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Chapter 5

NUMERICAL AND ANALYTICAL METHODS
FOR BOND PRICING IN SHORT RATE
CONVERGENCE MODELS
OF INTEREST RATES*

Zuzana Bitkowa, Beata Stehikova and DanielSewovie!
Department of Applied Mathematics and Statistics,
Comenius University in Bratislava, Slovakia

Abstract

In this survey paper we discuss recent advances on short interest rate mod-
els which can be formulated in terms of a stochastic differential equa-
tion for the instantaneous interest rate (also called short rate) or a system
of such equations in case the short rate is assumed to depend on other
stochastic factors. Our focus is on convergence models which explain the
evolution of interest rate in connection with the adoption of the Euro cur-
rency. Here, the domestic short rate depends on a stochastic European
short rate. In short rate models, the bond prices determining the term
structure of interest rate, are obtained as solutions to partial differential
equations. Analytical solutions are available in special cases only. There-
fore we are concerned with a question how to obtain their approximations.

*The research has been supported by VEGA 1/0251/16 project and FP7-PEOPLE-2012-ITN
project #304617 - STRIKE.
TE-mail address: sevcovic@fmph.uniba.sk (Corresponding author).
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94 Zuzana Bikova, Beata Stelikova and DanieBewtovic

We use both analytical and numerical methods to obtain an approximate
solution to the partial differential equation for bond prices.

1. Introduction

An interest rate model is a description of intenegtes’ evolution (e. g. the
rate on one-year loan today and next year) and their dependence on maturity (fc
instance, one-year and ten-year loans are different); the dependence of the inte
est rate on maturity is called the term structure of interest rates. Given the statt
of the market today, the future interest rates cannot be predicted exactly. The
models provide their probability distribution. However, since the interest rates
are interconnected, often only some underlying processes are modeled which i
turn determine the interest rates.

We deal with so-called short rate models which are based on a theoretica
quantity, theshort rate It is a rate of interest for a default-free investment
with infinitely small maturity. The other investments, with other maturities,
include some risk: the evolution of the interest rates during the "life” of this
investment can increase or decrease their value. Therefore it is not surprising
that, besides the probabilistic description of the short rate evolution, there is
another input called market price of risk which is needed in order to compute
the term structure of interest rates; cf. [22, pp. 29-31] for a further intuition
following these ideas.

Mathematical models can be described by solutions to linear parabolic dif-
ferential equations which degenerate to the hyperbolic ones at the boundary
Applying the so-called Fichera theory to interest rates models one can treat the
boundary conditions in a proper way. Correct treatment of boundary conditions
is important for construction of efficient numerical schemes.

We propose an approximate analytical solution for a class of one-factor
models and derive the order of its accuracy. These models can be used t
model the European short rate in convergence models. We show an exampl
of a convergence model of this kind and the analytical approximation formula
for domestic bond prices together with the derivation of its accuracy.

In some cases, a one-factor model is not sufficient to fit the European interes
rates and we need a two-factor model in order to describe the European shol
rate. Therefore, we also investigate a three-factor convergence model.
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Numerical and Analytical Methods for Bond Pricing ... 95

2. Which Model for Term Structures Should One Use?

This is the title of the paper [46], in the beginning of which the author
presents several criteria which a suitable model should have:

A practitioner wants a model which is

(a) flexible enough to cover most situations arising in practice;

(b) simple enough that one can compute answers in reasonable
time;

(c) well-specified, in that required inputs can be observed or es-
timated;

(d) realistic, in that the model will not do silly things.

Additionally, the practitioner shares the view if an econometrician
who wants

(e) a good fit of the model to data;
and a theoretical economist would also require

(H) an equilibrium derivation of the model.

Our work is mainly concerned with the point (b). Approximate analytical
formulae enlarge the set of models for whimhe can compute answers in rea-
sonable timeas required above. Moreover, an easy computation of the observec
guantities can significantly simplify a calibration of the model. Note that cal-
ibration of the model based on a comparison of market prices and theoretica
prices given by the model often requires many evaluations of theoretical prices
for different sets of parameters, as well as times to maturity and the short rate
levels. Hence it is useful to establish whether the point (e) above is satisfied ol
not.

3. Basic Concepts of Stochastic Calculus

In this section we briefly present the basic definitions and theorems of
stochastic calculus which will be needed to formulate models considered here
For more details see, e.g., [45], [30].
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96 Zuzana Bikova, Beata Stelikova and DanieBewtovic

Definition 1. [45, Definition 2.1.4] A stochastic process is a parametrized col-
lection of random variable$ X, },c7 defined on a probability spadé€, 7, P)
and assuming values iR".

An important stochastic process which is used as a building block for other
more complicated processes, is a Wiener process.

Definition 2. [51, Definition 2.1] A stochastic procegsu(t),t > 0} is called
a Wiener process, if it satisfies the following properties:

(i) w(0) = 0 with probability 1;
(i) every incrementv(t + At) — w(t) has the normal distributiodv (0, At);

(iii) the incrementso(t,) — w(tp—1), w(tn—1) — wW(tn—-2), - .., w(ta) — w(ty)
for0 <t; <--- <t, are independent.

Existence of such a process can be asserted using the Kolmogorov extensic
theorem which builds a stochastic process from its finite dimensional distribu-
tions (cf. [45, Chapters 2.1 and 2.2], [30, Chapter 2.2]).

Using a Wiener process, we are able to define new processes. It is useftL
to incorporate some kind of "noise” in the ordinary differential equations. The
Wiener process provides a way of doing so. This leads to the so-called stochasti
integrals and stochastic differential equations. Again, we follow the main ideas
of [45].

The first idea is to consider an equation of the form

dX

dt
where the term; denotes some "noise” which should be stationary with values
at different times being independent and having a zero expected value. Howeve
there is no continuous process satisfying these conditions. Moreover, as a func
tion on[0, co) x 2 it cannot be even measurable considering Borel-measurable
sets onf0, oo) (see [45, pp. 21-22] and references therein). Hence we have to
follow another approach. We write (1) in a discrete form as follows:

= b(t,Xt) +O'(Xt,t) Ug, (1)

Xty = Xpp, +0(t, Xo) (b1 — ) + 0 (X, 1) ug, (trr1 — te),

where0 =ty < t; < --- < t,, = tis a partition of the intervaD, t|. Recalling
the desirable properties of the noise, that is, the terr(Y;.; —t;) should have
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Numerical and Analytical Methods for Bond Pricing ... 97

stationary independent increments which suggests usage of the Wiener proce:
we,. Then we have an equation

k—1 k—1
th+1 Xo + Z b t, Xt tj+1 - t] + Z o thv wtk+1 - wtk)
Jj=0 Jj=0

and if we are able to make a limit of the last sum in some "reasonable way”, by
denoting it by [} (s, X,) dw, we can write

t t
X = Xo+ / b(s, Xs)ds + / o(s, Xs) dws. 2)
0 0

This can be done in several ways which leads to different kinds of stochastic
integrals (Ib vs. Stratonovich). We usedltintegral (see the cited references
[45] for details on its construction).

Finally, let us note that equation (2) is often written in the differential form:

dXt = b(t, Xt) dt + O'(t, Xt) dwt (3)

which is called a stochastic differential equation.

The computation of the "differentialdY;, whereY; is defined asy; =
f(t, X:), where f is a smooth function an&' satisfies the stochastic differ-
ential equation (3) is performed via a stochastic generalization of the chain rule.
This can be done precisely using the integral representation of the stochasti
processes (cf. [30, pp. 150-153]) and results in the fama’s lkmma. We
provide its formulation for the case of a one-dimensional process from [45].

Theorem 1. [45, Theorem 4.1.6] LeX; be an Ib process given by
dXt = ’U,(t, Xt) dt + ’U(t, Xt) dw.

Letg(t,z) € C%([0,00) x R). ThenY; = f(t, X;) is again an Ib process and

2

10
(6, Xp)dx, + - =9

dg dg
(t, Xp)dt + 22 270

Y,
dta ox

(t, X¢) (dX)?,

where(dX;)? = (dX;)(dX,) is computed according to the rules

dtdt = dt dwt = dwt dt = 0, dwt dwt = dt.
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98 Zuzana Bikova, Beata Stelikova and DanieBewtovic

A multidimensional formulation can be found for example in [45, Theorem
4.2.1], [30, Theorem 3.6] or in the original paper by Kiyoslai [29, Theorem
6].

In order to illustrate kb’s process, we present an example of a stochastic
differential equation which will be useful later. It describes the evolution of the
so-called Ornstein-Uhlenbeck process:

dx = k(0 — z) dt + o dw, 4)

wherek,§ and o are positive constants. Without the stochagtic term, it
would be an ordinary differential equation with the solution= zge "t 4

6(1 — e "), wherex is the value of the process at time= 0. With the
stochastic term included, the solution becomes a random variable and it can b
written in an explicit form

¢
zy = wge” "+ 0(1 — e ) 4 0/ dw.
0

The trend, reversion to the equilibrium levglwhose speed depends enis
preserved. Processes with this property are called mean-reversion processe
Furthermore, there are random fluctuations around this trend. Their impaci
depends on the parameter A sample trajectory of an Ornstein-Uhlenbeck
process is presented in Figure 1.

2

trajectory
— — — - equilibrium value

1.8 1

1.6 +

1.4 H

1.2 1

14— —— AN — - - — — — —_—— . —

0.8 T T T T T T T T T
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 1. Sample path of an Ornstein-Uhlenbeck process.
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Similarly as in the case of ordinary differential equations, a closed-form
solution is not always available, but numerical approximations are still possi-
ble. The simplest one is the Euler-Maruyama scheme which is a generalizatior
of the Euler method known from numerical methods for ordinary differential
equations. It consists of replacing the differentials in (3) by finite differences
and simulating the increments of a Wiener process:

Xo = wo,
Xiyar = Xp+0(t, Xy) At + o (t, Xy) Awy,

whereAw are independent realizations froki(0, A¢) distribution. There are
also other methods which have a higher precision. For example, the Milstein
scheme, Runge-Kutta methods (cf. [53] for an introduction or [31] for more
details).

4. Short Rate Models

Short rate models are formulated in terms of a stochastic differential equa-
tion (one-factor models) or a system of stochastic differential equations (multi-
factor models) determining the short rate (see Figure 2 for an example of marke
data which - being interest rates with short maturities - can be thought of as ap-
proximations of the theoretical short rate).

We start with a simple stochastic differential equation which describes some
popular features of the market rates. Then, seeing the shortcomings of the moc
els, we switch to more complicated ones. Each of them addresses a specifi
feature and the choice of the model needs to take this into account. For selecte
stochastic processes we explain the motivation that leads to considering them ¢
a model for the short rate.

We also discuss bond prices. A zero-coupon bond is a financial security tha
pays a unit amount money to its holder at the specified time of maturity. The
bond pricesP = P(t,T,x) (wheret is time, T is time to maturity andk is
a vector of factors determining the short rate) are then connected with interes
rateskR = R(t,T,x) through the formula

_InP(,T,x)

P(t,T,x) = e RBETXT=) je  R(t,T,x) = -

(5)

Examples of interest rates with different maturities can be seen in Figure 3.
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Figure 2. Euro interest rates with short maturities - possible approximations of
short rate. Data sourcéttp://www.emmi-benchmarks.eu
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0.000
0.0 0.5 1.0
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Figure 3. Euro interest rates - examples of term structures. Data source
http://www.emmi-benchmarks.eu

In short rate models, the prices of bonds (as well as other interest rate deriva
tives) are solutions to linear parabolic partial differential equations. Even in a
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case of an interest rate derivative with such a simple payoff (like e.g. a bond)
a closed form solution is available in very special cases. The later topics pre-
sented in this paper are then connected by a pursuit of finding approximations
of the bond prices (and hence also term structures) in those cases when they a
not known in a closed form.

4.1. One-Factor Models

When speaking of one-factor short rate models, the @meifactorrefers
to the fact that there isne Wiener process used in the definition of the short
rate process, i.e., thereasesource of randomness.

Hence, there is a scalar stochastic differential equation for the shont rate
which can be written in a general form:

dr = p(r,t)dt + o(r,t)dw,

wherew is a Wiener process. Recall from the section on stochastic processe:
that the functioru(r, t) determines the trend of the process, while the function
o(r,t) determines the nature of the random fluctuations. Specifying the func-
tions(r,t) ando(r, t) characterizes the short rate model.

