e) contour plot of the function Π(x, τ). Source: Ševčovič
[106].
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boundaries %h, h = h1, h2, . . . , converges monotonically from below to the free boundary
function % as h ↓ 0. The next part c) of Fig. 12.6 depicts various solution profiles of a
function Π(x, τ). In order to achieve a reasonable approximation to equation (12.61) we
need very accurate approximation of Π(x, τ) for x close to the origin 0. The parts d) and e)
of Fig. 12.6 depict the contour and 3D plots of the function Π(x, τ).

In Tab. 12.2 we present the numerical error analysis for the distance ‖%h−%‖p measured
in two different norms (L∞ and L2) of a computed free boundary position %h corresponding
to the mesh size h and the solution % computed from the integral equation described in
(12.18) (cf. [102]). The time step k has been adjusted to the spatial mesh size h in order
to satisfy CFL condition σ̂2k/h2 ≈ 1/2. We also computed the experimental order of
convergence EOC(Lp) for p = 2,∞. It is defined as the ratio:

EOC(Lp) =
ln(‖%hi − %‖p)− ln(‖%hi−1 − %‖p)

lnhi − lnhi−1
.

It can be interpreted as such an exponent α = EOC(Lp) for which we have ‖%h − %‖p =
O(hα) for h→ 0. It turns out from Tab. 12.2 that the conjecture on the order of convergence
‖%h − %‖∞ = O(h) whereas ‖%h − %‖2 = O(h3/2) as h→ 0+ can be reasonable.

Table 12.2. Experimental order of convergence of the iterative algorithm for approximating
the free boundary position. Source: Ševčovič [106].

h err(L∞) EOC(L∞) err(L2) EOC(L2)
0.03 0.5 - 0.808 -
0.012 0.215 0.92 0.227 1.39
0.006 0.111 0.96 0.0836 1.44
0.004 0.0747 0.97 0.0462 1.46
0.003 0.0563 0.98 0.0303 1.47
0.0024 0.0452 0.98 0.0218 1.48
0.002 0.0378 0.98 0.0166 1.48

Risk Adjusted Pricing Methodology model

In the next example we computed the position of the free boundary %(τ) in the case of the
Risk Adjusted Pricing Methodology model. It is a nonlinear Black–Scholes type model
derived by Jandačka and Ševčovič in [66] and recalled in Chapter 11. In this model the
volatility σ is a nonlinear function of the asset price S and the second derivative ∂2

SV of
the option price. The volatility function is given by formula (11.8). In Fig. 12.7 we present
results of numerical approximation of the free boundary position %R(τ) = SRf (T − τ) in
the case when the coefficient of transaction costs C = 0.01 is fixed and the risk premium
measure R varies from R = 5, 15, 40, 70, up to R = 100. We compare the position of the
free boundary %R(τ) to the case when there are no transaction costs and no risk from volatile
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Figure 12.7. A comparison of the free boundary function %R(τ) computed for the Risk
Adjusted Pricing Methodology model. Dashed curve represents a solution corresponding
to R = 0, whereas the solid curves represent a solution %R(τ) for different values of the
risk premium coefficients R = 5, 15, 40, 70, 100. Source: Ševčovič [106].
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Figure 12.8. The dependence of the norms ‖%R − %0‖p (p = ∞, 2) of the deviation of the
free boundary % = %R(τ) for the RAPM model on the risk premium coefficient R. Source:
Ševčovič [106].

portfolio, i.e., we compare it with the free boundary position %0(τ) for the linear Black–
Scholes equation. An increase in the risk premium coefficient R resulted in an increase of
the free boundary position as it can be expected.

In Tab. 12.3 and Fig. 12.8 we summarize results of comparison of the free boundary
position %R for various values of the risk premium coefficient to the reference position
% = %0 computed from the Black–Scholes model with a constant volatility σ = σ̂, i.e.,
R = 0. The experimental order αp of the distance function ‖%R − %0‖p = O(Rαp) has
been computed for p = 2,∞, as follows:

αp =
ln(‖%Ri − %0‖p)− ln(‖%Ri−1 − %0‖p)

lnRi − lnRi−1
.

According to the values presented in Tab. 12.3 it turns out that a reasonable conjecture
on the order of convergence is that ‖%R − %0‖p = O(R1/3) for both norms p = 2 and
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Table 12.3. The distance ‖%R − %0‖p (p = 2,∞) of the free boundary position %R from the
reference free boundary position %0 and experimental orders α∞ and α2 of convergence.
Source: Ševčovič [106].

R ‖%R − %0‖∞ α∞ ‖%R − %0‖2 α2

1 0.0601 - 0.0241 -
2 0.0754 0.33 0.0303 0.328
5 0.102 0.33 0.0408 0.326

10 0.128 0.33 0.0511 0.324
15 0.145 0.32 0.0582 0.323
20 0.16 0.32 0.0639 0.322
30 0.182 0.32 0.0727 0.321
40 0.2 0.32 0.0798 0.32
50 0.214 0.32 0.0856 0.319
60 0.227 0.32 0.0907 0.318
70 0.239 0.32 0.0953 0.317
80 0.249 0.32 0.0994 0.317
90 0.259 0.32 0.103 0.316

100 0.268 0.32 0.107 0.316

p = ∞. Since the transaction cost coefficient C and risk premium measure R enter the
expression for the RAPM volatility (11.8) only in the product C2R we can conjecture that
‖%R,C − %0,0‖p = O(C2/3R1/3) as either C → 0+ or R→ 0+.

Barles and Soner model

Our next example is devoted to the nonlinear Black–Scholes model due to Barles and Soner
(see [11]). In this model the volatility is given by equation (11.6). Numerical results are
depicted in Fig. 12.9. Choosing a larger value of the risk aversion coefficient a > 0 resulted
in increase of the free boundary position %a(τ). The position of the early exercise boundary
%a(τ) has considerably increased in comparison to the linear Black–Scholes equation with
constant volatility σ = σ̂. In contrast to the case of constant volatility as well as the RAPM
model, there is, at least a numerical evidence (see Fig.12.9 and %a for the largest value
a = 0.35) that the free boundary profile %a(τ) need not be necessarily convex. Recall that
that convexity of the free boundary profile has been proved analytically by Ekström et al.
and Chen et al. in a recent papers [24, 40, 41] in the case of a American put option and
constant volatility σ = σ̂.

Similarly as in the RAPM model we have also investigated the dependence of the free
boundary position % = %a(τ) on the risk aversion parameter a > 0. In Fig. 12.10 we
present results of comparison of the free boundary position %a for various values of the risk
aversion coefficient a to the reference position % = %0.
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a = 0.01, 0.07, 0.13, 0.25, 0.35. Source: Ševčovič [106].
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3. Early exercise boundary for American style of Asian options

The fixed domain transformation method discussed in this chapter can be successfully
adopted for construction of the early exercise boundary for American style of Asian av-
erage strike options. It is the purpose of this section to review recent results in this field due
to Ševčovič and Bokes in [106] and [15]. Recall that Asian options belong to a group of
the so-called path-dependent options (cf. Chapter 6). Their pay-off diagrams depend on the
value of the underlying asset price during the whole or some part(s) of the life span of the
option. Usually Asian options may depend on the (arithmetic or geometric) average of the
spot price of the underlying. In recent years many authors have investigated the problem
of construction of the early exercise boundary for Asian options by means of integral trans-
formation methods or adopted PSOR algorithms (cf. Hansen and Jørgensen [59], Pascucci
[91], Wu, Kwok and Yu [123], Wu and Fu [124] and others).

In this section we focus on the so-called the floating strike Asian call option which
exercise price depends on the averaged path history of the underlying asset. More precisely,
we are interested in pricing American-style Asian call and put options having the pay-off
functions V (S,A, T ) = (S − A)+ and V (S,A, T ) = (A − S)+, respectively. The strike
priceA is given as an average of the underlying over the time history [0, T ] (cf. [102, 15, 59,
33, 76]). Our goal is to propose an efficient numerical algorithm for determining the free
boundary position for American-style of Asian options. Similarly as in the previous section,
construction of the algorithm will be based on a solution to a nonlocal parabolic partial
differential equation. We will also present numerical results obtained by the transformation
method and compare them to those of the Projected successive over relaxation method
recently developed and adopted for Asian options by Dai and Kwok in [33].

Recall that in Chapter 6 we derived a partial differential equation for pricing the Asian
options in the form of a parabolic equation:

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
+Af

(
A

S
, t

)
∂V

∂A
− rV = 0, (12.65)

for the price of the Asian option price V (S,A, t), where 0 < t < T, S,A > 0 (see Chapter
6 and [33, 75]). For the Asian call option the above equation is subject to the terminal
pay-off condition V (T, S,A) = (S − A)+, S, A > 0. Here A denotes the continuously
averaged underlying asset price S (see Chapter 6 for details).

We also remind ourselves that for arithmetic or geometric averaging we have dA/A =
f(A/S, t)dt where the function f = f(x, t) is defined as follows:

f(x, t) =

{
x−1−1

t arithmetic averaging of the exercise price,
− lnx
t geometric averaging of the exercise price, (12.66)

(cf. Chapter 6). It is well known (see Chapter 6 or [75, 33]) that for Asian options with a
floating strike we can perform dimension reduction by introducing the following similarity
variable:

x = A/S, W (x, τ) = V (S,A, t)/A,
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where τ = T − t. It is straightforward to verify that V (S,A, t) = AW (A/S, T − t) is a
solution of (12.65) iff W = W (x, τ) is a solution to the following parabolic PDE:

∂W

∂τ
−σ

2

2
∂

∂x

(
x2∂W

∂x

)
+(r−q)x∂W

∂x
−f(x, T−τ)

(
W + x

∂W

∂x

)
+rW = 0, (12.67)

where x > 0 and 0 < τ < T . The initial condition for W immediately follows from the
terminal pay-off diagram for the call option, i.e., W (x, 0) = (x−1 − 1)+.

3.1. American-style of Asian call options

According to Dai and Kwok [33] the set

E = {(S,A, t) ∈ [0,∞)× [0,∞)× [0, T ], V (S,A, t) = V (S,A, T )}

is the exercise region for American-style of Asian call options. In the case of a call option
this region can be described by the early exercise boundary function Sf = Sf (A, t) such
that E = {(S,A, t) ∈ [0,∞) × [0,∞) × [0, T ], S ≥ Sf (A, t)}. It means that the Black–
Scholes equation (12.65) holds true in the time dependent domain 0 < t < T,A > 0, 0 <
S < Sf (A, t).

For American-style of an Asian call option we have to impose a homogeneous Dirichlet
boundary condition V (0, A, t) = 0. According to [33] the C1 continuity condition at the
contact point (Sf (A, t), A, t) of a solution V with its pay-off diagram implies the following
boundary condition at the free boundary position Sf (A, t):

∂V

∂S
(Sf (A, t), A, t) = 1, V (Sf (A, t), A, t) = Sf (A, t)−A, (12.68)

for any A > 0 and 0 < t < T . It is important to emphasize that the free boundary function
Sf can be also reduced to a function of one variable by introducing a new state function x∗t
as follows:

Sf (A, t) = A/x∗t .

The function t 7→ x∗t is a free boundary function for the transformed state variable x =
A/S. For American-style of Asian call options the spatial domain for the reduced equation
(12.67) is given by 1/%(τ) < x < ∞, τ ∈ (0, T ), where %(τ) = 1/x∗T−τ . Taking into
account boundary conditions (12.68) for the option price V we end up with corresponding
boundary conditions for the function W :

W (∞, τ) = 0, W (x, τ) =
1
x
− 1,

∂W

∂x
(x, τ) = − 1

x2
at x =

1
%(τ)

, (12.69)

for any 0 < τ < T and the initial condition

W (x, 0) = max(x−1 − 1, 0), for any x > 0. (12.70)
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3.2. Fixed domain transformation

In order to apply the fixed domain transformation for the free boundary problem (12.67),
(12.69), (12.70) we introduce a new state variable ξ and an auxiliary function Π = Π(ξ, τ)
again representing the synthetic portfolio. Let us define:

ξ = ln (%(τ)x) , Π(ξ, τ) = W (x, τ) + x
∂W

∂x
(x, τ) .

Clearly, x ∈ (%(τ)−1,∞) iff ξ ∈ (0,∞) for τ ∈ (0, T ). The value ξ = ∞ of the trans-
formed variable corresponds to the value x = ∞, i.e., S = 0 when expressed in the original
variable. On the other hand, the value ξ = 0 corresponds to the free boundary position
x = x∗t , i.e., S = Sf (A, t). After straightforward calculations we conclude that the func-
tion Π = Π(ξ, τ) is a solution to the following parabolic PDE:

∂Π
∂τ

+ a(ξ, τ)
∂Π
∂ξ

− σ2

2
∂2Π
∂ξ2

+ b(ξ, τ)Π = 0,

where the term a(ξ, τ) depends on the free boundary position %. The functions a, b are
given by

a(ξ, τ) =
%̇(τ)
%(τ)

+ r − q − σ2

2
− f(eξ/%(τ), T − τ),

b(ξ, τ) = r − ∂

∂x
(xf(x, T − τ))

∣∣∣∣
x= eξ

%(τ)

. (12.71)

Notice that b(ξ, τ) = r + 1/(T − τ) in the case of arithmetic averaging, i.e., f(x, t) =
(x−1 − 1)/t. The initial condition for the solution Π can be determined from (12.70)

Π(ξ, 0) =
{ −1 ξ < ln %(0),

0 ξ > ln %(0).

Since ∂xW (x, τ) = − 1
x2 and W (x, τ) = 1

x − 1 for x = 1
%(τ) and W (∞, τ) = 0 we

conclude the Dirichlet boundary conditions for the transformed function Π(ξ, τ)

Π(0, τ) = −1, Π(∞, τ) = 0.

It remains to determine an algebraic constraint between the free boundary function %(τ)
and the solution Π. Similarly as in the case of a linear or nonlinear Black–Scholes equation
(cf. [103]) we obtain, by differentiating the condition W ( 1

%(τ) , τ) = %(τ)− 1 with respect
to τ, the following identity:

d%

dτ
(τ) =

∂W

∂x
(%(τ)−1, τ)

(−%(τ)−2
) d%
dτ

(τ) +
∂W

∂τ
(%(τ)−1, τ).
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Since ∂xW (%(τ)−1, τ) = −%(τ)2 we have ∂W
∂τ (x, τ) = 0 at x = %(τ). Assuming con-

tinuity of the function Π(ξ, τ) and its derivative Πξ(ξ, τ) up to the boundary ξ = 0 we
obtain

x2∂
2W

∂x2
(x, τ) → ∂Π

∂ξ
(0, τ) + 2%(τ), x

∂W

∂x
(x, τ) → −%(τ) as x→ %(τ)−1.

Passing to the limit x→ %(τ)−1 in (12.67) we end up with the algebraic equation

q%(τ)− r + f(%(τ)−1, T − τ) =
σ2

2
∂Π
∂ξ

(0, τ), τ ∈ (0, T ], (12.72)

for the free boundary position %(τ). Notice that, in the case of arithmetic averaging where
f(%(τ)−1, T − τ) = (%(τ) − 1)/(T − τ), we can derive the following explicit expression
for the free boundary position %(τ):

%(τ) =
1 + r(T − τ) + σ2

2 (T − τ)∂Π
∂ξ (0, τ)

1 + q(T − τ)
, 0 < τ < T,

as a function of the derivative ∂ξΠ(0, τ) evaluated at ξ = 0.

The initial value %(0) can be deduced from the smoothness of the solution Π at (ξ, τ) =
(0, 0). We can proceed in the same way as in section 1.1.. We have ∂ξΠ(0, 0) = 0. In
the case of arithmetic averaging we obtain from the above equation for %(τ) by passing
to the limit τ → 0 that %(0) = (1 + rT )/(1 + qT ) provided 0 ≤ q < r. If r ≤ q we
have %(0) = 1. Summarizing, for the arithmetically averaged Asian call option we have the
following expression:

(arithmetic averaging) %(0) = max
(

1 + rT

1 + qT
, 1

)
, (12.73)

(cf. Dai and Kwok [33] and Bokes and Ševčovič [15]). In the case of geometrically aver-
aged Asian call option the initial value %(0) is a solution to the transcendental equation:

(geometric averaging) %(0) = max
(
1/x̃T , 1

)
, where ln x̃T =

qT

x̃T
− rT.

(12.74)
(cf. Wu, Kwok and Yu [123] and Bokes and Ševčovič [15]).

In summary, we have derived the following nonlocal parabolic equation for the synthe-



242 Chapter 12

sized portfolio Π(ξ, τ):

∂Π
∂τ

+ a(ξ, τ)
∂Π
∂ξ

− σ2

2
∂2Π
∂ξ2

+ b(ξ, τ)Π = 0, 0 < τ < T, ξ > 0,

with the algebraic constraint

q%(τ)− r + f(%(τ)−1, T − τ) =
σ2

2
∂Π
∂ξ

(0, τ), 0 < τ < T.

A solution Π is subject to the boundary and initial conditions: (12.75)

Π(0, τ) = −1, Π(∞, τ) = 0,

Π(ξ, 0) =
{ −1, for ξ < ln(%(0)),

0, for ξ > ln(%(0)),
where a(ξ, τ) and b(ξ, τ) are given by (12.71),

and the starting point %(0) is given by (12.73) or (12.74), respectively.

An equivalent form of the equation for the free boundary

In section 2.1. we presented an idea how to overcome the problem of implementing the
algebraic constraint (12.72). Notice that (12.72) provides a formula for the free boundary
position %(τ) in terms of the derivative ∂ξΠ(0, τ). Again, such an expression is not suitable
for construction of a robust numerical approximation scheme because of the sensitivity of
the entire parabolic equation with respect to the approximation of ∂ξΠ(0, τ) evaluated at
the single point ξ = 0.

Integrating the governing equation (12.75) with respect to ξ ∈ (0,∞) yields

d

dτ

∫ ∞

0
Πdξ +

∫ ∞

0
a(ξ, τ)

∂Π
∂ξ

dξ − σ2

2

∫ ∞

0

∂2Π
∂ξ2

dξ +
∫ ∞

0
b(ξ, τ)Πdξ = 0.

Now, taking into account the boundary conditions Π(0, τ) = −1,Π(∞, τ) = 0, and conse-
quently ∂ξΠ(∞, τ) = 0 we obtain, by applying condition (12.72), the following differential
equation:

d

dτ

(
ln %(τ) +

∫ ∞

0
Π(ξ, τ)dξ

)
+ q%(τ)− q − σ2

2

+
∫ ∞

0

[
r − f

(
eξ

%(τ)
, T − τ

)]
Π(ξ, τ)dξ = 0.

In the case of arithmetic averaging where f(x, t) = (x−1 − 1)/t we obtain

d

dτ

(
ln %(τ) +

∫ ∞

0
Π(ξ, τ)dξ

)
+ q%(τ)− q − σ2

2

+
∫ ∞

0

[
r − %(τ)e−ξ − 1

T − τ

]
Π(ξ, τ)dξ = 0. (12.76)
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3.3. A numerical approximation operator splitting scheme

Our numerical approximation scheme is based on a solution to the transformed system
(12.75). For the sake of simplicity, the scheme will be derived for the case of arithmetically
averaged American style Asian call option. Derivation of the scheme for geometric or
weighted arithmetic averaging is similar and therefore omitted.

We restrict the spatial domain ξ ∈ (0,∞) to a finite interval of values ξ ∈ (0, L) where
L > 0 is sufficiently large. For practical purposes it sufficient to take L ≈ 2. Let k > 0
denote by the time step, k = T/m and by h = L/n > 0 the spatial step. Here m,n ∈ N
denote the number of time and space discretization steps, respectively. We let denote by
Πj = Πj(ξ) the time discretization of Π(ξ, τj) and %j ≈ %(τj) where τj = jk. By Πj

i we
shall denote the full space–time approximation for the value Π(ξi, τj). Then for the Euler
backward in time finite difference approximation of equation (12.75) we have

Πj −Πj−1

k
+ cj

∂Πj

∂ξ
−

(
σ2

2
+
%je−ξ − 1
T − τj

)
∂Πj

∂ξ
− σ2

2
∂2Πj

∂2ξ
+

(
r +

1
T − τj

)
Πj = 0

where cj is an approximation of the value c(τj) where the c(τ) = %̇(τ)
%(τ) + r − q. The

solution Πj = Πj(x) is subject to Dirichlet boundary conditions at ξ = 0 and ξ = L. We
set Π0(ξ) = Π(ξ, 0) (see (12.75)). In what follows, we shall again make use of the time
step operator splitting method. We split the above problem into a convection part and a
diffusive part by introducing an auxiliary intermediate step solution Πj− 1

2 :
(Convective part)

Πj− 1
2 −Πj−1

k
+ cj∂ξΠj− 1

2 = 0 , (12.77)

(Diffusive part)

Πj −Πj− 1
2

k
−

(
σ2

2
+
%je−ξ − 1
T − τj

)
∂Πj

∂ξ
− σ2

2
∂2Πj

∂2ξ
+

(
r +

1
T − τj

)
Πj = 0. (12.78)

Similarly as in [103] we shall approximate the convective part by the explicit solution to the
transport equation ∂τ Π̃+c(τ)∂ξΠ̃ = 0 for ξ > 0 and τ ∈ (τj−1, τj ] subject to the boundary
condition Π̃(0, τ) = −1 and the initial condition Π̃(ξ, τj−1) = Πj−1(ξ). It is known that
the free boundary function %(τ) need not be monotonically increasing (see e.g. [33, 106] or
[59]). Therefore depending whether the value of c(τ) is positive or negative the boundary
condition Π̃(0, τ) = −1 at ξ = 0 is either in–flowing (c(τ) > 0) or out–flowing (c(τ) < 0).
Hence the boundary condition Π(0, τ) = −1 can be prescribed only if c(τj) ≥ 0. Let us
denote by C(τ) the primitive function to c(τ), i.e., C(τ) = ln %(τ) + (r − q)τ . Solving
the transport equation ∂τ Π̃ + c(τ)∂ξΠ̃ = 0 for τ ∈ [τj−1, τj ] subject to the initial condition
Π(ξ, τj−1) = Πj−1(ξ) we obtain: Π̃(ξ, τ) = Πj−1(ξ − C(τ) + C(τj−1)) if ξ − C(τ) +
C(τj−1) > 0 and Π̃(ξ, τ) = −1 otherwise. Hence the full time-space approximation of the

half-step solution Π
j− 1

2
i can be obtained from the formula
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Π
j− 1

2
i =

{
Πj−1(ηi) if ηi = ξi − ln %j + ln %j−1 − (r − q)k > 0 ,
−1 otherwise.

