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Abstract

The purpose of this review chapter is to present our recent results
on nonlinear and nonlocal mathematical models arising from mod-
ern financial mathematics. It is based on our four papers written
jointly by J. Cruz, M. Grossinho, D. Sevéovie, and C. Udeani [1], [2],
[31, [4], as well as parts of the PhD thesis by J. Cruz [5]. We investi-
gated linear and nonlinear partial integro-differential equations (PI-
DEs) arising from option pricing and portfolio selection problems
and studied the systematic relationships between the PIDEs with
option pricing theory and Black—Scholes models. First, we relax the
liquid and complete market assumptions and extend the models
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that study the market illiquidity to the case where the underlying
asset price follows a Lévy stochastic process with jumps. Then, we
establish the corresponding PIDE for option pricing under suitable
assumptions. The qualitative properties of solutions to nonlocal lin-
ear and nonlinear PIDE are presented using the theory of abstract
semilinear parabolic equation in the scale of Bessel potential spaces.
The existence and uniqueness of solutions to the PIDE for a general
class of the so-called admissible Lévy measures satisfying suitable
growth conditions at infinity and origin are also established in the
multidimensional space. Additionally, the qualitative properties of
solutions to the generalized PIDE are investigated by considering a
general shift function arising from nonlinear option pricing models,
which takes into account a large trader stock-trading strategy with
the underlying asset price following the Lévy process. For the port-
folio management problem, we present the existence and unique-
ness results of the fully nonlinear Hamilton-Jacobi-Bellman equa-
tion arising from the stochastic dynamic optimization problem in
Sobolev spaces using the theory of monotone operator technique,
which can also be viewed as PIDE in some sense. Furthermore, a
stable, convergent, and consistent numerical scheme that can give
an approximate solution to such PIDE is presented, and various nu-
merical experiments are conducted to illustrate the influence of a
large trader and the intensity of jumps on the option price.

Keywords: Lévy measure, option pricing, partial integro-differential
equation, Hamilton-Jacobi-Bellman equation, maximal monotone oper-
ator, dynamic stochastic portfolio optimization

1. Introduction

This review chapter contains our recent advances in research focused
on nonlinear and nonlocal mathematical models arising from modern
financial mathematics. The main parts of this chapter are based on our
four chapters jointly written by J. Cruz, M. Grossinho, D. Sevéovi¢, and
C. Udeani [1], [2], [3], [4], as well as parts of the PhD thesis by J. Cruz
[5].

The classical Black—Scholes model has been widely used in financial
industry because of its simplicity and the existence of analytical formula
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for pricing derivative securities. This model relies on restrictive assump-
tions, such as completeness, frictionlessness of the market, and the as-
sumption that the underlying asset price follows a geometric Brownian
motion. However, the assumption that an investor can trade a large
amount of assets without affecting the underlying asset price is gener-
ally not satisfied, especially in illiquid markets. It is also known that the
fully nonlinear Hamilton-Jacobi-Bellman (HJB) equation plays an essen-
tial role in finance. For instance, it gives the necessary and sufficient
condition for a control with respect to the value function. Therefore,
this chapter investigates linear and nonlinear partial integro-differential
equations (PIDEs) arising from the option pricing and portfolio selection
problem. We investigate the systematic relationships of the PIDEs with
option pricing theory and Black-Scholes models. First, we relax the lig-
uid and complete market assumptions and extend the models that study
market illiquidity to the case where the underlying asset price follows a
Lévy stochastic process with jumps. Then, we establish the corresponding
PIDE for option pricing under suitable assumptions. The qualitative prop-
erties of solutions to nonlocal linear and nonlinear PIDEs are presented
using the theory of abstract semilinear parabolic equations in the scale of
Bessel potential spaces. The existence and uniqueness of solutions to the
PIDE for a general class of the so-called admissible Lévy measures satisfy-
ing suitable growth conditions at infinity and origin are also established
in the multidimensional space. Additionally, the qualitative properties of
solutions to the generalized PIDE are investigated by considering a gen-
eral shift function arising from nonlinear option pricing models, which
takes into account a large trader stock-trading strategy with the under-
lying asset price following the Lévy process. For the portfolio manage-
ment problem, we present the existence and uniqueness results to the
fully nonlinear HJB equation arising from stochastic dynamic optimiza-
tion problem in Sobolev spaces using the theory of monotone operator
technique, which can also be viewed as PIDE in some sense. Further-
more, a stable, convergent and consistent numerical scheme is presented
that can efficiently approximate the solution of this PIDE, and various nu-
merical experiments are conducted to illustrate the influence of a large
trader and the intensity of jumps on the option price.

The Black-Scholes model and the HJB equation have been widely
used in financial markets. However, evidence from the stock market ob-
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servation shows that the Black—Scholes model is not the most realistic
one because it depends on some restrictive assumptions, such as the lig-
uidity, completeness, and frictionless of the market. Additionally, the
linear Black-Scholes equation provides a solution that corresponds to a
perfectly replicated portfolio, which is not a desirable property. For this
reason, several attempts have been made to generalize and relax some
of these assumptions. Some authors relaxed these assumptions by (i)
considering the presence of transaction costs (see Kwok [6] and Avel-
laneda and Paras [7]), (ii) feedback and illiquid market effects due to
large traders choosing given stock-trading strategies (Schénbucher and
Willmott [8], Frey and Patie [9], Frey and Stremme [10]), and (iii) the
risk from the unprotected portfolio (Jandacka and Sevéovi¢ [11]). In
these generalizations, the constant volatility was replaced by a nonlinear
function based on the second derivative of the option price. Frey and
Stremme derived a nonlinear Black-Scholes model that plays an essen-
tial role in the class of the generalized Black-Scholes equation with such
a nonlinear diffusion function [9, 12, 11]). In this model, the asset dy-
namics considers the presence of feedback effects due to a large trader
choosing his/her stock-trading strategy [8]. Another important direction
in generalizing the original Black-Scholes equation arises from the fact
that the sample paths of a Brownian motion are continuous; however, the
realized stock price of a typical company exhibits random jumps over the
intraday scale, making the price trajectories discontinuous. In the classi-
cal Black-Scholes model, the logarithm of the price process has a normal
distribution. However, the empirical distribution of stock returns exhibits
fat tails. Meanwhile, when calibrating the theoretical prices to the market
prices, the implied volatility is not constant as a function of strike price
nor as a function of time to maturity, contradicting the prediction of the
Black-Scholes model. However, the models with jumps and diffusion can
solve the problems inherent to the Black-Scholes model. Jump models
also play an essential role in the option market. In the Black-Scholes
model, the market is complete, implying that every payoff can exactly be
replicated; meanwhile, there is no perfect hedge in jump models, making
the way of options not redundant.

Market illiquidity has been widely studied in the literature [13, 14,
15, 16, 17]. The first major contribution was made by Robert Jarrow, in
1994, who studied the market manipulation strategies that may arise in
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illiquid markets. The author also studied option pricing theory in discrete
time when there is a large trader. The pricing-arbitrage condition was
used to ensure that no market manipulation strategy is used by the large
trader and large trader’s optimality conditions; thus, replacing the usual
free-arbitrage argument. Then, Frey (1998) extended Jarrow’s analysis
to the continuous time case and established the existence and uniqueness
of solution of a nonlinear partial differential equation (PDE) satisfied by
the large trader’s hedging strategy. Additionally, Platten and Schweizer
(1998) proposed an explanation for the smile and skewness of the im-
plied volatilities and showed that hedging strategies followed by large
traders can lead to option price bias. Sircar and Papanicolaou (1998)
also proposed a model where the derivative security price is character-
ized by a nonlinear PDE that becomes the Black-Scholes equation when
there is no feedback. When the program traders are a small fraction of the
economy, numerical and analytical methods can be used to analyze the
nonlinear PDE through perturbation. This equation is derived using an
argument similar to the one used in deriving the classical Black—Scholes
equation. Consequently, they obtained that this model also predicts in-
creased implied volatilities as in Platten and Schweizer. Furthermore,
Schonbucher and Willmott (2000) analyzed the feedback effects from the
presence of hedging strategies. They also derived a nonlinear PDE for an
option replication strategy and studied these effects for a put option. The
effects are more pronounced in markets with low liquidity, which can in-
duce discontinuities in the price process. However, none of these studies
that investigated jump models [18, 19, 20, 21, 22, 23, 24] considered the
market illiquidity. Meanwhile, investors and risk managers have realized
that financial models based on the assumption that an investor can trade
large amounts of an asset without affecting its price are no longer true in
markets that are not liquid. Therefore, in this chapter, we relax the liquid
and complete market hypothesis and extend the models that study mar-
ket illiquidity to the case where the underlying asset price follows a Lévy
stochastic process with jumps to obtain a model for pricing European and
American call and put options on an underlying asset characterized by a
Lévy measure. In this way, it is assumed that trading strategies affect the
stock price and the possibility to account for sudden jumps that might
occur when the market is under stress .