Let P = P(r,t) be the price of a derivative at timewhen the current
level of the short rate i8 which pays a given payoff at tini€. We consider a
construction of a portfolio consisting of derivatives with two different maturi-
ties, continuously rebalanced so that the risk coming from the Wiener process
is eliminated. Then, to eliminate a possibility of an arbitrage, the return of
such a portfolio has to be equal to the current short rate which leads to a partia
differential equation for the derivative prige which reads as

0P + (u(r,t) — A, t)o(r, )0, P + %a(r, t)20%2P =0

for all admissible values of and for allt € [0,7). We refer to [32], [51]
for more details on derivation of the corresponding partial differential equation.

It can be shown that it is possible if we assume an "idealized market” with no transaction
costs, ability to buy or sell any desired amount of a security for its present price, to borrow/lend
any amount of money for the short rate interest rate and operating in continuous time. This
idealization of reality in derivation of the equation for security prices might be another reason
for being "satisfied” with a meaningful simple approximation of the short rate process, instead of
requiring an extremely complex model for it.
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102 Zuzana Bikova, Beata Stelikova and DanieBewtovit

Here and after we denote li} P, 0, P the first partial derivatives oP with
respect tot, » and the second derivative? P of P with respect tor. Note

that the equation includes the new functidfr, ¢). During derivation of the
equation it turns out that a certain quantity, measuring the rise of the expectec
return for one unit of risk, has to be independent of the matdritit is denoted

by \(r, t) and because of its interpretation it is called the market price of risk. It
is necessary to include it into the specification of a model when we want to price
derivatives, in addition to talking about the short rate evolution. Note that the
equation holds for any derivative, the specific derivative determines the terminal
condition P(r, T') which equals the security payoff.

If we consider Markov models only, i.ew, o and X are functions of the
variabler and do not explicitly depend on tinteit is convenient to introduce a
new variabler = T'—t denoting time remaining to maturity. For the bond price
we obtain the partial differential equation (PDE):

—GTP+(;L(7")—)\(r)o(r))OTP—F%a(r)Q&%P — 0 forallrandr € (0,7, (6)
P(r,0) = 1 forallr. (7

Alternatively, a model can be formulated in the so-called risk-neutral mea-
sureQ which is an equivalent probability measurelton which the process is
physically observed. In the risk-neutral measure, the prices of the securities cal
be expressed in the form of expected values. The change of the measure is r
lated to the market price of risk from the partial derivative approach mentioned
above. Mathematically, it is based on the Girsanov theorem (cf. [45, Section
8.6]). The general model above in the risk neutral model reads as follows:

dr = f(r)dt 4 &(r)dw®, 8)

wherew? is a Wiener process under the risk neutral measure, while the risk-
neutral drift and volatility are given by

a(r) = p(r) — X(r)o(r),a(r) = o(r), (9

(cf. [33, Section 7.2]). Comparing this with (6) we can see that the risk-neutral
formulation contains all information needed to write the valuation PDE. There-
fore, when dealing with pricing bonds or other derivatives, the model is often
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formulated in the risk-neutral form. Finally, let us note that the two alterna-
tive expressions for the prices, i.e. expected values under the risk-neutral mee
sure and solutions to partial differential equations are related via the so-callec
Feynman-Kac formula (cf. [45, Theorem 8.2.1]).

4.2. Vasicek and Cox-Ingersoll-Ross Models
Recall that the Ornstein-Uhlenbeck process is a stochastic process given b
dr = k(0 —r) dt + o dw,

wherex, 6,0 > 0 are given constants andis a Wiener process. This process
can be used as a simple model for the short rate, known as the Vasicek mode
as it has been suggested in [61] by thdtl VaSicek. He defined the market price
of risk to be equal to a constaitappearing in the partial differential equation

for the bond prices. Recall that the general form (6)-(7) reads as follows:
—0,P + (k(0 —r) — X\o)d, P + %ﬁaﬁp =0 (10)

forall r andr € (0,77, andP(r,0) = 1 for all ». This differential equation can
be solved explicitly. Its solution has the form

P(r,7) = A(r)e BT (11)

and the functions!, B are given by (see [61])

A 2 1—e " § - 1—e™™
In A(r) = (—9+ 274 ”—) (— . +r) —5(l—e ) B(r) = ———.
12)

One of the consequences of the constant volatility is a conditional normal
distribution of the future interest rates and thus a possibility of negative interest
rates. Historically, this was a motivation for proposing other short rate models.
However, note that while some of the interest rates observed in these days ca
be indeed negative, the presence of negative values of the Ornstein-Uhlenbec
stochastic process is not consistent with absence of arbitrage in the context c
default intensity models [44] which lead to solving exactly the same parabolic
PDEs. A popular alternative is the Cox-Ingersoll-Ross model [14] (usually ab-
breviated as CIR model) which does not allow negative interest rates, while it
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104 Zuzana Bikova, Beata Stelikova and DanieBewtovit

preserves analytical tractability of bond prices. The stochastic differential equa-
tion for the short rate is given by

dr = k(0 —r) dt + o/r dw, (13)

with k, 0,0 > 0 being constants. The difference from the Vasicek model con-
sists in the volatility which is now equal t@./r. Intuitively, if the short rate

r is small, then the volatility is small as well. If the short rate hits zero then
the volatility becomes zero as well and the positive drift pushes the short rate
to a positive value. It can be shown that the process is indeed nonnegative fo
all times and, moreover, if the conditi@xf > o2 is satisfied, the process re-
mains strictly positive. If the market price of risk is chosen to be equal{d:,
equation (6) with the initial condition (7) becomes

—0,P + (k(0 —r) — A\or)0, P + %(727"8313 =0 (14)

for all » andr € (0,71, andP(r,0) = 1 for all ». Again, it can be solved in a
closed form, assuming the solution (11), inserting it into the partial differential
equation and obtaining a system of ordinary differential equations for the func-
tions A(7), B(r). This system can be solved explicitly (see [14] for the exact
formulae).

4.3. Chan-Karolyi-Longstaff-Sanders Short Rate Model

As we have seen, changing the constant volatility from the Vasicek model
to o/r in CIR model prevents the short rate from becoming negative. However,
the same reasoning applies to any volatility of the fenrfi with v > 0. Models
with generaly may perform better when applied to real data. The hypothesis of
~v = 1/2is actually often rejected by statistical tests.

The pioneering paper [12] by Chan, Karolyi, Longstaff and Sanders started
the discussion on the correct form of the volatility. The authors used proxy for
the short rate process and considered a general short rate model expressed
terms of a single stochastic differential equation:

dr = (a+ pBr)dt + or” dw, (15)

which has become known as the CKLS model. It includes the Vasicek ()
and CIR ¢ = 1/2) models as special cases (and thus allows for testing them as
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statistical hypotheses on the model parameters), as well as several other mode
(see Table 1). Chaet al. estimated the parameters using the generalized method
of moments. They found the parameteto be significantly different from the
values indicated by the Vasicek and CIR models (see Table 2).

Table 1. One-factor short rate models considered in [12] as special cases of
the stochastic process (15)

Model Equation for the short rate
Merton [38] dr = adt + odw

Vasicek [61] dr = (a+ pr)dt + odw
Cox-Ingersoll-Ross (1985) [14] | dr = (a + Br)dt + or'/?dw
Dothan [20], [6] dr = ordw

Geometrical Brownian motion [37] dr = Brdt + ordw
Brennan-Schwartz [7], [13] dr = (o + pr)dt + ordw
Cox-Ingersoll-Ross (1980) [15] | dr = or3/2dw

Constant elasticity of variance [37] dr = Brdt + or”dw

Table 2. Parameter estimates and results of testing the hypotheses given
by Vasicek and CIR models in [12]

Model a B o? v P-value
unrestricted| 0.0408 -0.5921 1.6704 1.4999 -

Vasicek 0.0154 -0.1779 0.0004 0 | 0.0029
CIR 0.0189 -0.2339 0.0073 1/2| 0.0131

A modification of the so-called robust generalized method of moments
which is robust to presence of outliers was developed in [3]. Another contri-
bution to this class of estimators is, for example, indirect robust estimation by
[17]. Another popular method for parameter estimation are Nowman’s Gaus-
sian estimates [40] based on approximating the likelihood function. They were
used in [21] for a wide range of interest rate markets. There are several othe
calibration methods for the short rate process, such as quasi maximum like:
lihood, maximum likelihood based on series expansion of likelihood function
by Ait-Sahalia [2], Bayesian methods such as Markov chain Monte Carlo and
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106 Zuzana Bikova, Beata Stelikova and DanieBewtovit

others.

A common feature of these approaches is taking a certain market rate a:
a proxy to the short rate and using the econometric techniques of time serie:
analysis to estimate the parameters of the model. These parameters can be us
afterwards in order to price the bonds and other derivatives. For example, in [43]
the parameters of the CKLS process were first estimated using the Nowman'
methodology and afterwards derivatives prices were computed by solving the
partial differential equation using the Box method. For more results of this kind
(see [41], [42)]).

An alternative would be using the derivatives prices to calibrate the param-
eters of the model. This, however, requires a quick computation of the prices
since they have to be computed many times with different parameters during
the calibration procedure. Exact solution to the bond pricing equation available
for Vasicek and CIR model made this possible in the case of these two models
cf. [49], [50]. In general, when the exact solution is not available, an approxi-
mate analytical solution provides a convenient alternative.

4.4. Other One-Factor Models

Modifying the constant volatility is not the only way for ensuring positivity
of the short rate. Another simple way is defining short rate as a positive func-
tion whose argument is a stochastic process. In particular, the Black-Karasinsk
model [5] which is also refereed to as the exponential Vasicek model because o
its construction (cf. [8, Section 3.2.5]) defines the short rate-as:”, wherex
follows the Ornstein-Uhlenbeck process:

dr = k(0 — z)dt + o dw. (16)

Note that in the case of Black-Karasinski model, the stochastic differential
equation for the short ratereads as follows:

1
dr = r(kf + 502 —krlInr)dt + or dw,
which means that the short rate does not have a linear drift which is a commor
feature for previously considered models.

Another nonlinear-drift model has been suggested tiySahalia in [1] to
produce very little mean reversion while the interest rates remain in the middle
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part of their domain, and strong nonlinear mean reversion at either end of the
domain. This property is achieved by the stochastic differential equation:

dr = (a_lr’l 4+ agp + a1 + 0427“2) dt + or?dw,

(see Figure 4 for a plot of the drift function far_; = 0.000693, g =
—0.0347, 1 = 0.676, sy = —4.059 which are taken from [2]).

0.12

0.14
0.08
0.06
0.04

drift

0.02

[
-0.024
-0.04+
-0.06 T T T

T T T
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
short rate

Figure 4. Nonlinear drift of the A-Sahalia model [1] for parametets | =
0.000693, g = —0.0347, a1 = 0.676, gy = —4.059, taken from [2].

4.5. Short Rate as a Sum of Multiple Factors

One of the consequences of using a one-factor short rate model is the bon
price having the fornP = P(r,r). This means that the bond price with a given
maturity is uniquely determined by the short rate level. Translating this into the
language of term structures: the term structure is uniquely determined by its
beginning (interest rate for infinitesimally small maturity, i.e., the short rate).
While this might not be an unreasonable property of the interest rates in certair
time periods, it clearly does not hold in others, as demonstrated in Figure 5.