(12.79)

In order to compute the value Πj−1(ηi) we make use of a linear interpolation between
discrete values Πj−1

i , i = 0, 1, . . . , n.
Using central finite differences for approximation of the derivative ∂ξΠj we can ap-

proximate the diffusive part of a solution of (12.78) as follows:

Πj
i −Π

j− 1
2

i

k
+

(
r +

1
T − τj

)
Πj
i

−
(
σ2

2
+
%je−ξi − 1
T − τj

)
Πj
i+1 −Πj

i−1

2h
− σ2

2
Πj
i+1 − 2Πj

i + Πj
i−1

h2
= 0 .

Hence the vector of discrete values Πj = {Πj
i , i = 1, 2, . . . , n} at the time level j ∈

{1, 2, . . . ,m} is a solution of a tridiagonal system of linear equations

αjiΠ
j
i−1 + βjiΠ

j
i + γjiΠ

j
i+1 = Π

j− 1
2

i , for i = 1, 2, . . . , n, where (12.80)

αji (%
j) = − k

2h2
σ2 +

k

2h

(
σ2

2
+
%je−ξi − 1
T − τj

)
,

γji (%
j) = − k

2h2
σ2 − k

2h

(
σ2

2
+
%je−ξi − 1
T − τj

)
, (12.81)

βji (%
j) = 1 +

(
r +

1
T − τj

)
k − (αji + γji ) .

The initial and boundary conditions at τ = 0 and x = 0, L, can be approximated as follows:

Π0
i =

{ −1, for ξi < ln ((1 + rT )/(1 + qT )) ,
0, for ξi ≥ ln ((1 + rT )/(1 + qT )) ,

for i = 0, 1, . . . , n and Πj
0 = −1, Πj

n = 0, for j = 1, . . . ,m.
Finally, we employ the differential equation (12.76) to determine the free boundary

position %. Taking the Euler finite difference approximation of d
dτ

(
ln %+

∫∞
0 Πdξ

)
we

obtain
(Algebraic part)

ln %j = ln %j−1 + I0(Πj−1)− I0(Πj) + k

(
q +

σ2

2
− q%j−1 − I1(%j−1,Πj)

)
, (12.82)

where I0(Π) stands for a numerical trapezoid quadrature of the integral
∫∞
0 Π(ξ)dξ whereas

I1(%j−1,Π) is a trapezoid quadrature of the second integral
∫∞
0

(
r − %j−1e−ξ−1

T−τj

)
Π(ξ)dξ.
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Figure 12.11. The function %(τ) (left). A comparison of the free boundary position x∗t =
1/%(T − t) (right) obtained by our method (solid curve) and that of the PSOR algorithm by
Dai and Kwok (dashed curve). Source: Bokes and Ševčovič [15].

We formally rewrite discrete equations (12.79), (12.80) and (12.82) in the operator
form:

%j = F(Πj), Πj− 1
2 = T (%j), A(%j)Πj = Πj− 1

2 , (12.83)

where lnF(Πj) is the right-hand side of equation (12.82), T (%j) is the transport equation
solver given by the right-hand side of (12.79) and A = A(%j) is a tridiagonal matrix with
coefficients given by (12.81). The system (12.83) can be approximately solved by means
of successive iterations procedure. We define, for j ≥ 1, Πj,0 = Πj−1, %j,0 = %j−1. Then
the (p+ 1)-th approximation of Πj and %j is obtained as a solution to the system:

%j,p+1 = F(Πj,p),

Πj− 1
2
,p+1 = T (%j,p+1), (12.84)

A(%j,p+1)Πj,p+1 = Πj− 1
2
,p+1 .

Supposing the sequence of approximate discretized solutions {(Πj,p, %j,p)}∞p=1 converges to
the limiting value (Πj,∞, %j,∞) as p→∞ then this limit is a solution to a nonlinear system
of equations (12.83) at the time level j and we can proceed by computing the approximate
solution in the next time level j + 1.

3.4. Computational examples of the free boundary approximation

Finally we present several computational examples of application of the numerical approx-
imation scheme (12.84) for the solution Π(ξ, τ) and the free boundary position %(τ) of
(12.75). We consider American-style of Asian arithmetically averaged floating strike call
options.

In Fig. 12.11 we show the behavior of the early exercise boundary function %(τ) and
the function x∗t = 1/%(T − t). In this numerical experiment we chose r = 0.06, q =
0.04, σ = 0.2 and very long expiration time T = 50 years. These parameters correspond
to the example presented by Dai and Kwok in [33]. As far as other numerical parameters
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Figure 12.12. A 3D plot (left) and contour plot (right) of the function Π(ξ, τ). Profiles of
the function Π(ξ, τ) for various times τ ∈ [0, T ]. Source: Bokes and Ševčovič [15].

are concerned, we chose the mesh of n = 200 spatial grid points and we have chosen the
number of time steps m = 105 in order to achieve very fine time stepping corresponding to
260 minutes between consecutive time steps when expressed in the original time scale of
the problem.

In Fig. 12.12 we can see the behavior of the transformed function Π in both 3D as well
as contour plot perspectives. We also plot the initial condition Π(ξ, 0) and five time steps
of the function ξ 7→ Π(ξ, τj) for τj = 0.1, 1, 5, 25, 50.

Table 12.4. A comparison of PSOR method due to Dai and Kwok and our transformation
method for T = 50, σ = 0.2, q = 0.04. Source: Bokes and Ševčovič [15].

r = 0.06 r = 0.04 r = 0.02
‖x∗,trans

t − x∗,psor
t ‖∞ 0.09769 0.03535 0.05359

‖x∗,trans
t − x∗,psor

t ‖1 0.00503 0.00745 0.01437
minx∗,trans

t 0.52150 0.57780 0.63619

A comparison of early exercise boundary profiles with respect to varying interest rates
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Figure 12.13. The free boundary position for expiration times T = 0.7 (left) and T = 1
(right). Source: Bokes and Ševčovič [15].
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Figure 12.14. A comparison of the free boundary position x∗t for various dividend yield
rates q = 0.04, 0.03, 0.025 and fixed interest rate r = 0.06 (left). Comparison of x∗t for
various interest rates r = 0.06, 0.04, 0.02 and dividend yield q = 0.04. Dots represents the
solution obtained by Dai and Kwok (right). Source: Bokes and Ševčovič [15].

r and dividend yields q is shown in Fig. 12.14. A comparison of the free boundary position
x∗t = 1/%(T − t) obtained by our method (solid curve) and that of the projected successive
over relaxation algorithm by Dai and Kwok [33] (dashed curve) for different values of the
interest rate r is shown in Fig. 12.14 (right). The algorithm due to Dai and Kwok is based
on a numerical solution to the variational inequality for the function W = W (x, τ) which
a solution to (12.67) in the continuation region and it is smoothly pasted to its pay-off
diagram (12.69). It is clear that our method and that of [33] give almost the same results.
A quantitative comparison of both methods is given in Table 12.4 for model parameters
T = 50, σ = 0.2, q = 0.04 and various interest rates r = 0.02, 0.04, 0.06. We evaluated
discrete L∞(0, T ) and L1(0, T ) norms of the difference x∗,transt − x∗,psort between the
numerical solution x∗,transt , t ∈ [0, T ], obtained by our method and that of Dai and Kwok
denoted by x∗,psort . We also show the minimal value mint∈[0,T ] x

∗,trans
t of the early exercise

boundary. Finally, in Fig. 12.13 we present numerical experiments for shorter expiration
times T = 0.7 and T = 1 (one year) with zero dividend rate q = 0 and r = 0.06, σ = 0.2.





Chapter 13

Calibration of interest rate and term
structure models

The main goal of this chapter is to review calibration techniques and results for one
factor interest rate and term structure models including, in particular, the Vasicek and Cox–
Ingersoll–Ross models. In comparison to previous Chapter 7, we present, in a more detail,
the generalized method of moments due to Chan, Karolyi, Longstaff and Sanders [23] and
the so-called Nowman’s type of Gaussian parameter estimates. These methods are based on
the statistical analysis of the short rate time series. In the second part of this chapter we fo-
cus our attention to calibration methods based on the entire term structure information. We
present the two phase min-max method of parameters calibration introduced and analyzed
by Urbánová-Csajková and Ševčovič in [107, 105].

1. Generalized method of moments

One of important results in the area of calibrating interest rate models is the paper [23] by
Chan, Karolyi, Longstaff and Sanders. Their main result is that for one-factor models, the
form of the volatility term is a very important feature distinguishing the models. It turns
out that the most successfull models are those that allow the volatility to be highly sensitive
function with respect to the level of the short rate. In [23], Chan et al. considered a general
short rate model expressed in terms of a single stochastic differential equation

dr = (α+ βr)dt+ σrγdw. (13.1)

249
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A comparison of qualitative and quantitative properties of short rate interest rate models
of the form (13.1) became a topic of a wide range of papers dealing with interest rate
modeling. Special cases of (13.1), considered in [23] are summarized in Table 13.1. The
short rate Model 1, i.e. the Brownian motion with drift, was first used in [84] in order to
derive a model of discount bond prices. Model 2 is a classical Vasicek model derived in
[120]. Notice that the Vasicek model has been already studied in Chapter 7. Model 3 the
Cox-Ingersoll-Ross model from [31], which we also discussed in Chapter 7. Model 4 was
first used by Dothan in [37] in the problem of valuing discount bonds and, subsequently,
by Brennan and Schwartz in [18]. In the latter paper the authors developed numerical
models of savings, retractable, and callable bonds. Model 5 is similar to the geometric
Brownian motion process used in the Black–Scholes option pricing model [14]. As an
interest rate model it was proposed by Marsh and Rosenfeld in [82]. Model 6 was treated
by Brennan and Schwartz [19] in the context of deriving a numerical model for convertible
bond prices and, by Courtadon [28], for developing a model of discount bond option prices.
Model 7 was introduced by Cox, Ingersoll and Ross in their seminal paper [30] of variable-
rate securities. Model 8 represents the so-called constant elasticity of variance process
introduced by Cox in [29] and by Cox and Ross in [32]. Marsh and Rosenfeld discussed its
application to interest rate modeling in [82].

Table 13.1. Overview of one-factor short rate models. Source: Chan, Karolyi, Longstaff,
Sanders [23].

Model Equation for the short rate
1. Merton dr = αdt+ σdw
2. Vasicek dr = (α+ βr)dt+ σdw
3. CIR SR dr = (α+ βr)dt+ σr1/2dw
4. Dothan dr = σrdw
5. GBM dr = βrdt+ σrdw
6. Brennan-Schwartz dr = (α+ βr)dt+ σrdw
7. CIR VR dr = σr3/2dw
8. CEV dr = βrdt+ σrγdw

The parameter estimation method proposed in [23] (see also Hansen [60]) is referred
to as the generalized method of moments (GMM). This methodology takes into account
a discrete-time econometric version of the short term interest rate process. In the case of
the stochastic differential equation (13.1) the authors consider the discrete-time form of the
stochastic process:

rt+1 − rt = α+ βrt + εt+1,

where
E(εt+1) = 0, E((εt+1)2) = σ2(rt)2γ .

Here E(.) is the sample mean of the process. The unknown parameters are θ =
(α, β, σ2, γ). The idea of the GMM method is to estimate unknown model parameters
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from the equation E(ft(θ)) = 0, where

ft(θ) = (εt+1, εt+1rt, ε
2
t+1 − σ2r2γt , (ε2t+1 − σ2r2γt )rt)T ∈ R4.

The GMM is based on replacing E(ft(θ)) by its sample average counterpart, i.e.

gT (θ) =
1
T

T∑

t=1

ft(θ),

where T is the number of observations. The vector θ ∈ R4 of model parameters is then
estimated by means of minimization of the quadratic form:

JT (θ) = gTT (θ)WT (θ)gT (θ)

for some positive definite weight matrix WT (θ). Here gTT stands for transposition of the
vector gT ∈ R4. It means that the estimate θ̂ of the vector of model parameters is given by

θ̂ = arg min
θ
JT (θ).

If there are no restrictions on model parameters then the quadratic form JT (θ) has the zero
minimum any choice of the weight matrix WT (θ). For the nested interest rate models, the
parameters are overidentified and the GMM estimates depend on the choice ofWT . In [60],
Hansen showed that the choice WT (θ) = S−1(θ), where S(θ) is the 4× 4 matrix,

S(θ) = E(gT (θ)gTT (θ)),

yields the GMM estimator of θ with the smallest asymptotic covariance matrix.
To test the hypothesis on parameters, determined by restriction imposed by models,

authors often use the method of Newey and West [86]. In this procedure, a general null
hypothesis of the form, a(θ) = 0, where a(θ) is a vector of order k, is tested with the
statistic

R = T
[
JT (θ̃)− JT (θ̂)

]
,

where θ̃ is the unrestricted and θ̂ is the restricted estimate. If the null hypothesis is con-
firmed, this statistic is an asymptotically distributed χ2 distribution with k degrees of free-
dom.

Next we will present an empirical example of parameter estimation. The results, ob-
tained by using the annualized one-month U.S, treasury bill yield from June 1964 to De-
cember 1989 (306 observations), are summarized in Table 13.2. Considering the usual 5
percent significance level, the model is rejected if the P value is less than 0.05, which means
that in this case we reject Merton, Vasicek and CIR SR model. Rejecting models of Vasicek
and Cox-Ingersoll-Ross, which have analytical formulas for bond prices (see Chapter 8),
motivates the study of bond prices also in other models. In Chapter 14 we study the ana-
lytical approximation for a more general model when compared to (13.1). For the further
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Table 13.2. Estimated parameters and corresponding P values obtained by the GMM esti-
mation the respective models as restrictions of (13.1). Source: Chan, Karolyi, Longstaff,
Sanders [23].

Model α β σ2 γ P value
unrestricted parameters 0.0408 -0.5921 1.6704 1.4999 -
Merton 0.0055 0 0.0004 0 0.0341
Vasicek 0.0154 -0.1779 0.0004 0 0.0029
CIR SR 0.0189 -0.2339 0.0073 0.5 0.0131
Dothan 0 0 0.1172 1 0.1327
GBM 0 0.1101 0.1185 1 0.2066
Brennan-Schwartz 0.0242 -0.3142 0.1185 1 0.1364
CIR VR 0 0 1.5778 1.5 0.1019
CEV 0 0.1026 0.5207 1.2795 0.0793

comments on these results and more tests of the model we refer the reader to the paper [23]
by Chen et al.

Let us note that these results are not universal. For different term structures we can
obtain different estimations of parameters including, in particular, the parameter γ. For
example, in [2] the authors estimated the parameter γ to be less than one by using the same
estimation methodology but for the LIBOR term structure. It means that the volatility is
less than the one estimated by Chan, Karolyi, Longstaff and Sanders.

We recall that a modification of the generalized method of moments, which is robust
with resecpect to presence of outliers, was developed in [35]. It is refereed to as the robust
generalized method of moments.

2. Nowman’s parameter estimates

Nowman’s estimates are based on approximating the likelihood function of the model. In
Chapter 7 we considered the maximum likelihood estimation methodology for the Vasicek
model. Because of the constant volatility, we were able to derive the exact likelihood func-
tion. The main idea of Nowman’s estimation methodology is to approximate the volatility
by a piece-wise constant function, which remains constant between two observations (see
[87] and [43]).

An equation for the short rate is the same as in the previous section, i.e.

drs = (α+ βrs)ds+ σrγs dws.

Next we multiply it by the term e−βs. It yields

e−βsdrs − βe−βsrsds = αe−βsds+ σe−βsrγs dws,
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d

ds

(
eβsrs

)
= αe−βsds+ σe−βsrγs dws,

from which we obtain, by integration over the time interval [t−1, t] to time t, the equation:

e−βtrt − e−β(t−1)rt−1 =
α

β

(
e−β(t−1) − e−βt

)
+

∫ t

t−1
σrγs e

−βsdws.

Using approximation according to which the volatility is constant on the interval [t − 1, t)
and it is equal to the value at the beginning of the interval, we deduce

∫ t

t−1
σrγs e

−βsdws = σrγt−1

∫ t

t−1
e−βsdws,

and hence

e−βtrt − e−β(t−1)rt−1 =
α

β

(
e−β(t−1) − e−βt

)
+ σrγt−1

∫ t

t−1
e−βsdws.

Multiplying the above equation by the term eβt and denoting

εt = σrγt−1e
βt

∫ t

t−1
e−βsdws

we obtain a discrete short rate model

rt = eβrt−1 +
α

β

(
eβ − 1

)
+ εt, for t = 2, . . . , N. (13.2)

The conditional distribution of εt for a given value of rt−1 follows from properties of
Itō’s integral: εt are normally distributed and independent for t = 1, 2, . . . , with a zero
expected value and the variance ν2

t satisfying

ν2
t := V ar(εt) = σ2r2γt−1e

2βt V ar

(∫ t

t−1
e−βsdws

)

= σ2r2γt−1

∫ t

t−1
e−2βsds = σ2r2γt−1

e2β − 1
2β

,

where we have used Itō’s isometry (see Chapter 2).
The likelihood function L for this model is equal, up to an additive constant, to the

following expression:

lnL = −1
2

N∑

t=2

(
log ν2

t +
ε2t
ν2
t

)
, (13.3)

where

ν2
t =

σ2

2β

(
eβ − 1

)
r2γt−1, εt = rt − α

β

(
eβ − 1

)
− eβrt−1 (13.4)
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(see [87], [43]). Nowman’s estimates of the parameters are then the arguments of maximum
of the function logL.

These results are obtained in the case when the length of the interval [t− 1, t] between
two consecutive values of rt is taken to be a unit of time. In a case of a different time scale
in which the length of the interval equals ∆t we can derive the model

rk = eβ∆trk−1 +
α

β

(
eβ∆t − 1

)
+ εk, k = 2, . . . , N, (13.5)

where k is a number of observations1 with εk normally distributed, uncorrelated and having
the zero expected value and variance σ2r2γk−1

e2β∆t−1
2β . It can be written as follows:

rk = eβ̃rk−1 +
α̃

β̃

(
eβ̃ − 1

)
+ ε̃k, k = 2, . . . , N, (13.6)

where ε̃k are normally distributed, uncorrelated, with a zero expected value and the variance
σ̃2r2γk−1

e2β̃−1
2β̃

, where

α̃ = α∆t, β̃ = β∆t, σ̃2 = σ2∆t. (13.7)

When we are investigating the existence of maximum of the likelihood function, we can
study a model in the form (13.6), which is equivalent to (13.2). On the other hand, when
we are estimating the parameters α, β, σ2, we have to divide estimates of α̃, β̃ and σ̃2 by
the factor ∆t. If we are estimating the volatility σ, we have to divide σ̃ by

√
∆t).

As an example of estimation results obtained by this method we review the estimates
from [43], where the models was estimated using monthly data of 1-month interest rates
from 10 countries, see Table 13.3. Results of unconstrained estimation are presented in
Table 13.4. Various models were tested by the likelihood ratio test. If θ is a vector of
parameters, θ̃ then its unconstrained and θ̂ its constrained estimate, the null hypothesis is
tested by the likelihood ratio statistic

LR = (−2)
[
lnL(θ̂)− lnL(θ̃)

]
.

This statistics asymptotically has a χ2 distribution with the degrees of freedom equal to the
number of restrictions. Models, tested in this way, formed a subset of models considered
in Chen et al. paper [23]. In particular, these are the models labeled by 2,3,6,7,8 in Ta-
ble 13.1. Estimation results are presented in Table 13.5. The reader is referred to the paper
by Episcopos [43] for further details and estimation results.

Finally, let us recall that, in [119], Treeponggama and Grey studied robustness of the
parameter estimates with respect to a sample period and use of interest rates with different
maturities as short rate proxies. They considered a similar sample of countries as Episco-
pos in the paper [43]. Different types of interest rates as short rate proxies were used in
[88] for the Japanese financial market. Parameter estimations for UK and USA data and a
subsequent study of the forecasting power of the models were performed in the paper [21]
by Byers and Nowman.

1In order to simplify the notation, instead of time, we are indexing observations by their number
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Table 13.3. Data used in parameter estimation. Source: Episcopos [43].

Country Range of the data Number of observations
Australia March 1986 - April 1998 146
Belgium October 1989 - April 1998 103
Germany November 1990 - April 1998 90
Japan December 1985 - April 1998 149
Netherlands January 1979 - April 1998 232
New Zealand April 1986 - April 1998 145
Singapore April 1986 - April 1998 145
Switzerland January 1986 - April 1998 148
United Kingdom January 1975 - April 1998 280
USA January1986 - April 1998 148

Table 13.4. Estimated parameters. Source: Episcopos, [43].

Model α β σ2 γ

Australia 0.0008 -0.0170 0.0354 1.5174
Belgium 0.0007 -0.0192 0.1147 1.5617
Germany 0.0002 -0.0133 0.0001 0.5501
Japan 0.0001 -0.0148 0.0002 0.4143
Netherlands 0.0007 -0.0126 0.0072 1.0245
New Zealand 0.0045 -0.048 0.0034 0.7815
Singapore 0.0043 -0.109 0.0002 0.1976
Switzerland 0.0007 -0.019 0.0001 0.2064
United Kingdom 0.0023 -0.0238 0.0008 0.5663
USA 0.0013 -0.0234 0.0001 0.4239

3. Method based on comparison with entire market term struc-
tures

In this section we presents a min-max calibration method for Vasicek and CIR models. It is
based on results presented in papers [107] and [105] by Ševčovič and Urbánová-Csajková.

The idea of the phase min-max method is rather simple. In the first step we minimize
the sum of squares of differences of theoretical yield curve computed from the models and
real market yield curve. The minimum is attained on a one dimensional curve in the four
dimensional parameter space of Vasicek or CIR model parameters. Then, by maximization
of the likelihood function over this curve, we obtain estimation of the four parameters of
the model.
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Table 13.5. P values from testing the models as restrictions of (13.1). Source: Episcopos
[43].

Country / Model Vasicek CIR SR BR-SC CIR VR CEV
Australia 0.0000 0.0000 0.0003 0.5069 0.3401
Belgium 0.0000 0.0000 0.0089 0.7511 0.4029
Germany 0.0037 0.7885 0.0179 0.0000 0.7118
Japan 0.0000 0.1960 0.0000 0.0000 0.7084
Netherlands 0.0000 0.0000 0.8201 0.0002 0.3494
New Zealand 0.0000 0.0092 0.0477 0.0000 0.0345
Singapore 0.0971 0.0102 0.0000 0.0000 0.0059
Switzerland 0.0596 0.0059 0.0000 0.0000 0.3858
United Kingdom 0.0001 0.6286 0.0011 0.0000 0.0825
USA 0.0154 0.6539 0.0006 0.0000 0.1740

3.1. Parameters reduction principle

Case of the Cox-Ingersoll-Ross model

In the Cox–Ingersoll–Ross model the price of a zero coupon bond is a solution to the fol-
lowing partial differential equation

−∂P
∂τ

+ (κ(θ − r)− λr)
∂P

∂r
+
σ2

2
r
∂2P

∂r2
− rP = 0, t ∈ (0, T ) , r > 0.

