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Chapter 1

◮ Stochastic character of assets (stocks, indices)

◮ Financial derivatives as tool for protecting volatile
portfolios

◮ Examples of market data for Call and Put options

◮ The content of these lectures is based on the textbooks:

1. D. Ševčovič, B. Stehĺıková, K. Mikula:
Analytical and numerical methods for pricing financial
derivatives.
Nova Science Publishers, Inc., Hauppauge, 2011. ISBN: 978-1-61728-780-0

2. D. Ševčovič, B. Stehĺıková, K. Mikula:
Analytické a numerické metódy oceňovania finančných
derivátov,
Nakladatelstvo STU, Bratislava 2009, ISBN 978-80-227-3014-3

3. P. Wilmott, J. Dewynne, J., S.D. Howison:
Option Pricing: Mathematical Models and Computation,
UK: Oxford Financial Press, 1995.

4. Hull, J. C.:
Options, Futures and Other Derivative Securities.
Prentice Hall, 1989.

◮ The lecture slides are available for download from
www.iam.fmph.uniba.sk/institute/sevcovic/derivaty
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Daily behavior of stock prices of Microsoft and IBM in 2007 – 2008.

Volume of transactions is displayed in the bottom.

Stochastic character of stock prices

Daily behavior of stock prices of General Motors and IBM in 2001.
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◮ Forward
is an agreement between a writer (issuer) and a holder
representing the right and at the same time obligation to
purchase assets at the specified time of maturity of a
forward at predetermined price E

Pricing forwards is relatively simple as soon as we know the
forward interest rate r measuring the rate of the decrease of the
value of money

Vf = E exp(−rT )
where E is the contracted expiration value of a forward at the
expiration time T . Here Vf denotes the present value of a
forward at the time when contract is signed

Stochastic character of indices

Daily behavior of Dow–Jones index

Precrisis period in the year 2000

Precrisis period 2007–2008.

Analytical and numerical methods for pricing financial derivatives 9



Call options
Symbol Last Change Bid Ask Volume Open Int Strike Price

MQFLE.X 15.20 0.00 15.10 15.20 42 34 5.00
MQFLB.X 10.15 0.00 10.10 10.20 74 2541 10.00
MQFLM.X 7.20 0.00 7.15 7.25 95 187 13.00
MQFLN.X 6.15 0.00 6.15 6.25 55 211 14.00
MQFLC.X 5.06 0.11 5.20 5.30 11 1348 15.00
MQFLO.X 4.35 0.00 4.25 4.35 263 368 16.00
MQFLQ.X 3.40 0.00 3.30 3.40 122 4157 17.00
MQFLS.X 1.83 0.05 1.89 1.92 36 7567 19.00
MQFLU.X 1.28 0.02 1.27 1.29 56 8886 20.00
MQFLU.X 0.78 0.09 0.75 0.78 105 72937 21.00
MSQLN.X 0.40 0.04 0.41 0.43 350 16913 22.00
MSQLQ.X 0.21 0.01 0.20 0.22 125 20801 23.00
MSQLD.X 0.09 0.02 0.09 0.11 92 12207 24.00
MSQLE.X 0.04 0.02 0.04 0.05 165 14193 25.00
MSQLR.X 0.02 0.00 0.02 0.03 161 9359 26.00
MSQLS.X 0.02 0.00 N/A 0.03 224 3643 27.00
MSQLT.X 0.02 0.00 N/A 0.02 59 2938 28.00
MSQLF.X 0.01 0.00 N/A 0.02 10 1330 30.00

Prices of Call options with different exercise (strike) prices E for
Microsoft stocks from 26. 11. 2008. with expiration 8.12.2008.
The spot price S = 20.12
The Call option price VC ≈ 1.28 > S − E = 20.12− 20 = 0.12

Financial derivatives as a tool for protecting volatile

portfolios

◮ Option (Call option)
is an agreement between a writer (issuer) and a holder
representing the right BUT NOT the obligation to
purchase assets at the prescribed exercise price E at the
specified time of maturity T in the future

Pricing options is more involved as their price depends on:

Vc = function of E,T, r, ..., ???

where E is the contracted expiration value of an options at the
expiration time T , Vc is the present value of a Call option at the
time when the contract is signed.
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Intraday behavior (Feb. 7, 2011) of MSFT (Microsoft Inc.) stock.
Source: Chicago Board Options Exchange: www.cboe.com
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Figure: Top: Stock prices of IBM from 22. 5. 2002. Bottom: Bid and
Ask prices of Call option for IBM stocks (left) and their arithmetic
average value (right).

Call and Put option prices from Feb. 7, 2011, on MSFT (Microsoft

Inc.) stock with expiration July 2011 for various exercise (strike)

prices E.
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◮ This was a long standing problem in financial mathematics
until 1972. The answer is YES due to the pioneering work
of M.Scholes, F.Black and R.Merton.

◮ M. Scholes and R. Merton were awarded the Price of the
Swedish Bank for Economy in the memory of A. Nobel in
1997 (Nobel price for Economy).

Financial derivatives as a tool for protecting volatile

portfolios

◮ A natural question arises:
Although the time evolution of the asset price St as well as
its derivative (option) Vt is stochastic (volatile,
unpredictable) CAN WE FIND A FUNCTIONAL
DEPENDENCE

Vt = V (St, t)

relating the actual stock price St at time t and the price of
its derivative (like e.g. a Call option) Vt?

Analytical and numerical methods for pricing financial derivatives 13



Chapter 2

◮ Stochastic differential calculus

◮ Wiener process, Brownian and geometric Brownian motion

◮ Itō’s lemma, Itō’s integral

Financial derivatives as a tool for protecting volatile

portfolios

◮ The Black–Scholes formula

V = V (S, t;T,E, r, σ)

where S = St is the spot (actual) price of an underlying
asset, V = Vt is a the spot price of the option (Call or put)
at time 0 ≤ t ≤ T . Here T is the time of maturity, E is the
exercise price, r > 0 is the interest rate of a secure bond,
σ > 0 is the volatility of underlying stochastic process of
the asset price St.

14 Daniel Ševčovič



◮ a stochastic process {X(t), t ≥ 0} is called the Brownian
motion if

i) all increments X(t+∆)−X(t) are normally distributed
with the mean value µ∆ and dispersion (or variance) σ2∆,

ii) for any division of times t0 = 0 < t1 < t2 < t3 < ... < tn the
increments
X(t1)−X(t0), X(t2)−X(t1), ..., X(tn)−X(tn−1) are
independent random variables

iii) X(0) = 0 and sample pathes are continuous almost surely

◮ Brownian motion {W (t), t ≥ 0} with the mean µ = 0 and
dispersion σ2 = 1 is called Wiener process

Figure: Norbert Wiener (1884-1964) and Robert Brown (1773-1858).

Stochastic differential calculus, Itō’s lemma

◮ Stochastic process is a t - parametric system of random
variables {X(t), t ∈ I}, where I is an interval or a discrete
set of indices

◮ Stochastic process {X(t), t ∈ I} is a Markov process with
the property: given a value X(s), the subsequent values

X(t) for t > s may depend on X(s) but not on preceding
values X(u) for u < s. More precisely,

If t ≥ s, then for conditional probabilities we have:

P (X(t) < x|X(s)) = P (X(t) < x|X(s),X(u))

for any u ≤ s.

Analytical and numerical methods for pricing financial derivatives 15



◮ Additive (or semigroup) property of the Brownian motion
{X(t), t ≥ 0} – Variance

For dispersions of the random variables X(t)−X(0) and∑n
i=1(X(ti)−X(ti−1)) we have, by definition,

V ar(X(t)−X(0)) = σ2(t− 0) = σ2t .