If we define the short rate as a function of more factors, e.=
r(z1,...,z,), then the bond price has the forfh= P(7,z1,...,z,). If the
same short rate level can be achieved for several combinations of the factor
x1,...,%,, these can produce different bond prices and, consequently, term
structures - such as those seen in Figure 5. Moreover, the factors determinin
the short rate may have a plausible interpretation on their own.
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Figure 5. Euro interest rates - examples of term structure starting from the samu
point. Data sourcehttp://www.emmi-benchmarks.eu

In [4] the authors propose the model for the short ratte be

n
r=p—y
i=1

wherey, is interpreted as the long-run average rate and. ., , x,, represent

the current effect of. streams of economic "news”, among which they include
rumors about central bank decisions, economic statistics, etc. The arrival of
each of these news is modeled by the process:

dxi = {le dt + o; dwi

with negative constant§ and possibly correlated Wiener processgs Thus,

the impact of any news dies away exponentially. If the market prices of risk are

taken to be constant, it is possible to express the bond prices in a closed form.
A multi-factor version of a one-factor CIR model is formulated in [10],

where the short rateis a sum ofn components, i.e.,

r= Z T, a7
j=1
with eachz; following the Bessel square root process:
dri = k(0 — r;) dt + oi/r; dw;, (18)
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assuming independent Wiener processes. Their independence and the choi
of market prices of risk to bg;,/r; again allow analytical expressions for the
prices of bonds. In Figure 6 we show sample trajectories of a two-factor CIR
model with parameters equal tg = 0.7298,0; = 0.04013,07 = 0.16885,
ko = 0.021185, 65 = 0.022543, 0o = 0.054415 which are taken from [10].
Equations (17)-(18) can be generalized to general CKLS processes (15) an
correlated Wiener processes. However, with the exception of the special case
above, the closed form formulae for bond prices are not available. This is why
their approximations are necessary.

0.12
] factor r1

0.1 — — — equilibrium level of r1
factor r2
— — — equilibrium level of r2

0.12
short rate

0 T T T T T T T T T
0 0.5 1 15 2 25 3 35 4 4.5 5

Figure 6. Two-factor CIR model: sample trajectories of the factors and the
short rate for parameters;, = 0.7298,6; = 0.04013,01 = 0.16885, ko =
0.021185, 05 = 0.022543, 09 = 0.054415, taken from [10].

4.6. Stochastic Volatility Multiple-Factor Interest Rate Models

A non-constant volatility is known especially from the market of stocks and
the derived options. The most famous index measuring the volatility is arguably
VIX, CBOE Volatility Index. It is a key measure of market expectations of
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near-term volatility conveyed by S&P 500 stock index option prices. Since
its introduction in 1993, it has been considered by many to be a barometer of
investor sentiment and market volatifitywe present its evolution in Figure 7.

VIX Index

90
80
70
60
50
40
30
20
10

0
January 1,1990 December 6, 1994 November 10, 1999 October 14, 2004 September 18, 2009

Figure 7. VIX, CBOE \olatility Index. Data source:
http://www.cboe.com/micro/VIX/

Moreover, besides the volatility being non-constant and stochastic, there is
an evidence that it evolves in a different time scale than the stock price, see
a concise book [23] by Jean-Pierre Fouque, George Papanicolaou and Ronn
Sircar summarizing their work in the area of application of perturbation methods
for the partial differential equation for the option prices in models incorporating
this feature.

Approximately ten years later, in 2011, the same authors, and, in addi-
tion Knut Solna, published a new book [24] with a broader cont®hulti-
scale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatigas
turing the topic of interest rates mentioned in the title. The randomness of
volatility and interest in its measurement can be observed from the fact, that
CBOE has started to calculate volatility indices related to interest rates market:
CBOE/CBOT 10-year U.S. Treasury Note Volatility Indexnd CBOE Interest
Rate Swap Volatility Indek

As an example, let us consider the stochastic volatility Vasicek model, as

2seehttp://www.cboe.com/micro/VIX/vixintro.aspx
Swww.chboe.com/VXTYN
“www.choe.com/SRVX
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givenin [23]. It differs from the ordinary Vasicek model by its volatility. Instead
of a constant volatility, it is a nonnegative functigrevaluated in the value of a
stochastic process following the Ornstein-Uhlenbeck process:

dr = k1(01 —r)dt+ f(y) dws,
dy = ko(O2 —y)dt + v dwo,

where the correlation between the incremefits anddws is p € (—1,1).
Empirical data suggegt> 0 (see, e.g., [23, p. 177]).

Another example of a stochastic volatility short rate model has been pro-
posed by Fong and Vasicek in [25] by means of the following system of stochas-
tic differential equations:

dr = k1(6h —r)dt+/y dwy,
dy = ka(O —y) dt + v\/y dws,

where the Wiener processes can be correlated and the correlation between tt
incrementsiw; anddws is p € (—1,1). If the market prices of risk are given
by® A1,/y (market price of risk of the short rate) angl, /y (market price of risk

of volatility), then the partial differential equation for the bond price can be split
into solving a system of three ordinary differential equation.

4.7. Convergence Multiple-Factor Models Modeling Entry to a
Monetary Union

The basic convergence model of interest rates was suggested by Corzo ar
Schwarz in [16], where they model the interest rates before the formation of
the European monetary union. Participating countries fixed their exchange rate
to Euro in January 1999. With fixed exchange rate, the interest rates have t
be the same across the countries. However, already before fixation of the ex
change rate, the convergence of the interest rates in participating countries we
observed. This motivates the following model for the European shortrgate
and the domestic short ratg:

drg = (a+0b(re —rq))dt+ oqdwy, (19)
dre = c(d—re)dt+ oe dw,, (20)

®Note that this model is a generalization of the one-factor CIR model and the choices for
market prices of risk can be seen as generalizations of the model considered.
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where the Wiener processes are, in general, correlateddwogvdw.) = p dt.

Note that equation (20) is the Vasicek model for the European rate, wherea:
(19) models a reversion of the domestic rate to the European rate, with a pos
sible minor divergence given by. Figure 8 shows sample trajectories for
the parameters = 0.2087,d = 0.035,0. = 0.016 for the European rate,

a = 0.0938,b = 3.67,04 = 0.032 for the domestic rate and the correlation

p = 0.219, taken from [16]. Note that in the case of nonzetdhe instanta-
neous drift from (19) forces the domestic rate to revert not exactly to the Eu-
ropean rate-., but to the value-. + a/b. For the given set of the parameters,
the "divergence termé /b equals to approximately 0.02 which can be observed
in Figure 8. However, with a fixed exchange rate, economically plausible value
of a is zero. Indeed, when the original model was estimated using the last 3.5
years before entering the European Monetary Union (EMU) in [16] this coef-
ficient turned to be highly insignificant. We also note that negative value of
the parametes may cause mathematical problems in the generalizations of the
model (related to the short rate evolution as well as the bond prices, see [34]).

0.14
European rate

0.13 ] — — — equilibrium European rate
domestic rate

0.12

Figure 8. Sample paths of the European and the domestic short rate in Corzc
Schwarz convergence model with parameters= 0.0938,b6 = 3.67,04 =
0.032, ¢ = 0.2087,d = 0.035, 0. = 0.016, p = 0.219, taken from [16].
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In the market prices of risk are constant, there is an explicit solution for the
domestic bond pricéof the form

P(1,rq,71e) = A(T)e_B(T)Td_C(T)”. (21)

In [16] authors claim that the same analysis can be done for the CIR-type con-
vergence model.This question has been studied by Lacko in [34].

If the correlation betweedw,; and dw, is zero, then the solution can be
again written in the form (21) and the functions can be found numerically by
solving a system of ordinary differential equations. In the general correlated
case, the solution cannot be written in the separated form (21). This is true
also for another natural generalization, where the European rate is modeled by
CKLS-type process (15) and the volatility has the foagr7< in equation (19)
describing behavior of the domestic rate. An analytical approximation formula
for bond prices the CKLS-type model is studied bik@a and Stehikova in
[59].

5. Approximate Analytical Solutions in Selected Bond
Pricing Problems

Let us consider an example of market interest rates and Euribor rates ir
particular. Panel banks provide daily quotes of the rate, rounded to two decima
places, that each panel bank believes one prime bank is quoting to another prim
bank for interbank term deposits within the Euro zone. Then, after collecting
the data from panel banks: The calculation agent shall, for each maturity, elimi-
nate the highest and lowest 15% of all the quotes collected. The remaining rate
will be averaged and rounded to three decimal places. These rates are quote
in percentage points. After dividing them by 100, we obtain them as decimal
numbers which are used as the variabile the models described in the previous
chapter. It follows that the value, e.g., 0.123 percentage points from the mar-
ket data is not an exact figure, but, in terms of decimal numbers, can represer
anything from the interval0.001225,0.001235). On the other hand, any two
numbers from this interval obtained from models would be in practice indistin-
guishable. Therefore, going above a certain precision in the computations doe
not bring any practical advantage when analyzing the market interest rates. Ir

Note that an explicit solution for the European bonds follows from the fact that we are using
the classical Vasicek model for the European interest rates.
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other words, two approximative results that coincide to certain decimal points
are practically equally useful. Approximate analytical solutions we are dealing
with are very convenient tools in this regard.

5.1. Chan-Karolyi-Longstaff-Sanders Model

In this section we consider the Chan-Karolyi-Longstaff-Sanders (CKLS
hereafter) model in the risk neutral measure:

dr = (a+ Br)dt + or” dw, (22)

wherew is the Wiener process. Note that the linear drift is consistent with the
physical measure formulation and choice of market price of risk in the original
Vasicek model from [61] withy = 0 and the Cox-Ingersoll-Ross (CIR here-
after) model proposed in [14] with = 1/2, see (10) and (14).

The priceP(r,r) of the discount bond, when the current level of the short
rate isr and time remaining to maturity is, is then given by the solution to the
partial differential equation

1
—0.P + 5027‘2783P +(a+pr)o.P—rP=0,r>0, 7€ (0,T) (23)

satisfying the initial condition?(0,r) = 1 for all » > 0 (see, e.g., [32], [8]).
Recall that in the case of Vasicek and CIR models the explicit solutions to bond
pricing partial differential equations are known.

5.1.1. Approximation Formula Due to Choi and Wirjanto

Consider the stochastic differential equation (22) in the risk neutral measure
for the evolution of the short rate and the corresponding partial differential
equation (23) for the bond pricB(r, ). The main result of the paper [11] by
Choi and Wirjanto is the following approximatioR®? for the exact solution
per:

Theorem 2. [11, Theorem 2] The approximate analytical solutiBfi is given

by
In P*?(1,r) = —rB+ %(T — B)+ (r* +qr) Z; {32 + %(T - B)}
—q8;2 B%*(28r—1) - 2B (27 - Z) +27% — 6/81 (24)
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where
q(r) = (27 = 1)o?r* #4297 (o + Br) (25)

and

B(r) = (T = 1)/B. (26)

The derivation of the formula (24) is based on calculating the price as an
expected value in the risk neutral measure. The tree property of conditional
expectation was used and the integral appearing in the exact price was approx
mated to obtain a closed form approximation. The reader is referred to [11] for
more details of the derivation of (24).

Authors furthermore showed that such an approximation coincides with the
exact solution in the case of the Vasicek model [61]. Moreover, they compared
the above approximation with the exact solution of the CIR model which is also
known in a closed form. Graphical demonstration of relative mispricing, i.e.,
the relative error in the bond prices, has been also provided by the authors.

5.1.2. Asymptotic Analysis of the Choi and Wirjanto Approximation
Formula

As it can be seen from numerical examples given in [11], the error in bond
prices is smaller in the case efsmall. Also, forr = 0 the formula is exact.
This suggests usage ofas a small parameter in the asymptotic analysis.

Using the exact solutiorP&}, in the case ofy = 1/2 (i.e., the Cox-
Ingersoll-Ross model), computing its expansiorriaround the point = 0
and comparing it with the expansion of the Choi and Wirjanto approximate for-
mula P/} , with v = 1/2 we obtain

In PAH o (7, r) —In P&ig(r,7) = —%02 [aﬁ + (B — 402)] 75 + o(7°)
ast — 07. Considering logarithms of the bond prices enables us to estimate
the relative error in the bond prices (the relative mispricing from the previous
subsection) and the absolute error in the interest rates forming a term structur
of interest rate.

The result of expanding the approximate and exact solutions in the case o
the CIR model motivates finding a similar estimate also in the case of a genera
CKLS model, i.e., for arbitraryy. In the paper [54] we proved the following
theorem:
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Theorem 3. [54, Theorem 3] LetP?? be the approximative solution given by
(24) and P=* be the exact bond price given as a unique complete solution to
(23). Then

In P (7,7) — In P°*(7,7) = c5(r)7° + o(79)

ast — 07 where

1
cs(r) = —m7r2(7_2)02 [2042(—1 + 29)7r? 4+ 48%yrt — 81312752
+26(1 = 5y + 692)r2 162 4 o417 (29 — 1)2(4y — 3) (27)
+2ar (B(—1 4 49)r* + (2v — 1)(3y — 2)r*70?)] .

