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els which can be formulated in terms of a stochastic differential equa-
tion for the instantaneous interest rate (also called short rate) or a system
of such equations in case the short rate is assumed to depend on other
stochastic factors. Our focus is on convergence models which explain the
evolution of interest rate in connection with the adoption of the Euro cur-
rency. Here, the domestic short rate depends on a stochastic European
short rate. In short rate models, the bond prices determining the term
structure of interest rate, are obtained as solutions to partial differential
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94 Zuzana Bǔcková, Béata Stehĺıková and DanieľSev̌covič

We use both analytical and numerical methods to obtain an approximate
solution to the partial differential equation for bond prices.

�� ,QWURGXFWLRQ

An interest rate model is a description of interestrates’ evolution (e. g. the
rate on one-year loan today and next year) and their dependence on maturity (for
instance, one-year and ten-year loans are different); the dependence of the inter-
est rate on maturity is called the term structure of interest rates. Given the state
of the market today, the future interest rates cannot be predicted exactly. The
models provide their probability distribution. However, since the interest rates
are interconnected, often only some underlying processes are modeled which in
turn determine the interest rates.

We deal with so-called short rate models which are based on a theoretical
quantity, theshort rate. It is a rate of interest for a default-free investment
with infinitely small maturity. The other investments, with other maturities,
include some risk: the evolution of the interest rates during the ”life” of this
investment can increase or decrease their value. Therefore it is not surprising
that, besides the probabilistic description of the short rate evolution, there is
another input called market price of risk which is needed in order to compute
the term structure of interest rates; cf. [22, pp. 29-31] for a further intuition
following these ideas.

Mathematical models can be described by solutions to linear parabolic dif-
ferential equations which degenerate to the hyperbolic ones at the boundary.
Applying the so-called Fichera theory to interest rates models one can treat the
boundary conditions in a proper way. Correct treatment of boundary conditions
is important for construction of efficient numerical schemes.

We propose an approximate analytical solution for a class of one-factor
models and derive the order of its accuracy. These models can be used to
model the European short rate in convergence models. We show an example
of a convergence model of this kind and the analytical approximation formula
for domestic bond prices together with the derivation of its accuracy.

In some cases, a one-factor model is not sufficient to fit the European interest
rates and we need a two-factor model in order to describe the European short
rate. Therefore, we also investigate a three-factor convergence model.
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Numerical and Analytical Methods for Bond Pricing ... 95

�� :KLFK 0RGHO IRU 7HUP 6WUXFWXUHV 6KRXOG 2QH 8VH"

This is the title of the paper [46], in the beginning of which the author
presents several criteria which a suitable model should have:

A practitioner wants a model which is

(a) flexible enough to cover most situations arising in practice;
(b) simple enough that one can compute answers in reasonable

time;
(c) well-specified, in that required inputs can be observed or es-

timated;
(d) realistic, in that the model will not do silly things.

Additionally, the practitioner shares the view if an econometrician
who wants

(e) a good fit of the model to data;

and a theoretical economist would also require

(f) an equilibrium derivation of the model.

Our work is mainly concerned with the point (b). Approximate analytical
formulae enlarge the set of models for whichone can compute answers in rea-
sonable time, as required above. Moreover, an easy computation of the observed
quantities can significantly simplify a calibration of the model. Note that cal-
ibration of the model based on a comparison of market prices and theoretical
prices given by the model often requires many evaluations of theoretical prices
for different sets of parameters, as well as times to maturity and the short rate
levels. Hence it is useful to establish whether the point (e) above is satisfied or
not.

�� %DVLF &RQFHSWV RI 6WRFKDVWLF &DOFXOXV

In this section we briefly present the basic definitions and theorems of
stochastic calculus which will be needed to formulate models considered here.
For more details see, e.g., [45], [30].
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96 Zuzana Bǔcková, Béata Stehĺıková and DanieľSev̌covič

'HfiQLWLRQ �� [45, Definition 2.1.4] A stochastic process is a parametrized col-
lection of random variables{Xt}t∈T defined on a probability space(Ω,F ,P)
and assuming values inRn.

An important stochastic process which is used as a building block for other
more complicated processes, is a Wiener process.

'HfiQLWLRQ �� [51, Definition 2.1] A stochastic process{w(t), t ≥ 0} is called
a Wiener process, if it satisfies the following properties:

(i) w(0) = 0 with probability 1;

(ii) every incrementw(t+∆t)−w(t) has the normal distributionN(0,∆t);

(iii) the incrementsw(tn)−w(tn−1), w(tn−1)−w(tn−2), . . . , w(t2)−w(t1)
for 0 ≤ t1 < · · · < tn are independent.

Existence of such a process can be asserted using the Kolmogorov extension
theorem which builds a stochastic process from its finite dimensional distribu-
tions (cf. [45, Chapters 2.1 and 2.2], [30, Chapter 2.2]).

Using a Wiener process, we are able to define new processes. It is useful
to incorporate some kind of ”noise” in the ordinary differential equations. The
Wiener process provides a way of doing so. This leads to the so-called stochastic
integrals and stochastic differential equations. Again, we follow the main ideas
of [45].

The first idea is to consider an equation of the form

dX

dt
= b(t,Xt) + σ(Xt, t)ut, (1)

where the termu denotes some ”noise” which should be stationary with values
at different times being independent and having a zero expected value. However,
there is no continuous process satisfying these conditions. Moreover, as a func-
tion on[0,∞)× Ω it cannot be even measurable considering Borel-measurable
sets on[0,∞) (see [45, pp. 21-22] and references therein). Hence we have to
follow another approach. We write (1) in a discrete form as follows:

Xtk+1
= Xtk + b(t,Xt)(tk+1 − tk) + σ(Xt, t)utk(tk+1 − tk),

where0 = t0 < t1 < · · · < tm = t is a partition of the interval[0, t]. Recalling
the desirable properties of the noise, that is, the termutk(tk+1− tk) should have
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Numerical and Analytical Methods for Bond Pricing ... 97

stationary independent increments which suggests usage of the Wiener process
wtk . Then we have an equation

Xtk+1
= X0 +

k−1
∑

j=0

b(t,Xtj )(tj+1 − tj) +

k−1
∑

j=0

σ(Xtk , t) (wtk+1
− wtk)

and if we are able to make a limit of the last sum in some ”reasonable way”, by
denoting it by

∫ t
0 σ(s,Xs) dws we can write

Xt = X0 +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) dws. (2)

This can be done in several ways which leads to different kinds of stochastic
integrals (It̄o vs. Stratonovich). We use Itō integral (see the cited references
[45] for details on its construction).

Finally, let us note that equation (2) is often written in the differential form:

dXt = b(t,Xt) dt+ σ(t,Xt) dwt (3)

which is called a stochastic differential equation.
The computation of the ”differential”dYt, whereYt is defined asYt =

f(t,Xt), wheref is a smooth function andX satisfies the stochastic differ-
ential equation (3) is performed via a stochastic generalization of the chain rule.
This can be done precisely using the integral representation of the stochastic
processes (cf. [30, pp. 150-153]) and results in the famous Itō’s lemma. We
provide its formulation for the case of a one-dimensional process from [45].

7KHRUHP �� [45, Theorem 4.1.6] LetXt be an It̄o process given by

dXt = u(t,Xt) dt+ v(t,Xt) dw.

Letg(t, x) ∈ C2([0,∞)× R). ThenYt = f(t,Xt) is again an It̄o process and

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt)(dXt)

2,

where(dXt)
2 = (dXt)(dXt) is computed according to the rules

dt dt = dt dwt = dwt dt = 0, dwt dwt = dt.
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98 Zuzana Bǔcková, Béata Stehĺıková and DanieľSev̌covič

A multidimensional formulation can be found for example in [45, Theorem
4.2.1], [30, Theorem 3.6] or in the original paper by Kiyoshi Itō [29, Theorem
6].

In order to illustrate It̄o’s process, we present an example of a stochastic
differential equation which will be useful later. It describes the evolution of the
so-called Ornstein-Uhlenbeck process:

dx = κ(θ − x) dt+ σ dw, (4)

whereκ, θ andσ are positive constants. Without the stochasticdw term, it
would be an ordinary differential equation with the solutionxt = x0e

−κt +
θ(1 − e−κt), wherex0 is the value of the process at timet = 0. With the
stochastic term included, the solution becomes a random variable and it can be
written in an explicit form

xt = x0e
−κt + θ(1− e−κt) + σ

∫ t

0
dw.

The trend, reversion to the equilibrium levelθ, whose speed depends onκ, is
preserved. Processes with this property are called mean-reversion processes.
Furthermore, there are random fluctuations around this trend. Their impact
depends on the parameterσ. A sample trajectory of an Ornstein-Uhlenbeck
process is presented in Figure 1.

0 210.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8
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trajectory
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Figure 1. Sample path of an Ornstein-Uhlenbeck process.

Complimentary Contributor Copy



Numerical and Analytical Methods for Bond Pricing ... 99

Similarly as in the case of ordinary differential equations, a closed-form
solution is not always available, but numerical approximations are still possi-
ble. The simplest one is the Euler-Maruyama scheme which is a generalization
of the Euler method known from numerical methods for ordinary differential
equations. It consists of replacing the differentials in (3) by finite differences
and simulating the increments of a Wiener process:

X0 = x0,

Xt+∆t = Xt + b(t,Xt)∆t+ σ(t,Xt)∆wt,

where∆w are independent realizations fromN (0,∆t) distribution. There are
also other methods which have a higher precision. For example, the Milstein
scheme, Runge-Kutta methods (cf. [53] for an introduction or [31] for more
details).

�� 6KRUW 5DWH 0RGHOV

Short rate models are formulated in terms of a stochastic differential equa-
tion (one-factor models) or a system of stochastic differential equations (multi-
factor models) determining the short rate (see Figure 2 for an example of market
data which - being interest rates with short maturities - can be thought of as ap-
proximations of the theoretical short rate).

We start with a simple stochastic differential equation which describes some
popular features of the market rates. Then, seeing the shortcomings of the mod-
els, we switch to more complicated ones. Each of them addresses a specific
feature and the choice of the model needs to take this into account. For selected
stochastic processes we explain the motivation that leads to considering them as
a model for the short rate.

We also discuss bond prices. A zero-coupon bond is a financial security that
pays a unit amount money to its holder at the specified time of maturity. The
bond pricesP = P (t, T,x) (wheret is time,T is time to maturity andx is
a vector of factors determining the short rate) are then connected with interest
ratesR = R(t, T,x) through the formula

P (t, T,x) = e−R(t,T,x)(T−t), i.e., R(t, T,x) = − lnP (t, T,x)
T − t

. (5)

Examples of interest rates with different maturities can be seen in Figure 3.
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100 Zuzana Bǔcková, Béata Stehĺıková and DanieľSev̌covič

Figure 2. Euro interest rates with short maturities - possible approximations of
short rate. Data source:http://www.emmi-benchmarks.eu.

Figure 3. Euro interest rates - examples of term structures. Data source:
http://www.emmi-benchmarks.eu.

In short rate models, the prices of bonds (as well as other interest rate deriva-
tives) are solutions to linear parabolic partial differential equations. Even in a
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Numerical and Analytical Methods for Bond Pricing ... 101

case of an interest rate derivative with such a simple payoff (like e.g. a bond)
a closed form solution is available in very special cases. The later topics pre-
sented in this paper are then connected by a pursuit of finding approximations
of the bond prices (and hence also term structures) in those cases when they are
not known in a closed form.

���� 2QH�)DFWRU 0RGHOV

When speaking of one-factor short rate models, the termone-factorrefers
to the fact that there isoneWiener process used in the definition of the short
rate process, i.e., there isonesource of randomness.

Hence, there is a scalar stochastic differential equation for the short rater
which can be written in a general form:

dr = µ(r, t)dt+ σ(r, t)dw,

wherew is a Wiener process. Recall from the section on stochastic processes
that the functionµ(r, t) determines the trend of the process, while the function
σ(r, t) determines the nature of the random fluctuations. Specifying the func-
tionsµ(r, t) andσ(r, t) characterizes the short rate model.