ReCall that for two random independent variables A,B it
holds: V ar(A+B) = V ar(A) + V ar(B). Hence, assuming
independence of increments X(ti)−X(ti−1) for different
i = 1, 2, ..., n we have

V ar
(∑n

i=1X(ti)−X(ti−1)
)
=

∑n
i=1 V ar(X(ti)−X(ti−1)) =

∑n
i=1 σ

2(ti − ti−1) =

σ2t .

◮ In order to verify the equality we had to require that
increments X(ti)−X(ti−1) have the dispersion (variance)
V (X(ti)−X(ti−1)) = σ2(ti − ti−1)

Stochastic differential calculus, Itō’s lemma

◮ Additive (or semigroup) property of the Brownian motion
(BM) {X(t), t ≥ 0} – Mean value

let 0 = t0 < t1 < ... < tn = t be any division of the interval [0, t].
Then

X(t)−X(0) =

n∑

i=1

X(ti)−X(ti−1).

Therefore the mean value E and variance V ar of the left and
right hand side have to be equal. By definition of the BM we
have

E(X(t)−X(0)) = µ(t− 0) = µt .

On the other side we have (due to the linearity of the mean
value operator):
E
(∑n

i=1X(ti)−X(ti−1)
)
=

∑n
i=1 E(X(ti)−X(ti−1)) =

∑n
i=1 µ(ti − ti−1) = µt

◮ In order to verify the equality we had to require that
increments X(ti)−X(ti−1) have the mean value
E(X(ti)−X(ti−1)) = µ(ti − ti−1)

16 Daniel Ševčovič
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Figure: Two randomly generated samples of a Wiener process.
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Figure: Five random realizations of a Wiener process.

Stochastic differential calculus, Itō’s lemma

In summary:

◮ The Brownian motion {X(t), t ≥ 0} has the following
stochastic distribution:

X(t) ∼ N(µt, σ2t)

where N(mean, variance) stands for a normal random
variable with given mean and variance

◮ The Wiener process {W (t), t ≥ 0} (here µ = 0, σ2 = 1) has
the following stochastic distribution:

W (t) ∼ N(0, t).

Moreover, dW (t) := W (t+ dt)−W (t) ∼ N(0, dt), i.e.

dW (t) :=W (t+ dt)−W (t) = Φ
√
dt

where Φ ∼ N(0, 1).

Analytical and numerical methods for pricing financial derivatives 17



Relation between Brownian and Wiener process:

◮ For a Brownian motion {X(t), t ≥ 0} with parameters µ
and σ we have, by definition,
dX(t) = X(t+ dt)−X(t) ∼ N(µdt, σ2dt) Therefore, if we
construct the process

W (t) =
X(t)− µt

σ

we have

dW (t) =W (t+ dt)−W (t) =
dX(t) − µdt

σ
∼ N(0, dt),

i.e. {W (t), t ≥ 0} is a Wiener process

Since X(t) = µt+ σW (t) we may therefore write a
Stochastic differential equation

dX(t) = µdt+ σdW (t) ,

Stochastic differential calculus, Itō’s lemma

Since W (t) ∼ N(0, t) we have V ar(W (t)) = t.

0 0.2 0.4 0.6 0.8 1
t

0

0.2

0.4

0.6

0.8

1
V

ar
Hw
Ht
LL

Figure: Time dependence of the variance V ar(W (t)) for 1000 random
realizations of a Wiener process {W (t), t ≥ 0}.
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◮ Statistical properties of the Geometric Brownian motion:

For the distribution function G(y, t) = P (Y (t) < y) it holds:
G(y, t) = 0 for y ≤ 0 (since Y (t) is a positive random variable)
and for y > 0

G(y, t) = P (Y (t) < y) = P

(
W (t) <

−µt+ ln y

σ

)

=
1√
2πt

∫ −µt+ln y
σ

−∞
e−ξ

2/2tdξ.

Stochastic differential calculus, Itō’s lemma

◮ Geometric Brownian motion

If {X(t), t ≥ 0} is a Brownian motion with parameters µ and σ
we define a new stochastic process {Y (t), t ≥ 0} by taking

Y (t) = y0 exp(X(t))

where y0 is a given constant. The process {Y (t), t ≥ 0} is called
the Geometric Brownian motion.

◮ Statistical properties of the Geometric Brownian motion

◮ For simplicity, let us take y0 = 1. Then

W (t) =
lnY (t)− µt

σ

is a Wiener process with W (t) ∼ N(0, t), i.e. we know its
distribution function.

Analytical and numerical methods for pricing financial derivatives 19



◮ Naive (and also wrong) formal calculation

Since Y (t) = exp(X(t)) where dX(t) = µdt+ σdW (t) we have

dY (t) = (exp(X(t)))′dX(t) = exp(X(t))dX(t)

and therefore

dY (t) = µY (t)dt+ σY (t)dW (t).

Hence by taking the mean value operator operator E(.) (it is a
linear operator) we obtain

dE(Y (t)) = E(dY (t)) = µE(Y (t))dt+σE(Y (t)dW (t)) = µE(Y (t))dt

as the random variables Y (t) and dW (t) are independent and
E(dW (t)) = 0. Solving the differential equation
d
dtE(Y (t)) = µE(Y (t)) yields

E(Y (t)) = exp(µt)

BUT according to our previous calculus
E(Y (t)) = exp(µt+ σ2

2 t). Where is the mistake?

Stochastic differential calculus, Itō’s lemma

◮ Statistical properties of the Geometric Brownian motion:

Since E(Y (t)) =
∫∞
−∞ yg(y, t) dy and

E(Y (t)2) =
∫∞
−∞ y2g(y, t) dy, where g(y, t) = ∂

∂yG(y, t), we can
calculate

E(Y (t)) =

∫ ∞

−∞
yg(y, t) dy =

∫ ∞

0
yg(y, t) dy

=
1√
2πt

∫ ∞

0
ye−

(−µt+lny)2

2σ2t
1

σy
dy

(ξ = (−µt+ ln y)/(σ
√
t))

=
eµt√
2π

∫ ∞

−∞
e−

ξ2

2
+σ

√
tξ dξ =

eµt+
σ2

2
t

√
2π

∫ ∞

−∞
e−

(ξ−σ
√

t)2

2 dξ

= eµt+
σ2

2
t .
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Figure: Kiyoshi Itō (1915–2008).

◮ According to Wikipedia Itō’s lemma is the most famous
lemma in the world (citation 2009).

Stochastic differential calculus, Itō’s lemma

◮ The correct answer is based on the famous Itō’s lemma

◮ We cannot omit stochastic character of the process
{X(t), t ≥ 0} when taking the differential of the
COMPOSITE function exp(X(t)) !!!

Itō lemma
Let f(x, t) be a C2 smooth function of x, t variables. Suppose
that the process {x(t), t ≥ 0} satisfies SDE:

dx = µ(x, t)dt+ σ(x, t)dW,

Then the first differential of the process f = f(x(t), t) is given
by

df =
∂f

∂x
dx+

(
∂f

∂t
+

1

2
σ2(x, t)

∂2f

∂x2

)
dt ,

Analytical and numerical methods for pricing financial derivatives 21



Intuitive (and not so rigorous) proof of Itō’s lemma is based on
Taylor series expansion of f = f(x, t) of th 2nd order

df =
∂f

∂t
dt+

∂f

∂x
dx+

1

2

(
∂2f

∂x2
(dx)2 + 2

∂2f

∂x∂t
dx dt+

∂2f

∂t2
(dt)2

)
+h.o.t.

ReCall that dw = Φ
√
dt, where Φ ≈ N(0, 1),

(dx)2 = σ2(dw)2+2µσdw dt+µ2(dt)2 ≈ σ2dt+O((dt)3/2)+O((dt)2)

because E(Φ2) = 1 (dispersion of Φ is 1).
Analogously, the term dx dt = O((dt)3/2) +O((dt)2) as dt→ 0.
Thus the differential df in the lowest order terms dt and dx can
be expressed:

df =
∂f

∂x
dx+

(
∂f

∂t
+

1

2
σ2(x, t)

∂2f

∂x2

)
dt .