Moreover, the method of the proof enabled to propose an approximation
formula of a higher accuracy, as stated in the following theorem.

Theorem 4. [54, Theorem 4] LetP“* be the exact bond price. Let us define an
improved approximatio®®? by the formula

In P%P%(7,7) = In P (1,7) — c5(r)7° — c6(r)7° (28)

whereln P? is given by (24)¢5(7) is given by (27) in Theorem 3 and

o) = ¢ (;a%%g(r) T (o + Br)d(r) - k5(r)>

wherec} and¢f stand for the first and second derivativesg{r) w. r. tor and
ks is defined by

2
ks(r) = %7&(72%) (6025 (=1 +27) 2 + 126%r — 10(1 — 27)%r 70

+643%0> (1-5y+ 672) P20+
+8r*76” (=10 (5 + 27) 7> + 3(1 — 29)* (=3 + 47) r*70?)

+2ar (3/32 (—14+4y)r* +3B(2— Ty +69°) r¥0”
—5(=1+2y) 7’1+2702>} : 29)

Then the difference between the higher order approximdtid??? given by
(28) and the exact solutiom P¢* satisfies

In Pap2(7', r) —In P (7,r) = 0(7'6)

ast — 0T,
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In Table 3 we showL., and L, —norms with respect tor of the dif-
ferenceln P — In P** and In P%? — In P** where we considered ¢
[0,0.15]. We also compute the experimental order of convergence (EOC) in
these norms. Recall that the experimental order of convergence gives an af.
proximation of the exponent of expected power law estimate for the error
| In P (7,.) — In P**(7,.)|| = O(r*) asT — 0T. The EOC; is given by the
ratio:

In(err;/erriz1)

EOC; =
In(7;/7Tit1)

. where err; = || In P*P(1;,.) — In P (73, .) || -

Table 3. The L, and L, — errors for the original In P/, , and improved
In Pgﬁ% approximations. Parameters are set to be equal to o = 0.00315,
B = —0.0555, ¢ = 0.0894. Source: Stehlikova and Sevéovit [54]

7 [ [InP% —In P**||,, EOC | [[In P%? —In P**||,, EOC
1 2,774 x 1077 4.930 4.682 x 10710 7.039
0.75 6.717 x 10~8 4,951 6.181 x 10~ 11 7.029
0.5 9.023 x 1079 4972 3.576 x 1012 7.004
0.25 2.876 x 1010 - 2.786 x 10~14 -
7 | |[InP%® —In P**||, EOC | [[In P%? —In P**||, EOC
1 6.345 x 10~8 4.933 9.828 x 1011 7.042
0.75 1.535x10~8 4,953 1.296 x 10~ 1! 7.031
0.5 2.061x107? 4973 7.492 x 10713 7.012
0.25 6.563x10~ ! - 5.805 x 10~15 -

In Table 3 we show thd., — error in the difference between the original
and improved approximations for larger values-oft turns out that the higher
order approximatio®“?? gives about twice better approximation of bond prices
in the long time horizon up to 10 years.

5.1.3. Approximation Based on the Vasicek Model

Our aim is to propose a formula which is as simple as possible, but still
yields a good approximation of the exact bond prices. Using an approximation

"L, and Lo, norms of a functionf defined on a grid with step. are given by| f|l, =

(3 1f(z:)[")"/? and|| f[|oo = max | f(z:)].
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in calibration of the model requires many evaluations of its value for different
sets of parameters, as well as times to maturity and the short rate levels. There
fore, its simple form can increase the efficiency of the calibration procedure. In
particular, the approximation published by SikbVa in [62] presented in this
section leads to a one-dimensional optimization problem.

Again, we consider the model (22) in the risk neutral measure for the evo-
lution of the short rate and the corresponding partial differential equation (23)
for the bond priceP (7, r).

Recall that in the case of the Vasicek model, i.e.,fo& 0, the solution
P,.s can be expressed in the closed form:

_ BT BT
(30)

Now, let us consider a general model (22) and the approximation of the bond
price obtained by substituting the instantaneous volatiity for o to the Va-
sicek price (30), i.e.,

2,.2 _ BT 2,2 — b
In PP(7,1) = (g + 02;27> (1 ; +T> —i—l;;(l—e&)Q%—l ; T.
(31)

Theorem 5. [62, Theorem 1] LeP?? be the approximate solution given by (31)
and P¢* be the exact bond price given as a solution to (23). Then

In PP(1,7) — In P (1,71) = 04(7’)7'4 + 0(7’4)
asT — 0T where

ca(r) = —21—47T277202[2a1“ +287r% 4 (2y — 1)rPo?).

For the practical usage of the approximate formula, besides the order of
accuracy, the absolute value of the error is significant.

Comparison of the approximation with the exact values in the case of CIR
models and parameter values from [11] show (cf. [62] for the exact figures)
that for shorter maturities the differences are less than the accuracy to which th
market data are quoted. Euribor, for example, is quoted in percentage point:
rounded to three decimal places. Moreover, Figure 9 shows that although the
accuracy of this approximation is one order lower to that of the approximation
from [11], it gives numerically comparable results for the real set of parameters.
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Figure 9. Comparison of the exact term structures in the CIR model (solid line),
approximation based on the Vasicek model from [62] by $kekih (crosses)

and approximation from [11] by Choi and Wirjanto (circles). Parameters are set
to be equal toor = 0.00315, 8 = —0.0555, o = 0.0894. Source: Stefkova,

[62].

Let us consider the calibration of the one-factor model based on the compar:
ison of theoretical and market interest rates, where the parameters are chosen
minimize the function

1 n m
F = % Z Zwij (R(Tj,?”i) — Rij)z ; (32)
i=1 j=1
wherer; (i = 1,...,n) is the short rate observed on tixh day,7; (j =

1,...,m) is the j-th maturity of the interest rates in the data sk{; is the
interest rate with maturity; observed on théth day,R(r, r) is the interest rate
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with maturity corresponding to the short rateomputed from the model with
the given parameters and; are the weights. In [50] and [49], the weighted
sum withw;; = TjQ (32) was considered in order to calibrate the Vasicek and
CIR models and to give more weight to fitting longer maturities. To achieve
the global minimum of the objective function, the authors applied stochastic
optimization methods based on evolution strategies.

If we attempted to use this method to estimate a model with different values
of v without analytical approximations. It becomes computationally demand-
ing, since each evaluation of the objective function would require numerical
solutions of the PDE (23). Note that the evaluation is needed for every membel
of the population in the evolution strategy (see [49] for details). Using an ana-
lytical approximation simplifies the computation of the objective function, but
in general the dimension of the optimization problem is unchanged. We show
that using the approximation proposed in this paper, we are able to reduce th
calibration to a one-dimensional optimization problem which can be quickly
solved using simple algorithms.

Hence we consider the criterion (32) with replaciRgr, r) by its approx-
imation R“?(r,r) calculated from (31). Note that the approximation formula
In P is a linear function of parametessando?; it can be written as follows:

In PP(7,7) = co(7,7) + c1(7, ) + co(T, 7“)02,

where

R O 6 S W il 1feBT+T+(1—eﬁT)2
=7 et )T\ T8 28 )

Hence taking the derivatives of (32) with respecttands? and setting them
equal to zero leads to a system of linear equations for these two parameters.
means that once we fixand treaf? as a parameter, we obtain the corresponding
optimal values ofr ando? for eachs. Substituting them into (32) then leads to
a one-dimensional optimization problem. Doing this over a range of values of
~ allows us to find the optimal parameteas well.

We show the proposed idea on simulated data. Once again, we consider th
CIR model with parameters from [11] and simulate the daily term structures —
interest rates with maturities af 2, 3, ..., 12 months using the exact formula
for the CIR model for a period of year. In the objective function (32) we use the
weightsw;; = T]-Q as in [50] and [49]. Afterwards we repeat the same procedure
with maturities of 1, 2, 3, 4 and 5 yeatrs.
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Results of the estimation for several values @ire presented in Table 4, we
show the estimated parameters and the optimal value of the objective functior
F.

Table 4. Estimation of the parameter - using the approximate formula for
interest rates. The data were simulated using the exact formula with the
parameters o = 0.00315, 8 = —0.0555, 0 = 0.0894, v = 0.5. Maturities

used were 1,2, ..., 12 months (above) and 1,2, ... 5 years (below).
Source: Stehlikova, [62]

~ « 8 o Optimal value of F'

0 | 0.00324 -0.0578 0.0176 1.1x10712
0.25| 0.00319 -0.0565 0.0408 2.9x10713

0.5 | 0.00315 -0.0555 0.0896 1.1x107%
0.75| 0.00312 -0.0548 0.1912 6.3x10713

1 | 0.00310 -0.0548 0.3818 2.5x10712

v e I} o Optimal value of F’

0 | 0.00377 -0.0663 0.0214 1.0x107%
0.25| 0.00344 -0.0607 0.0432 2.4x107°
0.5 | 0.00311 -0.0553 0.0860 2.2x10710
0.75] 0.00281 -0.0506 0.1688 6.7 x107°
1 | 0.00256 -0.0471 0.3238 2.7x1078

5.2. General One-Factor Models: Power Series Expansions

The approximations considered in the previous sections share a commol
feature: their order of accuracy can be expressed in the form

In PP(7,7r) —In P(7,7r) = c(r)7¥ + o(7%) (33)

ast — 0T, whereP is the exact bond price arféf” is the proposed approxima-
tion. The relation (33) asserts that the Taylor seriesi@?? andin P coincide

up to the certain order. In particular, in [54] it has been shown that for the for-
mula for the CKLS model from [11] the relation (33) holds with= 5 and an
improvement leading t@ = 7 has been derived. In [62] a simple formula with
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w = 4 has been proposed. Similar estimates hold in the case of multi-factor
models. These results suggest that the Taylor expansion (either of the prici
itself and its logarithm) could be a good approximation too.

Let us consider a general one-factor model with constant coefficients

dr = p(r)dt + o(r) dw. (34)

Recall that the price of the boné(r, r) is a solution to the partial differential
equation

—0,P + pu(r)o,P + %(72(7«)8313 —rP=0 (35)

forall » > 0, 7 € (0,7 and the initial condition”(0,r) = 1 for all » > 0.
Easy transformation of the PDE leads to the equation which is satisfied by the
logarithm of the bond price, i.ef,(r,r) = log P(r,r):

1
~0-f = 50 (1) [(0nf)* + O, f] + pl(r)0rf =7 =0 (36)
forall» > 0, 7 € (0,7) and the initial conditionf(0,7) = 0 for all » > 0.
Writing these functions in series expansions at 0,

P(T, 7’) = ch(r)ij f(T7T) = Z kj(T)Tj (37)
Jj=0 ]

j=0

enables us to compute the parametgrsr k; recursively in the closed form.

A practical usage of this approach is determined by the speed of convergenc
of these series for reasonable valuesradndr». Then, we can approximate
the bond prices and their logarithms by terminating the infinite sums (37) at a
certain index/.

We show the results from [60]. Firstly, the approximation is tested on the
CKLS model with the same parameters as in the previous chapter. The result
suggest the possibility of practical usage of the proposed approximation. An-
other example is the Dothan model. In [20] Dothan assumed that the short rate
in the risk neutral measure follows the stochastic differential equation

dr = prdt + ordw.

The zero-coupon bond in the Dothan model has an explicit solution, but it is
computationally complicated (cf. [8]). Therefore, we use the Dothan bond
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prices computed in [28] for which the error estimate is available. They are
accurate to the given four decimal digits.

Insertingu(r) = pr ando(r) = or into the recursive formulae for coef-
ficients yields the coefficients for the price and its logarithm. In the numerical
experiments we consider the values from [28]. The authors price zero coupor
bonds which pays 100 USD at maturify{hence its price is 100 times the value
considered so far). Using their iterative algorithm, foe 1,2, 3,4, 5, 10 they
obtain the accuracy to four decimal digits for all combinations of parameters
and in several cases also for higher maturities. Selected values from [28] ar¢
used to test the approximation for a wider range of parameters and maturities
as shown in Table 5.