Let P = P (r, t) be the price of a derivative at timet when the current
level of the short rate isr which pays a given payoff at timeT . We consider a
construction of a portfolio consisting of derivatives with two different maturi-
ties, continuously rebalanced so that the risk coming from the Wiener process
is eliminated1. Then, to eliminate a possibility of an arbitrage, the return of
such a portfolio has to be equal to the current short rate which leads to a partial
differential equation for the derivative priceP which reads as

∂tP + (µ(r, t)− λ(r, t)σ(r, t))∂rP +
1

2
σ(r, t)2∂2rP = 0

for all admissible values ofr and for all t ∈ [0, T ). We refer to [32], [51]
for more details on derivation of the corresponding partial differential equation.

1It can be shown that it is possible if we assume an ”idealized market” with no transaction
costs, ability to buy or sell any desired amount of a security for its present price, to borrow/lend
any amount of money for the short rate interest rate and operating in continuous time. This
idealization of reality in derivation of the equation for security prices might be another reason
for being ”satisfied” with a meaningful simple approximation of the short rate process, instead of
requiring an extremely complex model for it.
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102 Zuzana Bǔcková, Béata Stehĺıková and DanieľSev̌covič

Here and after we denote by∂tP, ∂rP the first partial derivatives ofP with
respect tot, r and the second derivative∂2rP of P with respect tor. Note
that the equation includes the new functionλ(r, t). During derivation of the
equation it turns out that a certain quantity, measuring the rise of the expected
return for one unit of risk, has to be independent of the maturityT . It is denoted
byλ(r, t) and because of its interpretation it is called the market price of risk. It
is necessary to include it into the specification of a model when we want to price
derivatives, in addition to talking about the short rate evolution. Note that the
equation holds for any derivative, the specific derivative determines the terminal
conditionP (r, T ) which equals the security payoff.

If we consider Markov models only, i.e.,µ, σ andλ are functions of the
variabler and do not explicitly depend on timet, it is convenient to introduce a
new variableτ = T − t denoting time remaining to maturity. For the bond price
we obtain the partial differential equation (PDE):

−∂τP + (µ(r)− λ(r)σ(r))∂rP +
1

2
σ(r)2∂2

rP = 0 for all r andτ ∈ (0, T ], (6)

P (r, 0) = 1 for all r. (7)

Alternatively, a model can be formulated in the so-called risk-neutral mea-
sureQ which is an equivalent probability measure toP in which the process is
physically observed. In the risk-neutral measure, the prices of the securities can
be expressed in the form of expected values. The change of the measure is re-
lated to the market price of risk from the partial derivative approach mentioned
above. Mathematically, it is based on the Girsanov theorem (cf. [45, Section
8.6]). The general model above in the risk neutral model reads as follows:

dr = µ̃(r)dt+ σ̃(r)dwQ, (8)

wherewQ is a Wiener process under the risk neutral measure, while the risk-
neutral drift and volatility are given by

µ̃(r) = µ(r)− λ(r)σ(r), σ̃(r) = σ(r), (9)

(cf. [33, Section 7.2]). Comparing this with (6) we can see that the risk-neutral
formulation contains all information needed to write the valuation PDE. There-
fore, when dealing with pricing bonds or other derivatives, the model is often

Complimentary Contributor Copy



Numerical and Analytical Methods for Bond Pricing ... 103

formulated in the risk-neutral form. Finally, let us note that the two alterna-
tive expressions for the prices, i.e. expected values under the risk-neutral mea-
sure and solutions to partial differential equations are related via the so-called
Feynman-Kac formula (cf. [45, Theorem 8.2.1]).

���� 9DVLFHN DQG &R[�,QJHUVROO�5RVV 0RGHOV

Recall that the Ornstein-Uhlenbeck process is a stochastic process given by

dr = κ(θ − r) dt+ σ dw,

whereκ, θ, σ > 0 are given constants andw is a Wiener process. This process
can be used as a simple model for the short rate, known as the Vasicek model,
as it has been suggested in [61] by Oldřich Vǎśıček. He defined the market price
of risk to be equal to a constantλ appearing in the partial differential equation
for the bond prices. Recall that the general form (6)-(7) reads as follows:

−∂τP + (κ(θ − r)− λσ)∂rP +
1

2
σ2∂2rP = 0 (10)

for all r andτ ∈ (0, T ], andP (r, 0) = 1 for all r. This differential equation can
be solved explicitly. Its solution has the form

P (r, τ) = A(τ)e−B(τ)r (11)

and the functionsA,B are given by (see [61])

lnA(τ) =

(

−θ +
λσ

κ
+

σ2

2κ2

)(

−
1− e−κτ

κ
+ τ

)

−
σ2

4κ3
(1− e

−κτ )2, B(τ) =
1− e−κτ

κ
.

(12)

One of the consequences of the constant volatility is a conditional normal
distribution of the future interest rates and thus a possibility of negative interest
rates. Historically, this was a motivation for proposing other short rate models.
However, note that while some of the interest rates observed in these days can
be indeed negative, the presence of negative values of the Ornstein-Uhlenbeck
stochastic process is not consistent with absence of arbitrage in the context of
default intensity models [44] which lead to solving exactly the same parabolic
PDEs. A popular alternative is the Cox-Ingersoll-Ross model [14] (usually ab-
breviated as CIR model) which does not allow negative interest rates, while it
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preserves analytical tractability of bond prices. The stochastic differential equa-
tion for the short rate is given by

dr = κ(θ − r) dt+ σ
√
r dw, (13)

with κ, θ, σ > 0 being constants. The difference from the Vasicek model con-
sists in the volatility which is now equal toσ

√
r. Intuitively, if the short rate

r is small, then the volatility is small as well. If the short rate hits zero then
the volatility becomes zero as well and the positive drift pushes the short rate
to a positive value. It can be shown that the process is indeed nonnegative for
all times and, moreover, if the condition2κθ > σ2 is satisfied, the process re-
mains strictly positive. If the market price of risk is chosen to be equal to:λ

√
r,

equation (6) with the initial condition (7) becomes

−∂τP + (κ(θ − r)− λσr)∂rP +
1

2
σ2r∂2rP = 0 (14)

for all r andτ ∈ (0, T ], andP (r, 0) = 1 for all r. Again, it can be solved in a
closed form, assuming the solution (11), inserting it into the partial differential
equation and obtaining a system of ordinary differential equations for the func-
tionsA(τ), B(τ). This system can be solved explicitly (see [14] for the exact
formulae).

���� &KDQ�.DURO\L�/RQJVWDII�6DQGHUV 6KRUW 5DWH 0RGHO

As we have seen, changing the constant volatility from the Vasicek model
toσ

√
r in CIR model prevents the short rate from becoming negative. However,

the same reasoning applies to any volatility of the formσrγ with γ > 0. Models
with generalγ may perform better when applied to real data. The hypothesis of
γ = 1/2 is actually often rejected by statistical tests.

The pioneering paper [12] by Chan, Karolyi, Longstaff and Sanders started
the discussion on the correct form of the volatility. The authors used proxy for
the short rate process and considered a general short rate model expressed in
terms of a single stochastic differential equation:

dr = (α+ βr) dt+ σrγ dw, (15)

which has become known as the CKLS model. It includes the Vasicek (γ = 0)
and CIR (γ = 1/2) models as special cases (and thus allows for testing them as
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statistical hypotheses on the model parameters), as well as several other models
(see Table 1). Chanet al. estimated the parameters using the generalized method
of moments. They found the parameterγ to be significantly different from the
values indicated by the Vasicek and CIR models (see Table 2).

7DEOH �� 2QH�IDFWRU VKRUW UDWH PRGHOV FRQVLGHUHG LQ >��@ DV VSHFLDO FDVHV RI

WKH VWRFKDVWLF SURFHVV ����

0RGHO (TXDWLRQ IRU WKH VKRUW UDWH

Merton [38] dr = αdt+ σdw
Vasicek [61] dr = (α+ βr)dt+ σdw
Cox-Ingersoll-Ross (1985) [14] dr = (α+ βr)dt+ σr1/2dw
Dothan [20], [6] dr = σrdw
Geometrical Brownian motion [37] dr = βrdt+ σrdw
Brennan-Schwartz [7], [13] dr = (α+ βr)dt+ σrdw
Cox-Ingersoll-Ross (1980) [15] dr = σr3/2dw
Constant elasticity of variance [37] dr = βrdt+ σrγdw

7DEOH �� 3DUDPHWHU HVWLPDWHV DQG UHVXOWV RI WHVWLQJ WKH K\SRWKHVHV JLYHQ

E\ 9DVLFHN DQG &,5 PRGHOV LQ >��@

0RGHO α β σ2 γ 3�YDOXH

unrestricted 0.0408 -0.5921 1.6704 1.4999 -
Vasicek 0.0154 -0.1779 0.0004 0 0.0029
CIR 0.0189 -0.2339 0.0073 1/2 0.0131

A modification of the so-called robust generalized method of moments
which is robust to presence of outliers was developed in [3]. Another contri-
bution to this class of estimators is, for example, indirect robust estimation by
[17]. Another popular method for parameter estimation are Nowman’s Gaus-
sian estimates [40] based on approximating the likelihood function. They were
used in [21] for a wide range of interest rate markets. There are several other
calibration methods for the short rate process, such as quasi maximum like-
lihood, maximum likelihood based on series expansion of likelihood function
by Aı̈t-Sahalia [2], Bayesian methods such as Markov chain Monte Carlo and
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others.
A common feature of these approaches is taking a certain market rate as

a proxy to the short rate and using the econometric techniques of time series
analysis to estimate the parameters of the model. These parameters can be used
afterwards in order to price the bonds and other derivatives. For example, in [43]
the parameters of the CKLS process were first estimated using the Nowman’s
methodology and afterwards derivatives prices were computed by solving the
partial differential equation using the Box method. For more results of this kind
(see [41], [42]).

An alternative would be using the derivatives prices to calibrate the param-
eters of the model. This, however, requires a quick computation of the prices
since they have to be computed many times with different parameters during
the calibration procedure. Exact solution to the bond pricing equation available
for Vasicek and CIR model made this possible in the case of these two models,
cf. [49], [50]. In general, when the exact solution is not available, an approxi-
mate analytical solution provides a convenient alternative.

���� 2WKHU 2QH�)DFWRU 0RGHOV

Modifying the constant volatility is not the only way for ensuring positivity
of the short rate. Another simple way is defining short rate as a positive func-
tion whose argument is a stochastic process. In particular, the Black-Karasinski
model [5] which is also refereed to as the exponential Vasicek model because of
its construction (cf. [8, Section 3.2.5]) defines the short rate asr = ex, wherex
follows the Ornstein-Uhlenbeck process:

dx = κ(θ − x) dt+ σ dw. (16)

Note that in the case of Black-Karasinski model, the stochastic differential
equation for the short rater reads as follows:

dr = r(κθ +
1

2
σ2 − κ ln r) dt+ σr dw,

which means that the short rate does not have a linear drift which is a common
feature for previously considered models.

Another nonlinear-drift model has been suggested by Aı̈t-Sahalia in [1] to
produce very little mean reversion while the interest rates remain in the middle
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part of their domain, and strong nonlinear mean reversion at either end of the
domain. This property is achieved by the stochastic differential equation:

dr = (α−1r
−1 + α0 + α1r + α2r

2) dt+ σrγdw,

(see Figure 4 for a plot of the drift function forα−1 = 0.000693, α0 =
−0.0347, α1 = 0.676, α2 = −4.059 which are taken from [2]).
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Figure 4. Nonlinear drift of the Äıt-Sahalia model [1] for parametersα−1 =
0.000693, α0 = −0.0347, α1 = 0.676, α2 = −4.059, taken from [2].