In contrast to Chapter 7, we consider a slightly modified market price of risk function
having the form λ

σ

√
r. As it has been already pointed out by Pearson and Sun in [92],

the adjustment speed κ and the risk premium λ appear in the CIR bond price only in the
summation κ + λ. This is why four CIR parameters can be reduced to three essential
parameters fully describing the behavior of the bond prices.

The parameter reduction for the CIR model consists of introduction of the following set
of new variables:

β = e−η , ξ =
κ+ λ+ η

2η
, % =

2κθ
σ2

, (13.8)

where η =
√

(κ+ λ)2 + 2σ2. Returning back to the original CIR parameters (κ, σ, θ, λ)
we have

κ = η(2ξ − 1)− λ , σ = η
√

2ξ(1− ξ) , θ =
%σ2

2κ
, (13.9)

where η = − lnβ.

Proposition 13.1. In terms of transformed parameters, the value of a bond P = P (T −
τ, T, r) can be expressed as P = Ae−Br, where τ = T − t ∈ [0, T ] and functions A =
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A(β, ξ, %, τ), B = B(β, ξ, %, τ) satisfy

B = − 1
lnβ

1− βτ

ξ(1− βτ ) + βτ
, A =

(
β(1−ξ)τ

ξ(1− βτ ) + βτ

)%

. (13.10)

Moreover, (β, ξ, %) ∈ Ω = (0, 1)× (0, 1)× R+ ⊂ R3.

It is convenient to introduce the transformation T : D → Ω defined as in (13.8) where
D = (0,∞)3 × R ⊂ R4. Then T (κ, σ, θ, λ) = (β, ξ, %), is a smooth mapping and, for any
(β̌, ξ̌, %̌) ∈ Ω, the preimage

T−1(β̌, ξ̌, %̌) = {(κλ, σλ, θλ, λ) ∈ R4, λ ∈ J̌}, J̌ = (−∞,−(2ξ̌ − 1) ln β̌),

is a smooth one-dimensional λ-parameterized curve in D ⊂ R4 where

κλ = −λ− (2ξ̌ − 1) ln β̌,

σλ = −
√

2ξ̌(1− ξ̌) ln β̌, (13.11)

θλ =
%̌σ2

λ

2κλ
, (13.12)

where λ ∈ J̌ .

Case of the Vasicek model

As far as the Vasicek model is considered we put

β = e−κ , ξ = θ − σ2

2κ2
− σλ

κ
, % =

σ2

4κ
. (13.13)

Then for the original Vasicek parameters we have:

κ = − lnβ , σ = 2
√
%κ , θ = ξ +

σ2

2κ2
+
σλ

κ
. (13.14)

Proposition 13.2. In terms of transformed parameters the value of a bond P = P (τ, r)
can be expressed as P = Ae−Br, where τ = T − t ∈ [0, T ] and functions A =
A(β, ξ, %, τ), B = B(β, ξ, %, τ) satisfy

B = −1− βτ

lnβ
, A = exp

(
ξ(B(τ)− τ)− %B2(τ)

)
, (13.15)

where (β, ξ, %) ∈ Ω = (0, 1)× R× R+ ⊂ R3.

The transformation T : D → Ω defined as in (13.13), i.e. T (κ, σ, θ, λ) = (β, ξ, %),
where D = (0,∞)3 × R ⊂ R4, is a smooth mapping too and, for any (β̌, ξ̌, %̌) ∈ Ω, the
preimage

T−1(β̌, ξ̌, %̌) = {(κλ, σλ, θλ, λ) ∈ R4, λ ∈ J̌}, J̌ = R,
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is a smooth one-dimensional λ-parameterized curve in D ⊂ R4. In this case

κλ = − ln β̌, σλ = 2
√
%̌κλ, θλ = ξ̌ +

σ2
λ

2κ2
λ

+
σλλ

κλ
. (13.16)

Summarizing, in both studied one factor models the yield curve depends only on three
transformed parameters β, ξ and % defined in (13.8) and (13.13), respectively.

3.2. The loss functional

In this section we introduce the loss functional measuring the quality of approximation of
the set of real market yield curves by computed yield curves from each model.

Definition 13.1. The loss functional is the time-weighted distance of the real market yield
curves {Rij , j = 1, . . . ,m} and the set of computed yield curves {R̄ij , j = 1, . . . ,m} at
time i = 1, . . . , n, determined from the bond price - yield curve relationship

Aje
−BjR

i
0 = e−R̄

i
jτj , (13.17)

where ri = Ri0 is the overnight interest rate at time i = 1, . . . , n, Aj = A(τj) and Bj =
B(τj) where 0 = τ0 < τ1 < τ2 < · · · < τm stand for maturities of bonds forming the yield
curve, is defined as follows:

U(β, ξ, %) =
1
m

m∑

j=1

1
n

n∑

i=1

(Rij − R̄ij)
2τ2
j . (13.18)

Recall that A(τ) and B(τ) are defined by (13.10) and (13.15).

Proposition 13.3. In terms of the averaged term structure values and their covariance
values the loss functional can be expressed in form:

U(β, ξ, %) =
1
m

m∑

j=1

((τjE(Rj)−BjE(R0) + lnAj)2

+ V ar(τjRj −BjR0)), (13.19)

where E(Xj) and V ar(Xj) denote the mean value and variance of the vector Xj =
{Xi

j , i = 1, . . . , n}.

Expression (13.19) for the loss functional is much more suitable for computational pur-
poses because it contains aggregated time series information from the yield curve only,
the cumulative statistics like the mean and covariance of term structure Rj series. These
statistical informations can be pre-processed prior to optimization.
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3.3. Non-linear regression problem for the loss functional

Introducing the short form of the loss functional (13.19) is prerequisition to the next steps.
The core of the estimation method is to minimize the function U(β, ξ, %), i.e.:

min
(β,ξ,%)∈Ω

U(β, ξ, %),

where Ω = (0, 1) × (0, 1) × (0, %max) is a bounded domain2 in R3. During this step of
our approach we obtain the vector of (β̌, ξ̌, %̌) for any given λ. This problem is highly
non-linear. For that reason we discuss different numerical procedures in the next section.
Having identified the curve of global minimizers of the loss functional we proceed by the
second step which will be discussed later.

For the CIR as well as for the Vasicek model we have first order necessary conditions
for the minimizer of the loss functional. These conditions can be used either for further
parameter reduction of the problem (2D problem for the CIR model and even 1D prob-
lem for the Vasicek model) or for testing whether a numerical approximation is close to a
minimizer. Latter property has been used in practical implementation of the minimization
method.

Case of the Cox-Ingersoll-Ross model

Proposition 13.4. Given β and ξ, an optimal value for the parameter % in the CIR model
%optc = %optc (β, ξ) can be found as a function of β and ξ. Solving the first order optimality
condition ∂U

∂% = 0 we have:

m∑

j=1

(lnAj)2 = −
m∑

j=1

(τjE(Rj)−BjE(R0)) lnAj (13.20)

and the optimal %c is determined as follows:

%optc = −
∑m

j=1(τjE(Rj)−BjE(R0)) lnAj(β, ξ, 1)∑m
j=1(lnAj(β, ξ, 1))2

. (13.21)

Case of the Vasicek model

Proposition 13.5. Given β, a pair of optimal values for the parameter (%, ξ) in the Vasicek
model %optv = %optv (β), ξoptv = ξoptv (β) can be found. Solving the system of first order

2%max is sufficiently large. In our computation we chose %max = 5.
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optimality conditions ∂U
∂% = 0 and ∂U

∂ξ = 0 we have:

0 =
m∑

j=1

(τjE(Rj)−BjE(R0) + ξ(Bj − τj)− %B2
j )B

2
j (13.22)

0 =
m∑

j=1

(τjE(Rj)−BjE(R0) + ξ(Bj − τj)− %B2
j )(Bj − τj)

and the pair of optimal values (%optv , ξoptv ) can be determined from the system of linear
equations:

%optv =

∑m
j=1(τjE(Rj)−BjE(R0) + ξoptv (Bj − τj))B2

j∑m
j=1B

4
j

, (13.23)

ξoptv = −
∑m

j=1(τjE(Rj)−BjE(R0)− %optv B2
j )(Bj − τj)∑m

j=1(Bj − τj)2
.

3.4. Evolution strategies

It is well known fact that steepest-descent gradient methods of Newton-Kantorovich type
(cf. [4]) may converge to a local minimum only. This is why we have to consider a different
and more robust numerical method generically converging to a global minimum of the func-
tional U . There is a wide range of optimization methods based on stochastic optimization
algorithms.

These methods are often referred to as evolution strategies (ES) (see e.g. [94, 100,
101]). The main concept of this strategy is based on the survival of the fitness. There
exist many different types of this stochastic algorithm like the two membered (1 + 1) ES,
multi-membered (p, c) ES, (p+ c) ES (see [94, 100, 101]).

In our case we used a slight modification of the well known (p + c) ES [94]. Recall
that the (p + c) ES has p parents and c children (offsprings) per population among which
the p best individuals are selected to be next generation parents by their fitness value. The
procedure is repeated until some termination criterion is satisfied.

The mathematical description of the modification of (p + c) ES called (p + c + d) ES
is as follows:

The problem is defined as finding the real valued vector x ∈ Ω, which is a global
minimum of objective function U in Ω ⊂ Rn.

1. The initial population of parent vectors xk ∈ Ω, k = 1, . . . , p is generated randomly
from bounded three dimensional space Ωb = {(β, ξ, %) ∈ Ω, 0 ≤ % ≤ %max} where
%max is large enough. Ωb is a subset of the domain Ω.

2. In each step of the ES algorithm we generate a set of c offsprings from the parent
population (c ≤ p). Each vector of children (offspring) x̄l, l = 1, . . . , c is created
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from parents xk, k = 1, . . . , p by mutation and recombination. Mutation means
perturbation of parent generation xk, k = 1, . . . , p by Gaussian noise with zero mean
and preselected standard deviation σgauss. Recombination means crossing over parts
of randomly chosen vectors of children.

3. The modification (p+ c+ d) ES comprise selection on a wider set. It means that we
include a randomly generated set of dwild type individuals forming the so-called wild
population. The procedure of generation of the wild type population xo, o = 1, . . . , d,
from bounded space Ωb is the same as for the initial population.

4. Every member of the population (parents, children, wild population) is characterized
with its fitness value, which is the value of the loss functional U .

5. Selection chooses p best vectors from the population by their fitness value to be next
generation parents. A set of p intermediate parents is obtained.

6. Next we include a corrector step consisting of improving the set of p intermediate
parents by NK iterates of the Newton-Kantorovich gradient minimization method.
As a result we obtain a set of p improved parents.

7. The best p individuals from the set of p parents, p improved parents, c offsprings and
d wild type individuals are selected to be the next generation of parents.

8. We repeat this procedure until the overall number of steps is less than N . We also
perform the first order necessity test as described in Chapter 5.

In our computations we have chosen N = 300, p = c = d = 105, NK = 30 and
σgauss = 0.01. We have not update the standard deviation according to Rechenberger’s
rule (see [94]) as it turned to be ineffective.

3.5. Calibration based on maximization of the restricted likelihood function

Recall that in the first step, as it was described in the section 3.2. we identify one dimen-
sional curve of the model parameters by minimizing the loss functional. Having identified
the curve of global minimizers of the loss functional we proceed by the second step. This
step consists of maximization of the likelihood function restricted to that curve so the global
maximum is attained in a unique point, which is the estimation of the model parameters.

Notice that the aim of the first ”minimization” step of the method was to find a point
(β̌, ξ̌, %̌) - a unique global minimum of the loss functional U = U(β, ξ, %). Bearing in
mind parameter reduction described in the previous section, there exists a C∞ smooth one
dimensional curve of original model parameters (κλ, θλ, σλ, λ) ∈ R4 parameterized by
λ ∈ J̌ corresponding to the same transformed triple (β̌, ξ̌, %̌) for which the minimum of U
(in terms of transformed variables β, ξ, %) is attained. In order to construct estimation of
the model parameters κ, θ, σ, λ we proceed with the second optimization step in which we
find a global maximum of the standard Gaussian likelihood function (LF) over the above
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mentioned λ-parameterized curve representing of global minimizers of the loss functional
U . The two step optimization method combines the maximum likelihood estimation with
minimization of the loss functional U. In the case of parameter estimation of a stand-alone
short rate process having the form (13.1) the LF is:

lnL(κ, σ, θ) = −1
2

n∑

t=2

(
ln v2

t +
ε2t
v2
t

)
, (13.24)

where v2
t = σ2

2κ

(
1− e−2κ∆t

)
r2γt−1, εt = rt − e−κ∆trt−1 − θ

(
1− e−κ∆t

)
(see previous

section). Here ∆t > 0 denotes the time step between observations rt, rt−1, t = 1, .., n,
evaluated on the yearly basis, e.g. ∆t = 1/365. If estimation of model parameters (κ, σ, θ)
is realized by maximization of the likelihood function over the whole set R3

+ then the max-
imum is unrestricted. The value of the unrestricted maximum likelihood function is:

lnLu = lnL(κu, σu, θu) = max
κ,σ,θ>0

lnL(κ, σ, θ) . (13.25)

In our approach we make use of restricted maximization of lnL over the λ-parameterized
curve {(κλ, θλ, σλ), λ ∈ J̌}. This can be expressed in original model parameters as follows:

lnLr = lnL(κλ̄, σλ̄, θλ̄) = max
λ∈J̌

lnL(κλ, σλ, θλ), (13.26)

where J̌ = (−∞,−(2ξ̌ − 1) ln β̌) in the case of the CIR model and J̌ = R for the Va-
sicek model. The argument κ̄ = κλ̄, σ̄ = σλ̄, θ̄ = θλ̄ of the maximum of the restricted
likelihood function lnLr is adopted as a result of two step optimization method for cali-
brating the model parameters. A global maximizer of the unrestricted likelihood function
lnLu has been computed by the same variant of the ES algorithm described in section 3.4.
Since maximization of the restricted likelihood function lnLr is performed over one di-
mensional parameter λ and the function λ 7→ lnL(κλ, σλ, θλ) is smooth we could apply a
standard optimization software package Mathematica in order to find a global maximizer
of the restricted likelihood function. For measuring of accuracy of calibration we introduce
the maximum likelihood ratio (MLR) as a ratio of the maximum values of the restricted
lnLr and unrestricted lnLu likelihood functions. We have MLR ≤ 1 and if MLR is close
to 1 then the restricted maximum likelihood value is close to the unrestricted one. In this
case one can therefore expect that the estimated values (κ̄, σ̄, θ̄) of the model parameters
are close to the argument (κu, σu, θu) of the unique global maximum of the unrestricted
likelihood function. It may indicate that a simple estimation of parameters based on the
mean reversion equation (13.1) for the short rate process rt is also suitable for estimation
of the whole term structure.

3.6. Qualitative measure of goodness of fit and non-linear R2 ratio

In linear regression statistical methods, the appropriateness of linear regression function is
measured by the R2 ratio. If the value of R2 ratio is close to one, it indicates that the given
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data set can be regressed by a linear function. In the case of non-linear regression, there is
no unique way how to define the equivalent concept of the linear R2 ratio. The non-linear
R2 ratio essentially depends on the choice of the reference value. We take this value of the
loss functional (13.18) by taking the argument (β, ξ, %) = (1, 1, 1). Since limβ→1Bj = τj
and lnAj = 0 for β = 1 it is easy to calculate that

U(1, 1, 1) =
1
m

m∑

j=1

τ2
j E((Rj −R0)2),

and, moreover, U(1, 1, 1) = U(1, ξ, %) for any ξ ∈ [0, 1] and % ∈ R.
Now we are able to define the non-linear R2 ratio measuring the quality of non-linear

regression as follows:

R2 = 1− U(β̌, ξ̌, ρ̌)
U(1, 1, 1)

, (13.27)

where (β̌, ξ̌, ρ̌) is the argument of the unique global minimum of the loss functional U .
Then 0 ≤ R2 ≤ 1. The value of R2 close to one indicates perfect matching of the yield
curve computed for parameters (β̌, ξ̌, ρ̌) and that of the given real market data set.

3.7. Results of calibration

The results of calibration for the CIR model parameters as well as the R2 ratios are sum-
marized in Table 13.6 for term structures with maturities up to one year. It reports quarterly
results for PRIBOR and EURIBOR in the year 2003. Estimated parameters κ, σ, θ, λ, the
value of the loss functional (U ) and the non-linear R2 ratio are presented. Behavior of the
expected long-term interest rate θ is in accordance with the expectancy of the market in the
long-term run. It predicts interest rates close to 1.7% for EURIBOR as well as for PRIBOR.

Table 13.6. Numerical results of calibration for short term structures (up to one year) for
PRIBOR and EURIBOR. Results cover 4 quarters of 2003.

κ σ θ λ U (×10−6) R2

PRIBOR
1/4 2003 0.674 0.007 0.004 -0.483 0.134 0.633
2/4 2003 41.3 0.728 0.018 -9.07 0.238 0.428
3/4 2003 3.78 0.066 0.015 -1.15 0.028 0.897
4/4 2003 3.385 0.097 0.019 -0.626 0.088 0.924
EURIBOR
1/4 2003 47.7 1.030 0.017 -15.5 0.506 0.783
2/4 2003 0.925 0.028 0.021 0.145 0.319 0.746
3/4 2003 43.2 0.644 0.016 -10.9 0.143 0.807
4/4 2003 16.2 0.39 0.017 -4.06 0.145 0.941
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(a)

(b)

(c)

Figure 13.1. Graphical description of overnight (short rate) interest rates and those of bond
with longer maturity. Daily data are plotted for EURO-LIBOR (a), BRIBOR (b) and PRI-
BOR (c). The 10y PRIBOR stands for the 10 year yield on government bonds. Source:
Ševčovič and Csajková, [105].
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Risk premium analysis

In this section we discuss and analyze results of parameter estimation for the parameter λ
representing the market price of risk in the Cox–Ingersoll–Ross model. We remind our-
selves that the price of a zero coupon bond P = P (t, T, r) computed by means of CIR
model satisfies the parabolic equation

−∂P
∂τ

+ (κ(θ − r)− λr)
∂P

∂r
+
σ2

2
r
∂2P

∂r2
− rP = 0, t ∈ (0, T ) , r > 0. (13.28)

A solution P for the CIR model can be expressed by the explicit formula P (t, T, r) =
A(T − t)e−B(T−t)r. Thus ∂rP = −BP . As a consequence, equation (13.28) for the bond
price P can be rewritten as

∂P

∂t
+ κ(θ − r)

∂P

∂r
+

1
2
σ2r

∂2P

∂r2
= r∗P , t ∈ (0, T ) , r > 0, (13.29)

where r∗ = (1− λB)r. Indeed, both equations (13.28) as well as (13.29) posses the same
solution P (t, T, r) = A(T − t)e−B(T−t)r. Hence the multiplier 1− λB can be interpreted
as the risk premium factor and r∗ as the expected rate of return on the bond (cf. Pearson
and Sun [92]). It is easy calculus to show B(τ) ≥ τ > 0 and therefore we have r∗ > r if
and only if λ < 0. On the other hand, if λ > 0 market bond return r∗ is less than riskless
return rate r.

4. Overview of other methods

Let us briefly mention other approaches to estimating short rate models. There are other
moment-based estimators, besides the generalized method of moments used by [23], such
as simulation-based efficient method of moments by Dai and Singleton [34]. Also a large
number of methods based on likelihood function exist: quasi maximum likelihood (for
example Duffee [38]), estimating the likelihood using simulations in [93] by Pedersen, Ait-
Sahalia’s series expansions of likelihood function [3]. Another approach to estimating the
models uses Bayesian methodology. A comprehensive overview of Bayesian methods and
Markov Chain Monte Carlo algorithms in finance can be found in [67] by Johannes and
Poulson, which includes also a chapter on estimating the interest rate models.





Chapter 14

Advanced topics in the term structure
modeling

The last chapter of this book is devoted to advanced topics in modeling of term structures
with a focus on two factor interest rate models and generalized one factor models. In the
first part, we deal with a general one factor model in which the stochastic part is proportional
to a power of the short rate. We derive and analyze approximate formulae for a solution to
the partial differential equation for pricing zero coupon bonds. In the second part of this
chapter, we turn our attention to the problem of averaging of the bond price with respect to
stochastic factors (e.g., stochastic volatility). Most of the results contained in this chapter
were obtained by Stehlı́ková and Ševčovič in a series of papers [113, 114, 116, 112].

1. Approximate analytical solution for a class of one-factor
models

In this section we discuss the approximate analytical solution for bond prices derived by
Choi and Wirjanto in [25]. They considered a class of one-factor models of the form (13.1)
and proposed an approximate formula for prices of zero coupon bonds given by a solution to
(14.2). We will recall a method how to derive the order of accuracy of their approximation
as it was presented recently in the paper [114] by Stehlı́ková and Ševčovič. Moreover, we
will also derive a new approximation of a higher order of accuracy from the paper [114].

Interest rate models for short rate, considered by Choi and Wirjanto in [25], have the

267
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following form:
dr = (α+ βr)dt+ σrγdw. (14.1)

The short rate equation is written under the risk-neutral measure. It corresponds to the real
measure process:

dr = (α+ βr + λ(t, r)σrγ) dt+ σrγdw,

where λ(t, r) is the so-called market price of risk. Let us recall that for a general market
price of risk function λ(t, r), the price P of a zero-coupon bond can be obtained from a
solution to the following partial differential equation:

−∂P
∂τ

+
1
2
σ2r2γ

∂2P

∂r2
+ (α+ βr)

∂P

∂r
− rP = 0, r > 0, τ ∈ (0, T ), (14.2)

satisfying the initial condition P (0, r) = 1, for all r > 0. In what follows, we use the
notation ∂τP for ∂P/∂τ, similarly ∂rP for ∂P/∂r and ∂2

rP for ∂2P/∂r2.
In the paper [25] Choi and Wirjanto derived the following approximation P ap for the

exact solution P ex:

Theorem 14.1. [25, Theorem 2] The approximate analytical solution P ap is given by

lnP ap(τ, r) = −rB +
α

β
(τ −B) +

(
r2γ + qτ

) σ2

4β

[
B2 +

2
β

(τ −B)
]

−q σ
2

8β2

[
B2(2βτ − 1)− 2B

(
2τ − 3

β

)
+ 2τ2 − 6τ

β

]
, (14.3)

where
q(r) = γ(2γ − 1)σ2r2(2γ−1) + 2γr2γ−1(α+ βr) (14.4)

and
B(τ) = (eβτ − 1)/β. (14.5)

The derivation of formula (14.3) is based on calculation of the price as an expected
value under a risk neutral measure. The tree property of conditional expectation was used
and the integral appearing in the exact price was approximated to obtain a closed form
approximation. The reader is referred to [25] for more details of derivation of (14.3).