Table 5. Bond prices in the Dothan model with indicated parameters and
maturities, and the initial value of the short rate ro = 0.035 - comparison
of Taylor approximation with exact values. Source Stehlikova [60]

Parameters | 7 | Taylor, J=3 Taylor,J=5 Taylor,J=7 Exact [28]
pwo= 0.005, | 1 96.5523 96.5523 96.5523 96.5523
02 =0.01
2 93.2082 93.2082 93.2082 93.2082
3 89.9666 89.9663 89.9663 89.9663
4 86.8260 86.8251 86.8251 86.8251
5 83.7852 83.7830 83.7830 83.7830
10 70.0312 69.9977 69.9982 69.9982
w = 0.005, | 1 96.5525 96.5525 96.5525 96.552%
0% =10.02
2 93.2099 93.2098 93.2098 93.2098
3 89.9721 89.9715 89.9715 89.971%
4 86.8391 86.8370 86.8370 86.8370
5 83.8362 83.8056 83.8057 83.8057
10 70.4396 70.1530 70.1551 70.1551
w = 0.005, | 1 96.5527 96.5527 96.5527 96.5527
02 =10.03
2 93.2115 93.2113 93.2113 93.2113
3 89.9776 89.9767 89.9767 89.9767
4 86.8521 86.8491 86.8491 86.8491
5 83.8362 83.8287 83.8287 83.8287
10 70.4396 70.3112 70.3151 70.3151

The idea of the short time asymptotic expansion can be enhanced by con
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sidering the so-called exponent expansion to derive a closed-form short-time
approximation of the Arrow-Debrew prices, from which the prices of bonds or
other derivatives can be obtained by a simple integration. This technique, origi-
nally introduced in chemical physics by Makri and Miller [36], was introduced
to finance by Capriotti [9]. In [63] by Stetklova and Capriotti, it was employed
to compute the bond prices in the Black-Karasinski model.

The exponent expansion is derived for the bond prices in short rate models
with » = r(z), where the auxiliary process has the form

dz(t) = p(x) dt + o dw, (38)

wherep () is a drift function. The process has a constant volatitityn general
case it is possible to transform general state dependent volatility function to the
constant volatility by means of an integral transformation. Note that this trans-
formation is used also byi&Sahalia in [2] in his approximation of transition
densities.

The bond prices are not computed directly. Instead, the so-called Arrow-
Debreu prices are approximated by a closed form formula and the bond price:
are obtained by a single numerical integration. The Arrow-Debreu prices
¥(x, T; ) are for eachry given as solutions to the partial differential equa-
tion (see [52])

ot = (—r(@) ~ en(a) + 20?2, (39

with the initial conditiomy(x, 0; o) = §(x — z¢). Looking for the solution in
the form

Y(x,t;x0) =

_ 2
exXp |:_(x2o_§t()) - W(x> t; :EO):| ) (40)

1
V2ot
and inserting it into (39) leads to a partial differential equation¥ofz, t; x¢).
DecompositiodV in the form:

n=0

allows for a recursive computation of the functioi$,(z; z¢) as solutions to
the first order linear ordinary differential equations.

This form of expansion for the bond prices results in a more rapid conver-
gence especially for longer maturities, compared with the simple Taylor expan-
sion described previously, see Table 6.
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Table 6. Comparison of successive approximations of the bond price with
six-months (left) and one-year (right) maturity in the Black-Karasinski
model with parameters a = 1, b = In 0.04, 0 = 0.85, when the initial level
of the short rate is » = 0.06

Order | Taylor  Exponent expansion | Taylor  Exponent expansion
1 0.970000 0.969249 0.940000 0.937431
2 0.968045 0.968138 0.932179 0.933037
3 0.968123 0.968140 0.932807 0.933077
4 0.968141 0.968142 0.933097 0.933105
5 0.968142 0.968142 0.933118 0.933106
6 0.968142 0.968142 0.933110 0.933106

An important advantage that separates the exponential expansion is the pot
sibility to systematically improve its accuracy over large time horizons by means
of the convolution approach (see [63] for the algorithm). It enables us to pro-
duce results accurate to more than 4 significant digits even for zero coupor
bonds with maturities over 20 years. This is documented in Table 7 where the
results are compared with Monte Carlo prices.

Table 7. Bond prices computed with the 6th order Exponent Expansion
and different convolution steps in the Black-Karasinski model with
parameters a = 1, b = In 0.04, 0 = 0.85, when the initial level of the short
rate is r = 0.06, compared with the price obtained by Monte Carlo
method. Source: Stehlikova and Capriotti, [63]

Maturity | Convolution step: 5  Convolution step: 2.5  Convolution step: 1 MC
5 0.65949 0.65955 0.65966 0.6597
10 0.46139 0.46222 0.46229 0.4623
20 0.26812 0.26827 0.26831 0.2683

5.3. Fast Time Scale of Volatility in Stochastic Volatility Models

In the paper [57] by Stetiova andSewovit, we studied a generalized CIR
model with a stochastic volatility. The instantaneous interest rate (shortrate)
is modeled by the mean reverting process of the form (13) where the constan
o appearing in the volatility functiom/r is replaced by a square root of a
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stochastic dispersiom i.e.
dr = k(0 —r)dt + \/y\/r dw, . (42)

The stochastic differential equation for the short rate is given by

dy = a(y) dt + vy/y dwy, (43)

with certain conditions given on the functian [0, o) — R at zero and infinity,
see [57, Assumption A] and a concrete exarfjpd57, Lemma 1]. The differ-
entials of the Wiener processés, anddw, are assumed to be uncorrelated.

It provides a tool for modeling the effects of rapidly oscillating stochastic
volatility that can be observed in real markets (cf. [23], [24]). If the length of
the time scale for the dispersigns denoted by, equation (43) for the variable
y reads as follows: W 7

aly VY

dy = - dt + NG dw,.
In what follows, we will assume thdt < ¢ < 1 is a small singular param-
eter. The density of the conditional distribution of the process is given by the
solution to the Fokker-Planck equation. The densgity) of its stationary dis-
tribution which is widely used in the computations from [57], is then given by
the normalized solution to the stationary Fokker-Planck equation which reads
as follows:

(44)

U2
5 05 (wg) — 0,(a(y)g) =0 (45)

for the process (44). Naotice that the limiting density functiois independent
of the scaling parameter> 0.

The market prices of risk functions are considered to be in the form
Mt y) = MVryy, Aa(t,r,y) = Xay/y, wherel;, A2 € R are constants
(note that this is a generalization of the original one-factor CIR model which as-
sumes the market price of risk to be proportional to the square root of the shor

8The concrete example of a functienconsidered in the paper models a volatility clustering
phenomenon where the dispersion can be observed in the vicinity of two local maxima of the
density distribution. In particular, it uses a stochastic differential equation that leads to the lim-
iting density of the volatility to be equal to a convex combination of two gamma densities. It
has was proposed in [55]. However, the results are derived for a general process (43), using th
limiting distribution and its statistical moments.
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rater). Then, we rewrite the partial differential equation for the bond pfice
in the operator form:

(e Lo+ V2L + Lo)PT =0, (46)

where the linear differential operatofy, £, L5 are defined as follows:

1 1
Lo = a(y)dy + §v2y85, L1 = —Xovydy, Lo =0 + (k(0 — 1) — A11y)0r + Eryafr —

Next we expand the solutioR* into Taylor power series:
oo
“(t,r,y) ZséP] t,r,y) (47)
7=0

with the terminal conditions? (7', r,y) = 1,P;(T,r,y) = 0 forj > 1 at
expiryt = T'. The main result is the analysis of the singular limiting behavior
of the solutionP® ase — 0*. More precisely, it determines the first three terms
Py, P, P, of the asymptotic expansion (47).

The main tool in the derivation is averaging with respect to the limiting
distribution, whose density is given by (45), and is denoted by brackétsin
the following. In particular, the following two propositions are essential: Firstly,
a functiony, for which Ly is bounded, satisfieyy) = 0 (see [57, Lemma
3]). Secondly, [57, Lemma 4] gives an expressiondgrand (£1v), where
1 is a solution ofLyyy = F with the right-hand side being a given function
satisfying(F') = 0.

The solutionP* = P¢(t,r,y) of the bond pricing equation (46) can be
approximated, for small values of the singular parameters < 1, by

)

and the main result consists in derivation of the functidiysP, P,. Note
that the first two termd), P, are independent of the-variable representing
unobserved stochastic volatility.

The first termF is a solution to the averaged equatidiy) Py = 0 which is
the partial differential equation for the bond price in the one-factor CIR model
with parameters set to the averaged values (with respect to the limiting distribu-
tion) from the model studied here. It has a form

e

Ps(tara y) ~ PO(t>r) + \/gpl(tar) +5P2(ta Tvy) + 0(5

PO(tv T) = AO(t)e_B(t)rv (48)
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where the functionsiy and B are given by a system of ordinary differential
equations which can be solved in a closed form. Neither the secondRerm
depends on the instantaneous level of the progesBhe equation for thé”,
reads as follows:

(LoPy) = f(t)re  BOT,

where the functiorB comes from (48) and the functigfiis obtained from the
model parameters and the solution (48) in a closed form. The solution can be
expressed as follows?; (t,7) = (Aio(t) + A1 (t)r)e~BO™ with the function

B being the same as in (48) and the functiohg, A1, satisfying a system of
linear ordinary differential equations. The next term in the expandtgmon-
trivially depends on thg-variable. It is decomposed into its expected value and
zero-mean fluctuations as

PQ(tar>y) = pQ(tvr) +ﬁ2(ta Tay)

Where<152> — (. The functionP, can be computed by integration, using the
results obtained so far. The functidh satisfies the equation

(LoPy) = (a(t) + b(t)r + c(t)r?)e BOT,

where the functions, b, ¢ are given. It has the formP,(t,r) = (Ag(t) +
Ao1 (t)r 4 Aga(t)r?)e~ B where the functiorB is the same as in (48) and the
functionsAsg, Ao, Ags are solutions to a linear system of ODEs. More detailed
computations can be found in [57].

Recall the Fong-Vasicek model with stochastic volatility in which the short
rate is given by the following pair of stochastic differential equation

dr = k1(6h —r)dt+/y dwy,
dy = ka(b —y) dt + v\/y dws. (49)

For a suitable choices of market prices of risk, computation of the bond prices
can be reduced into solving ordinary differential equations. This computational
simplicity makes it a suitable choice for assessing the quality of the approxima-
tion of the kind described above. Introducing fast time scale of volatility, the
equation (49) becomes (cf. equation (44))

_ k2 v
dy = 5(02 y)dt+\/g\/§dw2. (50)
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However, when estimating parameters using the real data, from the parametel
of (50) we are able to obtain onll, 72 = %> andv = % Hence, we are not
able to reconstruct three parametessv, € from two valueszs, ©.

Therefore, in the master thesis by S@leiova [47], supervised by
Stehikova, another approach has been applied. It follows the parameteriza-
tion used by Danilov and Mandal in [18] and [19]. Strong mean-reversion in
the process for volatility can be characterized by a large valug .ofience we
can definee = 1/x, and expect it to be small enough to be used as a perturba-
tion parameter. In [47], the derivation similar to that above has been made to
compute the first two terms of the bond price expansion, leading to the approx-
imation of the bond price of the order zero:

Pa(tara y) ~ PO(t?T)
and of the order one:
Pg(t77” y) ~ PO(t7T) + \/gpl(tar)'

Then, the resulting interest rates were compared with exact values. In Table ¢
we present sample results.