196 José Cruz, Maria Grossinho, Daniel Sev¢ovi¢ et al.

Recently, the relationships between more general nonlocal operators
and jump processes have been widely investigated. For instance, there
is an actual connection between the solution to PIDEs and properties of
the corresponding Markov jump process (cf. Abels and Kassmann [25];
Florescu and Mariani [26]). In recent decades, the role of PIDEs has
been investigated in various fields, such as pure mathematics, biological
sciences, and economics [27, 28, 29]. PIDE problems arising from finan-
cial mathematics, especially option pricing models, have been of great
interest to many researchers. In most cases, standard methods for solv-
ing these problems lead to the study of parabolic equations. Mikulevicius
and Pragaraustas [30] investigated solutions of the Cauchy problem to
the parabolic PIDE with variable coefficients in Sobolev spaces. They
used their results to obtain solutions of the corresponding martingale
problem. Crandal et al. [31] employed the notion of a viscosity solution
to investigate the qualitative results. Soner et al. [32] and Barles et al.
[33] extended and generalized their results for the first and second order
operators, respectively. Florescu and Mariani [26] employed the Schae-
fer fixed point argument to establish existence of a weak solution of the
generalized PIDE. Amster et al. [34] used the notion of upper and lower
solutions to obtain the solution of such PIDEs. They proved the exis-
tence of solutions in a general domain for multiple assets and the regime
switching jump-diffusion model. Cont et al. [35] investigated the actual
connection between option pricing in exponential Lévy models and the
corresponding PIDEs for European options and those with single or dou-
ble barriers. They discussed and established the conditions for which the
prices of the option are the classical solution of the corresponding PIDE.
In this chapter, we obtain a certain PIDE for option pricing in an illiquid
market by assuming a certain dynamics for the stock price. The existence
of a solution and the localization results of the associated PIDE are also
established. We investigated and established the qualitative properties of
solutions to the nonlocal linear and nonlinear PIDE in the scale of Bessel
potential spaces using the theory of abstract semilinear parabolic equa-
tion. Furthermore, we present the existence and uniqueness results for
nonlinear parabolic equations using the monotone operator technique,
Fourier transform, and Banach fixed point argument. We considered the
fully nonlinear HJB equation arising from the portfolio selection prob-
lem, where the goal of an investor is to optimize the conditional expected
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value of the terminal utility of the portfolio. Such a nonlinear parabolic
equation is presented in an abstract setting, which can also be viewed
as a nonlinear PIDE. Many previous studies have developed numerical
methods for PIDEs, such as finite difference and finite element methods.
However, the equation corresponding to the case of illiquid markets is
more difficult. Therefore, this chapter also presents a stable, convergent,
and consistent numerical scheme that can give an approximate solution
of such PIDEs. Various experiments are presented to illustrate the influ-
ence of a large trader and the intensity of jumps on the option price.

2. Background and Motivation

Based on the classical theory developed by Black, Scholes, and Merton,
the price V (¢, S) of an option in a stylized market at time ¢ € [0, 7] and the
underlying asset price S can be calculated as a solution to the following
linear Black-Scholes parabolic equation:

2

207520 L, 8)4rS O (1, 8)~rV (1, 8) =0, £ € [0,7), 5> 0.
(D

Here, o > 0 is the historical volatility of the underlying asset driven

by the geometric Brownian motion, and r > 0 is the risk-free interest rate
of zero-coupon bond. The solution of the above equation is subject to
the terminal payoff condition V (7', S) = ®(S) at maturity ¢ = 7. Mean-
while, evidence from stock market observations indicates that the model
is not the most realistic one because it assumes that the market is liquid,
complete, frictionless and without transaction costs. It is also known that
the linear Black-Scholes equation provides a solution corresponding to
a perfectly replicated portfolio, which need not be a desirable property.
To solve these problems, several attempts have been made to generalized
the linear Black-Scholes equation (1) by replacing the constant volatility
o with a nonlinear function 5(S92V') depending on the second derivative
0%V of the option price. In this regard, Frey and Stremme derived a non-
linear Black-Scholes model, which plays an essential role in the class of
generalized Black-Scholes equation with such a nonlinear diffusion func-
tion [9, 12]). They considered the case in which asset dynamics takes
into account the presence of feedback effects due to a large trader choos-

ov
—(t, S
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ing his/her stock-trading strategy (see also [8]). The diffusion coefficient
is non-constant, and it is given by

5(SO2V)? = 02 (1 — 0S0%V) 2, )
where ¢ and g > 0 are constants.

Furthermore, several researchers have attempted to generalize the
original Black-Scholes equation, which arises from the fact that the sam-
ple paths of a Brownian motion are continuous. However, the realized
stock price of a typical company exhibits random jumps over the intraday
scale, making the price trajectories discontinuous. The underlying asset
price process is usually assumed to follow a geometric Brownian motion
in the classical Black—Scholes model. However, the empirical distribution
of stock returns exhibits fat tails. The models with jumps and diffusion
can solve the problems inherent to the linear Black—Scholes model and
play an essential role in options pricing. It is well known that the mar-
ket is complete in the Black-Scholes model, illustrating that each payoff
can be perfectly replicated; however, there is no perfect hedge in jump-
diffusion models, making the options not redundant. It turns out that the
option price can be computed from the solution V' (¢, S) to the following
PIDE Black-Scholes equation [1]:

A% 1 5. 0%V oV

5 (t,S)+ 57 S 557 (t,S) +TS8S(t, S) —rV(t,S)

~|—/ V(t,S+ H(zS))—V(t,S)— H(z, S)g—g(t, S)v(dz) =0,(3)
R

where H(z, S) = S(e*—1), and v is the so-called Lévy measure character-
izing the underlying asset process with random jumps in time and space.
It is worth noting that (3) reduces to the classical linear Black—Scholes
equation (1) if v = 0.

In this chapter, we consider both directions of generalization of the
Black-Scholes equation. First, we relax the assumption of a liquid mar-
ket following the Frey—Stremme model by assuming that the underlying
asset price follows a Lévy stochastic process with jumps and establish
the corresponding PIDEs. Then, we present the existence and unique-
ness results to the linear and nonlinear nonlocal PIDE in the framework
of Bessel potential spaces for the multidimensional case. A more gener-
alized nonlinear nonlocal PIDE is also presented by considering a shift
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function ¢ = £(r, z, z) depending on variables z, z € R™. In addition, we
derive, analyze and perform numerical computations of the model. We
also show that the corresponding nonlinear PIDE has the following form:

ov

1 0'2 QaZV aV
ot 2l psos0p” 052 T as TV

+/RV(t, S+ H(t,zS)—-V(t,S)— H(t =z, S)g—‘;u(dz) =0.(4)
It is worth noting that the function H (¢, z, S) may depend on the large
trader strategy function ¢ = ¢(t, S) and the delta sV of the price V if
o> 0.

We consider a stylized economy with two traded assets: a riskless
asset (a bond with a price B, taken as numeraire) and a risky asset
(stock with a price S;). Here, we assume that the bond market is per-
fectly elastic, since it is more liquid than stocks, and consider two types
of traders: reference and program traders. Program traders are also
known as portfolio insurers because they use dynamic hedging strategies
to hedge the portfolio against jumps in stock prices. They are classified
as single traders or a group of traders acting together. It is assumed that
their trades influence the stock price equilibrium. On the contrary, refer-
ence traders can be considered as representative traders of many small
agents. We assume that they act as price takers. Generally, D(t,Y;, S;)
represents the demand function of the reference trader that depends on
the income process Y; or some other fundamental state variable that in-
fluences the demand of the reference trader. The aggregate demand of
program traders is denoted by (¢, S;) = £4(t, Si), where ¢ is the number
of identical written securities that program traders are trying to hedge,
and ¢(t,S;) is the demand per unit of the security being hedged. For
simplicity, we assume that ¢ is the same for every program trader. See
[17] for a more general case where different securities are considered.
Suppose that the supply of a stock with the price S is constant, and let

D(t,Y,S) = w be the quantity demanded by a reference trader per
unit supply. The(:)n, the total demand relative to the supply at time ¢ is
given by G(t,Y,S) = D(t,Y,S) + po(t,S), where p = S%, and po(t, S)
is the proportion of the total supply of the stock traded by the program
traders. Therefore, to obtain the market equilibrium, the variables Y and
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S should satisfy G(t, Y, S) = 1. Assume that the function G is monotone
with respect to the variables Y and S, and it is sufficiently smooth. Then,
we can solve the implicit equation G(¢, Y}, S;) = 1 to obtain S; = ¢ (¢, Y;),
where ¢ is a sufficiently smooth function. Using the approach in [17],
we assume that the stochastic process Y; has the following dynamics:

dY; = p(t, Yy)dt + n(t, Y;)dW,.