���� 6KRUW 5DWH DV D 6XP RI 0XOWLSOH )DFWRUV

One of the consequences of using a one-factor short rate model is the bond
price having the formP = P (τ, r). This means that the bond price with a given
maturity is uniquely determined by the short rate level. Translating this into the
language of term structures: the term structure is uniquely determined by its
beginning (interest rate for infinitesimally small maturity, i.e., the short rate).
While this might not be an unreasonable property of the interest rates in certain
time periods, it clearly does not hold in others, as demonstrated in Figure 5.

If we define the short rate as a function of more factors, i.e.,r =
r(x1, . . . , xn), then the bond price has the formP = P (τ, x1, . . . , xn). If the
same short rate level can be achieved for several combinations of the factors
x1, . . . , xn, these can produce different bond prices and, consequently, term
structures - such as those seen in Figure 5. Moreover, the factors determining
the short rate may have a plausible interpretation on their own.
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Figure 5. Euro interest rates - examples of term structure starting from the same
point. Data source:http://www.emmi-benchmarks.eu.

In [4] the authors propose the model for the short rater to be

r = µ−
n
∑

j=1

xi,

whereµ is interpreted as the long-run average rate andx1, . . . , , xn represent
the current effect ofn streams of economic ”news”, among which they include
rumors about central bank decisions, economic statistics, etc. The arrival of
each of these news is modeled by the process:

dxi = ξixi dt+ σi dwi

with negative constantsξi and possibly correlated Wiener processeswi. Thus,
the impact of any news dies away exponentially. If the market prices of risk are
taken to be constant, it is possible to express the bond prices in a closed form.

A multi-factor version of a one-factor CIR model is formulated in [10],
where the short rater is a sum ofn components, i.e.,

r =

n
∑

j=1

ri, (17)

with eachxi following the Bessel square root process:

dri = κ(θ − ri) dt+ σi
√
ri dwi, (18)
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assuming independent Wiener processes. Their independence and the choice
of market prices of risk to beλi

√
ri again allow analytical expressions for the

prices of bonds. In Figure 6 we show sample trajectories of a two-factor CIR
model with parameters equal toκ1 = 0.7298, θ1 = 0.04013, σ1 = 0.16885,
κ2 = 0.021185, θ2 = 0.022543, σ2 = 0.054415 which are taken from [10].

Equations (17)-(18) can be generalized to general CKLS processes (15) and
correlated Wiener processes. However, with the exception of the special cases
above, the closed form formulae for bond prices are not available. This is why
their approximations are necessary.
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Figure 6. Two-factor CIR model: sample trajectories of the factors and the
short rate for parametersκ1 = 0.7298, θ1 = 0.04013, σ1 = 0.16885, κ2 =
0.021185, θ2 = 0.022543, σ2 = 0.054415, taken from [10].

���� 6WRFKDVWLF 9RODWLOLW\ 0XOWLSOH�)DFWRU ,QWHUHVW 5DWH 0RGHOV

A non-constant volatility is known especially from the market of stocks and
the derived options. The most famous index measuring the volatility is arguably
VIX, CBOE Volatility Index. It is a key measure of market expectations of
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near-term volatility conveyed by S&P 500 stock index option prices. Since
its introduction in 1993, it has been considered by many to be a barometer of
investor sentiment and market volatility2. We present its evolution in Figure 7.

Figure 7. VIX, CBOE Volatility Index. Data source:
http://www.cboe.com/micro/VIX/.

Moreover, besides the volatility being non-constant and stochastic, there is
an evidence that it evolves in a different time scale than the stock price, see
a concise book [23] by Jean-Pierre Fouque, George Papanicolaou and Ronnie
Sircar summarizing their work in the area of application of perturbation methods
for the partial differential equation for the option prices in models incorporating
this feature.

Approximately ten years later, in 2011, the same authors, and, in addi-
tion Knut Solna, published a new book [24] with a broader content,Multi-
scale Stochastic Volatility for Equity, Interest Rate, and Credit Derivativesfea-
turing the topic of interest rates mentioned in the title. The randomness of
volatility and interest in its measurement can be observed from the fact, that
CBOE has started to calculate volatility indices related to interest rates market:
CBOE/CBOT 10-year U.S. Treasury Note Volatility Index3 and CBOE Interest
Rate Swap Volatility Index4.

As an example, let us consider the stochastic volatility Vasicek model, as

2seehttp://www.cboe.com/micro/VIX/vixintro.aspx
3www.cboe.com/VXTYN
4www.cboe.com/SRVX
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given in [23]. It differs from the ordinary Vasicek model by its volatility. Instead
of a constant volatility, it is a nonnegative functionf evaluated in the value of a
stochastic processy, following the Ornstein-Uhlenbeck process:

dr = κ1(θ1 − r) dt+ f(y) dw1,

dy = κ2(θ2 − y) dt+ v dw2,

where the correlation between the incrementsdw1 and dw2 is ρ ∈ (−1, 1).
Empirical data suggestρ > 0 (see, e.g., [23, p. 177]).

Another example of a stochastic volatility short rate model has been pro-
posed by Fong and Vasicek in [25] by means of the following system of stochas-
tic differential equations:

dr = κ1(θ1 − r) dt+
√
y dw1,

dy = κ2(θ2 − y) dt+ v
√
y dw2,

where the Wiener processes can be correlated and the correlation between the
incrementsdw1 anddw2 is ρ ∈ (−1, 1). If the market prices of risk are given
by5 λ1

√
y (market price of risk of the short rate) andλ2

√
y (market price of risk

of volatility), then the partial differential equation for the bond price can be split
into solving a system of three ordinary differential equation.

���� &RQYHUJHQFH 0XOWLSOH�)DFWRU 0RGHOV 0RGHOLQJ (QWU\ WR D

0RQHWDU\ 8QLRQ

The basic convergence model of interest rates was suggested by Corzo and
Schwarz in [16], where they model the interest rates before the formation of
the European monetary union. Participating countries fixed their exchange rate
to Euro in January 1999. With fixed exchange rate, the interest rates have to
be the same across the countries. However, already before fixation of the ex-
change rate, the convergence of the interest rates in participating countries was
observed. This motivates the following model for the European short ratere
and the domestic short raterd:

drd = (a+ b(re − rd)) dt+ σd dwd, (19)

dre = c(d− re) dt+ σe dwe, (20)

5Note that this model is a generalization of the one-factor CIR model and the choices for
market prices of risk can be seen as generalizations of the model considered.
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where the Wiener processes are, in general, correlated: cov(dwd, dwe) = ρ dt.
Note that equation (20) is the Vasicek model for the European rate, whereas
(19) models a reversion of the domestic rate to the European rate, with a pos-
sible minor divergence given bya. Figure 8 shows sample trajectories for
the parametersc = 0.2087, d = 0.035, σe = 0.016 for the European rate,
a = 0.0938, b = 3.67, σd = 0.032 for the domestic rate and the correlation
ρ = 0.219, taken from [16]. Note that in the case of nonzeroa, the instanta-
neous drift from (19) forces the domestic rate to revert not exactly to the Eu-
ropean ratere, but to the valuere + a/b. For the given set of the parameters,
the ”divergence term”a/b equals to approximately 0.02 which can be observed
in Figure 8. However, with a fixed exchange rate, economically plausible value
of a is zero. Indeed, when the original model was estimated using the last 3.5
years before entering the European Monetary Union (EMU) in [16] this coef-
ficient turned to be highly insignificant. We also note that negative value of
the parametera may cause mathematical problems in the generalizations of the
model (related to the short rate evolution as well as the bond prices, see [34]).
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Figure 8. Sample paths of the European and the domestic short rate in Corzo-
Schwarz convergence model with parametersa = 0.0938, b = 3.67, σd =
0.032, c = 0.2087, d = 0.035, σe = 0.016, ρ = 0.219, taken from [16].
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In the market prices of risk are constant, there is an explicit solution for the
domestic bond prices6 of the form

P (τ, rd, re) = A(τ)e−B(τ)rd−C(τ)re . (21)

In [16] authors claim that the same analysis can be done for the CIR-type con-
vergence model.This question has been studied by Lacko in [34].

If the correlation betweendwd anddwe is zero, then the solution can be
again written in the form (21) and the functions can be found numerically by
solving a system of ordinary differential equations. In the general correlated
case, the solution cannot be written in the separated form (21). This is true
also for another natural generalization, where the European rate is modeled by a
CKLS-type process (15) and the volatility has the form:σdr

γd in equation (19)
describing behavior of the domestic rate. An analytical approximation formula
for bond prices the CKLS-type model is studied by Zı́ková and Stehlı́ková in
[59].

�� $SSUR[LPDWH $QDO\WLFDO 6ROXWLRQV LQ 6HOHFWHG %RQG

3ULFLQJ 3UREOHPV

Let us consider an example of market interest rates and Euribor rates in
particular. Panel banks provide daily quotes of the rate, rounded to two decimal
places, that each panel bank believes one prime bank is quoting to another prime
bank for interbank term deposits within the Euro zone. Then, after collecting
the data from panel banks: The calculation agent shall, for each maturity, elimi-
nate the highest and lowest 15% of all the quotes collected. The remaining rates
will be averaged and rounded to three decimal places. These rates are quoted
in percentage points. After dividing them by 100, we obtain them as decimal
numbers which are used as the variabler in the models described in the previous
chapter. It follows that the value, e.g., 0.123 percentage points from the mar-
ket data is not an exact figure, but, in terms of decimal numbers, can represent
anything from the interval[0.001225, 0.001235). On the other hand, any two
numbers from this interval obtained from models would be in practice indistin-
guishable. Therefore, going above a certain precision in the computations does
not bring any practical advantage when analyzing the market interest rates. In

6Note that an explicit solution for the European bonds follows from the fact that we are using
the classical Vasicek model for the European interest rates.
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other words, two approximative results that coincide to certain decimal points
are practically equally useful. Approximate analytical solutions we are dealing
with are very convenient tools in this regard.

���� &KDQ�.DURO\L�/RQJVWDII�6DQGHUV 0RGHO

In this section we consider the Chan-Karolyi-Longstaff-Sanders (CKLS
hereafter) model in the risk neutral measure:

dr = (α+ βr) dt+ σrγ dw, (22)

wherew is the Wiener process. Note that the linear drift is consistent with the
physical measure formulation and choice of market price of risk in the original
Vasicek model from [61] withγ = 0 and the Cox-Ingersoll-Ross (CIR here-
after) model proposed in [14] withγ = 1/2, see (10) and (14).

The priceP (τ, r) of the discount bond, when the current level of the short
rate isr and time remaining to maturity isτ , is then given by the solution to the
partial differential equation

−∂τP +
1

2
σ2r2γ∂2rP + (α+ βr)∂rP − rP = 0, r > 0, τ ∈ (0, T ) (23)

satisfying the initial conditionP (0, r) = 1 for all r > 0 (see, e.g., [32], [8]).
Recall that in the case of Vasicek and CIR models the explicit solutions to bond
pricing partial differential equations are known.

������ $SSUR[LPDWLRQ )RUPXOD 'XH WR &KRL DQG :LUMDQWR

Consider the stochastic differential equation (22) in the risk neutral measure
for the evolution of the short rater and the corresponding partial differential
equation (23) for the bond priceP (τ, r). The main result of the paper [11] by
Choi and Wirjanto is the following approximationP ap for the exact solution
P ex:

7KHRUHP �� [11, Theorem 2] The approximate analytical solutionP ap is given
by

lnP ap(τ, r) = −rB +
α

β
(τ −B) +

(

r2γ + qτ
) σ2

4β

[

B2 +
2

β
(τ −B)

]

−q σ
2

8β2

[

B2(2βτ − 1)− 2B

(

2τ − 3

β

)

+ 2τ2 − 6τ

β

]

(24)
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where
q(r) = γ(2γ − 1)σ2r2(2γ−1) + 2γr2γ−1(α+ βr) (25)

and
B(τ) = (eβτ − 1)/β. (26)

The derivation of the formula (24) is based on calculating the price as an
expected value in the risk neutral measure. The tree property of conditional
expectation was used and the integral appearing in the exact price was approxi-
mated to obtain a closed form approximation. The reader is referred to [11] for
more details of the derivation of (24).