Choi and Wirjanto furthermore showed that such an approximation coincides with the
exact solution in the case of the Vasicek model [120]. Moreover, they compared the above
approximation with the exact solution of the CIR model, which is also known in a closed
form (cf. [31]). Graphical and tabular descriptions of the relative error in the bond prices
have been also provided in [25].

Our next goal is to derive the order of accuracy of the approximation formula (14.3)
by estimating the difference lnP ap − lnP ex of logarithms of approximative and exact
solutions of the bond valuation equation (14.2). Then, we give recall a new higher order
accurate approximation formula derived in [114] and we analyze its order of convergence
analytically and numerically.
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1.1. Uniqueness of a solution to the PDE for bond prices

It is worth noting that comparison of approximate and exact solutions is meaningful only if
the uniqueness of the exact solution can be guaranteed. In the next theorem we provide a
proof of uniqueness of a solution to (14.2) satisfying the following definition 14.1.

Definition 14.1 ([114, Def. 1]). By a complete solution to (14.2) we mean a function P =
P (τ, r) having continuous partial derivatives ∂τP, ∂rP, ∂2

rP on QT = [0,∞) × (0, T ),
satisfying equation (14.2) on QT , the initial condition P (0, r) = 1 for r ∈ [0,∞) and
fulfilling the following growth conditions: |P (τ, r)| ≤ Me−mrδ

and |Pr(τ, r)| ≤ M for
any r > 0, t ∈ (0, T ), where M,m, δ > 0 are constants.

Now we can state the theorem on uniqueness of a solution to the bond pricing equation.

Theorem 14.2 ([114, Thm. 1]). Assume 1
2 < γ < 3

2 or γ = 1
2 and 2α ≥ σ2. Then there

exists a unique complete solution to (14.2).

Notice that if the condition 2α ≥ σ2 for γ = 1
2 is not satisfied then the solution need not

be unique. Indeed, Heston in [61] gave an example of a solution to the CIR model having
multiple solutions of the bond pricing equation. Based on the existence of a cheaper solution
to the CIR model, Heston presented an interpretation of the so-called pricing bubbles in
bond markets.

Proof. Our aim is to prove that the inequality

d

dτ

∫ ∞

0
rωP 2dr ≤ K

∫ ∞

0
rωP 2dr (14.6)

is satisfied by any solution of (14.2) with some constants K and ω ≥ 0. It implies the
uniqueness of a solution to the PDE (14.2). Indeed, if P1 and P2 are two complete solutions
of (14.2) with the same initial condition P (0, r) = 1, then P = P1 − P2 is also a solution
to (14.2) with P (0, r) = 0. Let us define a function

y(τ) =
∫ ∞

0
rωP 2(τ, r)dr.

Then the inequality (14.6) means dy(τ)
dτ ≤ Ky(τ) for τ > 0. It implies:

d

dτ

(
e−Kτy(τ)

)
= −Ke−Kτy(τ) + e−Kτ

dy(τ)
dτ

≤ 0.

Since y(0) = 0 and y(τ) ≥ 0, it follows that y(τ) = 0 for all τ . Therefore P (τ, r) = 0 for
all τ ≥ 0, r ≥ 0 and hence P1 ≡ P2, as claimed.

Now let us derive inequality (14.6). Multiplying the equation by rωP, where ω > 0 and
2γ+ω−1 > 0 using the identity 1

2
d
dτ

∫∞
0 rωP 2dr =

∫∞
0 rωP∂τPdr, and integrating with

respect to r from 0 to infinity we obtain:1

1
2
d

dτ

∫ ∞

0
rωP 2 =

σ2

2

∫ ∞

0
r2γ+ω∂2

rPP +
∫ ∞

0
(α+ βr)rω∂rPP −

∫ ∞

0
rω+1P 2. (14.7)

1Henceforth, we shall omit the differential dr from the notation.
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First, we make use integration by parts for the following integrals from the above equa-
tion:
∫ ∞

0
r2γ+ωP∂2

rP = −(2γ + ω)
∫ ∞

0
r2γ+ω−1P∂rP −

∫ ∞

0
r2γ+ω(∂rP )2

=
1
2
(2γ + ω)(2γ + ω − 1)

∫ ∞

0
r2γ+ω−2P 2 −

∫ ∞

0
r2γ+ω(∂rP )2,

where we have used the identity
∫∞
0 rω+ξP∂rP = −ω+ξ

2

∫∞
0 rω+ξ−1P 2 valid for any

ω, ξ ≥ 0, ω + ξ > 0, and a function P satisfying the decay estimates from Definition 14.1.
Substituting this to (14.7), we end up with the identity

1
2
d

dτ

∫ ∞

0
rωP 2 =

σ2

4
(2γ + ω)(2γ + ω − 1)

∫ ∞

0
r2γ+ω−2P 2 − σ2

2

∫ ∞

0
r2γ+ω(∂rP )2

− αω

2

∫ ∞

0
rω−1P 2 − (ω + 1)β

2

∫ ∞

0
rωP 2 −

∫ ∞

0
rω+1P 2. (14.8)

Case 1: γ = 1
2 and 2α ≥ σ2. In the case of CIR model (γ = 1

2 ) we recall that the
condition 2α ≥ σ2 is very well understood as it almost surely guarantees the strict positivity
of the stochastic processes rt, t ≥ 0, satisfying the stochastic differential equation: dr =
(α+ βr) dt+ σ

√
rdw (see e.g., [75]).

Subcase 1a: 2α > σ2. We use the identity (14.8) with γ = 1/2 and ω = 2α
σ2 − 1 > 0

to obtain the desired inequality (14.6) with K = (ω + 1)β.

Subcase 1b: 2α = σ2. Using the identity (14.8) with ω = 0 (or simply by multiplying
the PDE with P and integrating over (0,∞)) we obtain the inequality (14.6) with K = β.

Case 2: γ ∈ (
1
2 , 1

)
. We use equation (14.7) with ω = 2 and estimate the integral∫∞

0 r2γP 2 by using Hölder’s inequality:

∫ ∞

0
r2γP 2 =

∫ ∞

0

(
r4γ−2P 4γ−2

) (
r2−2γP 4−4γ

) ≤
(∫ ∞

0
r2P 2

)2γ−1 (∫ ∞

0
rP 2

)2−2γ

.

Now it follows from the Young’s inequality ab ≤ 1
pεpap+ 1

q ε
qbq valid for p, q ≥ 1, 1

p + 1
q =

1, that for any ε > 0 we obtain

∫ ∞

0
r2γP 2 ≤ (2γ − 1)

(
1
ε

) 1
2γ−1

∫ ∞

0
r2P 2 + (2− 2γ)ε

1
2γ−2

∫ ∞

0
rP 2.

Again using (14.8) with ω = 2 and the above estimate we obtain

1
2
d

dτ

∫ ∞

0
r2P 2 ≤ σ2

2
(γ + 1)(2γ + 1)

∫ ∞

0
r2γP 2 − α

∫ ∞

0
rP 2 − 3β

2

∫ ∞

0
r2P 2

≤ K

∫ ∞

0
r2P 2 +

(
σ2(γ + 1)(2γ + 1)(1− γ)ε

1
2−2γ − α

)∫ ∞

0
rP 2.
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whereK = σ2

2 (γ+1)(2γ+1)(2γ−1)
(

1
ε

) 1
2γ−1 − 3β

2 . By choosing ε > 0 sufficiently small

such that σ2(γ + 1)(2γ + 1)(1− γ)ε 1
2−2γ −α < 0, we finally obtain the desired inequality

1
2
d
dτ

∫∞
0 r2P 2 ≤ K

∫∞
0 r2P 2.

Case 3: γ = 1. We again use equation (14.8) with ω = 2. We obtain (14.6) with
K = 3(2σ2 − β).

Case 4: γ ∈ (
1, 3

2

)
. Similarly as in the case 1

2 < γ < 1 we make use of the Hölder
inequality. We obtain:

∫ ∞

0
r2γP 2 =

∫ ∞

0

(
r6−4γP 6−4γ

) (
r6γ−6P 4γ−4

) ≤
(∫ ∞

0
r2P 2

)3−2γ (∫ ∞

0
r3P 2

)2γ−2

and, by Young’s inequality, we have, for any ε > 0,

∫ ∞

0
r2γP 2 ≤ (3− 2γ)

(
1
ε

) 1
3−2γ

∫ ∞

0
r2P 2 + (2γ − 2)ε

1
2γ−2

∫ ∞

0
r3P 2.

By (14.8) with ω = 2 we have

1
2
d

dτ

∫ ∞

0
r2P 2 ≤ σ2

2
(γ + 1)(2γ + 1)

∫ ∞

0
r2γP 2 − 3β

2

∫ ∞

0
r2P 2 −

∫ ∞

0
r3P 2

≤ K

∫ ∞

0
r2P 2 +

(
σ2(γ + 1)(2γ + 1)(γ − 1)ε

1
2γ−2 − 1

)∫ ∞

0
r3P 2,

whereK = σ2

2 (γ+1)(2γ+1)(3−2γ)
(

1
ε

) 1
3−2γ − 3β

2 . By choosing ε > 0 sufficiently small

such that σ2(γ + 1)(2γ + 1)(γ − 1)ε
1

2γ−2 − 1 < 0 we end up with the desired inequality
1
2
d
dτ

∫∞
0 r2P 2 ≤ K

∫∞
0 r2P 2.

1.2. Error estimates for the approximate analytical solution

In this part we present derivation the order of accuracy for the approximative solution pro-
posed by Choi and Wirjanto in [25].

Theorem 14.3 ([114, Thm. 3]). Let P ap be the approximative solution given by (14.3) and
P ex be the exact bond price given as a unique complete solution to (14.2). Then

lnP ap(τ, r)− lnP ex(τ, r) = c5(r)τ5 + o(τ5)

as τ → 0+, where

c5(r) = − 1
120

γr2(γ−2)σ2
[
2α2(−1 + 2γ)r2 + 4β2γr4 − 8r3+2γσ2

+2β(1− 5γ + 6γ2)r2(1+γ)σ2 + σ4r4γ(2γ − 1)2(4γ − 3)
+2αr

(
β(−1 + 4γ)r2 + (2γ − 1)(3γ − 2)r2γσ2

)]
. (14.9)

Convergence is uniform with respect to r on compact subintervals [r1, r2] ⊂ (0,∞).
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Proof. Recall that the exact bond price P ex(τ, r) for the model (14.1) is given by a solution
of PDE (14.2). Let us define the following auxiliary function: fex(τ, r) = lnP ex(τ, r) .
Clearly, ∂τP ex = P ex∂τf

ex, ∂rP
ex = P ex∂rf

ex and ∂2
rP

ex = P ex
[
(∂rfex)

2 + ∂2
rf

ex
]
.

Hence the PDE for the function fex reads as follows:

−∂τfex +
1
2
σ2r2γ

[
(∂rfex)

2 + ∂2
rf

ex
]

+ (α+ βr)∂rfex − r = 0. (14.10)

Substitution of fap = lnP ap into equation (14.10) yields a nontrivial right-hand side
h(τ, r) for the equation for the approximative solution fap:

−∂τfap +
1
2
σ2r2γ

[
(∂rfap)

2 + ∂2
rf

ap
]

+ (α+ βr)∂rfap − r = h(τ, r). (14.11)

If we insert the approximate solution into (14.2) then, after long but straightforward calcu-
lations based on expansion of all terms into a Taylor series expansion in τ we obtain:

h(τ, r) = k4(r)τ4 + k5(r)τ5 + o(τ5), (14.12)

where the functions k4 and k5 are given by

k4(r) =
1
24
γr2(γ−2)σ2

[
2α2(−1 + 2γ)r2 + 4β2γr4 − 8r3+2γσ2

+2β(1− 5γ + 6γ2)r2(1+γ)σ2 + σ4r4γ(−3 + 16γ − 28γ2 + 16γ3)
+2αr

(
β(−1 + 4γ)r2 + (2− 7γ + 6γ2)r2γσ2

)]
, (14.13)

k5(r) =
γσ2

120
r2(−2+γ)

[
6α2β (−1 + 2γ) r2 + 12β3γr4 − 10(1− 2γ)2r1+4γσ4

+6β2σ2
(
1− 5γ + 6γ2

)
r2(1+γ)

+βr2γσ2
(
−10 (5 + 2γ) r3 + 3(1− 2γ)2 (−3 + 4γ) r2γσ2

)

+2αr
(

3β2 (−1 + 4γ) r2 + 3β
(
2− 7γ + 6γ2

)
r2γσ2

− 5 (−1 + 2γ) r1+2γσ2

)]
. (14.14)

Let us consider a function g(τ, r) = fap − fex. As (∂rg)
2 = (∂rfap)

2 − (∂rfex)
2 −

2∂rfex∂rg we have

−∂τg +
1
2
σ2r2γ

[
(∂rg)

2 +
(
∂2
rg

)]
+ (α+ βr)∂rg

=
{
−∂τfap +

1
2
σ2r2γ

[
(∂rfap)

2 + ∂2
rf

ap
]

+ (α+ βr)∂rfap
}

−
{
−∂τfex +

1
2
σ2r2γ

[
(∂rfex)

2 +
(
∂2
rf

ex
)]

+ (α+ βr)∂rfex
}

−σ2r2γ∂rf
ex∂rg .
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It follows from (14.10) and (14.11) that the function g satisfies the following PDE:

− ∂τg +
1
2
σ2r2γ

[
(∂rg)

2 + ∂2
rg

]
+ (α+ βr)∂rg

= h(τ, r)− σ2r2γ(∂rfex)(∂rg), (14.15)

where h(τ, r) satisfies (14.12). Let us expand the solution of (14.15) into a Taylor series
with respect to τ with coefficients depending on r. We obtain g(τ, r) =

∑∞
i=0 ci(r)τ

i =∑∞
i=ω ci(r)τ

i, i.e., the first nonzero term in the expansion is cω(r)τω. Then ∂τg =
ωcω(r)τω−1 + o(τω−1) and h(τ, r) = k4(r)τ4 + o(τ4) as τ → 0+. Here the term k4(r)
is given by (14.13). The remaining terms in (14.12) are of the order o(τω−1) as τ → 0+.
Hence −ωcω(τ) = k4(r)τ4 from which we deduce ω = 5 and c5(r) = −1

5k4(r). It means
that g(τ, r) = lnP ap(τ, r) − lnP ex(τ, r) = −1

5k4(r)τ5 + o(τ5) which completes the
proof.

Remark 14.1. The function c5(r) remains bounded as r → 0+ for the case of the CIR
model in which γ = 1/2 or for the case when γ ≥ 1. More precisely, limr→0+ c5(r) =
− σ2

120 for γ = 1/2. On the other hand, if 1/2 < γ < 1, then c5(r) becomes singular,
c5(r) = O(r2(γ−1)) as r → 0+.

Corollary 14.1. It follows from Theorem 14.3 that

1. the error in yield curves can be expressed as

Rap(τ, r)−Rex(τ, r) = −c5(r)τ4 + o(τ4) as τ → 0+;

2. the relative error2 of P is given by

P ap(τ, r)− P ex(τ, r)
P ex(τ, r)

= −c5(r)τ5 + o(τ5) as τ → 0+.

Convergence is uniform w. r. to r on compact subintervals [r1, r2] ⊂ (0,∞).

Proof. The first corollary follows from the formula R(τ, r) = − lnP (τ,r)
τ for calculating

yield curves. To prove the second statement we note that Theorem 14.3 gives lnP ap −
lnP ex = c5(r)τ5 + o(τ5). Hence P ap/P ex = ec5(r)τ5+o(τ5) = 1 + c5(r)τ5 + o(τ5) and
therefore Pap−P ex

P ex = −c5(r)τ5 + o(τ5).

Remark 14.2. For the CIR model with γ = 1/2 the term k4(r) defined in (14.13) can be
simplified to 1

24σ
2
[
αβ + r(β2 − 4σ2)

]
and hence

lnP apCIR(τ, r)− lnP exCIR(τ, r) = − 1
120

σ2
[
αβ + r(β2 − 4σ2)

]
τ5 + o(τ5)

as τ → 0+. Now convergence is uniform w. r. to r on compact subintervals [r1, r2] ⊂
[0,∞).

2In [25], this error is referred to as the relative mispricing.
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1.3. Improved higher order approximation formula

In this section we recall the main result of the paper [114] by Stehlı́ková and Ševčovič.
It follows from (14.3) that the term lnP ap(τ, r) − c5(r)τ5 is the higher order accurate
approximation of lnP ex when compared to the original approximation lnP ap(τ, r) ob-
tained by Choi and Wirjanto in [25]. Furthemore, we show, that it is even possible to com-
pute O(τ6) term and to obtain a new approximation lnP ap2(τ, r) such that the difference
lnP ap2(τ, r)− lnP ex(τ, r) is o(τ6) for small values of τ > 0.

Let P ex be the exact bond price in the model (14.1). Let us define an improved approx-
imation P ap2 by the formula

lnP ap2(τ, r) = lnP ap(τ, r)− c5(r)τ5 − c6(r)τ6, (14.16)

where lnP ap is given by (14.3), c5(τ) is given by (14.9) in Theorem 1 and

c6(r) =
1
6

(
1
2
σ2r2γc′′5(r) + (α+ βr)c′5(r)− k5(r)

)
,

where c′5 and c′′5 stand for the first and second derivative of c5(r) w. r. to r and k5 is defined
in (14.14).

Theorem 14.4 ([114, Thm. 4]). The difference between the higher order approxima-
tion lnP ap2 given by (14.16) and the exact solution lnP ex satisfies lnP ap2(τ, r) −
lnP ex(τ, r) = o(τ6) as τ → 0+. Convergence is uniform w. r. to r on compact subinter-
vals [r1, r2] ⊂ (0,∞).

Proof. We have to prove that g(τ, r) = c5(r)τ5+c6(r)τ6+o(τ6),where c5 and c6 are given
above. We already know the form of the coefficient c5 = c5(r). Consider the following
Taylor series expansions:

g(τ, r) =
∞∑

i=5

ci(r)τ i, h(τ, r) =
∞∑

i=4

ki(r)τ i, f(τ, r) =
∞∑

i=1

li(r)τ i.

The absolute term l0 is zero because fex(0, r) = lnP ex(0, r) = ln 1 = 0 for all r > 0.
Substituting power series into equation (14.15) and comparing coefficients of the order τ5

enables us to derive the identity:

−6c6(r) +
1
2
σ2r2γc′′5(r) + (α+ βr)c′5(r)− k5(r) = 0

and hence

c6(r) =
1
6

(
1
2
σ2r2γc′′5(r) + (α+ βr)c′5(r)− k5(r)

)
.

The term k5(r) given by (14.14) is obtained by computing the expansion of h.

The order of relative error of bond prices and order of error of interest rates for the new
higher order approximation can be derived similarly as in Corollary 14.1.
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Remark 14.3. It is not obvious how to obtain the next higher order terms of expansion
because the equations contain unknown coefficients li(r), i ≥ 1, of the logarithm of the
exact solution, which is not known explicitly.

Remark 14.4. In the case of the CIR model we have

cCIR5 (r) = − σ2

120
(
αβ + r(β2 − 4σ2)

)
, kCIR5 (r) =

βσ2

40
(
αβ + (β2 − 10σ2)r

)

and so

cCIR6 (r) =
σ2

360
(−2αβ2 + 17βσ2r − 2β3r + 2ασ2

)
.

Hence

lnP ap2CIR = lnP apCIR +
σ2

120
(
αβ + r(β2 − 4σ2)

)
τ5

− σ2

360
(−2αβ2 + 17βσ2r − 2β3r + 2ασ2

)
τ6

The theorem yields lnP ap2CIR(τ, r) − lnP exCIR(τ, r) = o(τ6). By computing the expansions
of both exact and this approximative solutions we finally obtain

lnP ap2CIR(τ, r) = lnP exCIR(τ, r)− σ2

5040

(
11αβ3 + 11β4r − 34αβσ2

−180β2rσ2 + 34rσ4

)
τ7 + o(τ7) as τ → 0+.

Convergence is uniform w. r. to r on compact subintervals [r1, r2] ⊂ [0,∞).

1.4. Comparison of approximations to the exact solution for the CIR model

In this section we present a comparison of the original and improved approximations in the
case of the CIR model where the exact analytic solution is known. We use the parameter
values from [25] and [114], i.e., α = 0.00315, β = −0.0555 and σ = 0.0894.

In Table 14.1 we show L∞ and L2− norms3 with respect to r of the difference lnP ap−
lnP ex and lnP ap2 − lnP ex where we considered r ∈ [0, 0.15]. We also compute the
experimental order of convergence (EOC) in these norms. Recall that the experimental
order of convergence gives an approximation of the exponent α of expected power law
estimate for the error ‖ lnP ap(τ, .) − lnP ex(τ, .)‖ = O(τα) as τ → 0+. The EOCi is
given by a ratio

EOCi =
ln(erri/erri+1)

ln(τi/τi+1)
, where erri = ‖ lnP ap(τi, .)− lnP ex(τi, .)‖p .

3Lp and L∞ norms of a function f defined on a grid with step h are given by ‖f‖p = (h
P |f(xi)|p)1/p

and ‖f‖∞ = max |f(xi)|.



276 Chapter 14

Table 14.1. The L∞ and L2− errors for the original lnP apCIR and improved lnP ap2CIR ap-
proximations. Source: Stehlı́ková and Ševčovič [114].

τ ‖ lnP ap − lnP ex‖∞ EOC ‖ lnP ap2 − lnP ex‖∞ EOC
1 2.774× 10−7 4.930 4.682× 10−10 7.039

0.75 6.717× 10−8 4.951 6.181× 10−11 7.029
0.5 9.023× 10−9 4.972 3.576× 10−12 7.004
0.25 2.876× 10−10 – 2.786× 10−14 –

τ ‖ lnP ap − lnP ex‖2 EOC ‖ lnP ap2 − lnP ex‖2 EOC
1 6.345× 10−8 4.933 9.828× 10−11 7.042

0.75 1.535 ×10−8 4.953 1.296× 10−11 7.031
0.5 2.061 ×10−9 4.973 7.492× 10−13 7.012

0.25 6.563 ×10−11 – 5.805× 10−15 –

Table 14.2. The L2− error with respect to r for large values of τ . Source: Stehlı́ková and
Ševčovič [114].