Table 8. Interest rates from Fong-Vasicek model: comparison of the order
0 and 1 approximations with the exact values. Parameters are taken to be
equal to: k1 = 0.109, ke = 1.482,0; = 0.0652, 03 — 0.000264, v =
0.01934, A1 = —11, Ay = —6,7 = 0.04. Source: Selecéniova, [47]

Exact interest rate Approximation
Maturity | y = 1.6 x 107% y=24x10"* 3 =3.2x10"*| Order 0 Order 1
1 0.0424 0.0426 0.0429 0.0427 0.0432
2 0.0448 0.0451 0.0455 0.0451 0.0458
3 0.0470 0.0474 0.0478 0.0473 0.0482
4 0.0491 0.0495 0.0498 0.0493 0.0502
5 0.0510 0.0514 0.0517 0.0511 0.0521
6 0.0527 0.0531 0.0534 0.0528 0.0538
7 0.0543 0.0547 0.0550 0.0543 0.0553
8 0.0558 0.0561 0.0564 0.0557 0.0567
9 0.0572 0.0575 0.0578 0.0570 0.0580
10 0.0584 0.0587 0.0590 0.0582 0.0592

Let us remark that although the zero-order approximation of the bond price
equals to the bond price from the one-factor model with averaged coefficients,
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this is not the averaged bond pri¢B(t,r,y)). There is even a stronger result:
the averaged bond prige”(t, r, y)), although it is a function of andr, does

not equal to the bond price in any one-factor model, as it has been shown ir
[56].

5.4. Convergence Multiple-Factor Models

The idea of approximating the bond prices in a model with general volatility
by substituting the instantaneous volatility into a simple model of Vasicek type
with a constant volatility has been successfully applied in various multi-factor
models.

Convergence models form a special class of two-factor models. A conver-
gence model is used to model the entry of observed country into the Europeai
monetary union (EMU). It describes the behavior of two short-term interest
rates, the domestic one and the instantaneous short rate for EMU countries
European short rate is modeled using a one-factor model. It is assumed to hav
an influence on the evolution of the domestic short rate and hence it enters thi
SDE for its evolution. This kind of model was proposed for the first time in
[16]. The model is based on the Vasicek model, the volatilities of the short rates
are constant. Analogical model of Cox-Ingersoll-Ross type, where the volatili-
ties are proportional to the square root of the short rate, was considered in [34
and [35]. In the following sections we describe these two models and show how
they price the bonds. Then we present a generalization with nonlinear volatility
which is analogous to the volatility in the one-factor CKLS model.

Let us consider a model defined by the following system of SDESs:

dr = pp(r,z,t)dt + op(r,z,t)dws,
dr = pg(r,x,t)dt + oy (r, z,t)dws, (51)

wherep € (—1,1) is the correlation between the increments of Wiener pro-
cessedV; and Wy, i.e. Cov(dW,dWs) = pdt. The process: is a random
process which is connected with an instantaneous rate. It can be a long-term in
terest rate, a short-term interest rate in another country, etc. Relations betwee
real and risk-neutral parameters are analogous as in the one-factor case:

(risk-neutral drift function,. = (real drift function,, — A\ (r, z,t) x (volatility),,
(risk-neutral drift function, = (real drift function, — Az (r, z,t) x (volatility).,
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where\,., \, are market prices of risk of the short rate and the factarspec-
tively.

If the short rate satisfies SDE (51) in the real measure and market prices
of risk are\, (r, z,t), A, (r, z, t), then the bond pricé satisfies the following
PDE (assuming that the factoris positive):

opP oP oP

E + (AU‘T(Tv x, t) - )‘T(Tv €, t)GT(Tv z, t))ﬁ + (,LLI(T, €, t) - )‘Z(T7 xz, t)O'z(T, €, t)) or
or(r,x,t)? 827P o (r,x,t)? 827P i &*P 7 -
— 5 o 6w + por(r,z,t)os(r,z,t) e rP =0

forr,z > 0,t € (0,7) and the terminal conditio®(r,z,T") = 1 for r,x > 0.
The PDE is derived usingdtlemma and construction of risk-less portfolio, see,
e.g. [32],[8].

5.4.1. Convergence Model of the CKLS Type

The paper [59] is devoted to a convergence model of the CKLS type. Recall
that the exact bond prices are known in the case of the Vasicek-type model an
their computation can be simplified to a numerical solution of ordinary differ-
ential equations in the case of the CIR-type model with uncorrelated increments
of the two Wiener processes. In [59], the general CKLS model with uncor-
related Wiener processes (the effect of correlation can be seen only in highe
order terms, when taking as a small parameter, numerical results presented in
the paper show that the difference often occurs on decimal places which are nc
observable taking the precision of market quotes into account) is considered
The approximation formula from [62] described in the previous section is used
to compute European bond prices. In an analogous way, an approximation fo
domestic bond prices is proposed. It is tested numerically for CIR-type model
and a general order of accuracy is derived. Then, a calibration procedure is suc
gested, tested on simulated data and applied to read data. The simple form ¢
the approximation again allows relatively simple calibration procedure.

5.4.2. A Three-Factor Convergence Model

A one-factor model is not always sufficient to model the European short rate
in convergence model (as suggested by calibration results in [59]) which affects
also the appropriateness of the convergence model for the domestic currenc
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In paper [58] by Stefikova and Zkova, a three factor convergence model is
suggested and provides first steps in the analysis of approximation formulae fo
domestic bond prices. The European short rate is modeled as a sum of twi
CKLS-type factor, as described in the previous point, and the domestic rate
follows a process reverting to the European rate.

The fitting results of the convergence model [59] suggest to look for a
more suitable approximation of the short rate. In the paper [26] by Halga
Stehikova and Zkova we studied estimation of the short rate together with pa-
rameters of the model in the Vasicek model. It is based on the fact that for the
Vasicek model, the objective function (32) for calibration is quadratic not only
in parameters: ando?, but also in values of the short rates . . . , 7,.

Figure 10 shows a comparison of the estimated short rate from Euribor term
structures with a market overnight rate. The choice of the time frame for the
calibration was motivated by a possible use as an input for a convergence mode
Slovakia adopted the Euro currency in 2009 and Estonia in 2011.
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Figure 10. Estimating the short rate from Euribor term structures and its com-
parison with overnight rate Eonia. Source: Halgd, Stehikova, Zikova, [26].

Using the approximation of the bond prices in the CKLS model, this algo-
rithm can be modified for estimating the short rate also in the CKLS model. This
has been done in the master thesis [39] by Mosupervised by Stelikova.

In the case of a general CKLS model, the objective function is not quadratic,
but it is proposed to make a substitutign= 021”?7 in the objective function
which results in the new objective function which we minimize with respect to
a, 3,02 (model parametersy;, . .., r, (short rates)y,, . .., y, (auxiliary vari-
ables treated as independent in the first step). In this way, for@aajuadratic
optimization problem is solved. For ea@hthere is therefore the optimal value

of F' which is then used to find the optimal value®fNote that the variables
andy; are not independent, the rat;j/g)/ri27 is equal tos2. By treating them as
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independent variableg; can be seen as an approximatiom&ff” when using
real data. Hence the rati@rzg/ri27 should provide a good approximationds.
It is estimated as a median of these ratios.

5.4.3. Convergence Model of Vasicek Type

The first convergence model was proposed in the paper [16] by Corzo anc
Schwartz in the real probability measure:

drg = (a+b(re —rg))dt + ogdwg,
dre = (c(d—re))dt + oedwe, (52)

whereCouv(dW;,dWs) = pdt. They considered constant market prices of risk,
i.e.Ai(rg,re, 7) = Ag @andA.(rq,re, 7) = Ae. Hence for the European interest
rate we obtain the one-factor Vasicek model and we can easily price Europeal
bonds. Coefficienb > 0 expresses the power of attracting the domestic short
rate to the European one with the possibility of deviation determined by the
coefficienta. Rewriting the model into risk-neutral measure we obtain:

dra. = (a+b(re —7ra) — Aaoa) dt + oqdwa,
dre = (c(d—re) — Aeoe)dt + ocdw,, (53)

where Cov[dW,,dW,] = pdt. We consider a more general model in risk-
-neutral measure, in which the risk-neutral drift of the domestic short rate is
given by a general linear function of variableg r. and the risk-neutral drift

of the European short rate is a general linear function.ofit means that the
evolution of the domestic and the European short rates is given by:

drqg = (al + asrg + agre) dt + oqdwyg, (54)
d’r‘e = (bl —+ bQT‘e) dt =+ O'edwe, (55)

whereCov[dWy,dW,] = pdt. Note that the system (54) corresponds to the
system (53) withu; = a — Agog, ao = —b, az = b, by = cd — A\.0e, by = —c.
Price P(rq4, r., ) of a bond with time to maturity = 7' — ¢ then satisfies the
PDE:

_8j + (a1 + 4 )a—P + (b1 +0b )8£
gr T\ T a2Td T asTe ory LT 2re) g,
2 92p 292p 2p
4240 0 0P J2ep e LA raP =0, (56)

87“6187“5
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for r4,7e > 0, 7 € (0,7) and the initial conditionP(rg4,r.,0) = 1 for
rq,re > 0. Its solution can be found in the same way as in the original paper
[16]. Assuming the solution in the form:

P(rg,re,7) = D7 POra=Ure, (57)

and setting it into the equation (56) we obtain the system of ordinary differential
equations (ODEs):

D(T) = 1+ ayD(7),

U(r) = a3D(1)+ bU(7), (58)
0'2 2 T 0'2 2 T

A(r) = —a1D(r) -0 U(7) + dD2( ) + 6U2( ) + poqo.D(T)U(T)

with initial conditionsA(0) = D(0) = U(0) = 0. The solution of this system
is given by:

—1+ €7
D(r) = T7
az(az — a2e®” + by (—1 4 €"27))
Oir) = 7 59
(7) az (a2 — b2) bz 9
r 212 2772
Ar) = / a1 D(s) ~ () + P XU o DU (s,
0

Note that the functiom(7) can be easily written in the closed form not con-
taining integration. We leave it in this form for the sake of brevity. Furthermore,
we consider only the case when # bs. If as = be, thenU(7) has another
form, but it is a very special case and we will not consider it further.

5.4.4. Convergence Model of CIR Type

Firstly we formulate the convergence model of CIR type (i.e. the volatilities
are proportional to the square root of the short rates) in the real measure.
drqg = (a+b(re—rq))dt+ ogy/redwy,
dre = (c(d—re))dt + oer/Tedwe, (60)

whereCov[dWy,dW,] = pdt. If we assume the market prices of risk to be
equal to:\../Te, Aqy/Tq then we obtain risk neutral processes of the form:

drqg = (a1 + agrq + asre) dt + oqy/radwg,
dre = (b1 + bare) dt + oer/Tedwe, (61)
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whereCov[dW,4, dW,] = pdt. In what follows, we consider this general risk-
neutral formulation (61).

The European short rate is described by the one-factor CIR model, so we ar:
able to price European bonds using an explicit formula. The grieg, ., 7)
of a domestic bond with maturity satisfies the PDE:

78P+( + + )ip -l-(b +b )8P
— a1 + asrg + asre Te
or ! 2hd 3 orq ! 2 Ore
2.2 92 2.2 92 2
oqrg 0°P  oir: 0°P 0°P
Vi eVTer—— —1aFP =0, 62
2 Or? + 2 Or? T POAVTATeT OrgOre "d (62)

forry,r. > 0,7 € (0,7T) with the initial conditionP(r4, re,0) = 1 for rg, re >
0. It was shown in [34] (in a slightly different parametrization of the model) that
a solution in the form (57) exists only when= 0. In this case we obtain system
of ODEs:
03 D*(7)

2 )
. 2U2
U(t) = asD(1)+bU(T) — 062(7),
A(r) = —ayD(1) —bU(7),

D(T) = 1+4a2D(7)—

(63)

with initial conditionsA(0) = D(0) = U(0) = 0, which can be solved numer-
ically.

5.4.5. Convergence Model of CKLS Type

We consider a model in which risk-neutral drift of the European short rate
re IS a linear function of-,, risk-neutral drift of the domestic short ratgis a
linear function ofr; andr,. and volatilities take the forrar2° andadrgd, i.e.

drqg = (a1 + agrqg + asre)dt + adrdwdwd,
dre = (b1 + bare)dt + oerledw,, (64)

where Cov[dWy,dW,| = pdt. Parameters,as,as,b1,be € R, 04,0 >
0,74,7 > 0 are given constants and € (—1,1) is a constant correlation
between the increments of Wiener procesgds; a dW.. We will refer to

this model aswo-factor convergence model of Chan-Karolyi-Longstaff-Sanders
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(CKLS) type The domestic bond pricB(r4, r., 7) with the maturityr satisfies
PDE:

or + (a1 + + )6P+(b +b )3P
- a asr, asre) — Te)—
87_ 1 27d 3Te aTd 1 27 e 67’6
2,.27d 92 2,27 92 2
ogry ¢ 0°P  oire' 0°P vi - e 0P
e —rqP =(6
2 Or? 2 0r? T poaryoere Orqore. rab =(85)

for rq,7e > 0,7 € (0,T), with the initial condition P(r4,7.,0) = 1 for
rq,re > 0. Unlike for the Vasicek and uncorrelated CIR model, in this case
it is not possible to find a solution in the separable form (57). For this reason,
we are looking for an approximative solution.