Authors furthermore showed that such an approximation coincides with the
exact solution in the case of the Vasicek model [61]. Moreover, they compared
the above approximation with the exact solution of the CIR model which is also
known in a closed form. Graphical demonstration of relative mispricing, i.e.,
the relative error in the bond prices, has been also provided by the authors.

������ $V\PSWRWLF $QDO\VLV RI WKH &KRL DQG :LUMDQWR $SSUR[LPDWLRQ

)RUPXOD

As it can be seen from numerical examples given in [11], the error in bond
prices is smaller in the case ofτ small. Also, forτ = 0 the formula is exact.
This suggests usage ofτ as a small parameter in the asymptotic analysis.

Using the exact solutionP ex
CIR in the case ofγ = 1/2 (i.e., the Cox-

Ingersoll-Ross model), computing its expansion inτ around the pointτ = 0
and comparing it with the expansion of the Choi and Wirjanto approximate for-
mulaP ap

CIR with γ = 1/2 we obtain

lnP ap
CIR(τ, r)− lnP ex

CIR(τ, r) = − 1

120
σ2

[

αβ + r(β2 − 4σ2)
]

τ5 + o(τ5)

asτ → 0+. Considering logarithms of the bond prices enables us to estimate
the relative error in the bond prices (the relative mispricing from the previous
subsection) and the absolute error in the interest rates forming a term structure
of interest rate.

The result of expanding the approximate and exact solutions in the case of
the CIR model motivates finding a similar estimate also in the case of a general
CKLS model, i.e., for arbitraryγ. In the paper [54] we proved the following
theorem:
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7KHRUHP �� [54, Theorem 3] LetP ap be the approximative solution given by
(24) andP ex be the exact bond price given as a unique complete solution to
(23). Then

lnP ap(τ, r)− lnP ex(τ, r) = c5(r)τ
5 + o(τ5)

asτ → 0+ where

c5(r) = − 1

120
γr2(γ−2)σ2

[

2α2(−1 + 2γ)r2 + 4β2γr4 − 8r3+2γσ2

+2β(1− 5γ + 6γ2)r2(1+γ)σ2 + σ4r4γ(2γ − 1)2(4γ − 3) (27)

+2αr
(

β(−1 + 4γ)r2 + (2γ − 1)(3γ − 2)r2γσ2
)]

.

Moreover, the method of the proof enabled to propose an approximation
formula of a higher accuracy, as stated in the following theorem.

7KHRUHP �� [54, Theorem 4] LetP ex be the exact bond price. Let us define an
improved approximationP ap2 by the formula

lnP ap2(τ, r) = lnP ap(τ, r)− c5(r)τ
5 − c6(r)τ

6 (28)

wherelnP ap is given by (24),c5(τ) is given by (27) in Theorem 3 and

c6(r) =
1

6

(

1

2
σ2r2γc′′5(r) + (α+ βr)c′5(r)− k5(r)

)

wherec′5 andc′′5 stand for the first and second derivative ofc5(r) w. r. to r and
k5 is defined by

k5(r) =
γσ2

120
r
2(−2+γ) [6α2

β (−1 + 2γ) r2 + 12β3
γr

4 − 10(1− 2γ)2r1+4γ
σ
4

+6β2
σ
2 (1− 5γ + 6γ2)

r
2(1+γ)

+βr
2γ
σ
2 (−10 (5 + 2γ) r3 + 3(1− 2γ)2 (−3 + 4γ) r2γσ2)

+2αr

(

3β2 (−1 + 4γ) r2 + 3β
(

2− 7γ + 6γ2)
r
2γ
σ
2

− 5 (−1 + 2γ) r1+2γ
σ
2

)]

. (29)

Then the difference between the higher order approximationlnP ap2 given by
(28) and the exact solutionlnP ex satisfies

lnP ap2(τ, r)− lnP ex(τ, r) = o(τ6)

asτ → 0+.
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In Table 3 we showL∞ andL2− norms7 with respect tor of the dif-
ference lnP ap − lnP ex and lnP ap2 − lnP ex where we consideredr ∈
[0, 0.15]. We also compute the experimental order of convergence (EOC) in
these norms. Recall that the experimental order of convergence gives an ap-
proximation of the exponentα of expected power law estimate for the error
‖ lnP ap(τ, .) − lnP ex(τ, .)‖ = O(τα) asτ → 0+. TheEOCi is given by the
ratio:

EOCi =
ln(erri/erri+1)

ln(τi/τi+1)
, where erri = ‖ lnP ap(τi, .)− lnP ex(τi, .)‖p .

7DEOH �� 7KH L∞ DQG L2− HUURUV IRU WKH RULJLQDO lnP ap
CIR DQG LPSURYHG

lnP ap2
CIR DSSUR[LPDWLRQV� 3DUDPHWHUV DUH VHW WR EH HTXDO WR α = 0.00315�

β = −0.0555� σ = 0.0894� 6RXUFH� 6WHKO�ÕNRY�D DQG ß6HYßFRYLßF >��@

τ ‖ lnP ap − lnP ex‖∞ (2& ‖ lnP ap2 − lnP ex‖∞ (2&

1 2.774× 10−7 4.930 4.682× 10−10 7.039
0.75 6.717× 10−8 4.951 6.181× 10−11 7.029
0.5 9.023× 10−9 4.972 3.576× 10−12 7.004
0.25 2.876× 10−10 – 2.786× 10−14 –

τ ‖ lnP ap − lnP ex‖2 (2& ‖ lnP ap2 − lnP ex‖2 (2&

1 6.345× 10−8 4.933 9.828× 10−11 7.042
0.75 1.535×10−8 4.953 1.296× 10−11 7.031
0.5 2.061×10−9 4.973 7.492× 10−13 7.012
0.25 6.563×10−11 – 5.805× 10−15 –

In Table 3 we show theL2− error in the difference between the original
and improved approximations for larger values ofτ . It turns out that the higher
order approximationP ap2 gives about twice better approximation of bond prices
in the long time horizon up to 10 years.

������ $SSUR[LPDWLRQ %DVHG RQ WKH 9DVLFHN 0RGHO

Our aim is to propose a formula which is as simple as possible, but still
yields a good approximation of the exact bond prices. Using an approximation

7Lp andL∞ norms of a functionf defined on a grid with steph are given by‖f‖p =

(h
∑

|f(xi)|
p)1/p and‖f‖∞ = max |f(xi)|.
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in calibration of the model requires many evaluations of its value for different
sets of parameters, as well as times to maturity and the short rate levels. There-
fore, its simple form can increase the efficiency of the calibration procedure. In
particular, the approximation published by Stehlı́ková in [62] presented in this
section leads to a one-dimensional optimization problem.

Again, we consider the model (22) in the risk neutral measure for the evo-
lution of the short rater and the corresponding partial differential equation (23)
for the bond priceP (τ, r).

Recall that in the case of the Vasicek model, i.e., forγ = 0, the solution
Pvas can be expressed in the closed form:

lnPvas(τ, r) =

(

α

β
+

σ2

2β2

)(

1− eβτ

β
+ τ

)

+
σ2

4β3
(1− eβτ )2 +

1− eβτ

β
r.

(30)
Now, let us consider a general model (22) and the approximation of the bond
price obtained by substituting the instantaneous volatilityσrγ for σ to the Va-
sicek price (30), i.e.,

lnP ap(τ, r) =

(

α

β
+
σ2r2γ

2β2

)(

1− eβτ

β
+ τ

)

+
σ2r2γ

4β3
(1−eβτ )2+1− eβτ

β
r.

(31)

7KHRUHP �� [62, Theorem 1] LetP ap be the approximate solution given by (31)
andP ex be the exact bond price given as a solution to (23). Then

lnP ap(τ, r)− lnP ex(τ, r) = c4(r)τ
4 + o(τ4)

asτ → 0+ where

c4(r) = − 1

24
γr2γ−2σ2[2αr + 2βr2 + (2γ − 1)r2γσ2].

For the practical usage of the approximate formula, besides the order of
accuracy, the absolute value of the error is significant.

Comparison of the approximation with the exact values in the case of CIR
models and parameter values from [11] show (cf. [62] for the exact figures)
that for shorter maturities the differences are less than the accuracy to which the
market data are quoted. Euribor, for example, is quoted in percentage points
rounded to three decimal places. Moreover, Figure 9 shows that although the
accuracy of this approximation is one order lower to that of the approximation
from [11], it gives numerically comparable results for the real set of parameters.
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Figure 9. Comparison of the exact term structures in the CIR model (solid line),
approximation based on the Vasicek model from [62] by Stehlı́ková (crosses)
and approximation from [11] by Choi and Wirjanto (circles). Parameters are set
to be equal to:α = 0.00315, β = −0.0555, σ = 0.0894. Source: Stehlı́ková,
[62].

Let us consider the calibration of the one-factor model based on the compar-
ison of theoretical and market interest rates, where the parameters are chosen to
minimize the function

F =
1

mn

n
∑

i=1

m
∑

j=1

wij (R(τj , ri)−Rij)
2 , (32)

whereri (i = 1, . . . , n) is the short rate observed on thei-th day, τj (j =
1, . . . ,m) is the j-th maturity of the interest rates in the data set,Rij is the
interest rate with maturityτj observed on thei-th day,R(τ, r) is the interest rate
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with maturityτ corresponding to the short rater computed from the model with
the given parameters andwij are the weights. In [50] and [49], the weighted
sum withwij = τ2j (32) was considered in order to calibrate the Vasicek and
CIR models and to give more weight to fitting longer maturities. To achieve
the global minimum of the objective function, the authors applied stochastic
optimization methods based on evolution strategies.

If we attempted to use this method to estimate a model with different values
of γ without analytical approximations. It becomes computationally demand-
ing, since each evaluation of the objective function would require numerical
solutions of the PDE (23). Note that the evaluation is needed for every member
of the population in the evolution strategy (see [49] for details). Using an ana-
lytical approximation simplifies the computation of the objective function, but
in general the dimension of the optimization problem is unchanged. We show
that using the approximation proposed in this paper, we are able to reduce the
calibration to a one-dimensional optimization problem which can be quickly
solved using simple algorithms.

Hence we consider the criterion (32) with replacingR(τ, r) by its approx-
imationRap(τ, r) calculated from (31). Note that the approximation formula
lnP ap is a linear function of parametersα andσ2; it can be written as follows:

lnP ap(τ, r) = c0(τ, r) + c1(τ, r)α+ c2(τ, r)σ
2,

where

c0 =
1− eβτ

β
r, c1 =

1

β

(

1− eβτ

β
+ τ

)

, c2 =
r2γ

2β2

(

1− eβτ

β
+ τ +

(

1− eβτ
)2

2β

)

.

Hence taking the derivatives of (32) with respect toα andσ2 and setting them
equal to zero leads to a system of linear equations for these two parameters. It
means that once we fixγ and treatβ as a parameter, we obtain the corresponding
optimal values ofα andσ2 for eachβ. Substituting them into (32) then leads to
a one-dimensional optimization problem. Doing this over a range of values of
γ allows us to find the optimal parameterγ as well.

We show the proposed idea on simulated data. Once again, we consider the
CIR model with parameters from [11] and simulate the daily term structures –
interest rates with maturities of1, 2, 3, . . . , 12 months using the exact formula
for the CIR model for a period of year. In the objective function (32) we use the
weightswij = τ2j as in [50] and [49]. Afterwards we repeat the same procedure
with maturities of 1, 2, 3, 4 and 5 years.
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Results of the estimation for several values ofγ are presented in Table 4, we
show the estimated parameters and the optimal value of the objective function
F .