τ 1 2 5 10
‖ lnP ap − lnP ex‖2 6.345× 10−8 1.877× 10−6 1.427× 10−4 2.921× 10−3

‖ lnP ap2 − lnP ex‖2 9.828× 10−11 1.314× 10−8 8.798× 10−6 1.200× 10−3

In Table 14.2 and Fig. 14.1 we show the L2− error of the difference between the origi-
nal and improved approximations for larger values of τ . It turned out that the higher order
approximation P ap2 gives about twice better approximation of bond prices in the long time
horizon up to 10 years.

2. Mathematical analysis of the two-factor Vasicek Model

The remaining three sections of this chapter deal with qualitative and quantitative analysis
of bond prices and term structures in three popular two-factor models. First we analyze
the two-factor Vasicek model. Then we present qualitative analysis of the two-factor Cox-
Ingersoll-Ross model and, finally, the Fong-Vasicek model. In each of these particular
models we focus our attention to the analysis of averaged bond prices with respect to unob-
servable quantities of the models (e.g., the stochastic volatility.

We remind ourselves (see Chapters 7, 8) that in the two-factor Vasicek model, the short
rate is a modelled as a sum of two independent Ornstein-Uhlenbeck processes r1 and r2,
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Figure 14.1. The error ‖ lnP ap(τ, .) − lnP ex(τ, .)‖2 for the original approximation P ap

(dashed line) and the new approximation P ap2 (solid line). The horizontal axis is time τ to
maturity. Source: Stehlı́ková and Ševčovič [114].

where

dr1 = κ1(θ1 − r1)dt+ σ1dw1,

dr2 = κ2(θ2 − r2)dt+ σ2dw2.

According to the general result for two-factor interest rate models derived in Chapter 8, the
bond price P (τ, r1, r2) is then a solution to the following partial differential equation of
parabolic type:

− ∂P

∂τ
+

(
κ1(θ1 − r1)− λ̃1σ1

) ∂P

∂r1
+

(
κ2(θ2 − r2)− λ̃2σ2

) ∂P

∂r2

+
σ2

1

2
∂2P

∂r21
+
σ2

2

2
∂2P

∂r22
− (r1 + r2)P = 0, (14.17)

which holds for any r1, r2 ∈ (−∞,∞) and τ ∈ (0,∞). A solution P satisfies the initial
condition P (0, r1, r2) = 1 for each r1, r2 ∈ (−∞,∞). Here, λ̃1 and λ̃2 are market prices
of risk, corresponding to the factors r1 and r2. If these functions are chosen to be constant,
λ1 and λ2 respectively, the solution of the resulting PDE has the form

P (τ, r1, r2) = P1(τ, r1)P2(τ, r2), (14.18)

where Pi(τ) = Ai(τ)e−Bi(τ)r, i = 1, 2, are bond prices in the Vasicek model with respec-
tive parameters. This property is derived directly by inserting (14.18) into (14.17).

It follows from the form of a solution for bond prices (14.18) and the form of the bond
price in the one-factor Vasicek model that the term structure in the two-factor Vasicek model
is given by

R(τ, r1, r2) = −
(

lnA1

τ
+

lnA2

τ

)
+
B1

τ
r1 +

B2

τ
r2. (14.19)

Figures 14.2 and 14.3 show an example of a short rate process generated by the two-
factor Vasicek model and term structures in this model.
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Figure 14.2. The short rate process r generated by the two-factor Vasicek model (left) and
its components r1 and r2 (right).

Figure 14.3. Term structures in the two-factor Vasicek model.

2.1. Statistical properties of bond prices and interest rates

In practice, the components r1 and r2 of the short rate are not observable. An observable
quantity is just the short rate expressed as their sum r = r1+r2. Hence, we are interested in
the conditional distribution of P (τ, r1, r2) andR(τ, r1, r2) under the constraint r1+r2 = r,
where the distributions of r1 and r2 are assumed to be their limiting distributions.

The limiting distributions of both Ornstein-Uhlenbeck processes forming the two-factor
Vasicek model, are known to be normal distributions with density

fi(x) =
1√
2πσ̃2

i

e
− (x−θi)

2

2σ̃2
i , i = 1, 2, (14.20)

with σ̃2
i = σ2

i
2κi

(cf. [75]). Before deriving distributions of bond prices and interest rates, we
formulate a theorem about conditional distribution of normal distributions. The proof can
be found for example in [6].

Theorem 14.5 ([6, Thm. 4.12]). Let X and Y be random variables with normal distribu-
tionsN(µx, σ2

x) andN(µy, σ2
y) and let ρ be a correlation ofX and Y . Then the conditional
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distribution of Y subject to X = x is N
(
µy + ρ

σy

σx
(x− µx), σ2

y(1− ρ2)
)

.

Theorem 14.6. Consider the two-factor Vasicek model and the limiting distribution of the
factors r1 and r2. Then:

1. The conditional density of the interest rateR(τ, r1, r2), subject to the constraint r1 +
r2 = r, is given by

fR(x; τ, r) =
1√

2πσ2
R

e
− (x−µR)2

2σ2
R ,

where

µR = −
(

lnA1

τ
+

lnA2

τ

)
+

1
τ

[
B1θ1 +B2θ2 +

B1σ̃
2
1 +B2σ̃

2
2

σ̃2
1 + σ̃2

2

(r − (θ1 + θ2))
]
,

σ2
R =

1
τ2

(
B2

1 σ̃
2
1 +B2

2 σ̃
2
2

)(
1− (B1σ̃

2
1 +B2σ̃

2
2)

2

(σ̃2
1 + σ̃2

2)(B
2
1 σ̃

2
1 +B2

2 σ̃
2
2)

)
.

2. The conditional density of the bond price P (τ, r1, r2), subject to the constraint con-
dition r1 + r2 = r, is given by

fP (x) =
1
x

1√
2πσ2

P

e
− (ln x−µP )2

2σ2
P

for x > 0 and fP (x; τ, r) = 0 otherwise, where

µP = lnA1 + lnA2 −
(

(B1θ1 +B2θ2) +
B1σ̃

2
1 +B2σ̃

2
2

σ̃2
1 + σ̃2

(r − (θ1 + θ2))
)
,

σ2
P = (B2

1 σ̃
2
1 +B2

2 σ̃
2
2)

(
1− (B1σ̃

2
1 +B2σ̃

2
2)

2

(σ̃2
1 + σ̃2

2)(B
2
1 σ̃

2
1 +B2

2 σ̃
2
2)

)
.

It means that the distribution of interest rates is a normal distribution N(µR, σ2
R) and the

distribution of bond prices is lognormal with the logarithm of a bond price having a normal
distribution N(µP , σ2

P ).

Proof.

1. Since the term−
(

lnA1
τ + lnA2

τ

)
in (14.19) is constant with respect to r1, r2, we will

consider distribution of B1
τ r1 + B2

τ r2, subject to the condition r1 + r2 = r. Define

X = r1 + r2, Y =
B1

τ
r1 +

B2

τ
r2,
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Figure 14.4. Distribution of interest rates in the two-factor Vasicek model.

then

X ∼ N
(
θ1 + θ2, σ̃

2
1 + σ̃2

2

)
, Y ∼ N

(
B1

τ
θ1 +

B2

τ
θ2,

(
B1

τ

)2

σ̃2
1 +

(
B2

τ

)2

σ̃2
2

)
,

Corr(X,Y ) =
B1
τ σ̃

2
1 + B2

τ σ̃
2
2√

σ̃2
1 + σ̃2

2

√(
B1
τ

)2
σ̃2

1 +
(
B2
τ

)2
σ̃2

2

and the claim follows from the previous theorem 14.5.

2. We have shown that R ∼ N(µr, σ2
R). Hence −Rτ ∼ N(−µRτ, σ2

Rτ
2) and P =

e−Rτ has a lognormal distribution with parameters given as in the theorem. For a
density of a lognormal variable we refer to [6].

Fig. 14.4 shows examples of the distributions. With regard to the shape of distribution
function one can expect that the variance of interest rates decreases for large maturities. In
what follows, we will prove this property rigorously. Furthermore, we will give a condition
guaranteering a similar property for the variance of bond prices.

Theorem 14.7. Consider the limiting distribution of factors r1 and r2 given by (14.20).
Then:

1. The conditional variance V ar(R(τ, r1, r2)|r1 + r2 = r) of interest rates (for a fixed
r) converges to zero as time to maturity converges to infinity.
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2. If (
θ1 − σ1λ1

κ1
− σ2

1

2κ2
1

)
+

(
θ2 − σ2λ2

κ2
− σ2

2

2κ2
2

)
> 0 (14.21)

then the conditional variance V ar(P (τ, r1, r2)|r1 + r2 = r) of bond prices (for a
fixed r) converges to zero as time to maturity converges to infinity.

Remark 14.5. Recall that in the one-factor Vasicek model, in which R(τ, r) = − lnA(τ)
τ +

B(τ)
τ r, we have

lim
τ→∞R(τ, r) = lim

τ→∞−
lnA(τ)
τ

+
B(τ)
τ

r = θ − σλ

κ
− σ2

2κ2

(see Chapter 8). In the two-factor Vasicek model the limit of term structures can be ex-
pressed as:

lim
τ→∞R(τ, r1, r2) = lim

τ→∞−
lnA1(τ)

τ
− lnA2(τ)

τ
+
B1(τ)
τ

r1 +
B2(τ)
τ

r2 =

=
(
θ1 − σ1λ1

κ1
− σ2

1

2κ2
1

)
+

(
θ2 − σ2λ2

κ2
− σ2

2

2κ2
2

)
.

Hence the condition (14.21), which is needed in the proof of Theorem 14.7, means that the
limit of the term structures is positive.

Proof. We have already computed the variances. Therefore we only need to compute their
limits.

1. In the previous section we derived variance of the interest rate R. Functions B1 and
B2 have positive limits 1/κ1 and 1/κ2. Hence we obtain the expression

V ar(R(τ, r1, r2)|r1 + r2 = r)

=
1
τ2

(
B2

1 σ̃
2
1 +B2

2 σ̃
2
2

)(
1− (B1σ̃

2
1 +B2σ̃

2
2)

2

(σ̃2
1 + σ̃2

2)(B
2
1 σ̃

2
1 +B2

2 σ̃
2
2)

)
,

which converges to zero as τ →∞.

2. Since the bond price has a lognormal distribution with lnP ∼ N(µP , σ2
P ), its condi-

tional variance is (cf. [6])

V ar(P (τ, r1, r2)|r1 + r2 = r) = e2µP +σ2
P

(
eσ

2
P − 1

)
.

Notice that A1, A2 converge to zero if (14.21) is satisfied and B1, B2 have finite
limits as τ → ∞. Therefore we obtain µP → −∞ and σ2

P has a finite limit as
τ →∞. We conclude that the variance of P converges to zero.
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2.2. Averaged bond price, term structures and their confidence intervals

In this section we focus our attention on averaged values of bond prices and interest rates
for given short rate r, with respect to the conditional distribution of factor components r1,
r2 of the short rate. Moreover, we will analyze their confidence intervals.

Henceforth, we will use the following notation for averaged bond prices and interest
rates:

P̃ (τ, r) = 〈P (τ, r1, r2)|r1 + r2 = r〉,
R̃(τ, r) = 〈R(τ, r1, r2)|r1 + r2 = r〉.

Theorem 14.8 ([112]). Averaged values of bond prices and interest rates, with respect to
limit distributions of r1, r2, given that r1 + r2 = r, are

1. R̃(τ, r) = −
(

lnA1
τ + lnA2

τ

)
+ 1

τ

[
B1θ1 +B2θ2 + B1σ̃2

1+B2σ̃2
2

σ̃2
1+σ̃2

2
(r − (θ1 + θ2))

]
,

2. P̃ (τ, r) = Ã(τ)e−B̃(τ)r, where

Ã(τ) = A1A2 exp
(
− (B1 −B2)

(
θ1 − (θ1 + θ2)

σ̃2
1

σ̃2
1 + σ̃2

2

)

+
1
2

σ̃2
1σ̃

2
2

σ̃2
1 + σ̃2

2

(B1 −B2)2
)
,

B̃(τ) =
σ̃2

1

σ̃2
1 + σ̃2

2

B1 +
σ̃2

2

σ̃2
1 + σ̃2

2

B2 (14.22)

and Ai = Ai(τ), Bi = Bi(τ) are given by solutions Aie−Bir of the respective one-
factor Vasicek model, which were derived in Chapter 8.

Proof. We have already computed the averaged interest rate by means of the expected value
of the interest rate distribution. The formula for the averaged bond price follows from the
lognormal distribution for bond prices. For the expected value of a lognormal variable we
again refer the reader to the book [6].

It follows from Theorem 14.5 that the conditional distribution of r1, subject to r1+r2 =
r, is normal N(µc, σ2

c ) with parameters

µc = θ1 +
σ̃2

1

σ̃2
1 + σ̃2

2

(r − (θ1 + θ2)), σ2
c =

σ̃2
1σ̃

2
2

σ̃2
1 + σ̃2

2

.

Then the p×100% confidence interval (rl1, r
u
1 ) for r1 can be constructed. We conclude that

P (τ, r1, r − r1) = A1A2e
−B2r−(B1−B2)r1 ,

R(τ, r1, r − r1) = −
(

lnA1

τ
+

lnA2

τ

)
+

(
B1

τ
− B2

τ

)
r1 +

B2

τ
r,
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Figure 14.5. Averaged values (blue) and confidence intervals (red) for bond prices and
interest rates in the two-factor Vasicek model.

are monotone functions of r1 for fixed values of τ and r. Hence P (τ, rl1, r − rl1) and
P (τ, ru1 , r − ru1 ) are boundaries of the region, where the real bond price curve belongs to
with a probability p. Similarly, R(τ, rl1, r − rl1) and R(τ, ru1 , r − ru1 ) are boundaries of the
confidence interval for term structures. Fig. 14.5 shows averaged values and confidence
intervals constructed in this way.

2.3. Relation of averaged bond prices to solutions of one-factor models

Averaged values, computed in the previous section, are functions of the time to maturity τ
and the short rate r. It is a similar dependence as that of one-factor models. Therefore it
is natural question to study whether there exists a one-factor interest rate model such that
the averaged value P̃ (τ, r) satisfies the corresponding PDE for bond prices. We restrict
ourselves to interest rate models having the short rate r driven by the SDE:

dr = µ(r)dt+ σ(r)dw, (14.23)

such that the drift µ, volatility σ and market price of risk λ are time independent functions.

Theorem 14.9 ([112, Thm. 3.1]). Let us consider a class of one-factor models (14.23)
where functions µ, σ, λ depend only on r and not on time t. Then there is no such a one-
factor interest rate model for which the averaged bond prices from the two-factor Vasicek
model P̃ (τ, r) satisfy the PDE

−∂P
∂τ

+ (µ(r)− λ(r)σ(r)
∂P

∂r
+

1
2
σ(r)2

∂2P

∂r2
− rP = 0 (14.24)

for bond prices.

Proof. Suppose that the averaged bond priceP̃ (τ, r) is a solution of a one-factor model
bond valuation PDE (14.24). Substituting it to this PDE yields

−
˙̃A(τ)
Ã(τ)

+ ˙̃B(τ)r − (µ(r)− λ(r)σ(r))B̃(τ) +
1
2
σ2(r)B̃2(τ)− r = 0. (14.25)
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It follows that (µ(r)− λ(r)σ(r))B̃(τ)− 1
2σ

2(r)B̃(τ)2 is a linear function of r of the form

(µ− λσ)(r)B̃(τ)− 1
2
σ2(r)B̃(τ)2 = k1(τ) + k2(τ)r. (14.26)

Moreover, we show that the following stronger condition has to be satisfied:

σ2(r) = l1 + l2r, where l2 6= 0, (14.27)

µ(r)− λ(r)σ(r) = l3 + l4r, where l4 6= 0. (14.28)

It means that the terms µ(r)−λ(r)σ(r) and σ2(r) do not contain nonlinear terms that could
eventually vanish in (µ(r)−λ(r)σ(r))B̃(τ)− 1

2σ
2(r)B̃(τ)2. Then we obtain the equation

(
−

˙̃A(τ)
Ã(τ)

− l3B̃(τ) +
1
2
l1B̃

2(τ)

)
+ r

(
˙̃B(τ)− l4B̃(τ) +

1
2
l2B̃(τ)− 1

)
= 0.

Thus, the equation for B̃ reads as follows:

˙̃B(τ) = 1−
(

1
2
l2 − l4

)
B̃(τ),

B̃(0) = 0

with l2, l4 6= 0. This is an equation of the same form as the one appearing in the Cox-
Ingersoll-Ross model and its solution is known in a closed form and it is given in Chapter
8. However, the function

B̃(τ) =
σ̃2

1

σ̃2
1 + σ̃2

2

B1(τ) +
σ̃2

2

σ̃2
1 + σ̃2

2

B2(τ) = c0 + c1e
−κ1τ + c2e

−κ2τ

for some constants c0, c1 and c2, is not a function of this type.
To finish the proof, we prove (14.27) and (14.28). First, we write the PDE in terms of

B1(τ) and B2(τ) only, i.e.

−B1(τ)
(
λ1σ1 − κ1(θ1 + θ2)

σ̃2
1

σ̃2
1 + σ̃2

2

)
−B1(τ)2

(
1
2
σ2

1 − κ1σ
2
c

)

−B2(τ)
(
λ2σ2 − κ2θ2 − κ2

(
θ1 − (θ1 + θ2)

σ2
1

σ̃2
1 + σ̃2

2

))
−B2

2(τ)
(

1
2
σ2

2 − κ2σ
2
c

)

− (
σ2
c (κ1 + κ2)B1(τ)B2(τ)

)
+

(
−κ1

σ̃2
1

σ̃2
1 + σ̃2

2

B1(τ)− κ2
σ̃2

2

σ̃2
1 + σ̃2

2

B2(τ)
)
r

+
1
2
σ2(r)

(
σ̃2

1

σ̃2
1 + σ̃2

2

B1(τ) +
σ̃2

2

σ̃2
1 + σ̃2

2

B2(τ)
)2

−(µ− λσ)(r)
(

σ̃2
1

σ̃2
1 + σ̃2

2

B1(τ) +
σ̃2

2

σ̃2
1 + σ̃2

2

B2(τ)
)

= 0.
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The equality holds for all r and τ > 0. Consequently, the derivative of the left hand side
with respect to τ is identically zero and its limit as τ → 0+ is zero, too. It yields

−
[(
λ1σ1 − κ1(θ1 + θ2)

σ̃2
1

σ̃2
1 + σ̃2

2

)
+

(
λ2σ2 − κ2θ2 − κ2

(
θ1 − (θ1 + θ2)

σ̃2
1

σ̃2
1 + σ̃2

2

))]

+
[
−κ1

σ̃2
1

σ̃2
1 + σ̃2

2

− κ2
σ̃2

2

σ̃2
1 + σ̃2

2

]
r − (µ(r)− λ(r)σ(r)) = 0.

The proof of proposition (14.27) now follows, with

l4 = −κ1
σ̃2

1

σ̃2
1 + σ̃2

2

− κ2
σ̃2

2

σ̃2
1 + σ̃2

2

. (14.29)

Hence σ2(r) is also a linear function of the form l1 + l2r, as claimed in (14.28). What
remains to show is that l2 6= 0. From (14.25) we can see that the linear coefficient k2(τ) of
(µ(r)− λ(r)σ(r))B̃(τ)− 1

2σ
2(r)B̃(τ)2 in (14.26) is given by

k2(τ) = ˙̃B(τ)− 1 = −κ1
σ̃2

1

σ̃2
1 + σ̃2

2

− κ2
σ̃2

2

σ̃2
1 + σ̃2

2

. (14.30)

From (14.29) we obtain that the linear coefficient in (µ(r)− λ(r)σ(r))B̃(τ) is equal to
(
−κ1

σ̃2
1

σ̃2
1 + σ̃2

2

− κ2
σ̃2

2

σ̃2
1 + σ̃2

2

)(
σ̃2

1

σ̃2
1 + σ̃2

2

B1(τ) +
σ̃2

2

σ̃2
1 + σ̃2

2

B2(τ)
)
.

But it has a different form when compared to (14.30). Hence, the linear coefficient in σ2(r)
is not zero, which finishes the proof.

3. The two-factor Cox Ingersoll Ross model

In the two-factor CIR model, the short rate is assumed to be a sum of two independent
Bessel square root processes r1 and r2:

dr1 = κ1(θ1 − r1)dt+ σ1
√
r1dw1,

dr2 = κ2(θ2 − r2)dt+ σ2
√
r2dw2.

According to a general form of the bond pricing PDE derived in Chapter 8, the bond price
P (τ, r1, r2) is a solution to the following partial differential equation

−∂P
∂τ

+
(
κ1(θ1 − r1)− λ̃1σ1

√
r1

) ∂P

∂r1
+

(
κ2(θ2 − r2)− λ̃2σ2

√
r2

) ∂P

∂r2

+
σ2

2
r1
∂2P

∂r21
+
σ2

2

2
r2
∂2P

∂r22
− (r1 + r2)P = 0, (14.31)
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which holds for r1, r2 ∈ (0,∞) and τ ∈ (0,∞). A solution P is subject to the initial
condition P (0, r1, r2) = 1 for all r1, r2 > 0. Here, λ̃1 and λ̃2 are market prices of risk,
corresponding to each of the factors r1 and r2. If these functions are chosen to be propor-
tional to

√
r1 and

√
r2, i.e., λ̃1 = λ1

√
r1 and λ̃2 = λ2

√
r2 for some constants λ1 and λ2,

the solution of the resulting PDE has the form

P (τ, r1, r2) = P1(τ, r1)P2(τ, r2), (14.32)

where Pi(τ, ri) = Ai(τ)e−Bi(τ)ri , i = 1, 2, are bond prices in the CIR model with corre-
sponding parameters (indexed by 1 and 2) derived in Chapter 8. This can be easily shown
by inserting (14.32) into (14.31).

To simplify further notation we define A = A1A2. Then the bond price is given by

P (τ, r1, r2) = A(τ)e−B1(τ)r1−B2(τ)r2 (14.33)

and interest rate by

R(τ, r1, r2) = − lnA(τ)
τ

+
B1(τ)
τ

r1 +
B2(τ)
τ

r2. (14.34)

A typical decomposition of the short rate is similar as in the case of the two-factor
Vasicek model discussed in the previous section. Let us note that a simulation of trajectories
can be performed using the exact transition density, which is a multiple of the noncentral
χ2 distribution. An algorithm for generating random numbers from this distribution can be
found for example in [56].