Stochastic differential calculus, Itō’s lemma

◮ Meaning of the stochastic differential equation

dx = µ(x, t)dt + σ(x, t)dW,

in the sense of Itō.

◮ Take a time discretization 0 < t1 < t2 < ... < tn. The above
SDE is meant in the sense of a limit in probability when the
norm ν = maxi |ti+1 − ti| of explicit in time discretization:

x(ti+1)−x(ti) = µ(x(ti), ti)(ti+1−ti)+σ(x(ti), ti)(W (ti+1)−W (ti))

tends to zero (ν → 0).

◮ Random variables x(ti) and W (ti+1)−W (ti) are
independent so does σ(x(ti), ti) and W (ti+1)−W (ti).
Hence

E(σ(x(ti), ti)(W (ti+1)−W (ti))) = 0

because E(W (ti+1)−W (ti)) = 0.

22 Daniel Ševčovič



◮ Example: Dispersion of the Geometric Brownian motion

◮ Y (t) = exp(X(t)) where dX(t) = µdt+ σdW (t).

◮ Compute E(Y (t)2). Solution: set
f(x, t) ≡ (ex)2 = e2x.Then

dY (t)2 = df =
∂f

∂x
dx+

(
∂f

∂t
+

1

2
σ2
∂2f

∂x2

)
dt .

= 2e2X(t)dX(t)+
1

2
σ24e2X(t)dt = 2(µ+σ2)Y (t)2dt+2σY (t)2dW (t)

◮ As a consequence, for the mean value E(Y (t)2) we have

dE(Y (t)2) = 2(µ+ σ2)E(Y (t)2)dt

and so E(Y (t)2) = e2µt+2σ2t. Hence

V ar(Y (t)) = E(Y (t)2)− (E(Y (t))2 = e2µt+2σ2t(1− e−σ
2t).

Stochastic differential calculus, Itō’s lemma

◮ Example: Geometric Brownian motion

◮ Y (t) = exp(X(t)) where dX(t) = µdt+ σdW (t).
Here f(x, t) ≡ ex and Y (t) = f(X(t), t). Therefore

dY (t) = df =
∂f

∂x
dx+

(
∂f

∂t
+

1

2
σ2
∂2f

∂x2

)
dt .

= eX(t)dX(t)+
1

2
σ2eX(t)dt = (µ+

1

2
σ2)Y (t)dt+σY (t)dW (t)

◮ As a consequence, we have for the mean value E(Y (t))

dE(Y (t)) = (µ+
1

2
σ2)E(Y (t))dt

and so E(Y (t)) = eµt+
1
2
σ2t provided that Y (0) = 1.

Analytical and numerical methods for pricing financial derivatives 23



◮ Derivation of the Black–Scholes partial differential equation

◮ the case of Call (or Put) option

◮ Call option is an agreement (contract) between the writer
(issuer) and the holder of an option. It represents the right
BUT NOT the obligation to purchase assets at the
prescribed exercise price E at the specified time of
maturity t = T in the future.

◮ The question is: What is the price of such an option
(option premium) at the time t = 0 of contracting. In other
words, how much money should the holder of the option
pay the writer for such a derivative security

Black–Scholes model for pricing financial derivatives

Chapter 3

◮ Pricing European type of options - the Black–Scholes model

◮ Explicit solutions for European Call and Put options

◮ Put – Call parity

◮ Complex option strategies – straddles, butterfly

24 Daniel Ševčovič



Assumption:

◮ the underlying asset price follows geometric Brownian
motion

dS = µSdt+ σSdw.

Simulations of a geometric Brownian motion with µ > 0 (left) and µ < 0 (right)
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Real stock prices of IBM (2002/5/2)
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Black–Scholes model for pricing financial derivatives

Denote

◮ S - the underlying asset price

◮ V - the price of a financial derivative (a Call option)

◮ T - expiration time (time of maturity) of the option
contract
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Stock prices of IBM (2002/5/2) Bid and Ask prices of a Call option

Idea

◮ Construct the price V as a function of S and time
t ∈ [0, T ], i.e. V = V (S, t)

Analytical and numerical methods for pricing financial derivatives 25



Assumption:

◮ Fundamental economic balances:

◮ conservation of the total value of the portfolio

S QS + V QV +B = 0

◮ requirement of self-financing the portfolio

S dQS + V dQV + δB = 0

◮ QS is # of underlying assets with a unit price S in the
portfolio

◮ QV is # of financial derivatives (options) with a unit price
V

◮ B the cash money in the portfolio (e.g. bonds, T-bills, etc.)

◮ dQS is the change in the number of assets

◮ dQV is the change in the number of options

◮ δB is the change in the cash due to buying/selling assets and options

Black–Scholes model for pricing financial derivatives

A financial portfolio consisting of stocks (underlying assets),
options and bonds

◮ The aim is to dynamically (in time) rebalance the portfolio
by buying/selling stocks/options/bonds in order to reduce
volatile fluctuations and to preserve its value
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◮ Differentiating the fundamental balance law:
S QS +V QV +B = 0 in the time period [t, t+ dt] we obtain

0 = d (SQS + V QV +B) = d (SQS + V QV ) +

rB dt+δB︷ ︸︸ ︷
dB

0 =

=0︷ ︸︸ ︷
SdQS + V dQV + δB+QSdS +QV dV + rB dt

0 = QSdS + QV dV

rB︷ ︸︸ ︷
− r(SQS + V QV ) dt.

◮ Dividing the last equation by QV we obtain

dV − rV dt−∆(dS − rS dt) = 0 , where ∆ = −QS
QV

.

Black–Scholes model for pricing financial derivatives

Assumption:

◮ Secure bonds are appreciated by the fixed interest rate
r > 0

B(t) = B(0)ert → dB = rB dt

◮ The change of the total value of bonds in the portfolio is
therefore

dB = rB dt+ δB

because we sell bonds (δB < 0) or buy bonds (δB > 0)
when hedging (re-balancing) the portfolio in the time
period [t, t+ dt].
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Assumption:

◮ Holding a strategy in buying/selling stocks and options
with the goal to eliminate possible volatile fluctuations.
The only volatile (unpredictable) term in the equation

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
− rV +∆rS

)
dt+

(
∂V

∂S
−∆

)
dS = 0

is
(
∂V
∂S −∆

)
dS due to the stochastic differential dS

◮ Setting ∆ = ∂V
∂S (Delta hedging) we obtain, after dividing

the equation by dt, the following PDE:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

Black–Scholes model for pricing financial derivatives

◮ ReCall that we have assumed the stock price S to follow
the geometric Brownian motion

dS = µSdt+ σSdw.

◮ By Itō’s lemma we obtain for a smooth function
V = V (S, t)

dV =

(
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2

)
dt+

∂V

∂S
dS.

◮ Inserting the differential dV into the equation
dV − rV dt−∆(dS − rS dt) = 0 we obtain

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
− rV +∆rS

)
dt+

(
∂V

∂S
−∆

)
dS = 0
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Terminal conditions for the Black–Scholes equation:

◮ At the time t = T of maturity (expiration) the price of a
Call option is easy to determine.

◮ If the actual (spot) price S of the underlying asset at t = T
is bigger then the exercise price E then it is worse to
exercise the option, and the holder should price this option
by the difference V (S, T ) = S − E

◮ If the actual (spot) price S of underlying asset at t = T is
less then the exercise price E then the Call option has no
value, i.e. V (S, T ) = 0

◮ In both cases V (S, T ) = max(S − E, 0).
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Black–Scholes model for pricing financial derivatives

◮ The parabolic partial differential equation for the option
price V = V (S, t) defined for S > 0, t ∈ [0, T ]

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

is referred to as the Black–Scholes equation.