7DEOH �� (VWLPDWLRQ RI WKH SDUDPHWHU γ XVLQJ WKH DSSUR[LPDWH IRUPXOD IRU
LQWHUHVW UDWHV� 7KH GDWD ZHUH VLPXODWHG XVLQJ WKH H[DFW IRUPXOD ZLWK WKH

SDUDPHWHUV α = 0.00315� β = −0.0555� σ = 0.0894� γ = 0.5� 0DWXULWLHV

XVHG ZHUH 1, 2, . . . , 12 PRQWKV �DERYH� DQG 1, 2, . . . , 5 \HDUV �EHORZ��
6RXUFH� 6WHKO�ÕNRY�D� >��@

.

γ α β σ 2SWLPDO YDOXH RI F
0 0.00324 -0.0578 0.0176 1.1×10−12

0.25 0.00319 -0.0565 0.0403 2.9×10−13

0.5 0.00315 -0.0555 0.0896 1.1×10−15

0.75 0.00312 -0.0548 0.1912 6.3×10−13

1 0.00310 -0.0548 0.3813 2.5×10−12

γ α β σ 2SWLPDO YDOXH RI F
0 0.00377 -0.0663 0.0214 1.0×10−8

0.25 0.00344 -0.0607 0.0432 2.4×10−9

0.5 0.00311 -0.0553 0.0860 2.2×10−10

0.75 0.00281 -0.0506 0.1688 6.7×10−9

1 0.00256 -0.0471 0.3238 2.7×10−8

���� *HQHUDO 2QH�)DFWRU 0RGHOV� 3RZHU 6HULHV ([SDQVLRQV

The approximations considered in the previous sections share a common
feature: their order of accuracy can be expressed in the form

lnP ap(τ, r)− lnP (τ, r) = c(r)τω + o(τω) (33)

asτ → 0+, whereP is the exact bond price andP ap is the proposed approxima-
tion. The relation (33) asserts that the Taylor series oflnP ap andlnP coincide
up to the certain order. In particular, in [54] it has been shown that for the for-
mula for the CKLS model from [11] the relation (33) holds withω = 5 and an
improvement leading toω = 7 has been derived. In [62] a simple formula with
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ω = 4 has been proposed. Similar estimates hold in the case of multi-factor
models. These results suggest that the Taylor expansion (either of the price
itself and its logarithm) could be a good approximation too.

Let us consider a general one-factor model with constant coefficients

dr = µ(r) dt+ σ(r) dw. (34)

Recall that the price of the bondP (τ, r) is a solution to the partial differential
equation

−∂τP + µ(r)∂rP +
1

2
σ2(r)∂2rP − rP = 0 (35)

for all r > 0, τ ∈ (0, T ) and the initial conditionP (0, r) = 1 for all r > 0.
Easy transformation of the PDE leads to the equation which is satisfied by the
logarithm of the bond price, i.e.,f(τ, r) = logP (τ, r):

−∂τf =
1

2
σ2(r)

[

(∂rf)
2 + ∂2rrf

]

+ µ(r)∂rf − r = 0 (36)

for all r > 0, τ ∈ (0, T ) and the initial conditionf(0, r) = 0 for all r > 0.
Writing these functions in series expansions atτ = 0,

P (τ, r) =
∞
∑

j=0

cj(r)τ
j , f(τ, r) =

∞
∑

j=0

kj(r)τ
j (37)

enables us to compute the parameterscj or kj recursively in the closed form.
A practical usage of this approach is determined by the speed of convergence
of these series for reasonable values ofτ and r. Then, we can approximate
the bond prices and their logarithms by terminating the infinite sums (37) at a
certain indexJ .

We show the results from [60]. Firstly, the approximation is tested on the
CKLS model with the same parameters as in the previous chapter. The results
suggest the possibility of practical usage of the proposed approximation. An-
other example is the Dothan model. In [20] Dothan assumed that the short rate
in the risk neutral measure follows the stochastic differential equation

dr = µrdt+ σrdw.

The zero-coupon bond in the Dothan model has an explicit solution, but it is
computationally complicated (cf. [8]). Therefore, we use the Dothan bond
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prices computed in [28] for which the error estimate is available. They are
accurate to the given four decimal digits.

Insertingµ(r) = µr andσ(r) = σr into the recursive formulae for coef-
ficients yields the coefficients for the price and its logarithm. In the numerical
experiments we consider the values from [28]. The authors price zero coupon
bonds which pays 100 USD at maturityT (hence its price is 100 times the value
considered so far). Using their iterative algorithm, forτ = 1, 2, 3, 4, 5, 10 they
obtain the accuracy to four decimal digits for all combinations of parameters
and in several cases also for higher maturities. Selected values from [28] are
used to test the approximation for a wider range of parameters and maturities,
as shown in Table 5.

7DEOH �� %RQG SULFHV LQ WKH 'RWKDQ PRGHO ZLWK LQGLFDWHG SDUDPHWHUV DQG

PDWXULWLHV� DQG WKH LQLWLDO YDOXH RI WKH VKRUW UDWH r0 = 0.035 � FRPSDULVRQ
RI 7D\ORU DSSUR[LPDWLRQ ZLWK H[DFW YDOXHV� 6RXUFH 6WHKO�ÕNRY�D >��@

3DUDPHWHUV τ 7D\ORU� - � 7D\ORU� - � 7D\ORU� - � ([DFW >��@

µ = 0.005,
σ2 = 0.01

1 96.5523 96.5523 96.5523 96.5523

2 93.2082 93.2082 93.2082 93.2082
3 89.9666 89.9663 89.9663 89.9663
4 86.8260 86.8251 86.8251 86.8251
5 83.7852 83.7830 83.7830 83.7830
10 70.0312 69.9977 69.9982 69.9982

µ = 0.005,
σ2 = 0.02

1 96.5525 96.5525 96.5525 96.5525

2 93.2099 93.2098 93.2098 93.2098
3 89.9721 89.9715 89.9715 89.9715
4 86.8391 86.8370 86.8370 86.8370
5 83.8362 83.8056 83.8057 83.8057
10 70.4396 70.1530 70.1551 70.1551

µ = 0.005,
σ2 = 0.03

1 96.5527 96.5527 96.5527 96.5527

2 93.2115 93.2113 93.2113 93.2113
3 89.9776 89.9767 89.9767 89.9767
4 86.8521 86.8491 86.8491 86.8491
5 83.8362 83.8287 83.8287 83.8287
10 70.4396 70.3112 70.3151 70.3151

The idea of the short time asymptotic expansion can be enhanced by con-
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sidering the so-called exponent expansion to derive a closed-form short-time
approximation of the Arrow-Debrew prices, from which the prices of bonds or
other derivatives can be obtained by a simple integration. This technique, origi-
nally introduced in chemical physics by Makri and Miller [36], was introduced
to finance by Capriotti [9]. In [63] by Stehlı́ková and Capriotti, it was employed
to compute the bond prices in the Black-Karasinski model.

The exponent expansion is derived for the bond prices in short rate models
with r = r(x), where the auxiliary process has the form

dx(t) = µ(x) dt+ σ dw, (38)

whereµ(x) is a drift function. The process has a constant volatilityσ. In general
case it is possible to transform general state dependent volatility function to the
constant volatility by means of an integral transformation. Note that this trans-
formation is used also by Äıt-Sahalia in [2] in his approximation of transition
densities.

The bond prices are not computed directly. Instead, the so-called Arrow-
Debreu prices are approximated by a closed form formula and the bond prices
are obtained by a single numerical integration. The Arrow-Debreu prices
ψ(x, T ;x0) are for eachx0 given as solutions to the partial differential equa-
tion (see [52])

∂tψ =
(

− r(x)− ∂xµ(x) +
1

2
σ2∂2x

)

ψ, (39)

with the initial conditionψ(x, 0;x0) = δ(x − x0). Looking for the solution in
the form

ψ(x, t;x0) =
1√

2πσ2t
exp

[

−(x− x0)
2

2σ2t
−W (x, t;x0)

]

, (40)

and inserting it into (39) leads to a partial differential equation forW (x, t;x0).
DecompositionW in the form:

W (x, t;x0) =
∞
∑

n=0

Wn(x;x0) t
n , (41)

allows for a recursive computation of the functionsWn(x;x0) as solutions to
the first order linear ordinary differential equations.

This form of expansion for the bond prices results in a more rapid conver-
gence especially for longer maturities, compared with the simple Taylor expan-
sion described previously, see Table 6.
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7DEOH �� &RPSDULVRQ RI VXFFHVVLYH DSSUR[LPDWLRQV RI WKH ERQG SULFH ZLWK

VL[�PRQWKV �OHIW� DQG RQH�\HDU �ULJKW� PDWXULW\ LQ WKH %ODFN�.DUDVLQVNL

PRGHO ZLWK SDUDPHWHUV a = 1� b = ln 0.04� σ = 0.85� ZKHQ WKH LQLWLDO OHYHO
RI WKH VKRUW UDWH LV r = 0.06

2UGHU 7D\ORU ([SRQHQW H[SDQVLRQ 7D\ORU ([SRQHQW H[SDQVLRQ

1 0.970000 0.969249 0.940000 0.937431
2 0.968045 0.968138 0.932179 0.933037
3 0.968123 0.968140 0.932807 0.933077
4 0.968141 0.968142 0.933097 0.933105
5 0.968142 0.968142 0.933118 0.933106
6 0.968142 0.968142 0.933110 0.933106

An important advantage that separates the exponential expansion is the pos-
sibility to systematically improve its accuracy over large time horizons by means
of the convolution approach (see [63] for the algorithm). It enables us to pro-
duce results accurate to more than 4 significant digits even for zero coupon
bonds with maturities over 20 years. This is documented in Table 7 where the
results are compared with Monte Carlo prices.

7DEOH �� %RQG SULFHV FRPSXWHG ZLWK WKH �WK RUGHU ([SRQHQW ([SDQVLRQ

DQG GLIIHUHQW FRQYROXWLRQ VWHSV LQ WKH %ODFN�.DUDVLQVNL PRGHO ZLWK

SDUDPHWHUV a = 1� b = ln 0.04� σ = 0.85� ZKHQ WKH LQLWLDO OHYHO RI WKH VKRUW
UDWH LV r = 0.06� FRPSDUHG ZLWK WKH SULFH REWDLQHG E\ 0RQWH &DUOR

PHWKRG� 6RXUFH� 6WHKO�ÕNRY�D DQG &DSULRWWL� >��@

0DWXULW\ &RQYROXWLRQ VWHS� � &RQYROXWLRQ VWHS� ��� &RQYROXWLRQ VWHS� � 0&

5 0.65949 0.65955 0.65966 0.6597
10 0.46139 0.46222 0.46229 0.4623
20 0.26812 0.26827 0.26831 0.2683

���� )DVW 7LPH 6FDOH RI 9RODWLOLW\ LQ 6WRFKDVWLF 9RODWLOLW\ 0RGHOV

In the paper [57] by Stehlı́ková andŠev̌covič, we studied a generalized CIR
model with a stochastic volatility. The instantaneous interest rate (short rate)r
is modeled by the mean reverting process of the form (13) where the constant
σ appearing in the volatility functionσ

√
r is replaced by a square root of a
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stochastic dispersiony, i.e.

dr = κ(θ − r) dt+
√
y
√
r dwr . (42)

The stochastic differential equation for the short rate is given by

dy = α(y) dt+ v
√
y dwy, (43)

with certain conditions given on the functionα: [0,∞) → R at zero and infinity,
see [57, Assumption A] and a concrete example8 in [57, Lemma 1]. The differ-
entials of the Wiener processesdwy anddwr are assumed to be uncorrelated.