Then, using Itd’s lemma for the process S; = 1 (t, Y;), we have

2
ds; = <8t1/1 + u6y1[1 + %85'(/)> dt+778y1/)th = b(t, St)Stdt—i-’U(t, St)Stth.
(5)

It means that S, follows a geometric Brownian motion with a non-
constant volatility function v(¢,S) = n(t,Y)oy¢(t,Y)/9(t,Y), where
Y = ¢7(t,5). Thus, we follow the argument used in the derivation
of the original Black-Scholes equation to obtain a generalization of the
Black-Scholes PDE with a nonconstant volatility function o = v(¢, ). We
employ the Frey—Stremme’s approach (cf. [9, 12]) to prescribe a dynam-
ics for the underlying stock price instead of deriving it using the market
equilibrium and dynamics for the income process Y; as is done in [17].
In this way, Frey and Stremme derived the same stock price dynamics as
in [17] corresponding to a situation where the demand function is of log-
arithmic type, D(Y,S) = ln(%), where v = %, and the income process

. : . . mo’
Y; follows a geometric Brownian motion, i.e.,

1 1
oy D(Y,S) = Ty dsD(Y,S) = —g dY; = poYdt + 1pY,dW, (6)
tY Y L
o(t, ) = e, )2 YAy

1/1(157 ) _g‘f‘pm 1—p5m

Assuming the delta hedging strategy with ¢(t,S) = 9dsV (¢, S) and
substituting the volatility function v(¢, S) in (5), we obtain the general-
ized Black-Scholes equation with the nonlinear diffusion function of the
form (2).

In this chapter, we first generalized the Frey—Stremme model by con-
sidering an underlying asset following a Lévy process with jumps. After
that, we establish the corresponding PIDE for option pricing. Further-
more, we investigate the existence and uniqueness of solutions to such
PIDE in multidimensional spaces.
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3. Preliminaries and Definitions

This section presents some basic definitions and properties of Lévy mea-
sures and notion of admissible activity Lévy measures. Here,| - | and || - ||
represent the Euclidean norm in R” and the norm in an infinite dimen-
sional function space (e.g., LP(R™), X7). In what follows, a - b stands for
the usual Euclidean product in R™ with the norm |z| = /2 - 2.

Definition 1. [3] A Lévy process on R" is a stochastic (right continuous)
process X = {X;,t > 0} having the left limit with independent stationary
increments. It is uniquely characterized by its Lévy exponent ¢:

Ep (e Xt) = 7100 4 e R,

The subscript x in the expectation operator E, indicates that the process
X, starts with a given value x at the origin t = 0. The L’evy exponent ¢ has
the following unique decomposition:

G(y) =ib-y+ > ayyiys +/ (1—e¥* +iy- 21,<1) v(dz),

ij=1 R
where b € R" is a constant vector; (a;;) is a constant matrix, which is
positive semidefinite; v(dz) is a nonnegative measure in R™ \ {0} such that

Jzn min(1,|2[*)r(dz) < oo (cf [36]).

3.1. Exponential Lévy Models

Let Xy, t > 0, be a stochastic process. The Poisson random measure v(A)
of a Borel set A € B(R) is defined by v(A) = E[Jx([0, 1] x A)], where
Jx([0,t] x A) = #{s € [0,t] : AXg € A}. This measure gives the mean
number per unit of time of jumps whose amplitude belongs to the set
A. Tt is worth noting that the Lévy-It6 decomposition provides a repre-
sentation of X, interpreted as a combination of a Brownian motion with
a drift w and an infinite sum of independent compensated Poisson pro-
cesses with variable jump sizes (see [2]), i.e.,

dXt = wdt—FO’th —|—/

zJx (dt,dz) + / xJx (dt,dz),
|21

lz|<1

where Jx ([0,1] x A) = Jx ([0, ] x A)—tv (A) is the compensation of .Jx.



202 José Cruz, Maria Grossinho, Daniel Sev¢ovit et al.

Remark 1. [2, Remark 1] Note that any Lévy process is a strong Markov
process, and the associated semigroup is a convolution. Its infinitesimal
generator L : u — L[u] is a nonlocal partial integro-differential operator
given by

L{u](2) = limj, g+ ZztXulzulz)

= G o 5t fe [ul@+y) —u(@) -yl @] v(dy), ()
which is well-defined for any compactly supported function u € C3 (R).

Let S;,t > 0, be a stochastic process that represents an underlying
asset process in a filtered probability space (92, F, {F;} ,P). The filtration
{F,;} represents the price history up to time ¢. In an arbitrage-free market,
there is an equivalent measure Q under which the discounted prices of
all traded assets are Q— martingales, which is called the fundamental
theorem of asset pricing (see [37]). The measure Q is also known as the
risk-neutral measure. We consider the exponential Lévy model in which
the risk-neutral price process S; under Q is given by S; = e"*tX¢, where
X, is a Lévy process under Q with the characteristic triplet (o, v, ). Then,
the arbitrage-free market hypothesis states that S; = St = Xt is a
martingale, which is equivalent to the following conditions imposed on
the triplet (o, v, v):

0.2 +o00
/ eYv(dy) < oo, yER, v= 5 / (ey -1 y1|y|31) v(dy).
ly|>1

T ®)
The risk-neutral dynamics of S; under Q is given by
dS; = rSidt + o S, dW; —|—/ (e —1) Sy Jx (dt,dy). ©)
R

The exponential price process, eXt,t > 0, is also a Markov process
with the state space (0, c0). It has the following infinitesimal generator:

. E[V(SeXn)] — V(S oV o2 0%V

oV
+/R[V(Sey)V(5)S(6y1)% v(dy) (11)
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(see [37]). A Lévy process with the following representation:

dX; = wdt + odW; + K(t,x)Jx(dt,dz) + H(t,z)Jx(dt, dz).
|z|>1 |z[<1

is called the Lévy type stochastic integral. The following variant of Itd’s

lemma is an essential results, which will be needed later in this study.

Theorem 1. [1, Therorem 2.1] Let f € C%?([0,T] x R) and H,K €
C([0,7] x R). Suppose X;,t > 0, is a Lévy stochastic process. Then,

2
df(t, Xy) = Ydt + SLdx, + 1 34d[x,, X))

+ f|:1:|21 f(t’ Xt + K(t'/ :E)) - f(ta Xt)JX(dt’ d$) (12)
+ f\x\<1 f(t’ XL + H(t'/ T)) - f(ta XL)jX(dt7 dm)
+ f|z|<1 f(t’ X+ H(t7 {E)) - f(ta XL) - H(tv m)g_j:(tv XL)V(de)dt

3.2. Examples of Lévy Processes in Finance

There are two types of exponential Lévy models considered in the liter-
ature. The first types are jump-diffusion models, where the log-price is
represented as a Lévy process with a nonzero diffusion part (¢ > 0) and
a jump process with finite activity (i.e., ¥(R) < oo). The second types of
models are infinite activity pure jump models, where there is no diffusion
part and only a jump process with infinite activity (i.e., v(R) = o). This
section presents different types of exponential Lévy models that differ in
the choice of the Lévy measure.

3.2.1. Jump-Diffusion Models

A Lévy process with jump-diffusion has the following general form:

Nt
Xe=nt+oWit ) Vi,
i=1

where ¢ > 0, and N, is a Poisson process with intensity A that counts
the jumps of X;, and Y;,7 = 1,2,3... are independent and identically
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distributed random variables with distribution x. The Lévy measure v is
A, and the drift + is given by

0,2

e /R (¢ =1 —ylyj<1) v (dy).

Merton’s Model

This is the first jump-diffusion model proposed by Merton [22] in the
financial application. Random variables Y;,i = 1, 2, 3..., are normally dis-
tributed with mean m and variance 62. It has the following Lévy density:

1 |z=m?