M. S. Scholes a R. C. Merton were awarded by the Price of the Swedish Bank for

Economy in the memory of A. Nobel in 1997, Fisher Black died in 1995

Analytical and numerical methods for pricing financial derivatives 29



Solution of the Black–Scholes equation.

◮ Using transformations x = ln(S/E) and τ = T − t
transform the BS equation into the Cauchy problem

∂u

∂τ
− σ2

2

∂2u

∂x2
= 0,

u(x, 0) = u0(x),

for −∞ < x <∞ , τ ∈ [0, T ].

◮ Solve this parabolic equation by means of the Green’s
function

◮ Transform back the solution and express V (S, t) in the
original variables S and t

Black–Scholes model for pricing financial derivatives

Mathematical formulation of the problem of pricing a Call
option:

◮ Find a solution V (S, t) of the Black–Scholes parabolic
partial differential equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

defined for S > 0, t ∈ [0, T ], and satisfying the terminal
condition

V (S, T ) = max(S − E, 0)

at the time of maturity t = T .
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Solution of the Black–Scholes equation

◮ Using a new function u(x, τ)

u(x, τ) = eαx+βτZ(x, τ)

where α, β ∈ R are some constants leads to

∂u

∂τ
− σ2

2

∂2u

∂x2
+A

∂u

∂x
+Bu = 0 ,

u(x, 0) = Eeαxmax(ex − 1, 0),

◮ Constants

A = ασ2 +
σ2

2
− r , and B = (1 +α)r− β − α2σ2 + ασ2

2
.

can be eliminated (i.e. A = 0, B = 0) by setting

α =
r

σ2
− 1

2
, β =

r

2
+
σ2

8
+

r2

2σ2
.

Black–Scholes model for pricing financial derivatives

Solution of the Black–Scholes equation

◮ Transformation x = ln(S/E) and τ = T − t and
introduction of an auxiliary function Z(x, τ) lead to

Z(x, τ) = V (Eex, T − τ)

◮ Then

∂Z

∂x
= S

∂V

∂S
,

∂2Z

∂x2
= S2∂

2V

∂S2
+ S

∂V

∂S
= S2∂

2V

∂S2
+
∂Z

∂x
.

◮ The parabolic equation for Z reads as follows:

∂Z

∂τ
− 1

2
σ2
∂2Z

∂x2
+

(
σ2

2
− r

)
∂Z

∂x
+ rZ = 0,

Z(x, 0) = max(Eex −E, 0), −∞ < x <∞, τ ∈ [0, T ].
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Solution of the Black–Scholes equation
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Graph of a solution V (S, 0) for a Call option together with the terminal condition

V (S, T ) (left). Graphs of solutions V (S, t) for different times T − t to maturity

(right).

Example:
◮ Present (spot) price of the IBM stock is S = 58.5 USD

◮ Historical volatility of the stock price was estimated to σ = 29% p.a., i.e.
σ = 0.29.

◮ Interest rate for secure bonds r = 4% p.a., i.e. r = 0.04

◮ Call option for the exercise price E = 60 USD and exercise time
T = 0.3-years

◮ Computed Call option price by Black–Scholes formula is:
V=V(58.5, 0) = 3.35 USD.

◮ Real market price was V = 3.4 USD

Black–Scholes model for pricing financial derivatives
Solution of the Black–Scholes equation

◮ A solution u(x, τ) to the Cauchy problem ∂u
∂τ − σ2

2
∂2u
∂x2

= 0 is
given by Green’s formula

u(x, τ) =
1√

2σ2πτ

∫ ∞

−∞
e−

(x−s)2

2σ2τ u(s, 0) ds .

◮ Computing this integral and transforming back to the
original variables S, t and V (S, t), enables us to conclude

V (S, t) = SN(d1)− Ee−r(T−t)N(d2) ,

where N(x) = 1√
2π

∫ x
−∞ e−

ξ2

2 dξ is a distribution function of

the normal distribution and

d1 =
ln S

E + (r + σ2

2 )(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t
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◮ Put option

◮ explicit solution to the Black-Scholes equation with the
terminal condition V (S, T ) = max(E − S, 0)

Vep(S, t) = Ee−r(T−t)N(−d2)− SN(−d1)

where N(.), d1, d2 are defined as in the case of a Call option.

50 55 60 65 70 75
S

2

4

6

8

10

12

V

50 55 60 65 70 75
S

2

4

6

8

10

12

V

Graph of a solution V (S, 0) for a Put option and the terminal condition V (S, T )

(left). Graphs of solutions V (S, t) for different times T − t to maturity (right)

Black–Scholes model for pricing financial derivatives

◮ Put option

◮ Put option is an agreement (contract) between the writer
(issuer) and the holder of an option. It represents the right
BUT NOT the obligation to SELL the underlying asset at
the prescribed exercise price E at the specified time of
maturity t = T in the future.

◮ If the actual (spot) price S of the underlying asset at t = T
is less then the exercise price E then it is worse to exercise
the option, and the holder prices this option as the
difference V (S, T ) = E − S.

◮ If the actual (spot) price S of underlying asset at t = T is
higher then the exercise price E then it has no value for the
holder, i.e. V (S, T ) = 0.

◮ In both cases we have V (S, T ) = max(E − S, 0).
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◮ Bullish spread
Buy one Call option on the exercise price E1 and sell one
Call option on E2 where E1 < E2. Therefore the Pay–off
diagram: V (S, T ) = max(S − E1, 0) − max(S − E2, 0)
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◮ The strategy has a limited profit and limited loss (pay-off
diagram is bounded).

◮ It protects the holder for increase of the asset price in a
short position (like a single Call option).

◮ Linearity of the Black–Scholes equation implies:

V (S, t) = V c(S, t;E1)− V c(S, t;E2), for all 0 ≤ t ≤ T

Black–Scholes model for pricing financial derivatives

◮ Put-Call parity

◮ Construct a portfolio of one long Call option and one short
Put option: Vf (S, T ) = Vec(S, T )− Vep(S, T )

◮

Vf (S, T ) = max(S − E, 0) −max(E − S, 0) = S −E .

◮ The solution to the Black–Scholes equation with the
terminal condition Vf (S, T ) = S −E can be found easily

Vf (S, t) = S − Ee−r(T−t)

◮ According to the linearity of the Black–Scholes equation we
obtain:

Vec(S, t)− Vep(S, t) = S − Ee−r(T−t)

known as the Put–Call parity: Call - Put = Asset -
Forward
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◮ Strangle is a combination of purchasing one Call on E2,
and one Put option on strike price E1 < E2

V (S, T ) = (S − E2)
+ + (E1 − S)+ .

◮ Condor is a strategy similar to butterfly, but the difference
is that the strike prices of sold Call options need not be
equal, E2 6= E3, i.e., E1 < E2 < E3 < E4.
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Left: Strangle option strategy for E1 = 50;E2 = 70 and prices
S 7→ V (S, t)

Right: Condor option strategy with

E1 = 50, E2 = 60, E3 = 65, E4 = 70

◮ Butterfly
Buy two Call options - one with low exercise price E1 and
one with high E4

Sell two Call options with E2 = E3, where
E1 < E2 = E3 < E4 and E1 + E4 = E2 + E3 = 2E2.

V (S, T ) = max(S−E1, 0)−max(S−E2, 0)−max(S−E3, 0) +max(S−E4, 0)
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◮ The strategy has a limited profit and limited loss (pay-off
diagram is bounded).

◮ It is profitable when the price of the asset is close to
E2 = E3.