3.1. Distribution of bond prices and interest rates

Similarly, as in the case of the two-factor Vasicek model, we consider the limiting distri-
bution of r1 and r2. Distributions of the variables will then be considered with respect to
these limit distributions and the constraint condition on the observable short rate given by
their sum. The limiting distribution for CIR processes

dri = κi(θi − ri)dt+ σi
√
ridwi, i = 1, 2,

is known to be (see e.g., [75]) the gamma distribution Γ(ai, bi) with parameters

ai =
2κi
σi
, bi =

2κi
σi
θi

and the corresponding densities

fi(x) =
abii

Γ(bi)
e−aixxbi−1, for x > 0 (14.35)

and fi(x) = 0 otherwise.
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Theorem 14.10. Let us consider the limiting gamma distribution of two factors r1 and r2
given as in (14.35). Then:

1. The density function of the interest rate with maturity τ subject to a given level of
short rate r = r1 + r2 is

fR(x) =
g1(r̃)g2(r − r̃)∫ r

0 g1(r1)g2(r − r1)dr1

1
|B2(τ)−B1(τ)| , (14.36)

with

r̃ =
τx− (− lnA(τ) +B2(τ)r)

B1(τ)−B2(τ)

for x between values − 1
τ lnA(τ) + 1

τB1(τ)r and − 1
τ lnA(τ) + 1

τB2(τ)r and
fR(x) = 0 otherwise.

2. The density function of the bond price with a maturity τ subject to the given level of
short rate r = r1 + r2 is

fP (x) =
1
τx
fR

(
−1
τ

lnx
)
, (14.37)

where fR is the density function of the interest rate given by (14.36).

Proof. The conditional density of r1, subject to r1 + r2 = r, is

f(r1, r) =
f1(r1)f2(r − r1)∫ r
0 f1(s)f2(r − s)ds

. (14.38)

Now, we recall that if r1 + r2 = r, then the interest rate R(τ, r1, r2) can be written as
− 1
τ lnA(τ) + 1

τB2(τ)r + 1
τ (B1(τ) − B2(τ))r1. Furthemore, we know that r1 belongs

to the interval (0, r1). Now, we consider two cases, depending on the sign of the term
B1(τ)−B2(τ).

Case 1: B1(τ)−B2(τ) > 0.
In this case, the minimal possible value of R is − 1

τ lnA(τ) + 1
τB2(τ)r and the maxi-

mal possible value is − 1
τ lnA(τ) + 1

τB1(τ)r. For x from the interval (− 1
τ lnA(τ) +

1
τB2(τ)r,− 1

τ lnA(τ) + 1
τB1(τ)r), the distribution function of R is given by

FR(x) = Prob(R < x) =

∫
r1∈(0,r)

R(τ,r1,r−r1)<x

g1(r1)g2(r − r1)dr1
∫
r1∈(0,r) g1(r1)g2(r − r1)dr1

.

The condition R(τ, r1, r − r1) < x can be rewritten in the form r1 < r̃, where

r̃ =
τx− (− lnA(τ) +B2(τ)r)

B1(τ)−B2(τ)
. (14.39)
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Because x ∈ (− 1
τ lnA(τ) + 1

τB2(τ)r, − 1
τ lnA(τ) + 1

τB1(τ)r), this quantity r̃ belongs to
the interval (0, r). Hence the distribution function F can be written as

FR(x) =

∫ r̃
0 g1(r1)g2(r − r1)dr1∫ r
0 g1(r1)g2(r − r1)dr1

and we obtain the density by taking the derivative

fR(x) = F ′R(x) =
g1(r̃)g2(r − r̃)∫ r

0 g1(r1)g2(r − r1)dr1

dr̃

dx

=
g1(r̃)g2(r − r̃)∫ r

0 g1(r1)g2(r − r1)dr1

τ

B1(τ)−B2(τ)
.

Case 2: B1(τ)−B2(τ) < 0.
In this case, the minimal possible value of R is equal to − 1

τ lnA(τ) + 1
τB1(τ)r and

the maximal possible value is equal to − 1
τ lnA(τ) + 1

τB2(τ)r. For x from the interval
(− 1

τ lnA(τ) + 1
τB1(τ)r,− 1

τ lnA(τ) + 1
τB2(τ)r) we compute the distribution function F

in the same way as before:

FR(x) =

∫ r̃
0 g1(r1)g2(r − r1)dr1∫ r
0 g1(r1)g2(r − r1)dr1

=

∫ r
r̃ g1(r1)g2(r − r1)dr1∫ r
0 g1(r1)g2(r − r1)dr1

,

where

r̃ =
xτ − (− lnA(τ) +B2(τ)r)

B1(τ)−B2(τ)
(14.40)

belongs to the interval (0, r). Taking the derivative with respect to x we obtain the density
function:

fR(x) = F ′R(x) = − g1(r̃)g2(r − r̃)∫ r
0 g1(r1)g2(r − r1)dr1

dr̃

dx

=
g1(r̃)g2(r − r̃)∫ r

0 g1(r1)g2(r − r1)dr1

τ

B2(τ)−B1(τ)
. (14.41)

Comparing (14.39) and (14.40) we see that, in the both cases, the quantity r̃ entering the
formula for the density function is the same.

Similarly as in the case of the two-factor Vasicek model, we are able to prove a theorem
on the limit of variance for τ approaching infinity. For the proof of the next theorem we
need the following lemma.

Lemma 14.1. Consider a family of the random variables Xτ , τ > 0, with densities fτ ,
means µτ and variances σ2

τ . Suppose thatXτ takes values from the interval (aτ , bτ ), where
(bτ − aτ ) → 0 as τ →∞. Then σ2

τ → 0 as τ →∞.
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Proof. Since Xτ takes values only in the interval (aτ , bτ ), so does the mean value µτ ∈
(aτ , bτ ). The variance is given by

σ2
τ = E

(
(Xτ − µτ )2

)
=

∫ bτ

aτ

(x− µτ )2fτ (x)dx.

By the mean value theorem in the integral form, we have

σ2
τ = (ξτ − µτ )2

∫ bτ

aτ

fτ (x)dx = (ξτ − µτ )2

for some ξτ ∈ (aτ , bτ ). Since both ξτ and µτ belong to (aτ , bτ ), we have

σ2
τ = (ξτ − µτ )2 < (bτ − aτ )2.

If bτ − aτ converges to zero as τ → ∞, then the variance σ2
τ also converges to zero as

τ →∞.

Now we can state our next result regarding convergence the conditional variances.

Theorem 14.11. The conditional variance of both interest rates R(τ, r1, r2|r1 + r2 = r)
and bond prices P (τ, r1, r2|r1 + r2 = r) converges to zero for a fixed r as τ →∞.

Proof. The proof is based on the intervals of possible values of interest rates and bond
prices for different maturities. According to the previous lemma, it suffices to show that the
lengths in the intervals of interest rate and bonds values converge to zero. Let us denote the
interval of interest rates by (aτ , bτ ). Then the interval of bond values is (e−bτ τ , e−aτ τ ). We
show that aτ and bτ have the same positive limit, from what it follows that both bτ −aτ and
e−bτ τ − eaτ τ converge to zero.

First, we note the that for functionsAcir(τ) andBcir(τ) from the one-factor CIR model
we have:

lim
τ→∞Bcir(τ) = lim

τ→∞
2(eγτ − 1)

2γ + (κ+ λ+ γ)(eγτ − 1)
=

2
κ+ λ+ γ

,

because κ+ λ+ γ = (κ+ λ) +
√

(κ+ λ)2 + 2σ2 6= 0, for σ 6= 0. Using l’Hospital’s rule
we compute the limit

lim
τ→∞

1
τ

logAcir(τ) = lim
τ→∞

2κθ
σ2

1
τ

log

(
2γe

1
2
(κ+λ+γ)τ

2γ + (κ+ λ+ γ)(eγθ − 1)

)
=
κθ

σ2
(κ+ λ− γ).

Now, it follows that for the two-factor CIR model we have

lim
τ→∞−

1
τ

lnA(τ) = lim
τ→∞−

1
τ

lnA1(τ)− 1
τ

lnA2(τ)

= −κ1θ1
σ2

1

(κ1 + λ1 − γ1)− κ2θ2
σ2

2

(κ2 + λ2 − γ2) > 0
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and
lim
τ→∞

1
τ
Bi(τ) = 0, for i = 1, 2.

Hence both − 1
τ lnA(τ) + 1

τB1(τ) and − 1
τ lnA(τ) + 1

τB2(τ) converge to same positive
limit. Since aτ and bτ take values of − 1

τ lnA(τ) + 1
τB1(τ)r and − 1

τ lnA(τ) + 1
τB2(τ)r,

our claim is proved.

3.2. Averaged bond prices, term structures and their confidence intervals

In this section we will show that the averaged bond price for the two-factor CIR model
can be expressed in terms of the so-called Kummer hypergeometric function. Therefore,
before stating our results regarding averaged bond prices and term structures, we need to
recall the definition and basic properties of the Kummer hypergeometric function 1F1 (cf.
Abramowitz and Stegun [1]). The function 1F1 defined as a parametric integral:

1F1(a, b, z) =
Γ(b)

Γ(b− a)Γ(a)

∫ 1

0
eztta−1(1− t)b−a−1dt.

Next we remind ourselves two useful properties of the Kummer confluent hypergeometric
function 1F1 (cf. [1, (13.2.1-2)]). They will be used in the proof of Theorem 14.13.

The following equality holds:
∫ r

0
e−axxb−1(r − x)cdx = rb+c

Γ(b)Γ(1 + c)
Γ(1 + b+ c) 1F1(b, 1 + b+ c,−ar).

The first terms in power series expansion of 1F1(a, b, z) are given by:

1F1(a, b, z) = 1 +
a

b
z +

a(a+ 1)
b(b+ 1)

z2 +
a(a+ 1)(a+ 2))
b(b+ 1)(b+ 2)

z3 + . . . .

Now we can turn back to the problem of averaging the bond prices and term structures
in the two-factor CIR model. Similarly, as in the case of the two-factor Vasicek model, we
introduce the notation for the averaged bond price and interest rate:

P̃ (τ, r) = 〈P (τ, r1, r2)|r1 + r2 = r〉,
R̃(τ, r) = 〈R(τ, r1, r2)|r1 + r2 = r〉.

In the next theorem we explicitly compute these averaged value.

Theorem 14.12 ([113]). The averaged bond price with respect to the limiting distributions
of the processes r1, r2 given by (14.35) subject to the constraint r1 + r2 = r is given by

P̃ (τ, r) = Ae−Br 1F1(b1, b1 + b2,−((B1 −B2) + (a1 − a2)r))
1F1(b1, b1 + b2,−(a1 − a2)r)

, (14.42)

where A = A1(τ)A2(τ), Bi = Bi(τ), i = 1, 2, are given by bond prices Pi(τ) =
Ai(τ)e−Bi(τ)r, i = 1, 2, in one-factor CIR model, derived in Chapter 8.
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The averaged interest rate with respect to limiting distributions of the processes r1, r2
given by (14.35) subject to r1 + r2 = r is given by

R̃(τ, r) = − lnA
τ

+
B2

τ
r +

(
B1

τ
− B2

τ

)
r

b1
b1 + b2

1F1(b1, b1 + b2 + 1,−(a1 + a2)r)
1F1(b1, b1 + b2,−(a1 + a2)r)

,

where A = A1(τ)A2(τ), Bi = Bi(τ), i = 1, 2, are given by bond prices Pi(τ) =
Ai(τ)e−Bi(τ)r, i = 1, 2, in one-factor CIR model, derived in Chapter 8.

Proof. First, we write the denominator appearing in the expression (14.38) for the density
function f(r1, r) and the density itself in a form which will be useful later. Using the
definition of the Kummer hypergeometric function and the previous lemma we obtain:

M(r) :=
∫ r

0
f1(r1)f2(r−r1)dr1 =

ab11 a
b2
2

Γ(b1 + b2)
e−a2rrb1+b2−1

1F1(b1, b1+b2,−(a1−a2)r).

Substituting it into the density function yields

f(r1, r) =
1

M(r)
f1(r1)f2(r − r1)

=
1

1F1(b1, b1 + b2,−(a1 − a2)r)
Γ(b1 + b2)
Γ(b1)Γ(b2)

e−(a1−a2)r1rb1−1
1 (r − r1)b2−1

rb1+b2−1
.

Now, we can compute the expected values of bond prices and interest rates. Substituting
(14.43) into the expression for the averaged bond price gives

P̃ (τ, r) =
∫ r

0
P (τ, r1, r − r1)f(r1, r)dr1

= Ae−Br 1F1(b1, b1 + b2,−((B1 −B2) + (a1 − a2)r))
1F1(b1, b1 + b2,−(a1 − a2)r)

. (14.43)

As far as the term structure R is concerned, we obtain

R(τ, r1, r2|r1 + r2 = r) = − lnA
τ

+
B2

τ
r +

(
B1

τ
− B2

τ

)
r1,

we need to compute the expected value of r1. Substituting the density f(r1, r) yields

〈r1〉 =
∫ r

0
r1

f1(r1)f2(r − r1)∫ r
0 f1(s)f2(r − s)ds

dr1

= r
b1

b1 + b2

1F1(b1, b1 + b2 + 1,−(a1 + a2)r)
1F1(b1, b1 + b2,−(a1 + a2)r)

.

Since for a given r, the bond prices and interest rates are monotone functions of r1, we
can construct confidence intervals following the same methodology as in the case of the
two-factor Vasicek model.
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3.3. Relation of averaged bond prices to solutions of one-factor interest rate
models

Before stating the main theorem concerning the relationship between averaged bond prices
from the two-factor CIR model and solutions to general one-factor models, we derive sev-
eral usefull properties of the averaging operator.

Theorem 14.13 ([113, Theorem 3.1]). Consider the averaged bond prices P̃ (τ, r) from the
previous section. They have the following properties:

1. P̃ (τ, r) → A(τ) as r → 0,

2. ∂P̃
∂τ (τ, r) → Ȧ(τ) as r → 0,

3. ∂P̃
∂r (τ, r) → −A(τ)

(
b1

b1+b2
B1(τ) + b2

b1+b2
B2(τ)

)
as r → 0,

4. ∂2P̃
∂r2

(τ, r) is bounded on the neighborhood of r = 0.

Proof.
1) Since both denominator and numerator of the fraction in (14.43) converge to the unity as
r → 0, we have

lim
r→0

P̃ (τ, r) = A(τ).

2) We compute the derivative of P̃ with respect to τ :

∂P̃

∂τ
=

∫ r

0

∂P

∂τ
(τ, r1, r − r1)f(r1, r)dr1 =

=

[(
Ȧ

A
− Ḃ2r

)
− (Ḃ1 − Ḃ2)

∫ r
0 r1P (τ, r1, r − r1)f(r1, r)dr1∫ r
0 P (τ, r1, r − r1)f(r1, r)dr1

]
P̃ . (14.44)

The numerator of the last fraction in (14.44) is positive for all r > 0 and can be bounded
from above by r

∫ r
0 P (τ, r1, r− r1)f(r1, r)dr1. Hence the fraction is positive and bounded

from above by r, which implies that it converges to zero as r → 0. Since we already know
that P̃ (τ, r) → A(τ) for r → 0, we obtain from (14.44) that

lim
r→0

∂P̃

∂τ
(τ, r) = Ȧ(τ).

3) By computing the derivative ∂P̃
∂r we obtain

∂P̃

∂r
=

∫ r

0

∂P

∂r
(τ, r1, r − r1)f(r1, r) + P (τ, r1, r − r1)

∂f

∂r
(r1, r)dr1. (14.45)
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There are two derivatives that have to be computed: ∂P
∂r and ∂f

∂r . Now, we evaluate these
expressions. First,

∂P

∂r
(τ, r1, r − r1) = −B2(τ)P (τ, r1, r − r1). (14.46)

Secondly,

∂f

∂r
(r1, r) =

f1(r1)f ′2(r − r1)
M(r)

− f1(r1)f2(r − r1)
M2(r)

M ′(r)

= f(r1, r)
[
f ′2(r − r1)
f2(r − r1)

−
∫ r
0 f1(s)f ′2(r − s)ds∫ r
0 f1(s)f2(r − s)ds

]
. (14.47)

Notice that
f ′2(x)
f2(x)

= −a2 + (b2 − 1)
1
x

and using it in (14.47) enables us to conclude

∂f

∂r
(r1, r) = f(r1, r)(b2 − 1)

[
1

r − r1
−

∫ r
0

1
r−sf1(s)f2(r − s)ds∫ r
0 f1(s)f2(r − s)ds

]
. (14.48)

Substituting (14.46) and (14.48) into (14.45) we obtain, after some rearrangements,

∂P̃

∂r
=

[
−B2 + (b2 − 1)

(∫ r
0

1
r−r1π(τ, r1, r − r1)f(r1, r)dr1∫ r
0 π(τ, r1, r − r1)f(r1, r)dr1

−
∫ r
0

1
r−r1 f1(r1)f2(r − r1)dr1∫ r
0 f1(r1)f2(r − r1)dr1

)]
P̃ . (14.49)

Let us denote

X1 =

∫ r
0

1
r−r1π(τ, r1, r − r1)f(r1, r)dr1∫ r
0 π(τ, r1, r − r1)f(r1, r)dr1

, X2 =

∫ r
0

1
r−r1 f1(r1)f2(r − r1)dr1∫ r
0 f1(r1)f2(r − r1)dr1

.

With this notation we have

∂P̃

∂r
= [−B2 + (b2 − 1) (X1 −X2)] P̃ . (14.50)

Next we rewrite each of the expressionsX1 andX2 in terms of the Kummer hypergeometric
functions 1F1:

X1 =
1
r

b1 + b2 − 1
b2 − 1

1F1(b1, b1 + b2 − 1,−((B1 −B2) + (a1 − a2)r))
1F1(b1, b1 + b2,−((B1 −B2) + (a1 − a2)r))

(14.51)

and, in a similar way,

X2 =
1
r

b1 + b2 − 1
b2 − 1

1F1(b1, b1 + b2 − 1,−(a1 − a2)r)
1F1(b1, b1 + b2,−(a1 − a2)r)

. (14.52)



294 Chapter 14

Hence

X1 −X2 =
1
r

b1 + b2 − 1
b2 − 1

[
G1

G2
− G3

G4

]
,

where we have denoted

G1 = 1F1(b1, b1 + b2 − 1,−((B1 −B2) + (a1 − a2))r),
G2 = 1F1(b1, b1 + b2,−((B1 −B2) + (a1 − a2))r),
G3 = 1F1(b1, b1 + b2 − 1,−(a1 − a2)r),
G4 = 1F1(b1, b1 + b2,−(a1 − a2)r). (14.53)

Because G2G4 → 1 as r → 0, we need to compute G1G4 − G2G3 in order to be able to
compute the limit of (14.49). Since

G1 = 1− b1
b1 + b2 − 1

((B1 −B2) + (a1 − a2))r + o(r),

G2 = 1− b1
b1 + b2

((B1 −B2) + (a1 − a2))r + o(r),

G3 = 1− b1
b1 + b2 − 1

(a1 − a2)r + o(r),

G4 = 1− b1
b1 + b2

(a1 − a2)r + o(r), (14.54)

as r → 0, we have

G1G4 −G2G3 = r

(
− b1
b1 + b2 − 1

+
b1

b1 + b2

)
+ o(r) (14.55)

as r → 0. Hence

X1 −X2 =
b1 + b2 − 1
b2 − 1

1
G2G4

[
(B1 −B2)

(
− b1
b1 + b2 − 1

+
b1

b1 + b2

)
+
o(r)
r

]

and

lim
r→0

X1 −X2 =
b1 + b2 − 1
b2 − 1

(B1 −B2)
(
− b1
b1 + b2 − 1

+
b1

b1 + b2

)
.

Finally, we can compute the limit of (14.49)

lim
r→0

∂P̃

∂r
(τ, r) = lim

r→0
[−B2 + (b2 − 1) (X1 −X2)] P̃

= A

[
−B2 + (b1 + b2 − 1)(B1 −B2)

(
− b1
b1 + b2 − 1

+
b1

b1 + b2

)]

= −A
[

b1
b1 + b2

B1 +
b2

b1 + b2
B2

]
.
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4) We show that there is a finite limit of ∂2P̃
∂r2

(τ, r) as r → 0, from which the boundedness

of ∂
2P̃
∂r2

follows.
According to (14.49) we have

∂2P̃

∂r2
=
∂P̃

∂r
[−B2 + (b2 − 1) (X1 −X2)] + P̃

∂ [−B2 + (b2 − 1) (X1 −X2)]
∂r

.

From the definition of X1 and X2 and already computed limits it follows that it suffices to
show the existence of the finite limit of ∂

∂r

(
1
rF (r)

)
for r → 0+, where

F (r) =
G1(r)
G2(r)

− G3(r)
G4(r)

. (14.56)

Assuming F (r) has the power series expansion F (r) =
∑∞

k=0 akr
k, the condition

a0 = 0 is sufficient for boundedness of the term ∂
∂r

(
1
rF (r)

)
in the neighborhood of r = 0,

which holds for (14.56).

Now we state the main result on the nonexistence of a one-factor model describing the
averaged bond price P̃ .

Theorem 14.14 ([113, Theorem 3.3]). Consider averaged bond prices P̃ (τ, r) obtained
from the two-factor CIR model and a class of one-factor short rate models with the under-
lying short rate satisfying the SDE:

dr = µ(t, r)dt+ σ(t, r)dw,

with the drift and volatility functions such that:

1. µ, σ and the market price of risk λ depend only on r and not on t,

2. functions µ, σ, λ are continuous at r = 0, σ(0) = 0,

3. volatility parameters of the factors from the two-factor CIR model are mutually dif-
ferent, i.e., σ1 6= σ2.

Then, there is no such a one-factor interest rate model, for which the averaged bond price
P̃ (τ, r) satisfies the PDE for bond prices

−∂P
∂τ

+ (µ(r)− λ(r)σ(r))
∂P

∂r
+

1
2
σ(r)2

∂2P

∂r2
− rP = 0 (14.57)

for all r ≥ 0, τ > 0.

Proof. By taking the limit r → 0 in the PDE (14.57) and using the results from the previous
theorem, we obtain for all τ > 0:

−Ȧ(τ) + µ(0+)(−A(τ))
(

b1
b1 + b2

B1(τ) +
b2

b1 + b2
B2(τ)

)
= 0.
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From this we can calculate the value of the function µ for r = 0:

µ(0+) = −Ȧ(τ)
A(τ)

1
b1B1(τ)
b1+b2

+ b2B2(τ)
b1+b2

= −Ȧ(τ)
A(τ)

b1 + b2
b1B1(τ) + b2B2(τ)

.