5.5. Approximation of the Domestic Bond Price Solution

The bond prices in the CKLS type convergence model are not known in a
closed form. This is already the case for the European bonds, i.e. one-facto
CKLS model. We use the approximation from [62]. In this approximation
we consider one-factor Vasicek model with the same risk-neutral drift and we
set current volatilityor” instead of a constant volatility into the closed form
formula for the bond prices. We obtain

o b o?r? 1—eb2m o?r? A2 1=t
lnPep(T,T):(i-l- ST ) ( B +T)+W(1_eb2 ) + o (66)

We use this approach to propose an approximation for the domestic bond prices
We consider the domestic bond prices in the Vasicek convergence model witt
the same risk-neutral drift and we 313#}‘1 instead ofs; ando.rJ¢ instead of

o into (59). Hence, we have

InP?=A—Dry—Ur, (67)
where
Dir) =~
Uir) = az(az — aze?” + by (—1 + €%27)) 7

as (az — b2) bo

A(T) = /OT —alD(s) — blU(S) +

+  pogr)ioerleD(s)U(s)ds.
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In the CIR convergence model the domestic bond pfédr=0 has a
separable form (57) and function& D, U are characterized by a system of
ODEs (63). This enables us to compute Taylor expansion of its logarithm
aroundr = 0. We can compare it with the expansion of proposed approxi-
mationln P¢/R.r=0.ar (computed either using its closed form expression (67)
or the system of ODEs (59) for the Vasicek convergence model). More detailed
computation can be found in [64]. In this way we obtain the accuracy of the
approximation for the CIR model with zero correlation:

_ _ 1
InPCIfp=0.ap _ |npClRp=0 _ 21 (*CLQO%T‘d — 11103 — aga(%re) 4 0(7’4) (68)

forr — 0.

Let us consider real measure parameters: 0, b = 2, 04 = 0.03, ¢ = 0.2,

d = 0.01, o, = 0.01 and market price of risk; = —0.25, \. = —0.1. In the
risk-neutral setting (61) we havg = a — \joqg = 0.0075, as = —b = —2,

a3 =b=2,by =cd— Ao =0.003, b = —c = —0.2, 04 = 0.03, 0. = 0.01.

With the initial values for the short rateg = 1.7% ar. = 1% we generate

the evolution of domestic and European short rates using Euler-Maruyama dis
cretization. In Table 9 we compare the exact interest rate and the approximative
interest rate given by (67). We observe very small differences. Note that the
Euribor market data are quoted with the accura@y®. Choosing other days,
with other combination of;, r., leads to very similar results. The difference
between exact and approximative interest rate remains nearly the same.

Finally, we present a detailed derivation of the order of accuracy of the pro-
posed approximation in the general case. We use analogous method as in [6:
and [54] for one-factor models and in [34] to study the influence of correlation
p on bond prices in the convergence CIR model.

Let f = In P** be the logarithm of the exact pride*” of the domestic
bond in two factor convergence model of CKLS type. It satisfies the PDE (65).
Let f*? = In P be the logarithm of the approximative pri¢&? for the do-
mestic bond price given by (67). By settirf§ to the left-hand side of (65) we
obtain a non-zero right-hand side which we denoté.by;, r., 7). We expand
it into Taylor expansion and obtain that

h(rg,re,7) = kg(Td,Tg)TB + ka(rq, 7‘6)7—4 + 0(7—4), (69)
forr — 01, where
1 _
k3(ra,re) = 60(21%17“3” ? (2a17“d + 2a27] + 2azrgre — 15405 + 2%17“,21%‘03) ;
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Table 9. Exact and approximative domestic yield for the first observed day

(left), 7y = 1.7%, r. = 1% and for 252nd observed day (right), r; = 1.75%,
re = 1.06%

Mat.| Exact | Approx.| Diff. Mat. | Exact | Approx. Diff.

[year]|yield [%]|yield [%]| [%] [year] | yield [%] | yield [%o] [%]
1/4 | 1.63257| 1.63256| 7.1 E-00§ | 1/4 | 1.08249| 1.08250|-8.2 E-006§
1/2 | 1.58685| 1.58684(1.4 E-005 | 1/2 | 1.15994| 1.15996 |-1.7 E-005
3/4 | 1.55614| 1.55614/4.8 E-006 | 3/4 | 1.21963| 1.21964 |-7.0 E-006
1 | 1.53593| 1.53592|1.1 E-005 1 1.26669| 1.26671|-1.6 E-005
5 |1.56154| 1.56155|-5.0 E-006 5 1.53685| 1.53691 |-6.2 E-005
10 | 1.65315| 1.65323|-8.3 E-004 10 1.65113| 1.65127|-1.4 E-004
20 | 1.74696| 1.74722|-2.5 E-004 20 1.74855| 1.74884 |-2.9 E-004
30 | 1.78751| 1.78787|-3.7 E-004 30 1.78879| 1.78918 |-3.9 E-004

= 01O

11 _oy 9 24 2 N 143 2 3 2.1
ka(rg,re) = YTyl 7d0d<12a2'ydrd Tdp26, — 167yary Yar263 4 6asbiyerari T poe
e
- 2 2 - 2 3 b 2 2 2
6asbayergre T poe + 6a3yarare T poe — 3azyary ret e pojoe

. 2
Sagwgrd’m p2tae

2.2 3 3 2
Bazy2rgre¥e pod + 6arvarars (2aer ] oq + azrle poe)

1+"/d,,‘1+2'yE
€

2 2 2 2.3 3
pogoe + 6azyaver, p oq0; — 3azyergre ¢ po,

+ o+ + o+

3
Bagyqr? (=14 2yq) o3+ asrg (2r)dreoq + rar®poe) ))

We define functiory(r,rq,re) := f%® — f¢* = In P% — In P** as a dif-
ference between logarithm of the approximation and the exact price. Using the
PDEs satisfied by“* and f*? we obtain the following PDE for the functian

99

2,.27d
B dg  ogry
or

+

(b1 + bare) ore 2

0
+ (a1 + agrq + asre) a—i +
a9 \* | 9°
0", P
Org or;
otr | (09\*
T [(a) * o2

dg Jdg 0%g
va . e [ Y9
PTArg e <8rd Oore. + Or40r. (70)
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2,.2Yd ex\ 2 a exr
B oary af B af*r of
B h(Td,Te,T) T 2 [( 6rd ) 87”,1 87“,1
Loirde | (0F\ofr ofe
2 ore Ore Ore

afer gfes B afar ofee B afer ofap
Orq Ore Org Ore Orq Ore |’

+  poar)toer)e {2

Suppose thay(rg,re,7) = S pe, ck(ra,me)™. Forr = 0 both the
exact and approximative bond prices are equal to onef°86r;,7.,0) =
f®(rgq,1e,0) = 0. It means thaty > 0 and on the left hand side of the equation
(70) the term with the lowest order igwr~~!. Now we investigate the order
of the right hand side of the equation.

We know thatf“*(r4,7.,0) = 0. It means thatf** = O(r) and also
partial derivations,— and %/~ are of the orde©(r). From the approximation
formula (67) we can see thdf " = O(7), %= = O(7?). Sinceh(rq, re,7) =
O(73), the right hand side of equation (70) is at least of the orderThe left

hand side of equation (70) is of the order—! and hencev —1 > 2,i.e.w > 3.
It means that

fap(rdareaT) - fex(rdv Te, T) = 0(7-3)'

Using this expression we can improve estimation of the derivﬁge as fol-

lows: 8= = %= + O(%) = O(72) + O(%) = O(7?). We also estimate the

terms on the right hand side in equation (70):

= 0(r).0(r*) = 0(r"), (71)

8f€1' 2 B 8f(lp 8f€L B 8f€L 8f€L _ 8fap
Brd 8rd 67‘4 o (97’,1 aTd 8T'd

<8fem>2_ 8fap 8fe.7: B afez <8fem B afap>

. 2 3y 5
Ore Or. Or.  Ore Ore ore | O(7).0(77) = O(7"), (72)

S0 i il Tl ik /A T T )y
Orq Ore Orq Ore Orq Ore org Ore Ore

8f6.’1' 8.}[‘61' 8f‘(lp

Ore (ard B ard)

+ = 0(1).0(7%) + O(7).0(7*) = O(r*) + O(7°) = O(r*). (73)

Complimentary Contributor Copy



140 Zuzana Bikova, Beata Stelikova and DanieBewtovit

Sinceh(rg, e, 7) = O(73), the right hand side of equation (70) is of the order
O(73) and the coefficient at? is the coefficient of the functioh(ry, re, 7) at

73, 1.e. k3(rq,7). It means thatv = 4. Comparing the coefficients af on
the left and right-hand side of (70) we obtaintcy(rq,re) = k3(rg,re), i.€.
ca(ra,me) = —ikg(?”d, re). Hence we have proved the following theorem.

Theorem 6. Let P**(r4, 7, 7) be the price of the domestic bond in two-factor
CKLS convergence model, i.e. satisfying equation (65) anf*1étbe the ap-
proximative solution defined by (67). Then

In P?(rq,re, 7) — In P (rg,re, 7) = c4(1q, 7’@)7'4 + 0(7'4)

for - — 07, where coefficient, is given by

1 _
ca(rg,re) = —ﬂafﬂdr?f’d 2 (2a17“d + 20972 4 2a37gre — 7’3”03 + 2’ydr§7d03) .
(74)

Note that if we substitute,; = % andp = 0 into Theorem 6, we obtain the
formula (68) for the CIR model derived earlier in (68).

In some cases it is possible to improve an approximation by calculating
more terms in Taylor expansion of the functign= In P*? — In P%*. Using
that f» — f* = O(7*), we are able to improve estimates (71) and (73) and
to deduce that also the coefficientrdton the right hand side of equation (70)
comes only from the functioh. Hence it is equal td,(r4, r.) which is given
by (70). Comparing coefficients at on the left and right hand side of (70) we
obtain:

864

dc
_565 + (a1 + agrg + agre)airz + (b1 + bQT’e)W
e

2..27d 92 2,27 92 2
osry'm 0%cy  ocre’© 07cq 0“cy
d d € + 4pogr)toer)e

2 Or? 2 o2 € Brgdr,

which enables us to expregsusing already known quantities.
Let us define an approximatidn P%?? by:

In P“pQ(rd, Te,T) = 1In P — ¢4(ry, ?”6)7'4 — ¢5(rq, ?”8)7'5.

Thenln P%? — In P** = O(7°) and therefore the new approximatibnP?
is of the ordeiO(79).
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5.6. Financial Interpretation of the Short Rate Factors and Their
Evolution

In the PhD thesis b$eshk [48], supervised b§eovit, the approximation
formula from [27] has been used to estimate the model for European countries
The rate for each country is decomposed into a risk-free rate (common to all
the countries) and a credit spread (specific for each country). The formula from
[27] is used to price bonds in this setting. The author suggested a calibratior
procedure which is computationally demanding since it involves a large data se
- yields of all countries considered simultaneously (it is not possible to split this
for each country, since the risk-free rate which is one of the outputs, is sharec
by all the countries). Hence a simple approximate formula for the bond prices
is crucial for a successful estimation.

Figure 11 shows results of the estimation from [48]. Note how the very
different evolution of the credit spread for Greece starts from a certain time,
compared to the values obtained for the other counties.

Risk-free rate and credit spreads

6%
5%
4%
3%
2%
1%
0%

6%
5%
4%
3%
2%
1% 1
0%

—RF ——BE ES T AT —DE ——FR Fl NL
Risk-free rate and credit spreads

Figure 11. Estimating the risk-free rate and credit spread in the European coun
tries. In the figure below, the values for Qreece are shown in the right axis, for
the other countries in the left axis. Sour&esék, [48].
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Conclusion

In this survey we presented an overview of short rate models and presente:
some of the approaches how to compute approximations of bond prices wher:
the exact solutions are not available.