◮ Linearity of the Black–Scholes equation implies for
0 ≤ t ≤ T :

V (S, t) = V c(S, t;E1)− V c(S, t;E2)− V c(S, t;E3) + V c(S, t;E4)
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◮ repeating steps of derivation of the B-S equation, using
Itō’s lemma for dV we conclude with the equation

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D)S

∂V

∂S
− rV = 0

◮ similarly as in the case D = 0 we obtain

V (S, t) = Se−D(T−t)N(d1)− Ee−r(T−t)N(d2) ,

d1 =
ln S

E + (r −D + σ2

2 )(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t

◮ Put option can be calculated from Put-Call parity:
V c(S, t)− V p(S, t) = Se−D(T−t) −Ee−r(T−t)
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Solutions V (S, t), 0 ≤ t < T, for a European Call option (left) and Put option

(right).

Black–Scholes equation for divedend paying assets
◮ the underlying asset is paying nontrivial continuous

dividends with an annualized dividend yield D ≥ 0
◮ holder of the underlying asset receives a dividend yield
DSdt over any time interval with a length dt

◮ paying dividends leads to the asset price decrease

dS = (µ−D)S dt+ σSdw .

◮ on the other hand, it is added as an extra income to the
money volume of secure bonds

dB = rB dt+ δB +DSQS dt

◮ the portfolio balance equation then becomes

QV dV +QSdS + rB dt+DSQS dt = 0

◮ since B = −QV V −QSS we obtain, after dividing by QV ,

dV −rV dt−∆(dS−(r−D)S dt) = 0 where ∆ = −QS/QV .
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Numerical solution to the Black–Scholes equation

◮ using the transformation V (S, t) = Ee−αx−βτu(x, τ), where
τ = T − t, x = ln(S/E), leads to the heat equation

∂u

∂τ
− σ2

2

∂2u

∂x2
= 0

for any x ∈ R, 0 < τ < T .

◮

g(x, τ) =

{
eαx+βτ max(ex − 1, 0), for a Call option,
eαx+βτ max(1− ex, 0), for a Put option.

represents the transformed pay-off diagram of a Call (Put)
option

◮ It satisfies the initial condition

u(x, 0) = g(x, 0), for any x ∈ R.

Here: α = r−D
σ2 − 1

2
, β = r+D

2
+ σ2

8
+

(r−D)2

2σ2

Chapter 4

◮ Transformation of the Black–Scholes equation to the heat
equation

◮ Finite difference approximation

◮ Explicit numerical scheme and the method of binomial
trees

◮ Stable implicit numerical scheme using a linear algebra
solver
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◮ time derivative forward (explicit) and backward (implicit)
finite difference approximation

∂u

∂τ
(xi, τj) ≈

uj+1
i − uji
k︸ ︷︷ ︸

forward

∂u

∂τ
(xi, τj) ≈

uji − uj−1
i

k︸ ︷︷ ︸
backward

◮ central finite difference approximation of the spatial
derivative

∂2u

∂x2
(xi, τj) ≈

uji+1 − 2uji + uji−1

h2

◮ Explicit and implicit finite difference approximation of the
heat equation

uj+1
i − uji
k

=
σ2

2

uji+1 − 2uji + uji−1

h2︸ ︷︷ ︸
explicit scheme

,
uji − uj−1

i

k
=
σ2

2

uji+1 − 2uji + uji−1

h2︸ ︷︷ ︸
implicit scheme

◮ spatial and time discretization yields the finite difference
mesh

xi = ih, i = ...,−2,−1, 0, 1, 2, ..., τj = jk, j = 0, 1, ...,m.

h = L/n, k = T/m.

◮ approximation of the solution u at (xi, τj) will be denoted
by

uji ≈ u(xi, τj), and also gji ≈ g(xi, τj)

◮ using boundary conditions
Call option: V (0, t) = 0 and V (S, t)/S → e−D(T−t) for S → ∞
Put option: V (0, t) = Ee−r(T−t) and V (S, t) → 0 as S → ∞
⇒ the boundary condition at x = ±L,L ≫ 1,

uj−N = φj :=

{
0, for a European Call option,

e−αNh+(β−r)jk, for a European Put option,

ujN = ψj :=

{
e(α+1)Nh+(β−D)jk, for a European Call option,
0, for a European Put option.
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◮ transforming back to the original variables
S = Eex, t = T − τ, V (S, t) = Ee−αx−βτu(x, τ) we obtain
the option price V
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A solution S 7→ V (S, t) for the price of a European Call option

obtained by means of the binomial tree method with γ = 1/2

(left) and comparison with the exact solution (dots). The

oscillating solution S 7→ V (S, t) which does not converge to the

exact solution for the parameter value γ = 0.56 > 1/2, where

γ > 1/2, does not fulfill the CFL condition.

Explicit scheme and binomial tree

◮ explicit scheme can be rewritten as:

uj+1
i = γuji−1 + (1− 2γ)uji + γuji+1, where γ =

σ2k

2h2
,

◮ in matrix form uj+1 = Auj + bj for j = 0, 1, . . . ,m− 1
where A is a tridiagonal matrix given by

A =




1− 2γ γ 0 · · · 0

γ 1− 2γ γ
...

0 · · · 0
... γ 1− 2γ γ
0 · · · 0 γ 1− 2γ



, bj =




γφj

0
...

0
γψj



.

Under the so-called Courant–Fridrichs–Lewy (CFL) stability condition:

0 < γ ≤ 1

2
, i.e.

σ2k

h2
≤ 1,

the explicit numerical discretization scheme is stable.
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The binomial pricing model can be also derived from the
explicit numerical scheme.

V j
i ≈ V (Si, T − τj), where Si = Eexi = Eeih.

◮ since V (S, t) = Ee−αx−βτu(x, t), we obtain
V j
i = Ee−αih−βjkuji .

◮ in terms of the original variable V j
i , the explicit numerical

scheme can be expressed as follows:

V j+1
i = e−rk

(
q−V

j
i−1 + q+V

j
i+1

)
, where q± =

1

2
e±αh−(β−r)k.

◮ for k → 0 and h = σ
√
k → 0 we have

q+
.
=

1 + αh

2
, q−

.
=

1− αh

2
, q− + q+ = 1.

and these constants are to as risk-neutral probabilities.

Explicit numerical scheme and binomial tree

◮ if we choose the ratio between the spatial and time
discretization steps such that h = σ

√
k then γ = 1/2

uj+1
i =

1

2
uji−1 +

1

2
uji+1.

◮ the solution uj+1
i at the time τj+1 is the arithmetic average

between values uji−1 and uji+1

A binomial tree as an illustration of the algorithm for solving a

parabolic equation by an explicit method with 2γ = σ2k/h2 = 1.
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◮ implicit scheme can be rewritten as:

−γuji−1 + (1 + 2γ)uji − γuji+1 = uj−1
i , where γ =

σ2k

2h2
,

◮ in matrix form Auj = uj−1 + bj−1 for j = 1, 2, . . . ,m where
A is a tridiagonal matrix given by

A =




1 + 2γ −γ 0 · · · 0

−γ 1 + 2γ −γ ...
0 · · · 0
... −γ 1 + 2γ −γ
0 · · · 0 −γ 1 + 2γ



, bj =




γφj+1

0
...

0
γψj+1



.

The implicit numerical discretization scheme is unconditionally
stable for any

γ > 0

Explicit numerical scheme and binomial tree
◮ underlying stock price at tj+1 has a price S. Here
t0 = T, . . . , tm = 0

◮ at the time tj > tj+1 it attains a higher value S+ > S with
a probability p ∈ (0, 1), and S− < S with probability
1− p ∈ (0, 1)

◮ let V+ and V− be the option prices corresponding to the
upward and downward movement of underlying prices

◮ the option price V at time tj+1 can be calculated as

V = e−rk (q+V+ + q−V−) , where q+ =
Serk − S−
S+ − S−

, q− = 1−q+

A binomial tree illustrating calculation of the option price by

binomial tree
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Successive Over Relaxation method for solving Au = b
◮ Decompose the matrix A as as sum of subdiagonal, diagonal and

overdiagonal matrix A = L+D+U where

Lij = Aij for j < i, otherwise Lij = 0,

Dij = Aij for j = i, otherwise Dij = 0,

Uij = Aij for j > i, otherwise Uij = 0.