It follows that

−Ȧ(τ)
A(τ)

b1 + b2
b1B1(τ) + b2B2(τ)

= K1, (14.58)

for all τ > 0 where K1 is a constant independent of τ .
Now we recall that the function A(τ) from the two-factor CIR model can be written

as A(τ) = A1(τ)A2(τ), where A1(τ) and A2(τ) are functions appearing in the original
CIR model, corresponding to each of the equations for P1 and P2, respectively. Hence they
satisfy ODEs:

Ȧi(τ) = −κiθiAi(τ)Bi(τ), i = 1, 2.

Therefore

Ȧ(τ)
A(τ)

=
Ȧ1(τ)A2(τ) +A1(τ)Ȧ2(τ)

A1(τ)A2(τ)
=
Ȧ1(τ)
A1(τ)

+
Ȧ2(τ)
A2(τ)

= −κ1θ1B1(τ)− κ2θ2B2(τ).

Thus the equality (14.58) can be rewritten as

K1 = −Ȧ(τ)
A(τ)

b1 + b2
b1B1(τ) + b2B2(τ)

= (κ1θ1B1(τ) + κ2θ2B2(τ))
b1 + b2

b1B1(τ) + b2B2(τ)
.

Since b1 + b2 is constant, the only important part is the following fraction:

κ1θ1B1(τ) + κ2θ2B2(τ)
b1B1(τ) + b2B2(τ)

= K,

which has to be equal to some constant K. It implies that

κ1θ1B1(τ) + κ2θ2B2(τ) = K(b1B1(τ) + b2B2(τ))

and so
(κ1θ1 −Kb1)B1(τ) = (Kb2 − κ2θ2)B2(τ)

for each τ > 0. It is possible in two ways:

1. κ1θ1 −Kb1 = 0, Kb2 − κ2θ2 = 0,

2. B1(τ) = cB2(τ), where c is a constant.

Now we look at each of these possibilities:

1. The same constant K appears in both equalities. From the first one (i.e., κ1θ1 −
Kb1 = 0), we get K = κ1θ1

b1
and by substituting the value of b1 = 2κ1θ1

σ2
1
, we obtain

K = σ2
1
2 . In the same way, from the second equality (i.e., Kb2 − κ2θ2 = 0), we

obtain K = σ2
2
2 . But by the hypothesis, σ2

1 6= σ2
2, which is a contradiction.
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2. We recall the equation for B1 from the CIR model:

−Ḃ1(τ) = (κ1 + λ1σ1)B1(τ) +
1
2
σ2

1B1(τ)2 − 1. (14.59)

An analogous equation for B2(τ) yields

−Ḃ2(τ) = (κ2 + λ2σ2)B2(τ) +
1
2
σ2

2B2(τ)2 − 1. (14.60)

Since B1(τ) = cB2(τ), we obtain another expression for B1:

−Ḃ1(τ) = c

[
(κ2 + λ2σ2)B2(τ) +

1
2
σ2B2(τ)2 − 1

]
. (14.61)

The right-hand sides of (14.59) and (14.61) have to be equal to:

c

[
(κ2 + λ2σ2)B2(τ) +

1
2
σ2B2(τ)2 − 1

]
= (κ1 + λ1σ1)B1(τ) +

1
2
σ2

1B1(τ)2 − 1

for all τ > 0. By continuity, the equality holds also in the limit τ = 0+. From this,
we obtain c = 1. Hence the functions B1(τ) and B2(τ) coincide. We denote this
function by B(τ). By subtracting equations (14.59) and (14.60) we obtain:

[−(κ1 + λ1σ1) + (κ2 + λ1σ1)]B(τ) +
[
−1

2
σ2

1 +
1
2
σ2

2

]
B2(τ) = 0

and, dividing by a nonzero term B(τ) we obtain

[−(κ1 + λ1σ1) + (κ2 + λ1σ1)]− 1
2

[
σ2

2 − σ2
1

]
B(τ) = 0.

Since σ1 6= σ2, it implies that B(τ) is a constant function, which is an obvious
contradiction.

Since both possibilities lead to a contradiction, the theorem is proved.

4. The Fong-Vasicek model with a stochastic volatility

Another popular two-factor interest rate model for pricing zero copupon bonds is the Fong-
Vasicek model introduced in Chapter 8. It belongs to the class of so-called stochastic volatil-
ity models in which the volatility of the short rate process follows another stochastic pro-
cess. Recall that the stochastic process driving the short rate in the Fong-Vasicek model is
given by the following system of stochastic differential equations:

dr = κ1(θ1 − r)dt+
√
ydw1,

dy = κ2(θ2 − y)dt+ v
√
ydw2, (14.62)
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where the correlation E(dw1dw2) of differentials dw1 and dw2 of Wiener processes is ρdt.
The parameters θ1, κ1 > 0 represent the long term interest rate and the rate of return, respec-
tively. On the other hand, the parameters θ2, κ2, v > 0 represent the long term volatility, its
rate of reversion and the volatility of volatility process, respectively.

If the market prices of risk are given as λ1
√
y, respectively λ2

√
y, then the PDE for the

bond prices reads as follows:

−∂P
∂τ

+ (κ1(θ1 − r)− λ1y)
∂P

∂r
+ (κ2(θ2 − y)− λ2vy)

∂P

∂y

+
y

2
∂2P

∂r2
+
v2y

2
∂2P

∂y2
+ ρvy

∂2P

∂r∂y
− rP = 0. (14.63)

It is known that a solution to (14.63) can be constructed in the form P (τ, r, y) =
A(τ)e−B(τ)r−C(τ)y (see [48]). Although there are several possibilities how to characterize
the functions A, B, C, we will use a description through a system of ordinary differential
equations for these functions. It is useful approach in deriving the properties of solutions to
the Fong-Vasicek model. Results presented in this section have been obtained by Stehlı́ková
et al. in papers [116] and [111].

4.1. Qualitative properties of bond prices and term structures

In the following theorem we give the characterization of the bond price by a system of
ordinary differential equations. This form will be used later when proving the properties of
the model.

Theorem 14.15 ([116]). A solution of the PDE for bond prices (14.63) has the form

P (τ, r, y) = A(τ)e−B(τ)r−C(τ)y, (14.64)

for r > 0, y > 0 and τ > 0, where functions A = A(τ), B = B(τ), C = C(τ) satisfy the
following system of ordinary differential equations:

Ȧ = −A (κ1θ1B + κ2θ2C) ,
Ḃ = −κ1B + 1,

Ċ = −λ1B − κ2C − λ2vC − B2

2
− v2C2

2
− vρBC, (14.65)

with initial conditions A(0) = 1, B(0) = 0, C(0) = 0. This can be represented in the
following form:

B =
1
κ1

(
1− e−κ1τ

)
, (14.66)

Ċ = −λ1B − B2

2
− (κ2 + λ2v + vρB)C − v2

2
C2, C(0) = 0, (14.67)

A = exp
(
−θ1τ + θ1B − κ2θ2

∫ τ

0
C(s)ds

)
. (14.68)
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Proof. By inserting the ansatz (14.64) on the solution into the PDE (14.63) the assertions
of theorem easily follow. Furthermore, the ODE for B(τ) can be solved analytically. The
result is then substituted into the equation for C(τ), which we can solve numerically by the
Runge-Kutta method. Finally, we integrate the equation for A(τ) and use the results for
functions B and C.

It is important to emphasize that the term structure R depends linearly in both the short
rate r as well as volatility y variables. Indeed, the term structure can be expressed as

R(τ, r, y) = − lnA(τ)
τ

+
B(τ)
τ

r +
C(τ)
τ

y. (14.69)

In the next theorem we prove some useful properties of the functions A, B, C forming
the zero coupon bond price P (τ, r, y) = A(τ)e−B(τ)r−C(τ)y.

Theorem 14.16 ([116]). Suppose that the market price of risk λ1 and the rate of reversion
κ1 satisfy

λ1 ≤ − 1
2κ1

. (14.70)

Then the function A,B,C forming the zero coupon bond price fulfill the following condi-
tions:

1. Ċ(0) = 0, C̈(0) = −λ1,

2. For every τ > 0: 0 < A(τ) < 1. B(τ) > 0, C(τ) > 0,

3. A(τ) → 0 for τ →∞,

4. C(τ) is bounded on [0,∞).

Proof.
1) It follows from the differentiating the ODE for C(τ) and using the continuity of C and
its derivatives at τ = 0.
2) From the previous statement and the assumption λ1 ≤ −1/2κ1 < 0 it follows that
C(τ) > 0 on some neighborhood of τ = 0. Hence it suffices to show that Ċ(τ) > 0
whenever C(τ) = 0. To prove the above claim, we write Ċ(τ) in the following form:

Ċ(τ) = −λ1B(τ)− B2(τ)
2

= −1− e−κ1τ

2κ2
1

(
2λ1κ1 + 1− e−κ1τ

)
> 0,

provided C(τ) = 0 and λ1 ≤ −1/2κ1.
Positiveness ofB(τ) follows directly from the expression of this function. Furthermore,

we notice that B(τ) < τ . The function A(τ) is positive. Its upper bound follows from the
following estimate:

A(τ) = exp
(
−θ1(τ −B(τ))− κ2θ2

∫ τ

0
C(s)ds

)

< exp (−θ1(τ −B(τ))) < 1.
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The first inequality follows from the positiveness of C and the second one from the posi-
tiveness of the difference τ −B(τ).
3) We have already shown that

0 < A(τ) < exp (−θ(τ −B(τ))) .

Since τ −B(τ) converges to infinity as τ →∞, we obtain that A(τ) → 0 as τ →∞.
4) It suffices to show that there exists a constant K > 0 such that Ċ(τ) < 0 whenever
C(τ) = K. Notice that B(τ) < 1/κ1. Since −vρB < 0 for ρ < 0 and −vρB < ρv

κ1
for

ρ > 0, we have −vρB < min
(
0,− ρv

κ1

)
. Using this inequality and the assumption (14.70),

from (14.67) we obtain the estimate

Ċ(τ) < −λ1

κ1
+

(
−κ2 − λ2v + min

(
0,−ρv

κ1

))
K − v2

2
K2,

which is satisfied for any τ such that C(τ) = K. Taking K sufficiently large, the statement
4 follows.

Notice that the structural condition (14.70) is not very restrictive because one may ex-
pect negative values of the market risk premium λ1 calibrated from real market term struc-
ture data (see Chapter 13). It should be also noted if λ1 > 0, then C̈(0) = −λ1 < 0.
Since C(0) = 0 and Ċ(0) = 0, we thus have that C(τ) < 0 for small τ > 0. Hence, for
small times to maturity τ, the interest rates R(τ, r, y) becomes negative for large volatility
y. Such a undesirable behavior is avoided by assuming (14.70). It is a stronger condition,
but we needed it in this form in order to prove the assertions of the theorem.

4.2. Distribution of stochastic bond prices and term structures for the Fong–
Vasicek model

Let us recall that P (τ, r, y) is the price of a bond maturing at time τ for a given values of
the short rate r and volatility y. Unlike the short rate r, the volatility y is not an observable
variable in the real market. Similarly as in the case of previously investigated two-factor
interest rate models, it is reasonable to study the bond price P (τ, r, y) for the given τ and r
as a function of the random variable y.

In what follows, we will assume that the value of the short rate r at time to maturity τ
is known from the spot market data. The hidden parameter in the model is the volatility y,
which is supposed to be driven by a Bessel square root process

dy = κ2(θ2 − y)dt+ v
√
ydw2.

We already know from Chapter 8 that its limiting density fy is a density of the Gamma
distribution Γ(β, α) i.e.

fy(x) =
βα

Γ(α)
e−βxxα−1, β =

2κ2

v2
, α =

2κ2

v2
θ2, (14.71)
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for x > 0 and fy(x) = 0 otherwise. It enables us to compute the distribution function of
P (τ, r, y) and R(τ, r, y) now.

Theorem 14.17. Under the assumption (14.70) the density functions of the bond prices
P (τ, r, y) and term structures R(τ, r, y) with respect to the limiting distribution (14.71) of
the process y are given by

fP (x) = fy

(
−B(τ)
C(τ)

r − 1
C(τ)

ln
x

A(τ)

)
1

C(τ)x
(14.72)

and

fR(x) = fy

(
1

C(τ)
(τx+ lnA(τ)−B(τ))

)
τ

C(τ)
, (14.73)

where fy is density of the limiting Γ(β, α) distribution with shape parameters β = 2κ2
v2
,

α = 2κ2
v2
θ2.

Proof. First, we compute distribution functions and then by differentiating them we obtain
densities.

Since P (τ, r, y) is a decreasing function of y, the range of its possible values is the
interval

(
0, A(τ)e−B(τ)r

]
. Hence outside of this interval, the density is vanishing. For

x ∈ (
0, A(τ)e−B(τ)r

]
we have the following expression for the cumulative distribution

function FP (x):

FP (x) = Prob
[
A(τ)e−B(τ)r−C(τ)y < x

]
= Prob

[
y > −B(τ)

C(τ)
r − 1

C(τ)
ln

x

A(τ)

]

= 1− Fy

(
−B(τ)
C(τ)

r − 1
C(τ)

ln
x

A(τ)

)
,

where we have used the positiveness of C(τ), and so

fP (x) = F ′P (x) = fy

(
−B(τ)
C(τ)

r − 1
C(τ)

ln
x

A(τ)

)
1

C(τ)x
.

Similarly, because of increasing dependence of R(τ, r, y) on y, the range of possible
values for R is the interval

[
− lnA(τ)

τ + B(τ)
τ r,∞

)
. Hence its density is zero outside this

interval. For x ∈
[
− lnA(τ)

τ + B(τ)
τ r,∞

)
we have

FR(x) = Prob
[
− lnA(τ)

τ
+
B(τ)
τ

r +
C(τ)
τ

y < x

]

= Prob
[
y <

τx+ lnA(τ)−B(τ)
C(τ)

]
= Fy

(
τx+ lnA(τ)−B(τ)

C(τ)

)
,

where we have used the positiveness of C(τ) again. Hence

fR(x) = F ′R(x) = fy

(
1

C(τ)
(τx+ lnA(τ)−B(τ))

)
τ

C(τ)
.
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4.3. Averaged bond prices, term structures and their confidence intervals.

In analogy with previously discussed two-factor models, for the Fong-Vasicek model we
can also prove that the variances of bond prices and interest rates tend to zero as τ → ∞
and other useful properties regarding the averaged bond prices and term structures.

As usual, we define the averaged bond prices and interest rates as follows:

P̃ (τ, r) = 〈P (τ, r, y)〉y,
R̃(τ, r) = 〈R(τ, r, y)〉y,

where the expectations are taken with respect to the limiting distribution (14.71) of the
process y describing the stochastic volatility.

Theorem 14.18 ([116]). Averaged bond prices and interest rates, with respect to the limit-
ing Gamma distribution (14.71) of the random variable y are given by:

1. P̃ (τ, r) = A(τ)e−B(τ)r
(
1 + C(τ)

β

)−α
,

2. R̃(τ, r) = − 1
τ lnA(τ) + B(τ)

τ r + C(τ)
τ θ2.

Proof. 1) We compute the averaged bond price:

P̃ (τ, r) =
∫ ∞

0
P (τ, r, y)g(y)dy = A(τ)e−B(τ)r βα

Γ(α)

∫ ∞

0
e−(C(τ)+β)yyα−1dy

= A(τ)e−B(τ)r βα

(C(τ) + β)α
= A(τ)e−B(τ)r

(
1 +

C(τ)
β

)−α
.

2) The formula for the averaged interest rate follows from linearity of interest rate in the
y variable and taking into account the expected value of the limiting gamma distribution
Γ(β, α) = Γ

(
2κ2
v2
, 2κ2
v2
θ2

)
, which is equal to θ2.

We remark that the function y → P (τ, r, y) is strictly convex because its second deriva-
tive ∂2

y is equal to C2(τ)P (τ, r, y) > 0. Hence, by applying Jensen’s inequality, we obtain

P̃ (τ, r) =
∫ ∞

0
P (τ, r, y)g(y)dy > P

(
τ, r,

∫ ∞

0
yg(y)dy

)
= P (τ, r, θ2),

since
∫∞
0 yg(y)dy = θ2. It means that the averaged bond price P̃ (τ, r) = 〈P (τ, r, y)〉y

is always greater than the bond price of the two-factor CIR model corresponding to the
limiting mean value 〈y〉y = θ2 of the stochastic volatility y.

Now, we are able to prove the assertion on limiting behavior of variances.
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Theorem 14.19 ([116]). For fixed values of τ and r we have

lim
τ→∞V aryP (τ, r, y) = 0, lim

τ→∞V aryR(τ, r, y) = 0,

where variances are computed with respect to the limiting distribution of the stochastic
volatility y.

Proof. We have already computed 〈P (τ, r, y)〉y. In the same way we can compute the
expected value of P 2:

〈P 2(τ, r, y)〉y =
∫ ∞

0

(
A(τ)e−B(τ)r−C(τ)y

)2
g(y)dy

= A(τ)2e−2B(τ)r

∫ ∞

0
e−(2C(τ)+β)yα−1dy

= A(τ)2e−2B(τ)r

(
1 +

2C(τ)
β

)−α
.

Hence

V ary(P (τ, r, y)) = 〈P 2(τ, r, y)〉y − 〈P (τ, r, y)〉2y

= A(τ)2e−2B(τ)r

[(
1 +

2C(τ)
β

)−α
−

(
1 +

C(τ)
β

)−2α
]

= A(τ)2e−2B(τ)r

[(
1 +

2C(τ)
β

)−α
−

(
1 +

2C(τ)
β

+
C(τ)2

β2

)−α]
.

By the mean value theorem

(
1 +

2C(τ)
β

)−α
−

(
1 +

2C(τ)
β

+
C(τ)2

β2

)−α
=

(−αξ−α−1
) (
−C(τ2)

β2

)

for some real number ξ belonging to the interval
(
1 + 2C(τ)

β , 1 + 2C(τ)
β + C(τ)2

β2

)
. Hence

ξ > 1 and therefore

V ary(P (τ, r, y)) = A(τ)2e−2B(τ)rαξ−α−1C(τ2)
β2

< A(τ)2e−2B(τ)r α

β2
C(τ2).

Since C(τ) and B(τ) are bounded on [0,∞) and A(τ) → 0 as τ →∞, we conclude that

V ary(P (τ, r, y)) → 0 as τ →∞.
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Figure 14.6. Bond prices (left) and term structures (right) in the Fong-Vasicek model
(grey), their averaged values (blue) and confidence intervals (red). Source: Stehlı́ková and
Ševčovič [116].

Since R is linear in the y variable and the variance of y is V ar(y) = α
λ2 , we obtain

V ary(R(τ, r, y)) =
(
C(τ)
τ

)2

V ar(y) =
v2θ2
2κ2

C2(τ)
τ2

.

Because C(τ) is bounded and 1
τ2 → 0 for τ →∞ we obtain

V ary(R(τ, r, y)) → 0 for τ →∞,

as claimed in the theorem.

As we already know, P (τ, r, y) and R(τ, r, y) are monotone functions in the variable
y. Hence the area containing a given percentile of bond prices and term structures can
be bounded by P (τ, r, y1) and P (τ, r, y2), respectively R(τ, r, y1) and R(τ, r, y2), where∫ y2
y1
g(y)dy is equal to a given percentile.
In Fig. 14.6 we can observe examples of bond prices and term structures (corresponding

to the same short rate but different volatilities) together with their averaged values and 95%
confidence intervals.

4.4. Relation of averaged bond prices to solutions to one-factor interest rate
models

For the Fong–Vasicek model we can again investigate the problem whether there are func-
tions µ = µ(r) and σ = σ(r) such that the bond prices, given as a solution to a one-factor
model with the short rate satisfying dr = µdt + σdw, are the same as those obtained as
averaged prices from the Fong-Vasicek two-factor model. We restrict ourselves to certain
processes only. The drift and volatility of the process, as well as the market price of risk λ
are assumed to be time-independent. For the vanishing short rate we require the volatility
to be zero. This condition is needed for the proof of nonnegativity of short rate.
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Theorem 14.20 ([112, Theorem 1]). Assume the following conditions on the one-factor
bond pricing model with the short rate

dr = µdt+ σdw,

1. functions µ, σ, λ depend only on the short rate r and not on time t,

2. functions µ, σ, λ are continuous in r = 0, σ(0) = 0.

Consider the averaged bond prices P̃ (τ, r) computed from the Fong-Vasicek model. Then
there is no such one-factor interest rate model, for which the averaged bond prices satisfy
the bond pricing PDE

−∂P
∂τ

+ (µ(r)− λ(r)σ(r))
∂P

∂r
+

1
2
σ(r)2

∂2P

∂r2
− rP = 0, (14.74)

for r ≥ 0 and τ > 0.

Proof. Suppose to the contrary the existence of such a one-factor model.
In order to insert the averaged price P̃ (τ, r) into the PDE (14.74) we begin with com-

puting the necessary partial derivatives of P̃ :

∂P̃

∂τ
=

(
Ȧ

A
− Ḃr − αĊ

β + C

)
P̃ ,

∂P̃

∂r
= −BP̃ ,

∂2P̃

∂r2
= B2P̃ .

Now we can use a similar idea as in the proof of Theorem 14.14 for the case of the two-
factor CIR model. Indeed, suppose that the averaged bond price P̃ (τ, r) satisfies a one-
factor PDE for bond prices. Then, when taking the limit r → 0+, the terms involving the
volatility vanish because σ(0) = 0. Terms involving the drift converge to µ(0), which has
to be constant with respect to τ . In the case of the Fong-Vasicek model we obtain

µ(0) =
∂τ P̃

∂rP̃

∣∣∣∣∣
r=0

=
Ȧ
A − Ḃr − α

β+C Ċ

−B

∣∣∣∣∣∣
r=0

=
Ȧ
A − α

β+C Ċ

−B .

Hence the necessary condition for P̃ to be a bond price in a one-factor model is that the
following identity

−κ1θ1B − κ2θ2C − Ċ α
β+C

−B = k

holds for all τ > 0 and some constant 0 < k <∞. Then

−κ1θ1B − κ2θ2C − α
Ċ

β + C
+ kB = 0, (14.75)
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for all τ > 0. Therefore the derivative with respect to τ of the left hand side is identically
zero. Thus

−κ1θ1Ḃ − κ2θ2Ċ − α
(β + C)C̈ − (Ċ)2

(β + C)2
+ kḂ = 0.

Since this equality holds for all τ > 0, also the limit of its left hand side for τ → 0+
equals zero. Using the initial condition for the function C and the values of its derivatives
for τ = 0 (see Theorem 14.16), we obtain

κ1θ1 − λ1θ2 = k.