Firstly, we considered one-factor models. The simple models of Vasicek and
Cox, Ingersoll and Ross admit closed form bond prices and therefore can serw:
as either basis for construction of analytical approximations or as testing case
for assessing numerical accuracy of different approximation formulae. Using
partial differential approach to bond pricing enables us to derive their order of
accuracy for small times remaining to maturity.

In the second part we dealt with multi-factor models in which the process
for the short rate can be written as a sum of two factors, second factor beinc
the stochastic volatility or the European interest rate when modeling rates in ¢
country before adoption of the Euro currency. In case of convergence mode
we provided an example of a three-factor model, in which the European rate
is modeled by a two-factor model. We studied similar analytic approximations
for convergence models as in the case of one-factors models. Here we provide
also a proof of accuracy of the proposed approximation. A similar reasoning
was applied to other models, where we only stated the results. Moreover, we
studied the asymptotics of a fast time scale of volatility in stochastic volatility
models.

References

[1] Y. Ait-Sahalia, Testing continuous-time models of the spot interest rate,
Review of Financial Studie%(1996), 385-426.

[2] Y. Ait-Sahalia, Transition densities for interest rate and other nonlinear
diffusions,Journal of Financeés4 (1999), 1361-1395.

[3] R. Dell’'Aquilla, E. Ronchetti, and F. Trojani, Robust GMM analysis for
the short rate procesdpurnal of Empirical Financd 0 (2003) 373-397.

[4] S.H.Babbs, and K. B. Nowman, Kalman filtering of generalized Vasicek
term structure modeldpurnal of Financial and Quantitative Analys34
(1999), 115-130.

Complimentary Contributor Copy



Numerical and Analytical Methods for Bond Pricing ... 143

[5] F. Black, and P. Karasinski, Bond and option pricing when short rates are
lognormal,Financial Analysts Journg|1991), 52-59.

[6] M. J. Brennan, Michael, and E. S. Schwartz, Savings bonds, retractable
bonds, and callable bonddpurnal of Financial Economic8 (1977),
133-155.

[7] M. J. Brennan, Michael, and E. S. Schwartz, Analyzing convertible
bonds,Journal of Financial and Quantitatiue Analysi$ (1980), 907-
929.

[8] D. Brigo, and F. Mercuriolnterest rate models-theory and practj@nd
Edition, Springer Finance. Springer-Verlag, Berlin, 2006.

[9] L. Capriotti, The exponent expansion: An effective approximation of
transition probabilities of diffusion processes and pricing kernels of fi-
nancial derivativednternational Journal on Theoretical and Applied Fi-
nance9 (2006), 1179-1199.

[10] R. R. Chen, and L. Scott, Multi-factor Cox-Ingersoll-Ross models of the
term structure: estimates and tests from a Kalman filter maddhel Jour-
nal of Real Estate Finance and Economa¥%(2003), 143-172.

[11] Y. Choi, and T. Wirjanto, An analytic approximation formula for pricing
zero-coupon bond&inance Research Letteds(2007), 116-126.

[12] K.L. Chan, G.A. Karolyi, F.A. Longstaff, and A.B. Sanders, An Empir-
ical Comparison of Alternative Models of the Short-Term Interest Rate,
Journal of Finance47 (1992), 1209-1227.

[13] G. Courtadon, The pricing options on default-free borddsiyrnal of Fi-
nancial and Quantitative Analysis7 (1982), 75-100.

[14] J.C. Cox, J.E. Ingersoll, and S.A. Ross, A theory of the term structure of
interest rates-conometriceb3 (1985), 385-408.

[15] J. C. Cox, J. E. Ingersoll, and S. A. Ross, An analysis of variable rate
loan contractsJournal of Finance35 (1980), 389-403.

Complimentary Contributor Copy



144 Zuzana Bikova, Beata Stelikova and DanieBewtovit

[16] T. Corzo, and E. S. Schwartz, Convergence within the European Union:
Evidence from Interest Ratesconomic Note29 (2000), 243-268.

[17] V. Czellar, G.A. Karolyi, and E. Ronchettia, Indirect robust estimation
of the short-term interest rate procedsurnal of Empirical Financel4
(2007), 546-563.

[18] D. Danilov, and P. K. MandalCross sectional efficient estimation of
stochastic volatility short rate model&niversity of Twente, Memoran-
dum No. 1614 (2002).

[19] D. Danilov, and P. K. MandalEstimation of the volatility component
in two-factor stochastic volatility short rate modeBurandom Preprint
(2000).

[20] U. L. Dothan, On the term structure of interest rafiesjrnal of Financial
Economics (1978), 59-69.

[21] A. Episcopos, Further evidence on alternative continuous time models of
the short term interest rat@purnal of International Financial Markets,
Institutions and Money0 (2000), 199-212.

[22] F. J. Fabozzilnterest rate, term structure and valuation modelidghn
Wiley & Sons (2002).

[23] J.-P. Fouque, G. Papanicolaou, and K. R. Sirbarjvatives in financial
markets with stochastic volatiliffCambridge University Press, 2000.

[24] J.-P. Fouque, G. Papanicolaou, K. R. Sircar, and K. Sd¥hatiscale
stochastic volatility for equity, interest rate, and credit derivativeam-
bridge University Press, 2011.

[25] H. G. Fong, and O. A. Vasicek, Fixed-income volatility management,
Journal of Portfolio Managemerit7 (1991), 41-46.

[26] J. Halg&owa, B. Stehikova, and Z. Zkova, Estimating the short rate
from term structures in Vasicek modé&htra Mountains. Math. Pubbl1
(2014), 87-103.

Complimentary Contributor Copy



Numerical and Analytical Methods for Bond Pricing ... 145

[27] J. Halg&owa, Approximation of bond prices in two factor models of in-
terest ratesMaster thesis, Comenius University in Bratislava, (2011). In
Slovak.

[28] A. T. Hansen, and P. L. Jorgensen, Fast and accurate analytical approxi
mation of bond prices when short interest rates are lognoithal Jour-
nal of Computational Financa (2000), 27-45.

[29] K. Ito, On a formula concerning stochastic differentiblagoya Mathe-
matical Journal3 (1951), 55-65.

[30] I. Karatzas, and S. E. Shrewrownian motion and stochastic calcujus
Second Edition, Springer-Verlag, 1998.

[31] P. E. Kloeden, and E. PlateNumerical solution of stochastic differential
equations Springer-Verlag, 1992.

[32] Y. K. Kwok, Mathematical models of financial derivativeSpringer-
Verlag, 1998.

[33] V. K. Kwok, Mathematical models of financial derivativeésecond Edi-
tion, Springer-Verlag, 2008.

[34] V. Lacko, Two-Factor Convergence Model Of Cox-Ingersoll-Ross Type
Master’s Thesis, Comenius University in Bratislava, (2010).

[35] V. Lacko, and B. Stefkova, Two-factor Convergence Model of Cox-
Ingersoll-Ross Type&Proceedings of the 17th Forecasting Financial Mar-
kets Conference (2010), Hannover, Germany.

[36] N. Makri, and W. H. Miller, Exponential power series expansion for the
guantum time evolution operataurnal of Chemical Physic&0 (1989),
904-911.

[37] T. A. Marsh, and E. R. Rosenfeld, Stochastic processes for interest rate:
and equilibrium bond pricegdpurnal of Finance38 (1983), 635-646.

[38] R. C. Merton, Theory of rational option pricingihe Bell Journal of Eco-
nomics and Management Sciertgl973), 141-183.

Complimentary Contributor Copy



146

Zuzana Bikova, Beata Stelikova and DanieBewtovit

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

V. Mosny, Estimating short rate in the CKLS modeWaster thesis,
Comenius University in Bratislava, (2012). In Slovak.

K. B. Nowman, Gaussian estimation of single-factor continuous time
models of the term structure of interest rat@surnal of Finance52
(1997), 1695-1706.

K. B. Nowman, and G. SorwarComputation of Japanese bonds and
derivative securities Mathematics and Computers in SimulatioAg
(1998), 583-588.

K. B. Nowman, and G. Sorwar, Pricing UK and US securities within the
CKLS model: Further resulténternational Review of Financial Analysis
8 (1999), 235-245.

K. B. Nowman, G. and Sorwar, Derivatives prices from interest rate mod-
els: results for Canada, Hong Kong and United Stdteernational Re-
view of Financial Analysid4 (2005), 428-438.

D. O’Kane,Modelling Single-Name and Multi-Name Credit Derivatives
New York: Wiley, 2008.

B. Oksendal, Stochastic differential equations : An introduction with ap-
plications, Springer-Verlag, 1998.

L. C. G. Rogers, Which model for term structure of interest rates should
one useMathematical FinancelMA Volume 65 (1995), 93-116.

R. Sel€éniova, Fast time scale of volatility in the Fong-Vasicek mqgdel
Master thesis, Comenius University in Bratislava, (2012). In Slovak.

L. Seshk, Mathematical analysis and calibration of a multifactor panel
model for credit spreads and risk-free interest rd@@D thesis, Comenius
University in Bratislava, (2012).

D. Sewtovit, and A. Urtanova Csajkow, On a two-phase minmax method
for parameter estimation of the Cox, Ingersoll, and Ross interest rate
mode| Central European Journal of Operations Reseadh (2005),
169-188.

D. Sewtovig, and A. Uranoa Csajkow, Calibration of one factor inter-
est rate modelslournal of Electrical Engineering5 (2004), 46-50.

Complimentary Contributor Copy



Numerical and Analytical Methods for Bond Pricing ... 147

[51] D. Sewovit, B. Stehikova, and K. Mikula,Analytical and numerical
methods for pricing financial derivativeova Science Publishers, 2011.

[52] S. E. ShreveStochastic calculus for financ8pringer-Verlag, 2004.
[53] R. U. Seydel;Tools for computational finan¢c&pringer-Verlag, 2009.

[54] Stehikova, B., andSe\tovig, D., Approximate formulae for pricing zero-
coupon bonds and their asymptotic analysitggrnational Journal of Nu-
merical Analysis and Modeling (2009), 274-283.

[55] B. Stehlkova, Modeling Volatility Clusters with Application to Two-
Factor Interest Rate ModelsJournal of Electrical Engineeringb6
(2005), 90-93.

[56] B. Stehlkova, and D.Sewovi¢, On non-existence of a one factor in-
terest rate model for volatility averaged generalized Fong-Vasicek term
structures Proceedings of the Czech-Japanese Seminar in Applied Math-
ematics, Takachiho/University of Miyazaki (2008), 40-48.

[57] B. Stehlkova, and D.Sexéovi¢, On the singular limit of solutions to the
Cox-Ingersoll-Ross interest rate model with stochastic volatiigper-
netika45 (2009), 670-680.

[58] B. Stehlkova, and Z. Zkova, A three-factor convergence model of inter-
est ratesProceedings of Algoritmy (2012), 95-104.

[59] Z. Zikova, and B. Stefikova, Convergence model of interest rates of
CKLS type,Kybernetikad8 (2012), 567-586.

[60] B. Stehlkova, Approximating the zero-coupon bond price in the general
one-factor model with constant coefficigneprint, arxiv:1408.5673
(2014).

[61] O. A. Vasicek,An equilibrium characterization of the term structure
Journal of Financial Economics (1977), 177-188.

[62] B. Stehlkova, A simple analytic approximation formula for the bond
price in the Chan-Karolyi-Longstaff-Sanders mqdeternational Jour-
nal of Numerical Analysis and Modelin§eries B 4 (2013), 224-234.

Complimentary Contributor Copy



148 Zuzana Bikova, Beata Stelikova and DanieBewtovit

[63] B. Stehlkova, and L. Capriotti, An effective approximation for zero-
coupon bonds and Arrow-Debreu prices in the Black-Karasinski model,
International Journal of Theoretical and Applied Finanté(6) (2014),
1450037.

[64] Z. Zikova: Konvergené modelylrokowch mier Master’s Thesis,
Comenius University in Bratislava, (2011). In Slovak.

Complimentary Contributor Copy