T T 952
(27T52)n/26 257 dz, (13)

where the parameters m € R™, \,§ > 0, are given. Merton’s measure is
a finite activity Lévy measure, i.e., v(R") = [5, v(dz) < oo, with finite
variation |, |z|v(dz) < oo. Therefore, the probability density of X,
can be obtain as a series that converges rapidly (see [37]):

v(dz) = A

|z—~t—jm|?
e 2(c=t+jé)

V27 (o%t + 502)

Thus, the price of an European call option can be expressed as a
weighted sum of Black-Scholes prices:

pi(x) =) e Mty j' (14)
7=0 -

o )
(At) j52
CM@TLon(S(Jv K7 T7 07 T) = eiTT Z eAt%BTjTCBS(SOG%, K’ T’ Uj’ Tj)’
i=0 '
, (15)
where r; = Tf)\(em"'%fl)—l—j—m, oj=1/0?+ 1% and Cps(S,K,T,o,r)
is the well-known Black-Scholes formula.

3.2.2. Infinite Activity Pure Jump Models

The variance Gamma and normal inverse Gaussian (NIG) processes are
obtained by a subordination of a Brownian motion and a tempered «-
stable process; variance Gamma and NIG processes correspond to a =
0 and a = 1/2, respectively. These models are widely used in finance
because of the existence of probability density of the subordinator in a
closed form for these values of o (see [37]).
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Variance Gamma Process

This is a pure discontinuous process of infinite activity and finite variation
( flwl <1 |z|v(dz) < oo0) that is widely used in financial modeling. It has the
following Lévy measure:

\/ 02 422
v(z) = L ArBlal ith A = % and B= +——"

K |z o o?

Here, o and ¢ are parameters related to the volatility and drift of the
Brownian motion, respectively; x is the parameter related to the variance
of the subordinator, which is a Gamma process (see [37]). The probabil-
ity density is given by

pi(x) = CBAI‘$|%K17

L
k2

(1),

where K is the modified Bessel function of second kind. The characteris-
tic function of X, + ~t is given by

, . o2ulk —t/k
®; (u) = "™ ¢y (u) = e (1 + 5~ i@nu) ,

where ~ is determined by the martingale condition, and ¢, (u) is the char-
acteristic function of X;. Moreover, we have

Ele "TSp|F,] =e TS, (16)

where
St — Soert-’r’yt-’rXt (17)
is the risk-neutral process introduced in [23]. Therefore, v = %log(l -

o’k
5 9/<;)

Normal Inverse Gaussian Model

The NIG model is a process of infinite activity and infinite variation with-
out any Brownian component. It has the following Lévy measure [37]

v(z) = %BAIKl (B |z|)
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\ 02+ 2 0 02+ 2
¢= 2no\/Kk ZE7B: o2

where 0, o, and x have the same meaning as in the Variance Gamma
process. The probability density is given by

) = e BBV 2 4 £5)

2 t202
e+ 0

and

pt(I

where K is the modified Bessel function of second kind. The characteris-
tic function is given by

P, (U) _ 6%7%\/1+u202n72iu€n‘ (18)

Generalized Hyperbolic Model

The generalized hyperbolic model is a process of infinite variation with-
out Gaussian part. It has the following characteristic function (see [37]):
. K (0y/A2— (B +1iu)?)
ﬁ K

) K3<5\/012—ﬂ2)
where ¢ is a scale parameter, . is the shift parameter, and « has the

same meaning as in the variance Gamma process. Parameters A, «, and
(3 determine the shape of the distribution. The density function

pi(z) = C(/62 + (z — M)Q)%—%Ki_%(am)em—m,

K

. 2 a2
p(u) = €™ (= il

a2 — (B +iu)? ’ 19

where K is the modified Bessel function and

C = (\/ a2_/62)%
V2rar~28x K1 (0\/a2 — 32)

The variance Gamma process is obtained for 4 = 0 and 6 = 0. The

NIG process corresponds to A = —%.
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3.3. Admissible Activity Lévy Measures

This subsection presents the notion of an admissible activity Lévy mea-
sure introduced by Cruz and Sev¢ovi¢ [1, 2] for the one-dimensional case
n = 1, which was later extended by Sev¢ovi¢ and Udeani [3] for the mul-
tidimensional case n > 1.

Definition 2. [3, Definition 1] A measure v in R™ is called an admissi-
ble activity Lévy measure if there exists a nonnegative Lebesgue measurable
function h : R™ — R such that v(dz) = h(z)dz with

0 < h(z) < Co|z| e Plel=ul=, (20)

for all z € R™ and the shape parameters o, 1 > 0, D € R (D > 0if n = 0),
where Cy > 0 is a positive constant.

Remark 2. It is worth noting that the additional conditions
Jgmin(|z[%, 1)r(dz) < oo and Js1€°v(dz) < oo are satisfied pro-
vided that v is an admissible Lévy measure with shape parameters a < 3,
and either > 0, D* € R, or y =0and D~ +1 < 0 < D*. For the Merton
model, we have o = 0, D* = 0 and p = 1/(26%) > 0. Meanwhile, for the
Kou model, we have « = 1 = 0, DT = A=, D~ = —\*. For the variance
Gamma process, we have a = 1,y = 0, D* = A+ B,

4, Multidimensional Linear and Nonlinear PIDE

This section focuses on qualitative properties of solutions to the linear
and nonlinear nonlocal parabolic PIDE of the form:

g—ﬁ = ";Au + fR" [u(t,z + z) — u(r,z) — z - Vou(r, z)] v(dz) + g(r, z, u, V,u)(21)
uw(0,x) = uo(x), x€R",7€(0,T),

where g is a given sufficiently smooth function; v is a positive measure on
R™ such that its Radon derivative is a nonnegative Lebesgue measurable
function h in R", i.e., v(dz) = h(z)dz.

Additionally, we will analyze the solution of the following generaliza-
tion of the above PIDE, in which the shift function may depend on the
variables 7 > 0,2,z € R:
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2
O _ 7 Aut / fu(r, 2+ €) — u(r, z) — € - Vou(r,2)] v(dz) + g(r, 2,0, Vo), (22)
Rﬂ,

where £ = £(7, z, z) is the shift function. An application of such a general
shift function ¢ can be found in nonlinear option pricing models con-
sidering a large trader stock-trading strategy with the underlying asset
price dynamic following the Lévy process (cf., Cruz and Sevéovi¢ [11). If
&(x, z) = z, then (22) reduces to equation (21). For example, nonlinear-
ity g often arises from applications occurring in pricing XVA derivatives
(cf., Arregui et al. [28, 38]) or applications of the penalty method for
American option pricing under a PIDE model (cf., Cruz and Sevéovi¢ [2D.

4.1. Existence and Uniqueness Results of PIDE

In this section, we present the existence and uniqueness results for the
general equation (22) for a class of Lévy measures using the theory of
abstract semilinear parabolic equation in the scale of Bessel potential
spaces. First, we rewrite the PIDE (22) in high-dimensional space as
follows:

g—;‘ + Au= f(u) + g(7, z,u, Vou), u(0,z) =uo(z), z € R",7 € (0,T), (23)

where A = —(02/2)A. The linear nonlocal operator f is defined by

fw)() = /n [u(- + &) —u() =&+ Vau(-) ] v(dz), 24)

where £ = (7, z, z) is a given shift function. The function g is assumed to
be Holder and Lipschitz continuous in 7 and other variables, respectively.
Then, we employ the theory of abstract semilinear parabolic equations
presented by Henry [39] to establish the existence, continuation, and
uniqueness of a solution. A solution to the PIDE (23) is constructed in the
scale of the Bessel potential spaces ,%2”7([&”), ~v > 0 in high-dimensional
space, n > 1. These spaces can be viewed as a natural extension of the
classical Sobolev spaces W*P(R") for non-integer values of order k. It is
worth noting that the nested scale of Bessel potential spaces allows for



Linear and Nonlinear Partial Integro-Differential Equations ... 209

a finer formulation of existence and uniqueness results than the classical
Sobolev spaces.

Definition 3. [39, Definition 1] An analytic semigroup is a family of
bounded linear operators {S(t),t > 0} in a Banach space X satisfying the
following conditions:

) S0)=1,5(t)S(s) = S(s)S(t) = S(t+ s), forall t,s > 0;
ii) S(t)u — uwhent — 0" forallu € X;

iit) t — S(t)u is a real analytic function on 0 < t < oo for each u € X.

The associated infinitesimal generator A is defined as follows: Au =
lim; g+ 2(S(t)u — u) and its domain D(A) C X consists of those elements
u € X for which the limit exists in the space X.