◮ We suppose that D is invertible. Let ω > 0 be a relaxation parameter. A
solution of Au = b is equivalent to

Du = Du+ ω(b −Au).

or, equivalently,

(D+ ωL)u = (1− ω)Du + ω(c−Uu).

◮ Therefore u is a solution of

u = Tωu+ cω , where Tω = (D+ ωL)−1 ((1 − ω)D − ωU)

a cω = ω(D + ωL)−1b.

◮ Define a recurrent sequence of approximate solution

u0 = 0, up+1 = Tωu
p + cω for p = 1, 2, ...

Implicit finite difference numerical scheme

◮ transforming back to the original variables
S = Eex, t = T − τ, V (S, t) = Ee−αx−βτu(x, τ) we obtain
the option price V
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A solution S 7→ V (S, t) for pricing a European Call option obtained

by means of the implicit finite difference method with γ = 1/2 (left)

and comparison with the exact analytic solution (dots). The

numerical scheme is also stable for a large value of the parameter

γ = 20 > 1/2 not satisfying the CFL condition (right).

42 Daniel Ševčovič



Black–Scholes model and sensitivity analysis

Chapter 5

◮ Historical and implied volatilities

◮ Computation of the implied volatility

◮ Sensitivity with respect to model parameters

◮ Delta and Gamma of an option. Other Greeks factors.

◮ the SOR algorithm reduces to successive calculation, for
p = 0, ..., pmax of

up+1
i =

ω

Aii


bi −

∑

j<i

Aiju
p+1
j −

∑

j>i

Aiju
p
j


+ (1− ω)upi

for i = 1, ..., N

◮ where ω ∈ (1, 2) is a relaxation parameter

◮ if ‖Tω‖ < 1 then the mapping Rn ∋ u 7→ Tωu+ cω ∈ Rn is
contractive and the fixed point argument implies that up

converges to u for p→ ∞ and Au = b.
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Graph of the spectral norm of the iteration operator ‖Tω‖ as a function of

the relaxation parameter ω.

Analytical and numerical methods for pricing financial derivatives 43



Black–Scholes model and sensitivity analysis
◮ The historical volatility σ = σhist of the underlying asset

price

σ2hist =
1

τ

1

n− 1

n−1∑

i=0

(
ln(S(ti+1)/S(ti))− γ

)2

◮ where γ is the mean value of returns
X(ti) = ln(S(ti+1)/S(ti))

γ =
1

n

n−1∑

i=0

ln(S(ti+1)/S(ti)).

0 50 100 150 200 250 300 350
t

83.8

84

84.2

84.4

84.6

84.8

S

IBM stock price evolution from 21.5.2002 with τ = 1 minute. The computed

historical volatility σhist = 0.2306 on the yearly basis, i.e. σhist = 23% p.a.

◮ Historical volatility
How to estimate the historical volatility σ of the asset (a
diffusion coefficient in the BS equation)

◮ dS = µSdt+ σSdw

◮ For the process of the underlying asset returns
X(t) = lnS(t) we have, by Itō’s lemma

dX = (µ− σ2/2)dt+ σdw.

◮ In the discrete form (for equidistant division
0 = t0 < t1 < ... < tn = T , ti+1 − ti = τ) we have

X(ti+1)−X(ti) = (µ− 1

2
σ2)τ + σ(w(ti+1)− w(ti)).

◮ as σ(w(ti+1)− w(ti)) = σΦ
√
τ , where Φ ∼ N(0, 1) we can

use the estimator for the dispersion of the normally
distributed random variable σ

√
τΦ ∼ N(0, σ2τ)
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Black–Scholes model and sensitivity analysis

◮ Implied volatility
The implied volatility is a solution of the following inverse
problem: Find a diffusion coefficient of the Black-Scholes
equation such that the computed option price is identical
with the real market price.

◮ Denote the price of an option (Call or Put) as
V = V (S, t;σ) where σ - the volatility is considered as a
parameter.

◮ Implied volatility σimpl at the time t is a solution of the
implicit equation

Vreal(t) = V (Sreal(t), t;σimpl).

where Vreal(t) is the market option price, Sreal(t) is the
market underlying asset price at the time t.

◮ Solution σ exists and is unique due to monotonicity of the
function σ 7→ V (S, t;σ) (it is an increasing function).
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IBM Call option price from 21.5.2002 (red).

Computed V ec(Sreal(t), t; σhist) with σhist = 0.2306 (blue)

◮ In typical real market situations the historical volatility
σhist produces lower option prices

◮ σhist is lower than the value that is needed for exact
matching of market option prices
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Black–Scholes model and sensitivity analysis

◮ Comparison of market Call option data match for
Historical and Implied volatilities
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IBM Call option price from 21.5.2002 (red).
Computed Vt = V ec(Sreal(t), t; σhist) with σhist = 0.2306 (left).
Computed Vt = V ec(Sreal(t), t; σimpl) with σimpl = 0.3733 (right).
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IBM stock price evolution from 21.5.2002 (left), the Call option for E = 80 and

T = 43/365 (right)

⇓
◮ The computed implied volatility σimpl(t)
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◮ The average value of the implied volatility is:
σ̄impl = 0.3733 p.a.
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Black–Scholes model and sensitivity analysis

◮ Delta for European Call and Put options:

∆ec =
∂V ec

∂S
= N(d1), ∆ep =

∂V ep

∂S
= −N(−d1).
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Parameters: E = 80, r = 0.04, T = 43/365

◮ Notice that ∆ec ∈ (0, 1) and ∆ep ∈ (−1, 0)

Sensitivity of the option price with respect to model parameters
- Greeks

◮ Sensitivity with respect to the asset price: Delta - ∆,

∆ =
∂V

∂S

◮ It measures the rate of change of the option price V w.r. to
the change in the asset price S

◮ It is used in the so-called Delta hedging because the
risk-neutral portfolio is balanced according to the law:

QS
QV

= −∂V
∂S

= −∆

where QV , QS is the number of options and stocks in the
portfolio
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Black–Scholes model and sensitivity analysis

◮ Sensitivity of Delta with respect to the asset price: Gamma
- Γ

Γ =
∂∆

∂S
=
∂2V

∂S2
.

◮ It measures the rate of change of the Delta of the option
price V w.r. to the change in the asset price S

Γec = Γep =
∂∆ec

∂S
= N ′(d1)

∂d1
∂S

=
exp(−1

2d
2
1)

σ
√

2π(T − t)S
> 0

◮ It is used for generating signals for the owner of the option
to rebalance his portfolio because change in the Delta
factor means that the change in the ratio QS/QV should be
done.

◮ High Gamma ⇒ rebalance portfolio according to Delta
hedging strategy

Computation of Delta for market data time series

◮ Determine the implied volatility σimpl(t) from market data
time series of the option price Vreal(t) and the underlying
asset price Sreal(t). We solve

Vreal(t) = V ec(Sreal(t), t;σimpl(t)).

◮ Produce the graph of ∆ec(t) = ∂V ec

∂S (Sreal(t), t;σimpl(t))
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◮ Observe that the decrease of Delta means that keeping one
Call option we have to decrease the number QS of owed
stocks in the portfolio.
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Black–Scholes model and sensitivity analysis
Other Greeks - Sensitivity of the option price to model
parameters

◮ Rho
Sensitivity with respect to the interest rate r, P = ∂V

∂r

◮ Theta
Sensitivity with respect to time t, Θ = ∂V

∂t

◮ Vega
Sensitivity with respect to volatility σ, Υ = ∂V

∂σ

◮ Greek version of the Black–Scholes equation.