It provides a tool for modeling the effects of rapidly oscillating stochastic
volatility that can be observed in real markets (cf. [23], [24]). If the length of
the time scale for the dispersiony is denoted byε, equation (43) for the variable
y reads as follows:

dy =
α(y)

ε
dt+

v
√
y√
ε
dwy. (44)

In what follows, we will assume that0 < ε ≪ 1 is a small singular param-
eter. The density of the conditional distribution of the process is given by the
solution to the Fokker-Planck equation. The densityg(y) of its stationary dis-
tribution which is widely used in the computations from [57], is then given by
the normalized solution to the stationary Fokker-Planck equation which reads
as follows:

v2

2
∂2y(yg)− ∂y(α(y)g) = 0 (45)

for the process (44). Notice that the limiting density functiong is independent
of the scaling parameterε > 0.

The market prices of risk functions are considered to be in the form
λ̃1(t, r, y) = λ1

√
r
√
y, λ̃2(t, r, y) = λ2

√
y, whereλ1, λ2 ∈ R are constants

(note that this is a generalization of the original one-factor CIR model which as-
sumes the market price of risk to be proportional to the square root of the short

8The concrete example of a functionα considered in the paper models a volatility clustering
phenomenon where the dispersion can be observed in the vicinity of two local maxima of the
density distribution. In particular, it uses a stochastic differential equation that leads to the lim-
iting density of the volatility to be equal to a convex combination of two gamma densities. It
has was proposed in [55]. However, the results are derived for a general process (43), using the
limiting distribution and its statistical moments.
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rater). Then, we rewrite the partial differential equation for the bond priceP
in the operator form:

(ε−1L0 + ε−1/2L1 + L2)P
ε = 0, (46)

where the linear differential operatorsL0,L1,L2 are defined as follows:

L0 = α(y)∂y +
1

2
v
2
y∂

2
y , L1 = −λ2vy∂y, L2 = ∂t + (κ(θ − r)− λ1ry)∂r +

1

2
ry∂

2
rr − r.

Next we expand the solutionP ε into Taylor power series:

P ε(t, r, y) =
∞
∑

j=0

ε
j
2Pj(t, r, y) (47)

with the terminal conditionsP0(T, r, y) = 1, Pj(T, r, y) = 0 for j ≥ 1 at
expiry t = T . The main result is the analysis of the singular limiting behavior
of the solutionP ε asε→ 0+. More precisely, it determines the first three terms
P0, P1, P2 of the asymptotic expansion (47).

The main tool in the derivation is averaging with respect to the limiting
distribution, whose densityg is given by (45), and is denoted by brackets〈·〉 in
the following. In particular, the following two propositions are essential: Firstly,
a functionψ, for whichL0ψ is bounded, satisfies〈L0ψ〉 = 0 (see [57, Lemma
3]). Secondly, [57, Lemma 4] gives an expression forψy and 〈L1ψ〉, where
ψ is a solution ofL0ψ = F with the right-hand side being a given function
satisfying〈F 〉 = 0.

The solutionP ε = P ε(t, r, y) of the bond pricing equation (46) can be
approximated, for small values of the singular parameter0 < ε≪ 1, by

P ε(t, r, y) ≈ P0(t, r) +
√
εP1(t, r) + εP2(t, r, y) +O(ε

3
2 )

and the main result consists in derivation of the functionsP0, P1, P2. Note
that the first two termsP0, P1 are independent of they-variable representing
unobserved stochastic volatility.

The first termP0 is a solution to the averaged equation〈L2〉P0 = 0 which is
the partial differential equation for the bond price in the one-factor CIR model
with parameters set to the averaged values (with respect to the limiting distribu-
tion) from the model studied here. It has a form

P0(t, r) = A0(t)e
−B(t)r, (48)
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where the functionsA0 andB are given by a system of ordinary differential
equations which can be solved in a closed form. Neither the second termP1

depends on the instantaneous level of the processy. The equation for theP1

reads as follows:
〈L2P1〉 = f(t)re−B(t)r,

where the functionB comes from (48) and the functionf is obtained from the
model parameters and the solution (48) in a closed form. The solution can be
expressed as follows:P1(t, r) = (A10(t) + A11(t)r)e

−B(t)r with the function
B being the same as in (48) and the functionsA10, A11 satisfying a system of
linear ordinary differential equations. The next term in the expansion,P2, non-
trivially depends on they-variable. It is decomposed into its expected value and
zero-mean fluctuations as

P2(t, r, y) = P̄2(t, r) + P̃2(t, r, y)

where〈P̃2〉 = 0. The functionP̃2 can be computed by integration, using the
results obtained so far. The function̄P2 satisfies the equation

〈L2P̄2〉 = (a(t) + b(t)r + c(t)r2)e−B(t)r,

where the functionsa, b, c are given. It has the form:̄P2(t, r) = (A20(t) +
A21(t)r+A22(t)r

2)e−B(t)r where the functionB is the same as in (48) and the
functionsA20, A21, A22 are solutions to a linear system of ODEs. More detailed
computations can be found in [57].

Recall the Fong-Vasicek model with stochastic volatility in which the short
rate is given by the following pair of stochastic differential equation

dr = κ1(θ1 − r) dt+
√
y dw1,

dy = κ2(θ2 − y) dt+ v
√
y dw2. (49)

For a suitable choices of market prices of risk, computation of the bond prices
can be reduced into solving ordinary differential equations. This computational
simplicity makes it a suitable choice for assessing the quality of the approxima-
tion of the kind described above. Introducing fast time scale of volatility, the
equation (49) becomes (cf. equation (44))

dy =
κ2
ε
(θ2 − y) dt+

v√
ε

√
y dw2. (50)
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However, when estimating parameters using the real data, from the parameters
of (50) we are able to obtain onlyθ2, κ̃2 = κ2

ε andṽ = κ2√
ε
. Hence, we are not

able to reconstruct three parametersκ2, v, ε from two values̃κ2, ṽ.
Therefore, in the master thesis by Selečéniov́a [47], supervised by

Stehĺıková, another approach has been applied. It follows the parameteriza-
tion used by Danilov and Mandal in [18] and [19]. Strong mean-reversion in
the process for volatility can be characterized by a large value ofκy. Hence we
can defineε = 1/κy and expect it to be small enough to be used as a perturba-
tion parameter. In [47], the derivation similar to that above has been made to
compute the first two terms of the bond price expansion, leading to the approx-
imation of the bond price of the order zero:

P ε(t, r, y) ≈ P0(t, r)

and of the order one:

P ε(t, r, y) ≈ P0(t, r) +
√
εP1(t, r).

Then, the resulting interest rates were compared with exact values. In Table 8
we present sample results.

7DEOH �� ,QWHUHVW UDWHV IURP )RQJ�9DVLFHN PRGHO� FRPSDULVRQ RI WKH RUGHU

� DQG � DSSUR[LPDWLRQV ZLWK WKH H[DFW YDOXHV� 3DUDPHWHUV DUH WDNHQ WR EH

HTXDO WR� κ1 = 0.109, κ2 = 1.482, θ1 = 0.0652, θ2 − 0.000264, v =
0.01934, λ1 = −11, λ2 = −6, r = 0.04� 6RXUFH� 6HOHßF�HQLRY�D� >��@

([DFW LQWHUHVW UDWH $SSUR[LPDWLRQ

0DWXULW\ y = 1.6× 10−4 y = 2.4× 10−4 y = 3.2× 10−4 2UGHU � 2UGHU �

1 0.0424 0.0426 0.0429 0.0427 0.0432
2 0.0448 0.0451 0.0455 0.0451 0.0458
3 0.0470 0.0474 0.0478 0.0473 0.0482
4 0.0491 0.0495 0.0498 0.0493 0.0502
5 0.0510 0.0514 0.0517 0.0511 0.0521
6 0.0527 0.0531 0.0534 0.0528 0.0538
7 0.0543 0.0547 0.0550 0.0543 0.0553
8 0.0558 0.0561 0.0564 0.0557 0.0567
9 0.0572 0.0575 0.0578 0.0570 0.0580
10 0.0584 0.0587 0.0590 0.0582 0.0592

Let us remark that although the zero-order approximation of the bond price
equals to the bond price from the one-factor model with averaged coefficients,
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this is not the averaged bond price〈P (t, r, y)〉. There is even a stronger result:
the averaged bond price〈P (t, r, y)〉, although it is a function oft andr, does
not equal to the bond price in any one-factor model, as it has been shown in
[56].

���� &RQYHUJHQFH 0XOWLSOH�)DFWRU 0RGHOV

The idea of approximating the bond prices in a model with general volatility
by substituting the instantaneous volatility into a simple model of Vasicek type
with a constant volatility has been successfully applied in various multi-factor
models.

Convergence models form a special class of two-factor models. A conver-
gence model is used to model the entry of observed country into the European
monetary union (EMU). It describes the behavior of two short-term interest
rates, the domestic one and the instantaneous short rate for EMU countries.
European short rate is modeled using a one-factor model. It is assumed to have
an influence on the evolution of the domestic short rate and hence it enters the
SDE for its evolution. This kind of model was proposed for the first time in
[16]. The model is based on the Vasicek model, the volatilities of the short rates
are constant. Analogical model of Cox-Ingersoll-Ross type, where the volatili-
ties are proportional to the square root of the short rate, was considered in [34]
and [35]. In the following sections we describe these two models and show how
they price the bonds. Then we present a generalization with nonlinear volatility
which is analogous to the volatility in the one-factor CKLS model.

Let us consider a model defined by the following system of SDEs:

dr = µr(r, x, t)dt+ σr(r, x, t)dw1,

dx = µx(r, x, t)dt+ σx(r, x, t)dw2, (51)

whereρ ∈ (−1, 1) is the correlation between the increments of Wiener pro-
cessesW1 andW2, i.e. Cov(dW1, dW2) = ρ dt. The processx is a random
process which is connected with an instantaneous rate. It can be a long-term in-
terest rate, a short-term interest rate in another country, etc. Relations between
real and risk-neutral parameters are analogous as in the one-factor case:

(risk-neutral drift function)r = (real drift function)r − λr(r, x, t)× (volatility)r,

(risk-neutral drift function)x = (real drift function)x − λx(r, x, t)× (volatility)x,
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whereλr, λx are market prices of risk of the short rate and the factorx respec-
tively.

If the short rate satisfies SDE (51) in the real measure and market prices
of risk areλr(r, x, t), λx(r, x, t), then the bond priceP satisfies the following
PDE (assuming that the factorx is positive):

∂P

∂t
+ (µr(r, x, t)− λr(r, x, t)σr(r, x, t))

∂P

∂r
+ (µx(r, x, t)− λx(r, x, t)σx(r, x, t))

∂P

∂x

+
σr(r, x, t)

2

2

∂2P

∂r
+

σx(r, x, t)
2

2

∂2P

∂x
+ ρσr(r, x, t)σx(r, x, t)

∂2P

∂r∂x
− rP = 0

for r, x > 0, t ∈ (0, T ) and the terminal conditionP (r, x, T ) = 1 for r, x > 0.
The PDE is derived using Itô lemma and construction of risk-less portfolio, see,
e.g. [32],[8].

������ &RQYHUJHQFH 0RGHO RI WKH &./6 7\SH

The paper [59] is devoted to a convergence model of the CKLS type. Recall
that the exact bond prices are known in the case of the Vasicek-type model and
their computation can be simplified to a numerical solution of ordinary differ-
ential equations in the case of the CIR-type model with uncorrelated increments
of the two Wiener processes. In [59], the general CKLS model with uncor-
related Wiener processes (the effect of correlation can be seen only in higher
order terms, when takingτ as a small parameter, numerical results presented in
the paper show that the difference often occurs on decimal places which are not
observable taking the precision of market quotes into account) is considered.
The approximation formula from [62] described in the previous section is used
to compute European bond prices. In an analogous way, an approximation for
domestic bond prices is proposed. It is tested numerically for CIR-type model
and a general order of accuracy is derived. Then, a calibration procedure is sug-
gested, tested on simulated data and applied to read data. The simple form of
the approximation again allows relatively simple calibration procedure.