Definition 4. [39] Let Sq 4 = {A € C: ¢ <arg(A—a) <27 — ¢} be a
sector of complex numbers. A closed densely defined linear operator A :
D(A) € X — X is called a sectorial operator if there exists a constant
M > 0 such that ||(A—X)7"Y| < M/|X —a| forall X € S, , C C\ o(A).

Next, we briefly recall the construction and basic properties of
Bessel potential spaces. It is worth noting that if A is a sectorial
operator in a Banach space X, then —A is a generator of an ana-
lytic semigroup {e*At,t >0} acting on X (cf., [39, Chapter I]). For
any v > 0, we can introduce the operator A7 : X — X as fol-
lows: A= = ﬁ Joo & te 48d¢. Then, the fractional power space
X7 = D(A") is the domain of the operator A7 = (A77)7!, ie,
X" ={ueX: JpeX,u=A"p}. The norm is defined as follows:
llullx+ = [|[A"u| x = |l¢|lx. Furthermore, we have continuous embed-
ding: D(A)= X' X" X7 X0= X for0 <y <7 < 1.

Recall the convolution operator (G * ¢)(z) = [z G(z — y)p(y)dy.
According to [39, Section 1.6], A = —(02/2)A is a sectorial operator
in the Lebesgue space X = LP(R") for any p > 1,n > 1, and D(A) C
W2P(R"). It follows from [40, Chapter 5] that the space X7,y > 0, can
be identified with the Bessel potential space 92”2”7 (R™), where

XZP,Y(R") ={ueX: Jpe X, u==Gy*p}
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Here, G2 is the Bessel potential function,

1 oo 2
G () = ——— / 12— () gy
! (4m)"20(7) Jo
The norm of u = G, * ¢ is given by |lu||x+ = [/¢|r-. The space X7

is continuously embedded in the fractional Sobolev—Slobodeckii space
W2rP(R™) (cf., [39, Section 1.6]).

In what follows, we denote C; > 0 as a generic constant which is
independent of the solution u; however, it may depend on the model
parameters, e.g.,n > 1,p > 1,7 € [0,1).

Proposition 1. [3, Proposition 1] Let us define the mapping Q(u,&) as
follows:

Q(u,§) = u(r +€{(x)) — &(2) - Vyu(x), = €R™
Then, there exists a constant C' > 0 such that, for any vector valued
functions &1, & € (L°(R™))", and u such that V,u € (X7~1/2)7, 1/2 <
v < 1, the following estimate holds:

1Q(w, €)= Q(w, &) ogeny < CllE=Ell 2 (1€ lloo+ €20l co) Vel o172

Proof. Let . € X be such that V,u € (X""Y?)", ie., d,u €
X712 foreach i = 1,---,n. Then, Vyu = A=2771/2p = Gy, 1 5 ¢
for some ¢ € (L(R")", and [Vl yo1/2 = [ ACTD2Vull = ]
Here, ¢ = (@1, -, ¢n) and 0p,u = Goy—1 * ;. Let 2, £ € R". Then,

Vou(z +8) = Gyya(z+§— ) x0(),  Vau(r) = Gayalz — ) xo().

Recall that the following inequality holds for convolution operator:

1% * ollLr@ny < 1Y llLa@m)llellLr®n),

where p,¢g,7 > 1 and 1/p+1 = 1/q + 1/r (see [39, Section 1.6]). In
particular, for ¢ = 1, we have || * ¢|zr < ||¢]z1]l¢llzr- The follow-
ing estimate holds for the modulus of continuity of the Bessel potential
function G,, « € (0,1):

[Gal-+h) = Ga()llLr < Colh[%,
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for any h € R"™ (cf., [40, Chapter 5.4, Proposition 7]). Let &1,&> be
bounded vector valued functions, i.e., 1,8 € (L*°(R™))". Then, for
any z € R" and 0 € [0, 1], we have

u(z + &1(x)) — u(z + &(x)) — (&) — &2(2)) - Veu(z)
= (I + fl(l' Vu ( ) - gl(x) : VIU(I)
—[u(z + &2(2)) — Veu(z) — &a(z) - Veu(z)]

(
— (@) sg<x>>/ Ve + 06 (2)) — Vu(x)dd

) —
) —

—i—/o Veu(z + 08 (x)) — Veu(x + 08 (x))do
Now,
1Q(u, &) — Qu, 52)”2;7(1&")
= [ lu(z +£1(2)) — ulz + &2(2)) — (€1(2) — 2(2)) - Vau(z)Pde
< fon |(61@) = ©(@)) [y Vau(e + 061 (2)) = Vau(@)do| dz
+ o |€2(@) fy Vau(w +061(2)) = Vou(o + 0€2(2))d0| de
<61 = &% fy fun IVoulz + 061(2)) — Vou(w)|dzdo
el fi fan Ve + 061 (2)) — Vau(z + 0¢2(z)|Pdedd
<& — &% ) | (Gy—1(- + 0€1) — Gor—1(:)) * ol50d0
HIE2 1% [ | (Gay—1(- + 0€1) — Gayor (- + 062)) * |5, dB
< 1€ — &al% [ 1G2y—1 (- + 061) — Gayma ()12, d0l ]2,
Hl€2lBo i 11G2y—1(- + 6€1) — Gy (- + 682) |12, dBlo7.,
< (62 = ElB NS + &%l - 187 7) CEIVoully, - e

2y—1 22 2y—1
< e = &1 (leallz + 1l S NS + &liz ) CEIVaully, o -

a,b > 0, and o, > 1 with 1/a + 1/ = 1 (cf, [41]). Set
a=1/(2-2y),8=1/(2y—1). Then, 1/aa+ 1/3 = 1, and we obtain
&) E2P ) |27 < (2—29) 1ol B+ (27 =D [0 % < 21|l Bo+]1E1 |15

5 . . a B
By Young’s inequality we have ab < < + 25 for any

Therefore,
1Q(u, &) — Q(u, &2)I7 5 (g 26 — &LV (€115 + 1€11%) CEIVaul., . s

2051161 = &SP (€]l + 1€2lloo) Vol 1o

ININ
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Therefore, the pointwise estimate holds with the constant C =
2Y/PCy > 0. O

Applying Proposition 1 with £&; = £ and & = 0, we obtain the follow-
ing corollary.

Corollary 1. [3, Corollary 1] Let u be such that V,u € (X7~1/2)" where
1>~ > 1/2. Then, for any £ € R", the following pointwise estimate holds:

1Q(w, )l Lony < Colél* |V atul| yv-1/o-

Next, we consider the case where the nonlocal integral term depends
on the variables = and z. It is a generalization of the result [1, Lemma
3.4] due to Cruz and Sevcovi¢ proven for the case where £(z, z) = z.

Proposition 2. [3, Proposition 2] Suppose that the shift mapping £ =
£(w, 2) satisfies supyegn |E(, 2)] < Colz|“(1 + eP0l#l) for some constants
Co > 0,Dg > 0,w > 0 and any z € R™ Assume v is a Lévy measure
with the shape parameters «, D, and either ;n > 0,D € R, or ;t = 0 and
D > Dg > 0. Assume 1/2 < v < 1, and v > (o — n)/(2w). Then there
exists a constant Cy > 0 such that

1f()llze < CollVeull o172,

provided that V,u € (X712 If u e X7 then | f(u)||r < C|lullx~, ie.,
f: X7 — X is a bounded linear operator.
Proof. The Lévy measure v(dz) is given by v(dz) = h(z)dz. Let us denote
the auxiliary function h(z) = |z|*h(z). Then, 0 < h(z) < Cye~Dlel—ulzl®
since h(z) = |z|~®h(z) = hi(2)ha(z), where hyi(z) = |z|Ph(z)? and
ho(z) = \z|ﬂ_ai~z(z)%. Applying Proposition 1 with & = £,&, = 0, and
using the Holder inequality, we obtain
If e = fan | fon (ule + &(2,2)) —u(z) — €(z, 2) - Vou(a))h(z)de|" do
< i Jon lu(z 4+ €(z, 2)) — u(z) — £(,2) - Vau(z)|” hi(2)Pdz
X (fian hg(z)qdz)p/q dz
= [in (fRn lu(z +&(z, 2)) — u(z) — &(z, 2) - Vau(z) P dm) hi(z)Pdz
X (fRn hg(z)qdz)p/q
< CoIVaulls 1 ja fon 1E(@,2) 77|12 PPR(2)P 2 dz ([ ha(2)dz)"?
< OBVl fign |2F7 PP R(2)P/2dz ([, ha(2)7dz)™7 .
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Assuming p,q > 1,1/p+ 1/q = 1 are such that

(rw=@p>-—n,  (F-aji=(F-a) T3> n
then, the integrals [, |2(®“ APh(2)P/2dz and [y, ho(2)idz =
Jn |z|(B—)ap(2)9/2dz are finite, provided that the shape parameters sat-
isfy either 4 > 0,D € R,or p=0,D > Dy > 0. Asy > (a—n)/(2w),
there exists 3 > 1 satisfying

a—n+n/p<f<2yw+n/p.
Therefore, there exists Cy > 0 such that || f(u)||» < Col|Vaullxy-1/2. O

Let C(]0,T], X") be the Banach space consisting of continuous func-
tions from [0, 7] to X" with the maximum norm. The following proposi-
tion is due to Henry [39] (see also Cruz and Sevcovic [2]).