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

⇓

Θ+
σ2

2
S2Γ + rS∆− rV = 0

Computation of Gamma for market data time series

◮ Determine the implied volatility σimpl(t) from market data time series of
the option price Vreal(t) and the underlying asset price Sreal(t). We solve

Vreal(t) = V ec(Sreal(t), t;σimpl(t)).

◮ Produce the graph of Γec(t) = ∂2V ec

∂S2 (Sreal(t), t; σimpl(t))
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IBM stock price from 21.5.2002 (left), Call option for E = 80 and T = 43/365 (right)
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Exotic derivatives - Path dependent options
Path dependent options

◮ A path-dependent option = the option contract depends on
the whole time evolution of the underlying asset in the
time interval [0, T ]

◮ Classical European options are not path dependent
options, the contract depends only on the terminal pay-off
V (S, T ) at the expiry T

◮ The path dependent options - Examples
◮ Barrier options - the contract depends on whether the asset

price jumped over/under prescribed barrier
◮ Asian options - the contract depends on the average of the

asset price over the time interval [0, T ]
◮ Many other like e.g. look-back options, Russian options,

Israeli options, etc.

◮ Path dependent options are hard to price as the contract
depends on the whole evolution of the asset price St in the
future time interval [0, T ]

Chapter 6

◮ Path dependent options, concepts and applications

◮ Barrier options, formulation in terms of a solution to a
partial differential equation on a time dependent domain

◮ Asian options, formulation in terms of a solution to a
partial differential equation in a higher dimension

◮ Numerical methods for solving barrier and Asian options
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Exotic derivatives - Barrier options

◮ A typical exponential barrier function is:
B(t) = bEe−α(T−t) with 0 < b < 1

◮ A typical exponential rabat function is:
R(t) = E

(
1− e−β(T−t)

)

◮ Mathematical formulation - the PDE on a time dependent
domain

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

for t ∈ [0, T ) and B(t) < S <∞

V (B(t), t) = R(t), t ∈ [0, T )

at the left barrier boundary S = B(t)

V (S, T ) = max(S − E, 0), S > 0,

at t = T (Barrier Call option).

◮ Example of an barrier options: Down–and–out Call option.
This is a usual Call option with the terminal pay-off
V (S, T ) = max(S − E, 0) except of the fact that the option
may expire before the maturity T at the time t < T in the
case when the underlying asset price St reaches the
prescribed barrier B(t) from above.
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opcia expirovala

The option will expire at the maturity T (left) It will expire prematurely at t < T (right)

◮ If the option expires prematurely at t < T the writer pays
the holder the prescribed rabat R(t).

Analytical and numerical methods for pricing financial derivatives 51



Exotic derivatives - Barrier options

A numerical solution - a simple code in the software
Mathematica

b = 0.7; alfa = 0.1; beta = 0.05; X = 40; sigma = 0.4; r = 0.04; d = 0; T = 1;

xmax = 2;

Bariera[t_] := X b Exp[-alfa (T - t)]; Rabat[t_] := X (1 - Exp[-beta(T - t)]);

PayOff[x_] := X*If[b Exp[x] - 1 > 0, b Exp[x] - 1, 0];

riesenie = NDSolve[{

D[w[x, tau], tau] == (sigma^2/2)D[w[x, tau], x, x]

+ (r - d - sigma^2/2 - alfa )* D[w[x, tau], x]

- r *w[x, tau] ,

w[x, 0] == PayOff[x],

w[0, tau] == Rabat[T - tau],

w[xmax, tau] == PayOff[xmax]},

w, {tau, 0, T}, {x, 0, xmax}

];

w[x_, tau_] := Evaluate[w[x, tau] /. riesenie[[1]] ];

Plot3D[w[x, tau], {x, 0, xmax}, {tau, 0, T}];

V[S_, tau_] :=

If[S > Bariera[T - tau],

w[ Log[S/Bariera[T - tau]], tau],

Rabat[T - tau]

];

Plot[ {V(S,0.2 T],V(S,0.4 T], V(S,0.6 T], V(S,0.8 T], V(S,T]}, {S,20,50}];

◮ The fixed domain transformation

V (S, t) =W (x, t), where x = ln (S/B(t)) , x ∈ (0,∞),

transforms the problem from the time dependent domain
B(t) < S <∞ to the fixed domain x ∈ (0,∞).

◮ For an exponential barrier function B(t) = bEe−α(T−t) we
have Ḃ(t) = αB(t).

◮ After performing necessary substitutions we obtain the
PDE for the transformed function W (x, t)

∂W

∂t
+
σ2

2

∂2W

∂x2
+

(
r − σ2

2
− α

)
∂W

∂x
− rW = 0.

◮ The terminal condition for the Call option case:

W (x, T ) = Emax(bex − 1, 0).

◮ The left side boundary condition

W (0, t) = R(t).
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Exotic derivatives - Asian options
◮ An example of an Asian option:

This is a Call option with terminal pay-off
V (S, T ) = max(S − E, 0) except of the fact that the
exercise price E is not prescribed but it is given as the
arithmetic (or geometric) average of the underlying asset
prices St within the time interval [0, T ], i.e. the terminal
pay-off diagram is:

V (S, T ) = max(S −AT , 0)

arithmetic average geometric average

At =
1

t

∫ t

0
Sτdτ, lnAt =

1

t

∫ t

0
lnSτdτ.

In the discrete form

Atn =
1

n

n∑

i=1

Sti , lnAtn =
1

n

n∑

i=1

lnSti ,

where t1 < t2 < ... < tn, and ti+1 − ti = 1/n.

A numerical solution - an example of a solution to the
Down-and-out barrier Call option
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Graph of the solution of the barrier Call option for different times t ∈ [0, T ]
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Exotic derivatives - Asian options

◮ Assume the asset price follows SDE: dS = µSdt+ σSdw

◮ The average A is the arithmetic average, i.e.
At =

1
t

∫ t
0 Sτdτ

Then
dA

dt
= − 1

t2

∫ t

0
Sτdτ +

1

t
St =

St −At
t

an hence, in the differential form, dA = S−A
t dt.

◮ In general we may assume

dA = Af

(
S

A
, t

)
dt, f(x, t) =

x− 1

t
, f(x, t) =

lnx

t

general form arithmetic average geometric average

◮ Construct the option price as a function

V = V (S,A, t)

It depends on a new variable: A - the average of the asset
price
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Simulated price of the underlying asset and the corresponding

arithmetic average.
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Exotic derivatives - Asian options

◮ The pay-off diagram V (S,A, T ) = max(S −A, 0) can be
rewritten as V (S,A, T ) = Amax(S/A − 1, 0)

Use the change of variables ⇓

V (S,A, t) = AW (x, t), where x =
S

A
, x ∈ (0,∞)

◮ The parabolic PDE for the transformed function W (x, t)
read as follows:

∂W

∂t
+
σ2

2
x2
∂2W

∂x2
+rx

∂W

∂x
+f(x, t)

(
W − x

∂W

∂x

)
−rW = 0

◮ The terminal condition W (x, T ) = max(x− 1, 0) for an
Asian Call option

◮ Although the solution can be found in a series expansion
w.r. to Bessel functions it is more convenient to solve it
numerically

◮ Itō’s lemma (extension to the function V = V (S,A, t))

dV =
∂V

∂S
dS +

∂V

∂A
dA+

(
∂V

∂t
+
σ2

2
S2 ∂

2V

∂S2

)
dt

=
∂V

∂S
dS +

(
∂V

∂t
+
σ2

2
S2 ∂

2V

∂S2
+
∂V

∂A
Af

(
S

A
, t

))
dt.