������ $ 7KUHH�)DFWRU &RQYHUJHQFH 0RGHO

A one-factor model is not always sufficient to model the European short rate
in convergence model (as suggested by calibration results in [59]) which affects
also the appropriateness of the convergence model for the domestic currency.
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In paper [58] by Stehlı́ková and Źıková, a three factor convergence model is
suggested and provides first steps in the analysis of approximation formulae for
domestic bond prices. The European short rate is modeled as a sum of two
CKLS-type factor, as described in the previous point, and the domestic rate
follows a process reverting to the European rate.

The fitting results of the convergence model [59] suggest to look for a
more suitable approximation of the short rate. In the paper [26] by Halgašov́a,
Stehĺıková and Źıková we studied estimation of the short rate together with pa-
rameters of the model in the Vasicek model. It is based on the fact that for the
Vasicek model, the objective function (32) for calibration is quadratic not only
in parametersα andσ2, but also in values of the short ratesr1, . . . , rn.

Figure 10 shows a comparison of the estimated short rate from Euribor term
structures with a market overnight rate. The choice of the time frame for the
calibration was motivated by a possible use as an input for a convergence model:
Slovakia adopted the Euro currency in 2009 and Estonia in 2011.
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Figure 10. Estimating the short rate from Euribor term structures and its com-
parison with overnight rate Eonia. Source: Halgašov́a, Stehĺıková, Źıková, [26].

Using the approximation of the bond prices in the CKLS model, this algo-
rithm can be modified for estimating the short rate also in the CKLS model. This
has been done in the master thesis [39] by Mosný, supervised by Stehlı́ková.
In the case of a general CKLS model, the objective function is not quadratic,
but it is proposed to make a substitutionyi = σ2r2γi in the objective function
which results in the new objective function which we minimize with respect to
α, β, σ2 (model parameters),r1, . . . , rn (short rates),y1, . . . , yn (auxiliary vari-
ables treated as independent in the first step). In this way, for eachβ a quadratic
optimization problem is solved. For eachβ, there is therefore the optimal value
of F̃ which is then used to find the optimal value ofβ. Note that the variablesri
andyi are not independent, the ratioyi/r

2γ
i is equal toσ2. By treating them as
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independent variables,yi can be seen as an approximation ofσ2r2γi when using
real data. Hence the ratiosyi/r

2γ
i should provide a good approximation toσ2.

It is estimated as a median of these ratios.

������ &RQYHUJHQFH 0RGHO RI 9DVLFHN 7\SH

The first convergence model was proposed in the paper [16] by Corzo and
Schwartz in the real probability measure:

drd = (a+ b (re − rd)) dt+ σddwd,

dre = (c (d− re)) dt+ σedwe, (52)

whereCov(dW1, dW2) = ρdt. They considered constant market prices of risk,
i. e. λd(rd, re, τ) = λd andλe(rd, re, τ) = λe. Hence for the European interest
rate we obtain the one-factor Vasicek model and we can easily price European
bonds. Coefficientb > 0 expresses the power of attracting the domestic short
rate to the European one with the possibility of deviation determined by the
coefficienta. Rewriting the model into risk-neutral measure we obtain:

drd = (a+ b (re − rd)− λdσd) dt+ σddwd,

dre = (c (d− re)− λeσe) dt+ σedwe, (53)

whereCov[dWd, dWe] = ρdt. We consider a more general model in risk-
-neutral measure, in which the risk-neutral drift of the domestic short rate is
given by a general linear function of variablesrd, re and the risk-neutral drift
of the European short rate is a general linear function ofre. It means that the
evolution of the domestic and the European short rates is given by:

drd = (a1 + a2rd + a3re) dt+ σddwd, (54)

dre = (b1 + b2re) dt+ σedwe, (55)

whereCov[dWd, dWe] = ρdt. Note that the system (54) corresponds to the
system (53) witha1 = a− λdσd, a2 = −b, a3 = b, b1 = cd− λeσe, b2 = −c.
PriceP (rd, re, τ) of a bond with time to maturityτ = T − t then satisfies the
PDE:

−∂P
∂τ

+ (a1 + a2rd + a3re)
∂P

∂rd
+ (b1 + b2re)

∂P

∂re

+
σ2d
2

∂2P

∂r2d
+
σ2e
2

∂2P

∂r2e
+ ρσdσe

∂2P

∂rd∂re
− rdP = 0, (56)
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for rd, re > 0, τ ∈ (0, T ) and the initial conditionP (rd, re, 0) = 1 for
rd, re > 0. Its solution can be found in the same way as in the original paper
[16]. Assuming the solution in the form:

P (rd, re, τ) = eA(τ)−D(τ)rd−U(τ)re , (57)

and setting it into the equation (56) we obtain the system of ordinary differential
equations (ODEs):

Ḋ(τ) = 1 + a2D(τ),

U̇(τ) = a3D(τ) + b2U(τ), (58)

Ȧ(τ) = −a1D(τ)− b1U(τ) +
σ2dD

2(τ)

2
+
σ2eU

2(τ)

2
+ ρσdσeD(τ)U(τ)

with initial conditionsA(0) = D(0) = U(0) = 0. The solution of this system
is given by:

D(τ) =
−1 + ea2τ

a2
,

U(τ) =
a3

(

a2 − a2e
b2τ + b2 (−1 + ea2τ )

)

a2 (a2 − b2) b2
, (59)

A(τ) =

∫ τ

0

−a1D(s)− b1U(s) +
σ2
dD

2(s)

2
+

σ2
eU

2(s)

2
+ ρσdσeD(s)U(s)ds.

Note that the functionA(τ) can be easily written in the closed form not con-
taining integration. We leave it in this form for the sake of brevity. Furthermore,
we consider only the case whena2 6= b2. If a2 = b2, thenU(τ) has another
form, but it is a very special case and we will not consider it further.

������ &RQYHUJHQFH 0RGHO RI &,5 7\SH

Firstly we formulate the convergence model of CIR type (i.e. the volatilities
are proportional to the square root of the short rates) in the real measure.

drd = (a+ b (re − rd)) dt+ σd
√
rddwd,

dre = (c (d− re)) dt+ σe
√
redwe, (60)

whereCov[dWd, dWe] = ρdt. If we assume the market prices of risk to be
equal to:λe

√
re, λd

√
rd then we obtain risk neutral processes of the form:

drd = (a1 + a2rd + a3re) dt+ σd
√
rddwd,

dre = (b1 + b2re) dt+ σe
√
redwe, (61)
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whereCov[dWd, dWe] = ρdt. In what follows, we consider this general risk-
neutral formulation (61).

The European short rate is described by the one-factor CIR model, so we are
able to price European bonds using an explicit formula. The priceP (rd, re, τ)
of a domestic bond with maturityτ satisfies the PDE:

−∂P
∂τ

+ (a1 + a2rd + a3re)
∂P

∂rd
+ (b1 + b2re)

∂P

∂re

+
σ2dr

2
d

2

∂2P

∂r2d
+
σ2er

2
e

2

∂2P

∂r2e
+ ρσd

√
rdσe

√
re

∂2P

∂rd∂re
− rdP = 0, (62)

for rd, re > 0, τ ∈ (0, T ) with the initial conditionP (rd, re, 0) = 1 for rd, re >
0. It was shown in [34] (in a slightly different parametrization of the model) that
a solution in the form (57) exists only whenρ = 0. In this case we obtain system
of ODEs:

Ḋ(τ) = 1 + a2D(τ)− σ2dD
2(τ)

2
,

U̇(τ) = a3D(τ) + b2U(τ)− σ2eU
2(τ)

2
, (63)

Ȧ(τ) = −a1D(τ)− b1U(τ),

with initial conditionsA(0) = D(0) = U(0) = 0, which can be solved numer-
ically.

������ &RQYHUJHQFH 0RGHO RI &./6 7\SH

We consider a model in which risk-neutral drift of the European short rate
re is a linear function ofre, risk-neutral drift of the domestic short raterd is a
linear function ofrd andre and volatilities take the formσer

γe
e andσdr

γd
d , i.e.

drd = (a1 + a2rd + a3re)dt+ σdr
γd
d dwd,

dre = (b1 + b2re)dt+ σer
γe
e dwe, (64)

whereCov[dWd, dWe] = ρdt. Parametersa1, a2, a3, b1, b2 ∈ R, σd, σe >
0, γd, γe ≥ 0 are given constants andρ ∈ (−1, 1) is a constant correlation
between the increments of Wiener processesdWd a dWe. We will refer to
this model astwo-factor convergence model of Chan-Karolyi-Longstaff-Sanders
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(CKLS) type. The domestic bond priceP (rd, re, τ) with the maturityτ satisfies
PDE:

−∂P
∂τ

+ (a1 + a2rd + a3re)
∂P

∂rd
+ (b1 + b2re)

∂P

∂re

+
σ2dr

2γd
d

2

∂2P

∂r2d
+
σ2er

2γe
e

2

∂2P

∂r2e
+ ρσdr

γd
d σer

γe
e

∂2P

∂rd∂re
− rdP = 0,(65)

for rd, re > 0, τ ∈ (0, T ), with the initial conditionP (rd, re, 0) = 1 for
rd, re > 0. Unlike for the Vasicek and uncorrelated CIR model, in this case
it is not possible to find a solution in the separable form (57). For this reason,
we are looking for an approximative solution.

���� $SSUR[LPDWLRQ RI WKH 'RPHVWLF %RQG 3ULFH 6ROXWLRQ

The bond prices in the CKLS type convergence model are not known in a
closed form. This is already the case for the European bonds, i.e. one-factor
CKLS model. We use the approximation from [62]. In this approximation
we consider one-factor Vasicek model with the same risk-neutral drift and we
set current volatilityσrγ instead of a constant volatility into the closed form
formula for the bond prices. We obtain

lnP ap
e (τ, r) =

(

b1

b2
+

σ2r2γ

2b22

)(

1− eb2τ

b2
+ τ

)

+
σ2r2γ

4b32

(

1− e
b2τ
)2

+
1− eb2τ

b2
r. (66)

We use this approach to propose an approximation for the domestic bond prices.
We consider the domestic bond prices in the Vasicek convergence model with
the same risk-neutral drift and we setσdr

γd
d instead ofσd andσer

γe
e instead of

σe into (59). Hence, we have

lnP ap = A−Drd − Ure (67)

where

D(τ) =
−1 + ea2τ

a2
,

U(τ) =
a3
(

a2 − a2e
b2τ + b2 (−1 + ea2τ )

)

a2 (a2 − b2) b2
,

A(τ) =

∫ τ

0
−a1D(s)− b1U(s) +

σ2dr
2γd
d D2(s)

2
+
σ2er

2γe
e U2(s)

2

+ ρσdr
γd
d σer

γe
e D(s)U(s)ds.
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In the CIR convergence model the domestic bond pricePCIR,ρ=0 has a
separable form (57) and functionsA,D,U are characterized by a system of
ODEs (63). This enables us to compute Taylor expansion of its logarithm
aroundτ = 0. We can compare it with the expansion of proposed approxi-
mation lnPCIR,ρ=0,ap (computed either using its closed form expression (67)
or the system of ODEs (59) for the Vasicek convergence model). More detailed
computation can be found in [64]. In this way we obtain the accuracy of the
approximation for the CIR model with zero correlation:

lnPCIR,ρ=0,ap − lnPCIR,ρ=0 =
1

24

(

−a2σ2

drd − a1σ
2

d − a3σ
2

dre
)

τ4 + o(τ4) (68)

for τ → 0+.
Let us consider real measure parameters:a = 0, b = 2, σd = 0.03, c = 0.2,

d = 0.01, σe = 0.01 and market price of riskλd = −0.25, λe = −0.1. In the
risk-neutral setting (61) we havea1 = a − λdσd = 0.0075, a2 = −b = −2,
a3 = b = 2, b1 = cd− λeσe = 0.003, b2 = −c = −0.2, σd = 0.03, σe = 0.01.
With the initial values for the short ratesrd = 1.7% a re = 1% we generate
the evolution of domestic and European short rates using Euler-Maruyama dis-
cretization. In Table 9 we compare the exact interest rate and the approximative
interest rate given by (67). We observe very small differences. Note that the
Euribor market data are quoted with the accuracy10−3. Choosing other days,
with other combination ofrd, re, leads to very similar results. The difference
between exact and approximative interest rate remains nearly the same.