Proposition 3. [39, Proposition 3.5] Suppose that the linear operator —A
is a generator of an analytic semigroup {e‘A‘, t> O} in a Banach space X.
Assume the initial condition Uy belongs to the space X7 where 0 < v < 1.
Suppose that the mappings F' : [0,7] x X7 — X and h : (0,7] — X
are Holder continuous in the T variable, fOT |h(T)||xdT < oo, and F is
Lipschitz continuous in the U variable. Then, for any T > 0, there exists
a unique solution to the abstract semilinear evolution equation: 0.U +
AU = F(r,U) + h(r) such that U € C([0,T],X"),U(0) = Uy, 0;U(T) €
X,U(r) € D(A) for any T € (0,T'). The function U is a solution in the mild
(integral) sense, i.e., U(t) = e AUy + [ e A=) (F(s,U(s)) + h(s))ds,
T €1[0,T7.

Applying Propositions 2 and 3, we can state the following result,
which is a nontrivial generalization of the result shown by Sev¢ovi¢ and
Cruz [2] for n = 1.

Theorem 2. [3, Theorem 1] Suppose that the shift mapping ¢ = &(x, 2)
satisfies sup,cg |&(x, 2)| < Col2|“(1 + ePol?l), 2 € R”, for some constants
Co > 0,Dg > 0,w > 0. Assume v is an admissible activity Lévy measure
with the shape parameters «, D, and, either ;> 0,D € R, or 4 = 0,D >
Dy > 0. Assume 1/2 < vy < land v > (o —n)/(2w), n > 1. Suppose
that g(7,x,u,Vu) is Holder continuous in the T variable and Lipschitz
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continuous in the remaining variables, respectively. Assume uy € X7, and
T > 0. Then, there exists a unique mild solution u to PIDE (22) that satisfies
u e C([0,T], X7).

4.2. Maximal Monotone Operator Technique for Solving
Nonlinear Parabolic Equations

This section presents the existence and uniqueness results of a fully non-
linear parabolic equation using the monotone operator technique. We
consider the HJB equation arising from portfolio optimization selection,
where the goal is to maximize the conditional expected value of the termi-
nal utility of the portfolio. Such a fully nonlinear HJB equation presented
in an abstract setting can be viewed as a PIDE in some sense. First, we
employ the so-called Riccati transformation method to transform the fully
nonlinear HJB equation into a quasilinear parabolic equation, which can
be viewed as the porous media type of equation with source term. Then,
we showed that the underlying operator is maximally monotone in some
Sobolev spaces. Next, we employed the Banach fixed point theorem and
Fourier transform technique to obtain the existence and uniqueness of
a solution to the general form of the transformed parabolic equation in
an abstract setting in high-dimensional spaces. Furthermore, as a crucial
requirement for solving the Cauchy problem, we find that the diffusion
function to the quasilinear parabolic equation is globally Lipschitz con-
tinuous under some assumptions.

We consider the Cauchy problem for the nonlinear parabolic PDE of
the following form:

Orp — Aa(r, @) = go(T,0) + V - g1(7, ¢), (25)
©(+,0) = o, (26)

where 7 € (0,7),z € R4 d > 1. The solution ¢ = ¢(z,7) to such a
nonlinear parabolic equation is established in some Sobolev spaces in
high-dimensional spaces (see [4]). To achieve such results, we assumed
that the diffusion function o = a(z, 7, ¢) is globally Lipschitz continuous
and strictly increasing in the ¢-variable. An example of such a Lipschitz
continuous function a(z, 7, ) is the value function of the following para-
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metric optimization problem:

a(@,7,) = min (—p(2,.0) + Lo(,£.0)?) . € (0.1),7 R %> prin,
S
27)
where 1, and o2 are given C'! functions, and /A C R" is a compact decision
set. The properties of the value function depend on the structure of the

decision set A. It is smooth if /A is a convex set; meanwhile, it can only
be C%! smooth if A is not connected.

4.2.1. Existence and Uniqueness of a Solution to the Cauchy
Problem

First, we define our underlying function spaces. Let V < H <— V' be a
Gelfand triple, where

H=D®) = (/R =R, flEe= [ |f0)de < o0}

is a Hilbert space endowed with the inner product (f,g) =
Jga f(z)g(z)dz. The Banach spaces V and V' are defined as follows:

v=H'®Y), V' =H®RY,

where the Sobolev spaces H*(R¢) are defined by means of the Fourier
transform

f(&) = (Q;W /Rd e " f(z)dr, &= (&,6,....&)T €RY

H*RY) = {f: R > R, (1+[¢)*?f(¢) € L*(R")}, s R

endowed with the norm [| f[|3. = fra(1 + [£%)*] F(¢)|%d¢, and [¢] = (¢} +
-+ £2)1/2, Let the linear operator A : V — V' be defined as follows:

Ay = — A

It is worth nothing that the operator A is self-adjoint in the Hilbert space
H = L*(R%) with the following Fourier transform representation:

AP() = (1+[€2)d(€).
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The fractional power of A is defined by @(5) = (1+|€]2)%)(€), s € R.
In particular,

AF2p(¢) = (1 + €DV 2)(¢),

and A '/? is a self-adjoint operator in the Hilbert space H = L?*(R%).
Moreover, A~ = A=1/24-1/2,

In the sequel, we denote the duality pairing between spaces V' and
V' by (.,.), i.e., the value of a functional F' € V' at u € V is denoted by
(F,u). We have the following definitions.

Definition 5. [4, 42] An operator (in general, nonlinear) B : V. — V' is
said to be

(i) monotone if
(B(u) — B(v),u—wv) >0, Vu,v €V,

(ii) strongly monotone if there exists a constant C' > 0 such that

(B(u) — B(v),u—v) > Cllu—v|}, Yu,v eV,

(iii) hemicontinuous if for each u,v € V, the real-valued function t —
B(u + tv)(v) is continuous.

Theorem 3. [42, 43] Let V be a separable reflexive Banach space, dense,
and continuous in a Hilbert space H, which is identified with its dual, so
Ve H < V'. Let p > 2and set V = LP((0,T); V). Assume a family of
operators A(r,.): V — V', 0 <1 < T, is given such that

(i) foreach ¢ € V, the function A(., ) : [0,T] — V' is measurable,

(i) for a.e T € [0, T], the operator A(r,.): V — V' is monotone, hemi-
continuous, and bounded by || A(r,»)| < C(|l¢|P™t + k(7)),¢ €
V,0< 7 < T,where k € LV (0,T),

(iii) and there exists A > 0 such that (A(7,¢),¢) > A||¢||? — k(1),¢ €
V,o<r<T.

Then, for each f € V' and ¢ € H, there exists a unique solution ¢ € V of
the Cauchy problem

drp(T) + A(r, (7)) = f(7) in V', ©(0) = .
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Consider the spaces V = L?((0,T); V), H = L?((0,T); H), and V' =
L2((0,T); V"), i.e.,, p = 2. Thus, we have that these spaces satisfy the
Gelfand triple, i.e., V — H — V', where H is a Hilbert space endowed
with the norm

T
lole= | le(lfrdr, vo € 1.
For a given value ¢,,;,,, we denote D = R? x (0,T) X (@pmin, ).

Theorem 4. [4, Theorem 2] Assume that the above settings on H and
V hold. Let go,g1j: [0,7)x H — H,j = 1,---,n, be globally Lipschitz
continuous functions. Suppose o € C%'(D) is such that there exist constants
w, L, Lo > 0 such that 0 < w < aj,(z, 7, ) < L, [Vya(z, 7,9)| < p(z,7) +
Lolp|, a(z, 1,0) = h(x, T) for a.e. (x,7,¢) € Dandp,h € L>®((0,1); H).
Then, for any T > 0 and ¢ € H, there exists a unique solution ¢ € V of
the Cauchy problem

8T§0+Aa('77—7 QO) ZQO('T, QO)—FVgl(Ta @)7 99(0) = ®o- (28)

We remark here that the above result and its proof are contained in our
recent paper [4, Theorem 2].