Substituting this expression for k into (14.75) yields

−κ2θ2C − α

β + C
Ċ − λ2θ2B = 0,

from which we can express the term αĊ as follows:

αĊ = (β + C)(κ2θ2C − λ1θ2B). (14.76)

On the other hand, from (14.67) we know that

αĊ = α

(
−λ1B − B2

2
− (κ2 + λ2v + vρB)C − v2

2
C2

)
. (14.77)

Hence the right hand sides of (14.76) and (14.77) have to be equal. From this equality, using
the relation between parameters α and β, we are able to express the function C explicitly as

C(τ) =
α

(
λ2 − λ1 − β

2

)

vαρ− λ2θ2 + λ2v
1

B(τ)

,

where B(τ) is given by (14.66). The derivative Ċ(τ) can be computed to be

Ċ(τ) = − 2eκ1τκ2
1κ2λ2θ2(κ2 + (λ1 − λ2)v2)

v (2(eκ1τ − 1)κ2ρθ2 + λ2v(θ2 − eκ1τθ2 + eκ1τκ1v)
2

and so

Ċ(0) =
2κ2θ2(κ2 + (λ1 − λ2)v2)

λ2v5
.

We already know that Ċ(0) = 0. Since κ2 and θ2 are positive parameters, it implies that
κ2 + (λ1 − λ2)v2 = 0. But then Ċ(τ) would be identically zero and hence C(τ) would be
constant with respect to τ, which is a contradiction. It completes the proof of theorem.
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Figure 14.7. Left: Estimates of CIR model’s dispersion σ2 from 20-day intervals (3-months Trea-
sury bills, 90 intervals starting in January 1990). Right: the density distribution of estimates of the
dispersion σ2. Source: Stehlı́ková and Ševčovič [115].

5. Stochastic CIR model describing volatility clustering

In this section we are interested in modeling and analysis of the two factor term structure
model for pricing zero coupon bonds under the assumption of rapidly oscillating stochastic
volatility. We analyze solutions to the generalized Cox–Ingersoll-Ross two factors model
describing clustering of interest rate volatilities. The main goal is to derive an asymptotic
expansion of the bond price with respect to a singular parameter representing the fast scale
for the stochastic volatility process. We derive the second order asymptotic expansion of a
solution to the two factors generalized CIR model and we show that the first two terms in the
expansion are independent of the variable representing stochastic volatility. The results of
this section have been obtained by Stehlı́ková and Ševčovič in the paper [115]. Analogous
results

5.1. Empirical evidence of existence of volatility clusters and their modeling

The key feature of the CIR modeling consists of the assumption made on constant volatility
of the stochastic process (7.4) driving the short rate r. However, in real financial markets we
can observe a substantial deviation from this assumption. To provide an empirical evidence
for such a volatility process, we computed maximum likelihood estimates of the dispersion
for the CIR model for 20-day-long intervals using three months treasury bills data. Figure
14.7 (left) shows the estimated dispersion as a function of time. Higher and lower volatility
periods can be distinguished. They can be seen also on the kernel density estimates of the
values in Figure 14.7 (right).

In order to capture such a behavior of the dispersion σ2 we shall consider a model
in which the limiting density of the dispersion (as t → ∞) has two local maxima. It
corresponds to the so-called volatility clustering phenomenon where the dispersion can be
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observed in the vicinity of two local maxima of the density distribution (see [110]). The
desired behavior of the process and its limiting density are shown in the Figure 14.8. A
natural candidate for such a volatility process is

dy = α(y)dt+ ω(y)dw, (14.78)

having a drift function α(y) such that the differential equation dy
dt = α(y) has two stable

stationary solutions. With added stochastic part ω(y)dw of the process, these stationary so-
lutions become values, around which the volatility concentrates. Recall that the cumulative
distribution function G̃ = G̃(y, t) = Prob(y(t) < y|y(0) = y0) of the process y = y(t)
satisfying (14.78) and starting almost surely from the initial datum y0 can be obtained from
a solution g̃ = ∂G̃/∂y to the so-called Fokker-Planck equation for the density function:

∂g̃

∂t
=

1
2
∂2

∂y2
(ω(y)2)g̃)− ∂

∂y
(α(y)g̃), g̃(y, 0) = δ(y − y0) (14.79)

(see Chapter 7). Here δ(y − y0) denotes the Dirac delta function located at y0. The lim-
iting density g(y) = limt→∞ g̃(y, t) of the process is therefore a stationary solution to the
Fokker-Planck equation (14.79) and it forgets any information about the initial datum y0,
i.e

L∗0g ≡
1
2
∂2

∂y2
(ω(y)2g)− ∂

∂y
(α(y)g) = 0 . (14.80)

Figure 14.8. Simulation of a process (left) and its asymptotic distribution (right). Source:
Stehlı́ková and Ševčovič [115].

In [110] one of the authors proposed a model with a property that the limiting density
is a combination of two Gamma densities. Indeed, let us consider the following two mean
reverting Bessel square root stochastic processes:

dyi = κy(θi − yi)dt+ v
√
yidwi, i = 1, 2, (14.81)

where θi > 0, 2κyθi > v2 > 0 for i = 1, 2, and dw1, dw2 are uncorrelated differen-
tials of the Wiener processes. Solving the stationary Fokker-Planck equation (14.80) it



Advanced topics in the term structure modeling 309

turns out that the limiting distributions of the processes y1, y2 are the Gamma distributions
with shape parameters 2κy/v2 and 2κyθi/v2. Denote their densities by g1 and g2. Then

gi(y) = Ciy
2κyθi

v2 −1 exp(−2κy

v2
y) for y > 0 and gi(y) = 0 otherwise. Here Ci > 0 is a

normalization constant such that
∫
R gi(y)dy = 1. Choose a parameter k ∈ (0, 1). Our aim

is to construct a process with asymptotic density

g(y) = kg1(y) + (1− k)g2(y), (14.82)

corresponding to a convex mixture of densities g1 and g2. In the following theorem we see
that for the same square root volatility function of the form v

√
y it is possible to achieve

this goal. Drift of the process α(y) can be written as a weighted sum of drifts αi(y) =
κ(θi − y), i = 1, 2, with the weights depending on y.

Theorem 14.21 ([110, Section 5]). Suppose that the drift term α has the form: α(y) =
w(y)α1(y)+(1−w(y))α2(y) wherew(y) = kg1(y)/(kg1(y)+(1−k)g2(y)) and αi(y) =
κ(θi − y). Then the stochastic process driven by the SDE: dy = α(y)dt+ v

√
ydw has the

limiting distribution g given by the convex combination (14.82) of densities g1, g2.

5.2. Generalized CIR model with rapidly oscillating stochastic volatility and
its asymptotic analysis

The aim of this section is to provide a tool for modeling the effects of rapidly oscillating
stochastic volatility that can be observed in real markets. If the length of the time scale for
dispersion y is denoted by ε, the equation for the variable y reads as follows:

dy =
α(y)
ε

dt+
v
√
y√
ε
dwy. (14.83)

In what follows we will assume that 0 < ε ¿ 1 is a small singular parameter. Notice that
the limiting density function g of the stochastic process driven by SDE (14.83) is indepen-
dent of the scaling parameter ε > 0. The statement follows directly from the stationary
Fokker-Planck equation (14.80). Concerning structural assumption made on the drift func-
tion α : R→ R we shall henceforth assume the following hypothesis:

(A) α is a C1 function on [0,∞),
2α(0)
v2

> 1, lim sup
y→∞

α(y)
y

< 0.

Now it is straightforward computation to verify the following auxiliary lemma. The
original proofs can be found in the paper [115].

Lemma 14.2. Let the drift function α(y) be defined as a mixture of two Gamma limiting
distributions as in Theorem 14.21. Then the function α satisfies the hypothesis (A) with
α(0) = κmin(θ1, θ2) and lim supy→∞

α(y)
y = −κ < 0.

Next we shall show the limiting density g of the process driven by SDE (14.83) is
uniquely given by the following lemma:
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Lemma 14.3. Under the hypothesis (A) made on the drift function α the stationary Fokker-
Planck equation L∗0g ≡ v2

2
∂2

∂y2
(yg) − ∂

∂y (α(y)g) = 0 has a unique solution g such that
g(0) = 0 for y ≤ 0. It can be explicitly expressed as:

g(y) = Cy−1 exp
(

2
v2

∫ y

1

α(ξ)
ξ

dξ

)
= Cy

2α(0)

v2 −1 exp
(

2
v2

∫ y

1
α̂(ξ)dξ

)

for y > 0 and g(y) = 0 for y ≤ 0. Here α̂(y) = (α(y) − α(0))/y and C > 0 is a
normalization constant such that

∫∞
0 g(y)dy = 1.

Proof. It follows by direct verification of the equation. The other linearly independent
solution g2 to the equation (14.80) has a nontrivial limit g2(0+) > 0. ♦

In what follows, we denote by σ2, D > 0, and S the limiting mean value, dispersion
and skewness of the stochastic process for the y-variable representing stochastic dispersion,
i.e.

σ2 =
∫ ∞

0
yg(y) dy, D =

∫ ∞

0
(y − σ2)2g(y) dy,

S =
1

D
3
2

∫ ∞

0
(y − σ2)3g(y)dy .

(14.84)

Notice thatD = − ∫∞
0

∫ y
0 (ξ−σ2)g(ξ) dξdy. In the generalized CIR model with a stochas-

tic volatility, the instantaneous interest rate (short rate) r will be modelled by the mean
reverting process of the form (7.4) where the volatility of is replaced by a square root of a
stochastic dispersion y, i.e.

dr = κ(θ − r)dt+
√
y
√
rdwr . (14.85)

The differentials of the Wiener processes dwy and dwr are assumed to be independent
throughout this section, i.e., E(dwydwr) = 0. Then the corresponding partial differential
equation for the bond price P ε = P ε(t, r, y) has the following form:

∂P ε

∂t
+ (κ(θ − r)− λ̃1(y, r)r

1
2
√
y)
∂P ε

∂r
+

1
2
ry
∂2P ε

∂r2
− rP ε

+
1√
ε

(
−λ̃2(y, r)v

√
y
∂P ε

∂y

)
+

1
ε

(
α(y)

∂P ε

∂y
+
v2y

2
∂2P ε

∂y2

)
= 0, (14.86)

(t, r, y) ∈ QT ≡ (0, T ) × R+ × R+, where λ̃1, λ̃2 are the so-called market prices of risk
(cf. [75, Chapter 7]). By a solution P ε to (14.86) we mean a bounded function P ε ∈
C1,2(QT ) ∩ C(Q̄T ) satisfying equation (14.86) on Q̄T . Concerning the structural form of
market prices of risk functions λ̃1, λ̃2 we shall suppose that

λ̃1(t, r, y) = λ1

√
r
√
y, λ̃2(t, r, y) = λ2

√
y

where λ1, λ2 ∈ R are constants. It is worthwile noting that the latter assumption is not
restrictive as the original one-factor CIR model assumes such a form of the market price of
risk (cf. Kwok [75]). We shall rewrite PDE (14.86) in the operator form:

(ε−1L0 + ε−1/2L1 + L2)P ε = 0, (14.87)
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where the linear differential operators L0,L1,L2 are defined as follows:

L0 = α(y)
∂

∂y
+
v2y

2
∂2

∂y2
, L1 = −λ2vy

∂

∂y
,

L2 =
∂

∂t
+ (κ(θ − r)− λ1ry)

∂

∂r
+

1
2
ry

∂2

∂r2
− r. (14.88)

Next we expand the solution P ε into Taylor power series:

P ε(t, r, y) =
∞∑

j=0

ε
j
2Pj(t, r, y) (14.89)

with the terminal conditions P0(T, r, y) = 1, Pj(T, r, y) = 0 for j ≥ 1 at expiry t = T .
The main goal of this is to examine the singular limiting behavior of a solution P ε as ε →
0+. More precisely, we shall determine the first three terms P0, P1, P2 of the asymptotic
expansion (14.89). We shall henceforth denote by 〈ψ〉 the averaged value of the function
ψ ∈ C([0,∞)) with respect to the density g, i.e., 〈ψ〉 =

∫∞
0 ψ(y)g(y) dy. We shall also

use the notation 〈L2〉 standing for the averaged linear operator L2, i.e.

〈L2〉 ≡ ∂

∂t
+

(
κ(θ − r)− λ1rσ

2
) ∂

∂r
+

1
2
σ2r

∂2

∂r2
− r (14.90)

Lemma 14.4 ([115]). Let ψ ∈ C1([0,∞)) be such that L0ψ is bounded. Then 〈L0ψ〉 = 0.

Proof. Notice that the operator L∗0 is the adjoint operator to the linear operator L0

with respect to the L2–inner product (ψ, φ) =
∫∞
0 ψ(y)φ(y) dy. It means that 〈L0ψ〉 =

(L0ψ, g) = (ψ,L∗0g) = 0 because the density g is a solution to equation (14.80). ♦
The following lemma will be useful when computing higher order term in series expan-

sion (14.89).

Lemma 14.5 ([115]). Let F ∈ C([0,∞)) be such that 〈F 〉 = 0. Then, up to an ad-
ditive constant, there exists a unique solution ψ ∈ C2((0,∞)) ∩ C([0,∞)) to the non-
homogeneous equation L0ψ = v2

2 F . Its derivative ∂ψ
∂y is given by

∂ψ

∂y
(y) =

1
yg(y)

∫ y

0
F (ξ)g(ξ)dξ.

Moreover, 〈L1ψ〉 = λ2v
∫∞
0 F (y)yg(y)dy. In particular, if ψ is a solution to the equation

L0ψ = 0 then ψ is a constant function with respect to the y-variable.

Proof. Using equation (14.80) for the limiting density g and inserting ∂ψ
∂y into the operator

L0 we obtain that ψ is a solution to the equation L0ψ = v2

2 F . Other independent solutions
are not continuous at y = 0. The formula for 〈L1ψ〉 follows from the definition of the
operator L1 by applying integration by parts formula.
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Now we proceed with collecting the terms of the power series expansion of (14.87).

• In the order ε−1 we have L0P0 = 0. According to Lemma 14.5 we have P0 = P0(t, r),
i.e., P0 is independent of the y-variable.

• In the order ε−1/2 we have L0P1 +L1P0 = 0. Since P0 = P0(t, r) we deduce L1P0 = 0
and so L0P1 = 0. By Lemma 14.5, P1 = P1(t, r) is independent of y.

• In the order ε0 we haveL0P2+L1P1+L2P0 = 0. SinceP1 = P1(t, r) we haveL1P0 = 0.
Hence L0P2 + L2P0 = 0. Taking the average 〈.〉 of both sides of the latter equation we
obtain 〈L0P2〉 + 〈L2P0〉 = 0. By Lemma 14.4 and the fact that P0 is independent of y-
variable we conclude 〈L2〉P0 = 〈L2P0〉 = 0. Therefore P0 is a solution to the classical
one-factor PDE equation for the CIR model satisfying the terminal condition P0(T, r) = 1
for any r ≥ 0. It is well known that the solution P0 = P0(t, r) to the equation 〈L2〉P0 = 0
is given by the explicit formula:

P0(t, r) = A0(t)e−B(t)r, (14.91)

where A′0 = κθA0B and B′ = (κ+ λ1σ
2)B + σ2

2 B
2 − 1, A0(T ) = 1, B(T ) = 0, i.e.

A0(t) =

(
2φe(φ+ψ)(T−t)/2

(φ+ ψ)(eφ(T−t) − 1) + 2φ

) 2κθ
σ2

, B(t) =
2(eφ(T−t) − 1)

(φ+ ψ)(eφ(T−t) − 1) + 2φ
,

ψ = κ + λ1σ
2, φ =

√
ψ2 + 2σ2 (cf. Kwok [75, Chapter 7]). Since 〈L2〉P0 = 0 we have

−L2P0 = (〈L2〉 − L2)P0 = (σ2 − y)f(t)re−B(t)r where

f(t) = (λ1B(t) +
1
2
B(t)2)A0(t).

Hence L0P2 = −L2P0 = (σ2 − y)f(t)re−B(t)r. According to Lemma 14.5 we have

∂P2

∂y
= − 2

v2
f(t)re−B(t)rH(y), H(y) =

1
yg(y)

∫ y

0
(ξ − σ2)g(ξ)dξ. (14.92)

• In the order ε1/2 we have L0P3 + L1P2 + L2P1 = 0. Since 〈L0P3〉 = 0 we have
〈L1P2〉 + 〈L2P1〉 = 0. The function P1 = P1(t, r) is independent of the y-variable and
therefore 〈L2〉P1 = 〈L2P1〉 = −〈L1P2〉. By Lemma 14.5 we have

L1P2 =
2λ2

v
f(t)re−B(t)ryH(y), −〈L1P2〉 = K1f(t)re−B(t)r,

where K1 = −2λ2
v

∫∞
0

∫ y
0 (ξ − σ2)g(ξ)dξdy = 2λ2

v D is a constant (see (14.84)). Notice
that the constant K1 and the function f(t) depend on the first two moments σ2 and D of
the stochastic dispersion only. Equation 〈L2〉P1 = 〈L2P1〉 = −〈L1P2〉 reads as:

∂P1

∂t
+

(
κ(θ − r)− λ1rσ

2
) ∂P1

∂r
+

1
2
rσ2∂

2P1

∂r2
− rP1 = K1f(t)re−B(t)r. (14.93)
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The solution P1 satisfying the terminal condition P1(T, r) = 0 for r ≥ 0 can be found in
the closed form:

P1(t, r) = (A10(t) +A11(t)r)e−B(t)r (14.94)

where the functions A10(t), A11(t) are solutions to the system of linear ODEs:

A′11(t) =
(
κθB(t) + κ+ λ1σ

2 + σ2B(t)
)
A11(t) +K1f(t), (14.95)

A′10(t) = κθB(t)A10(t)− κθA11(t),

with terminal conditions A10(T ) = 0, A11(T ) = 0. We can analytically and also numer-
ically compute A10, A11 in a fast and accurate manner. This way we have obtained the
term P1(t, r). In Figure 14.9 examples of numerical approximation of the term structure
Rε(T −τ, r) = − 1

τ log〈P ε(T −τ, r, .)〉 corresponding to the second order expansion of the
averaged value of 〈P ε(t, r, .)〉, P ε(t, r, y) ≈ P0(t, r)+

√
εP1(t, r). We plot term structures

starting from the short rate r = 0.03 (left) and r = 0.031 (right) for parameters κ = 5,
θ = 0.03, κy = 100, v = 1.1832, θ1 = 0.025, θ2 = 0.1, k = 1/3, λ1 = −1, λ2 = −100
and ε = 0, 0.001, 0.01 (black, red and blue curves).

Having P1 and ∂P2
∂y we can compute the term L1P2+L2P1. With regard to Lemma 14.5

equation L0P3 = −L1P2 − L2P1 then yields a formula for ∂P3
∂y and

〈L1P3〉 = −2λ2

v

(
(
2λ2

v
K3 +K1σ

2)f(t)re−B(t)r +D(−λ1r
∂P1

∂r
+
r

2
∂2P1

∂r2
)
)

where the constant K3 =
∫∞
0 ξ3H(ξ)g(ξ)dξ = −1

2SD
3
2 − σ2D depends on the first three

statistical moments of the stochastic dispersion.
• In the order ε1 we have L0P4 + L1P3 + L2P2 = 0. Proceeding similarly as before we
have 〈L0P4〉 = 0 and therefore

〈L1P3〉+ 〈L2P2〉 = 0. (14.96)

We decompose the function P2(t, r, y) in the form

P2(t, r, y) = P̄2(t, r) + P̃2(t, r, y), (14.97)

where P̄2 is the averaged value of P2 and P̃2 is a zero mean fluctuation, i.e., 〈P̃2〉 = 0. As
P̄2 does not depend on y, we have ∂P̃2

∂y = ∂P2
∂y . Taking into account 〈L2P̃2〉 = 0 we obtain

P̃2(t, r, y) = − 2
v2
f(t)re−B(t)r

(∫ y

0
H(ξ)dξ −K2

)

where K2 =
∫∞
0 g(s)

∫ s
0 H(ξ)dξds is a constant and the function H is given by (14.92).

Now we can use decomposition (14.97) to evaluate 〈L2P2〉. We have 〈L2P2〉 = 〈L2(P̄2 +
P̃2)〉 = 〈L2〉P̄2 + 〈L2P̃2〉 because P̄2 is independent of y. Next we can determine 〈L2P̃2〉
in the following form:

〈L2P̃2〉 = − 2
v2
K4f(t)r

(
−λ1

∂

∂r
+

1
2
∂2

∂r2

)
(re−B(t)r)
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Figure 14.9. The approximate term structure Rε = Rε(T − τ, r) based on the first two
leading terms of the bond price P ε ≈ P0(T − τ, r) +

√
εP1(T − τ, r) starting from the

short rate r = 0.03 (left) and r = 0.031 (right) for several values of the singular parameter
ε = 0, 0.001, 0.01 (lower, middle and upper curves), respectively. Source: Stehlı́ková and
Ševčovič [115].

where K4 =
∫∞
0

∫ y
0 H(ξ)dξ(y − σ2)g(y)dy. It is worthwile noting that both constants

K2,K4 depend on all nontrivial statistical moments of the stochastic dispersion. Equation
(14.96) then becomes

〈L2〉P̄2 = −〈L2P̃2〉 − 〈L1P3〉 = (a(t) + b(t)r + c(t)r2)e−B(t)r, P̄2(T, r) = 0,

which is a partial differential equation for P̄2 = P̄2(t, r, y) with a right hand side which can
be explicitly computed from already obtained results in the closed form:

P̄2(t, r) = (A20(t) +A21(t)r +A22(t)r2)e−B(t)r (14.98)

where the functionsA20, A21, A22 are solutions to a linear system of ODEs. We omit details
here.

In conclusion we have shown the following result which has been obtained by
Stehlı́ková and Ševčovič in the paper [115].

Theorem 14.22 ([115, Theorem 2]). The solution P ε = P ε(t, r, y) of the generalized CIR
bond pricing equation (14.86) with rapidly oscillating dispersion can be approximated, for
small values of the singular parameter 0 < ε¿ 1, by P ε(t, r, y) ≈ P0(t, r)+

√
εP1(t, r)+

εP2(t, r, y) +O(ε
3
2 ).

The first two terms P0, P1 are independent of the y-variable representing unobserved
stochastic volatility. They depend only on the first two statistical moments (mean value and
dispersion) of the stochastic dispersion and other model parameters.

The next term in the expansion P2 nontrivially depends on the y-variable. P2 as well as
its averaged value 〈P2〉 depends also on all nontrivial statistical moments of the stochastic
dispersion.

The terms P0, P1, P2 can be evaluated by closed-form formulae (14.91), (14.94),
(14.98).
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Itō’s lemma, 17
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HJM - Heath-Jarrow-Morton
β, ξ, ρ - transformed parameters (chapter 13)
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