Finally, we present a detailed derivation of the order of accuracy of the pro-
posed approximation in the general case. We use analogous method as in [62]
and [54] for one-factor models and in [34] to study the influence of correlation
ρ on bond prices in the convergence CIR model.

Let fex = lnP ex be the logarithm of the exact priceP ex of the domestic
bond in two factor convergence model of CKLS type. It satisfies the PDE (65).
Let fap = lnP ap be the logarithm of the approximative priceP ap for the do-
mestic bond price given by (67). By settingfap to the left-hand side of (65) we
obtain a non-zero right-hand side which we denote byh(rd, re, τ). We expand
it into Taylor expansion and obtain that

h(rd, re, τ) = k3(rd, re)τ
3 + k4(rd, re)τ

4 + o(τ4), (69)

for τ → 0+, where

k3(rd, re) =
1

6
σ2
dγdr

2γd−2
d

(

2a1rd + 2a2r
2
d + 2a3rdre − r

2γd

d σ2
d + 2γdr

2γd

d σ2
d

)

,
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7DEOH �� ([DFW DQG DSSUR[LPDWLYH GRPHVWLF \LHOG IRU WKH fiUVW REVHUYHG GD\
�OHIW�� rd = 1.7%� re = 1% DQG IRU ���QG REVHUYHG GD\ �ULJKW�� rd = 1.75%�

re = 1.06%

0DW� ([DFW $SSUR[� 'LII� 0DW� ([DFW $SSUR[� 'LII�

>\HDU@ \LHOG >�@ \LHOG >�@ >�@ >\HDU@ \LHOG >�@ \LHOG >�@ >�@

1/4 1.63257 1.63256 7.1 E-006 1/4 1.08249 1.08250 -8.2 E-006
1/2 1.58685 1.58684 1.4 E-005 1/2 1.15994 1.15996 -1.7 E-005
3/4 1.55614 1.55614 4.8 E-006 3/4 1.21963 1.21964 -7.0 E-006
1 1.53593 1.53592 1.1 E-005 1 1.26669 1.26671 -1.6 E-005
5 1.56154 1.56155 -5.0 E-006 5 1.53685 1.53691 -6.2 E-005
10 1.65315 1.65323 -8.3 E-005 10 1.65113 1.65127 -1.4 E-004
20 1.74696 1.74722 -2.5 E-004 20 1.74855 1.74884 -2.9 E-004
30 1.78751 1.78787 -3.7 E-004 30 1.78879 1.78918 -3.9 E-004

k4(rd, re) =
1

48

1

r2e
r
−2+γd

d σd

(

12a22γdr
2+γd

d r2eσd − 16γdr
1+3γd

d r2eσ
3
d + 6a3b1γer

2
dr

1+γe
e ρσe

+ 6a3b2γer
2
dr

2+γe
e ρσe + 6a23γdrdr

3+γe
e ρσe − 3a3γdr

2γd

d r2+γe
e ρσ2

dσe

+ 3a3γ
2
dr

2γd

d r2+γe
e ρσ2

dσe + 6a3γdγer
1+γd

d r1+2γe
e ρ2σdσ

2
e − 3a3γer

2
dr

3γe
e ρσ3

e

+ 3a3γ
2
er

2
dr

3γe
e ρσ3

e + 6a1γdrdr
2
e

(

2a2r
γd

d σd + a3r
γe
e ρσe

)

+ 6a2γdr
2
e

(

(−1 + 2γd) r
3γd

d σ3
d + a3rd

(

2r
γd

d reσd + rdr
γe
e ρσe

) )

)

.

We define functiong(τ, rd, re) := fap − fex = lnP ap − lnP ex as a dif-
ference between logarithm of the approximation and the exact price. Using the
PDEs satisfied byfex andfap we obtain the following PDE for the functiong:

−∂g
∂τ

+ (a1 + a2rd + a3re)
∂g

∂rd
+ (b1 + b2re)

∂g

∂re
+
σ2

dr
2γd

d

2
[

(

∂g

∂rd

)2

+
∂2g

∂r2d

]

+
σ2

er
2γe

e

2

[

(

∂g

∂re

)2

+
∂2g

∂r2d

]

+ρσdr
γd

d σer
γe

e

(

∂g

∂rd

∂g

∂re
+

∂2g

∂rd∂re

)

(70)
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= h(rd, re, τ) +
σ2

dr
2γd

d

2

[

(

∂fex

∂rd

)2

− ∂fap

∂rd

∂fex

∂rd

]

+
σ2

er
2γe

e

2

[

(

∂fex

∂re

)2

− ∂fap

∂re

∂fex

∂re

]

+ ρσdr
γd

d σer
γe

e

[

2
∂fex

∂rd

∂fex

∂re
− ∂fap

∂rd

∂fex

∂re
− ∂fex

∂rd

∂fap

∂re

]

.

Suppose thatg(rd, re, τ) =
∑∞

k=ω ck(rd, re)τ
k. For τ = 0 both the

exact and approximative bond prices are equal to one, sofex(rd, re, 0) =
fap(rd, re, 0) = 0. It means thatω > 0 and on the left hand side of the equation
(70) the term with the lowest order iscωωτω−1. Now we investigate the order
of the right hand side of the equation.

We know thatfex(rd, re, 0) = 0. It means thatfex = O(τ) and also
partial derivation∂f

ex

∂rd
and ∂fex

∂re
are of the orderO(τ). From the approximation

formula (67) we can see that∂f
ap

∂rd
= O(τ), ∂fap

∂re
= O(τ2). Sinceh(rd, re, τ) =

O(τ3), the right hand side of equation (70) is at least of the orderτ2. The left
hand side of equation (70) is of the orderτω−1 and henceω−1 ≥ 2, i.e.ω ≥ 3.
It means that

fap(rd, re, τ)− fex(rd, re, τ) = O(τ3).

Using this expression we can improve estimation of the derivative∂fex

∂re
as fol-

lows: ∂fex

∂re
= ∂fap

∂re
+O(τ3) = O(τ2) +O(τ3) = O(τ2). We also estimate the

terms on the right hand side in equation (70):

(

∂fex

∂rd

)2

−
∂fap

∂rd

∂fex

∂rd
=

∂fex

∂rd

(

∂fex

∂rd
−

∂fap

∂rd

)

= O(τ).O(τ3) = O(τ4), (71)

(

∂fex

∂re

)2

−
∂fap

∂re

∂fex

∂re
=

∂fex

∂re

(

∂fex

∂re
−

∂fap

∂re

)

= O(τ2).O(τ3) = O(τ5), (72)

2
∂fex

∂rd

∂fex

∂re
−

∂fap

∂rd

∂fex

∂re
−

∂fex

∂rd

∂fap

∂re
=

∂fex

∂rd

(

∂fex

∂re
−

∂fap

∂re

)

+
∂fex

∂re

(

∂fex

∂rd
−

∂fap

∂rd

)

= O(τ).O(τ3) +O(τ2).O(τ3) = O(τ4) +O(τ5) = O(τ4). (73)
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Sinceh(rd, re, τ) = O(τ3), the right hand side of equation (70) is of the order
O(τ3) and the coefficient atτ3 is the coefficient of the functionh(rd, re, τ) at
τ3, i.e. k3(rd, re). It means thatω = 4. Comparing the coefficients atτ3 on
the left and right-hand side of (70) we obtain−4c4(rd, re) = k3(rd, re), i.e.
c4(rd, re) = −1

4k3(rd, re). Hence we have proved the following theorem.

7KHRUHP �� LetP ex(rd, re, τ) be the price of the domestic bond in two-factor
CKLS convergence model, i.e. satisfying equation (65) and letP ap be the ap-
proximative solution defined by (67). Then

lnP ap(rd, re, τ)− lnP ex(rd, re, τ) = c4(rd, re)τ
4 + o(τ4)

for τ → 0+, where coefficientc4 is given by

c4(rd, re) = − 1

24
σ2

dγdr
2γd−2

d

(

2a1rd + 2a2r
2

d + 2a3rdre − r2γd

d σ2

d + 2γdr
2γd

d σ2

d

)

.

(74)

Note that if we substituteγd = 1
2 andρ = 0 into Theorem 6, we obtain the

formula (68) for the CIR model derived earlier in (68).
In some cases it is possible to improve an approximation by calculating

more terms in Taylor expansion of the functiong = lnP ap − lnP ex. Using
that fap − fex = O(τ4), we are able to improve estimates (71) and (73) and
to deduce that also the coefficient atτ4 on the right hand side of equation (70)
comes only from the functionh. Hence it is equal tok4(rd, re) which is given
by (70). Comparing coefficients atτ4 on the left and right hand side of (70) we
obtain:

−5c5 + (a1 + a2rd + a3re)
∂c4
∂rd

+ (b1 + b2re)
∂c4
∂re

+
σ2dr

2γd
d

2

∂2c4
∂r2d

+
σ2er

2γe
e

2

∂2c4
∂r2e

+ 4ρσdr
γd
d σer

γe
e

∂2c4
∂rd∂re

= k4,

which enables us to expressc5 using already known quantities.
Let us define an approximationlnP ap2 by:

lnP ap2(rd, re, τ) = lnP ap − c4(rd, re)τ
4 − c5(rd, re)τ

5.

ThenlnP ap2 − lnP ex = O(τ6) and therefore the new approximationlnP ap2

is of the orderO(τ6).
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���� )LQDQFLDO ,QWHUSUHWDWLRQ RI WKH 6KRUW 5DWH )DFWRUV DQG 7KHLU

(YROXWLRQ

In the PhD thesis by̌Sest́ak [48], supervised by̌Sev̌covič, the approximation
formula from [27] has been used to estimate the model for European countries.
The rate for each country is decomposed into a risk-free rate (common to all
the countries) and a credit spread (specific for each country). The formula from
[27] is used to price bonds in this setting. The author suggested a calibration
procedure which is computationally demanding since it involves a large data set
- yields of all countries considered simultaneously (it is not possible to split this
for each country, since the risk-free rate which is one of the outputs, is shared
by all the countries). Hence a simple approximate formula for the bond prices
is crucial for a successful estimation.

Figure 11 shows results of the estimation from [48]. Note how the very
different evolution of the credit spread for Greece starts from a certain time,
compared to the values obtained for the other counties.

Figure 11. Estimating the risk-free rate and credit spread in the European coun-
tries. In the figure below, the values for Greece are shown in the right axis, for
the other countries in the left axis. Source:Šest́ak, [48].
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&RQFOXVLRQ

In this survey we presented an overview of short rate models and presented
some of the approaches how to compute approximations of bond prices where
the exact solutions are not available.

Firstly, we considered one-factor models. The simple models of Vasicek and
Cox, Ingersoll and Ross admit closed form bond prices and therefore can serve
as either basis for construction of analytical approximations or as testing cases
for assessing numerical accuracy of different approximation formulae. Using
partial differential approach to bond pricing enables us to derive their order of
accuracy for small times remaining to maturity.

In the second part we dealt with multi-factor models in which the process
for the short rate can be written as a sum of two factors, second factor being
the stochastic volatility or the European interest rate when modeling rates in a
country before adoption of the Euro currency. In case of convergence model
we provided an example of a three-factor model, in which the European rate
is modeled by a two-factor model. We studied similar analytic approximations
for convergence models as in the case of one-factors models. Here we provided
also a proof of accuracy of the proposed approximation. A similar reasoning
was applied to other models, where we only stated the results. Moreover, we
studied the asymptotics of a fast time scale of volatility in stochastic volatility
models.
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