Proof: Recall that H = L?(R?) and V = H'(R?), its dual space being

V' = H-1(R%). Let the scalar products in V and V' be respectively de-
fined by

(f.g)v = (A F, AP = (AL, 9)u. (f,9)vr = (AT F,AT P9y = (A7 f, 9)m.

Let us define the operator A(7,-): V — V' by
(A(T,9), ) = (A Aal. 7,9),9)m = (al-, 7, 9),¢) -

Therefore, we conclude that the mapping ¢ — «(-, 7, ) maps V into
V under the assumption made on the function «. Indeed, if ¢ € V and
n=a(,7,¢),then n(z) = a(z, 7,¢(z)) — a(z,7,0) + a(z, 7,0), and so

()] < (maxay (2,7, 0)lp(@)| + |h(z, )| < Llp(@)| + |h(z, 7).
Thus, fpa In(@)PPdz < 2 fpa L2|o(2)|? + [h(z, 7)Pdz < 2L%¢|lf +

2|[h(-, T)|%. Since Vn(z) = Vea(z, 7, ¢0(x)) + o, (z, 7, 0(z))Ve(z), we
have
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Il = [ @)+ [9n(e) P
R
<2 / Llo(@) + bz, )2z + 2 / 1o, )2 + Lo (@) P+
Rd Rd

+2/ L2V (e)2da
Rd

<2AL2|@ller + IRC, D + oG DI + LillelE) < oo,
because p, h € L>°((0,T"); H). Consequently, n € V, as claimed.
Next, we show that the operator A is monotone in the space V'. Ac-

cording to (77), we have (a(xz, 7, 1) —a(z, T, 2)) (p1—p2) > w(p1—p2)?,
for any ¢1, 02 > ©min, r € R, 7 € [0, T7.

<'A(7—7 901) - A(Tv 902)7 Y1 902> = (a('v T, @1) - a(" T, @2)’ Y1 @2)
= /Rd(a(% 7, ¢1(2)) — alz, 7, ¢2(x))) (p1(z) — p2(z))dz

> /Rdel(ﬂ:) — pa()Pdz = wllp1 — 2|

This implies that the operator A(r, -) is strongly monotone.

For a given ¢ € 'H, we have f € V', where f(7) = go(r, 3(-, 7)) +
V - gi(7, (-, 7)), because go, g1 : [0,7] x H — H are globally Lipschitz
continuous, H — V', and the operator V maps H into V’. The hemi-
continuity, boundedness, and coercivity of the operator A follow from
the assumption that the function « is globally Lipschitz continuous and
strictly increasing.

Applying Theorem 3, we deduce the existence of a solution ¢ € V
such that

Orp+ A(mop) = f(r),  ¢o€H, (29)

where A(7, p) = Aa(-, T, p). Next, we multiply (29) by A~! to obtain
A" o +al,T,0) = f, (30)
where f = f(T @) = A7Lf(r). For v € [0,T], we denote f(@) =
ATV2f(1) = A7V 2g4(7, @) + A71/2 ZJ 1 92,91j(7, ¢). The Fourier trans-

form of f is defined by

T d i —
FO)O) = o rammadlr 200 + O+ TS A
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Let # > 0 be the Lipschitz constant of the mappings go, ¢1j,j =1,--- ,d.
Using Parseval’s identity and Lipschitz continuity of gg, g1; in H, we ob-
tain, for @1, 2 € H,

1F(21) — F(@)lIE = Hf( 1) — ||H —/ | F(@1)( f:(~ )(&)[%d¢
1 —
§2/Rd TR0 20O — ol 22 €
2 /\ —_—
+ Z 1 _|f||€|2|91] 7,81) (&) — g15(7, §2)()[?d¢
d

< 2||go(7, &1) — go(T, P2)llFr + 2D N91;(7, 1) — g15(7, 02) 31

=1

d
= 2|lgo(r, #1) = 9o(r, @23 +2 D lg1i(T. 1) — 91(7, @)l &y
j=1

< 52“@1 - 852”%{7
where 32 = 2(1 + d)32. Hence, we obtain
1F(21) = F(@2)llu < Bllg1 — Galla- (3D

Suppose @1, p2 € H are such that ¢; = F(¢1) and p9 = F(¢2). Here, the
map F' : H — H is defined by ¢ = F(¢), where ¢ is a solution to the
Cauchy problem

Ao+ a1, 0)=f(1,8),  ©(0)=go.
Letting ¢ = ¢1 — @2 = F($1) — F(p2), we obtain
Or AT (o1 — @2) + a7, 1) — al-, T, 2) = f(B1) — f(P2). (32)

Next, multiplying (32) by ¢1 — @9 and taking the scalar product in the
space H, we obtain

(0-A7 (o1 —92), 01— p2) + (a(-7,01) —al,,7,92), 1 — P2)
= (f(Tv 951) - f(Tv 952)7 Y1 — 902)' (33)
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Using (31) and the fact that A='/2 is self-adjoint in H, then (33) gives

3 dr”A Y2 (o1 = @)l + wligr — ol
< (f(r, 1) = F(7,82), 01 — p2) = (AV2(F(1,81) — (7, $2)), A% (1 — 02))
<|AY2(f(r,@1) = (1, 82))lmller — @2llv: = [ F(@1) = F(@2)laller — pallvs
< Bl — @2lluller — pallv.

This implies

1 d ~ -
||<P1 eally +wller — wallf < Bllg1 — Galluller — e2llv

Then, integrating on a small time interval [0, 7] from 0 to ¢ and noting
that 1(0) = ¢2(0) = ¢o, we obtain

llea(r) — el +w /0 lla(s) — pals)l3ds
<5 [ 1619~ 2 llnlloa(s) - pallveds

T

<p max. lo1(7) = p2(7)lv / 161(7) = @2(7)|| dr.
T€[0,T 0

Taking the maximum over 7 € [0, 7] and using the fact that for any a, b €

R, ab < %ag + %bz, we obtain

T
3mas la(n) = ea(Dllv + o [ la(r) - pa(r)ligdr
0

2 rel0,T]

7€[0,T]

~ T
< B max pi(r) — pa(r)llve /O 161(7) = Ga(r) || dr

2 T
< plmas lern) = ol + 5[ 1610 = ) ladr

Using the Cauchy—Schwartz inequality, we obtaln w fo llp1( 7-) -

pr(M3dr < & [Fdr [ llaur) — Ga(n)lhdr = ZF [Tl -
g52(7—) ||%,d7. This implies that

~2
£ — F@)l < 2 e~ ol
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Thus, for sufficiently small value of 7" such that ﬁ;—WT < 1, the operator
F is a contraction on the space H. Therefore, by the Banach fixed point
theorem, F' has a unique fixed point in . It is worth noting that 3 and
w are given such that they are independent of 7. If T > 0 is arbitrary,
then we can apply a simple continuation argument. In other words, if
the solution exists in (0, 7p) interval with i ZO < 1, then starting from the
initial condition ¢y = ¢(7y/2), we can continue the solution ¢ from the
interval (0, 7;) over the interval (0, 7y) U (Tp/2, To/2 + To) = (0, 310/2).
Continuing in this manner, we obtain the existence and uniqueness of a
solution ¢ € H defined on the time interval (0, 7).

Finally, the solution belongs to the space V because the right-hand
side, i.e., the function f(7) = go(7, ©(-, 7)) + V - g1(7, (-, 7)) belongs to
V'. Applying Theorem 3 we conclude ¢ € V, as claimed. &

The following result demonstrates the absolute continuity and a-priori
energy estimate property of the solution. Based on the assumption of the
previous theorem, we have a(-,0), go(-,0), g15(-,0) € H. Here, the space
X = L*>((0,T); V") is endowed with the norm

lelZ = sup [lo()}, Vo € X.
T€[0,T]

Again, the following result and its proof are contained in our recent
paper [4, Theorem 3].

Theorem 5. [4, Theorem 3] Suppose that the functions «, go, g1, satisfy the
assumptions of Theorem 4. Then, the unique solution ¢ € V to the Cauchy
problem (29) is absolutely continuous, i.e., ¢ € C([0,T]; H). Moreover
there exists a constant C' > 0, such that the unique solution satisfies the
following inequality:

lel + lellz < Clwollir + llat, 0) I3 + ll9o(-, IIH+Z||91J 0)[13,)-
(34)

Proof. Since f € V', where f = go + V - g1 and A(r,¢) € V', then
0. € V'. Therefore, for each oy € H, we have ¢ € W, where W is the
Banach space W = {¢, ¢ € V, ;¢ € V'}. According to [43, Proposition
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1.2], we have W — (C([0,T]; H). Hence, the unique solution ¢ to the
Cauchy problem (4) belongs to the space C([0,77; H), as claimed.

Next, we show that the unique solution satisfies a-priori energy es-
timate (34). Let ¢ be a unique solution to the Cauchy problem (28).
Multiply (30) by ¢ and take the scalar product in H to obtain

0: A7 0,0 u + (a7, 0)s 0 = (A go (T, ) + ATV - gi(7, ), ).
(35)
Using the Lipschitz continuity of gg, g1, and strong monotonicity of a, we
obtain

s L 0ll2, +wlleld = (0:A7 e, ) + wllelly
< (0, A7 g, 0) + (al-, ) — af-,0), ¢)
= (A go(-, ) + V- g1(1,9)) — a(-,0), ¢)
= (A (90(;0) = 90(-,0) + V- g1(-,0) = V- g1(-,0)), ¢)
+(A7 (g0(-,0) + V- g1(+,0)), 0) — (a(:, 0), )
= (A7Y2(go(, ) — 90(-,0) + V - g1(-, ) = V - g1(-,0)), A=V %p)
+H(ATY2(go(,0) + V- g1(-, 0)), A7) — (a(-, 0), )
< B+ d)elullelv + 1A72(go(-,0) + V - g1 (-, 0)| mllell v
+lal- )l ullellu
< ol + ELED )2, + HA-2(g0(-,0) + V - ga (- )13
+3lell3 + Zllal, 0% + £l

Hence, there exist constants Cyy, C; > 0 such that
d d

Elhﬁll%ﬂ +uwlelir < Cullely + Collgo( 0 + D llgrs G 0)IF + lla-,0)[1F).
j=1

Solving the differential inequality ¢'(7) < Cyy(r) + r(7), where
y(r) = lle(-, 732 and r(r) = Co(llgo(-, 7 O)IIF + 51 lgai(-,m )l +
la(-,7,0)|3), we obtain

T
(7)< T (o) + [ r()ds),

0

and the proof of the theorem follows. O
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5. Applications to Option Pricing

The classical linear Black—Scholes model and its multidimensional gen-
eralizations have been widely used in the financial market analysis. It
is well known that the price V' = V(t, S) of an option on an underlying
asset price S at time ¢ € [0, 7] can be obtained as a solution to the linear
Black-Scholes parabolic equation of the form (1). Generally, the under-
lying asset price is assumed to follow the geometric Brownian motion
dS/S = pdt + odW. Here, {W;,t > 0} is the standard Wiener process.
The terminal condition ®(S) represents the payoff diagram at maturity
t =T, ®(S) = (S — K)* (call option case) or &(S) = (K — S)*" (put
option case).

For the multidimensional case, where the option price
V(t,S1,---,S,) depends on the vector of n underlying stochastic
assets S = (S1,---,S,) with the volatilities o; and mutual correlations
0ij.i,j = 1,---,n, the Black-Scholes pricing equation can be expressed
as follows:

" o2V tL OV
ZZpUUUJ J8585+ Zsas —rV =0, V(I,5)=®(S).

i=1 j=1

(36)

Equations (1) and (36) can be transformed into equation (21) defined

on the whole space R” (cf., Sev¢ovi¢, Stehlikovd, Mikula [44, Chapter 4,
Section 5]).

According to stock market observations, the models (1) and (36) were
derived under some restrictive assumptions, e.g., completeness and fric-
tionless of the financial market, perfect replication of a portfolio and its
liquidity, and absence of transaction costs. However, these assumptions
are often violated in financial markets. In recent decades, several at-
tempts have been made to investigate the effects of nontrivial transac-
tion costs [7, 6, 45, 46]. For example, Schénbucher and Willmott [8],
Frey and Patie [9], Frey and Stremme [10] investigated the feedback and
illiquid market effects due to large traders choosing given stock-trading
strategies. Janda¢ka and Sevéovi¢ recently investigated the effects of risk
arising from an unprotected portfolio. Barles and Soner [47] analyzed
option pricing models based on utility maximization. The common fea-
ture of these generalizations of the linear Black-Scholes equation (1) is
that the constant volatility o is replaced by a nonlinear function depend-
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ing on the second derivative 02V of the option price V. Among these gen-
eralizations, Frey and Stremme [11] derived a nonlinear Black—Scholes
model by assuming that the underlying asset dynamics takes into account
the presence of feedback effects due to the influence of a large trader
choosing a particular stock trading strategy (see also [8, 9, 12]).

Recently, Cruz and Sevéovi¢ [1] generalized the Black-Scholes equa-
tion in two important directions. First, they used the ideas of Frey and
Stremme [11] to incorporate the effect of a large trader into the model.
Second, they relaxed the assumption on liquidity of market by assum-
ing that the underlying asset price follows a Lévy stochastic process with
jumps to obtain the following nonlinear PIDE:

0 - Wl oS 0L
Ot 2(1-— pS0g¢)? 052 oS
+ / V(t,S+H)—V(t,S)—Ha—V v(dz), (37)
R oS

where the shift function H = H(¢, S, z) depends on the large investor stock-
trading strategy function ¢ = ¢(¢, S). Moreovey, this shift function is a solution
to the following implicit algebraic equation:

H = pS(6(t, S + H) — 6(t, S)) + S(e* —1). (38)

The large trader strategy function ¢ may depend on the derivative sV of
the option price V, e.g., (¢, S) = 9sV (¢,S). However, in our application, we
assume the trading strategy function ¢(t, S) is prescribed and globally Holder
continuous. Next, we present the analysis of this equation depending the behav-
ior of the parameter p = 0.

If p =0, then H = S(e* — 1). Thus, the equation (37) can be reduced to
a linear PIDE of the form (21) in the one-dimensional space (n = 1). This is
obtained using the standard transformation 7 = T — ¢,z = In(%) and setting
V(t,S) =e "u(r, x).

However, if p > 0, then (37) can be transformed into a nonlinear parabolic
PIDE. Indeed, suppose that the transformed large trader stock-trading strategy
P(r,x) = ¢(t,5). Then, V (¢, S) solves equation (37) if and only if the trans-
formed function u(r, x) is a solution to the following nonlinear parabolic equa-
tion:

ou o 1 8%u o 1 ou
or = 2 Ap0n)Z 0% T (T 2 (10-p0a9)? o)) =

+fR (u(T, x+ &) —u(r,z) — g—g(r, a:)) v(dz), u(0,z)=®(Ke®) (39)
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7 € [0,7],z € R. The shift function £(r,z, z) is a solution to the following
algebraic equation:

et =€ + p((r,x + &) — (7, 7)), (40)

and 6(7,z) = fy(ef —1—Ew(dz) = [o(e* — L—&+p((r, 2 +€) — (. 2)))(dz).
For small values of 0 < p <« 1, we can construct the first order asymptotic
expansion &(7, z, z) = &o(7, z, 2) + p&i (T, , 2). For p = 0, we obtain &y(7,z, 2z) =
z. Hence,
e = & 4 p(P(r, 2 + 2 + pa) — Y(7, 7).

Taking the first derivative of the above implicit equation with respect to p
and evaluating it at the origin p = 0, we obtain §&; = e *(¢(1,z + z) — (7, x)),
ie.,

&1, 2) = 2 4 pe *(U(7, @ + 2) — (7, 7). (41)

Consequently, we obtain the following lemma.

Lemma 6. [3, Lemma 1] Assume that the stock-trading strategy ¢ = ¢(t,S)
is a globally w-Hélder continuous function, 0 < w < 1. Then, the transformed
function (7, x) = ¢(t, S) is w-Holder continuous, and the first order asymptotic
expansion {(, x, z) of the nonlinear algebraic equation (40) is w-Hélder contin-
uous in all variables. Furthermore, there exists a constant Co > 0 such that
sup, , [€(7, 2, 2)| < Colz|* (1 + €l*!) for any 2 € R.

5.1. Linearization of PIDE

In what follows, we consider a simplified linear approximation of (37) by setting
p = 0 in the diffusion function, but we keep the shift function H depending on
the parameter p. Then, the transformed Cauchy problem for the solution u with
the first order approximation of the shift function ¢ is given as follows:

r—%+§(7,x)

ar  29%

+ [ (vrz 49 —ur) - €Gh ) ) ias), @

ou o2 9%y 2 ou
ox

7€ 10,T],z € R, where &(7, 2, 2) = 2+ p(¢(T