⇓ notice that dA = Af(S/A, t)dt ⇓

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
+Af

(
S

A
, t

)
∂V

∂A
− rV = 0

◮ This is a two dimensional parabolic equation for pricing
Asian type of average strike options
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Exotic derivatives - Asian options
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3D and countourplot graphs of the solution W (x, t) of the transformed function

W (x, τ) for parameters σ = 0.4, r = 0.04, D = 0, T = 1.

A numerical solution - a simple code in the software
Mathematica

sigma=0.4; r=0.04; d=0; T=1; t=0.9; xmax=8;

PayOff[x_] := If[x - 1 > 0, x - 1, 0];

riesenie = NDSolve[{

D[w[x, tau],tau] == (sigma^2/2) x^2 D[w[x, tau], x,x]

+ (r - d)*x * D[w[x, tau], x]

+ ((x - 1)/(T - tau))*(w[x, tau] - x*D[w[x, tau], x])

- r*w[x, tau],

w[x, 0] == PayOff[x],

w[0, tau] == 0,

w[xmax, tau] == PayOff[xmax]},

w, {tau, 0, t}, {x, 0, xmax}

];

w[x_, tau_] := Evaluate[w[x, tau] /. riesenie[[1]] ];

V[tau_, S_, A_] := A w[S/A, tau];

Plot3D[ V[t, S, A], {S, 10, 120}, {A, 50, 80}];
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American type of options

Chapter 7

◮ American options

◮ Early exercise boundary

◮ Formulation in the form of a variational inequality

◮ Projected successive over relaxation method (PSOR)
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3D and countourplot graphs of the Asian average strike Call option

V (S,A, t) = AW (S/A, t) for the time t = 0.1 and T = 1 (i.e. T − t = 0.9)
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American type of options

◮ American options gives the holder more flexibility in
exercising

◮ An American option therefore has higher value compared
to the European option

⇓

V ac(S, t) ≥ V ec(S, t), V ap(S, t) ≥ V ep(S, t)

◮ An American option at time t < T must always have
higher value than the one in expiry, i.e.

⇓

V ac(S, t) ≥ V ac(S, T ) = max(S − E, 0),

V ap(S, t) ≥ V ap(S, T ) = max(E − S, 0)

ec, ep indicates the European type of an option
ac, ap indicates the American type of an option

◮ American options are most traded types of options
(more than 95% of option contracts are of the American
type)

◮ The difference between European and American options
consists in the possibility of early exercising the option
contract within the whole time interval [0, T ], T is the
maturity.

◮ the case of Call (or Put) option:

◮ American Call (Put) option is an agreement (contract)
between the writer and the holder of an option. It
represents the right BUT NOT the obligation to purchase
(sell) the underlying asset at the prescribed exercise price
E at ANYTIME in the forecoming interval [0, T ] with the
specified time of maturity t = T .

◮ The question is: What is the price of such an option (the
option premium) at the time t = 0 of contracting. In other
words, how much should the holder of the option pay the
writer for such a security.
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American type of options
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Comparison of solutions V ec(S, t) and V ac(S, t) of European and American Call

options at some time 0 ≤ t < T .

◮ The problem is to find both the solution V ac(S, t) as well
as the position of the free boundary Sf (t) (the early
exercise boundary).

◮ If S < Sf (t), then V
ac(S, t) > max(S − E, 0) and we keep

the Call option

◮ If S ≥ Sf (t), then V
ac(S, t) = max(S − E, 0) and we

exercise the Call option
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Solutions V (S, t), 0 ≤ t < T, for a European Call option (left) and Put option

(right).

The solutions V ec(S, t), V ep(S, t) always intersect their payoff
diagrams V (S, T ) ⇒ these are not the graphs of
V ac(S, t), V ap(S, t)

◮ In the left figure we plotted the price V ec(S, t) of a Call option on the asset
paying dividends with a continuous dividend yield rate D > 0.

◮ The Black-Scholes equation for pricing the option is:

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D)S

∂V

∂S
− rV = 0 ,

V (S, T ) = max(S − E, 0), S > 0, t ∈ [0, T ] .
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American type of options

Smooth pasting principle

◮ boundary condition V (Sf (t), t) = Sf (t)− E
represents the continuity of the function V ac(S, t) across
the free boundary Sf (t)

◮ boundary condition ∂V
∂S (Sf (t), t) = 1

represents the C1 continuity of the function V ac(S, t)
across the free boundary Sf (t)

The C1 continuity of a solution (smooth pasting principle) can be deduced from
the optimization principle according to which the price of an American option is
given by

V ac(S, t) = max
η

V (S, t; η),

where the maximum is taken over the set of all positive smooth functions

η : [0, T ] → R+ and V (S, t; η) is the solution to the Black–Scholes equation on a

time dependent domain 0 < t < T, 0 < S < η(t), and satisfying the terminal

pay-off diagram and Dirichlet boundary conditions

V (0, t; η) = 0, V (η(t), t; η) = η(t) −E.

1. the function V (S, t) is a solution to the Black–Scholes PDE

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ (r −D)S

∂V

∂S
− rV = 0

on a time dependent domain 0 < t < T and 0 < S < Sf (t).

2. The terminal pay–off diagram for the Call option

V (S, T ) = max(S − E, 0).

3. Boundary conditions for a solution V (S, t) (case of an
American Call option)

V (0, t) = 0, V (Sf (t), t) = Sf (t)− E,
∂V

∂S
(Sf (t), t) = 1,

at the boundary points S = 0 a S = Sf (t) for 0 < t < T
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American type of options
Some recent and so so recent results on the early exercise
behavior

◮ According to the paper by Dewynne et al. (1993) and
Ševčovič (2001) the early exercise behavior of an American
Call option close to the expiry T is given by

Sf (t) ≈ K
(
1 + 0.638σ

√
T − t

)
, K = Emax(r/D, 1)

◮ According to the paper by Stamicar, Chadam, Ševčovič
(1999) the early exercise behavior of an American Put
option close to the expiry T is given by

Sf (t) = Ee−(r−σ2

2
)(T−t)eσ

√
2(T−t)η(t) as t→ T,

where η(t) ≈ −
√

− ln
[
2r
σ

√
2π(T − t)er(T−t)

]

◮ Recently Zhu in papers from 2006, 2007 constructed an
explicit approximation solution to the whole early exercise
boundary problem obtained by the inverse Laplace
transformation.
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Behavior of the free boundary Sf (t) (early exercise boundary) for the American

Call (left) and Put (right) option.

For the American Put option we must change:
◮ the time dependent domain to 0 < t < T and S > Sf (t);

◮ the terminal pay-off diagram for the Put option V (S, T ) = max(E − S, 0)

◮ boundary conditions

V (+∞, t) = 0, V (Sf (t), t) = E − Sf (t),
∂V

∂S
(Sf (t), t) = −1,
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American type of options

An analogy with the obstacle problem from the linear elasticity
theory.
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Left: a solution ũ of the unconstrained problem −ũ′′(x) = b(x), ũ(0) = ũ(1) = 0,
and the obstacle (dashed line) g(x).
Right: a solution u to the obstacle problem:

◮ −u′′(x) ≥ b(x), u(x) ≥ g(x), u(0) = u(1) = 0,

and such that

◮ if u(x) > g(x) ⇒ −u′′(x) = b(x)

◮ if u(x) = g(x) ⇒ −u′′(x) < b(x)

Valuation of American options by a variational inequality

◮ for an American Call option one can show that on the
whole domain 0 < S <∞ and 0 ≤ t < T the following
inequality holds:

L[V ] ≡ ∂V

∂t
+
σ2

2
S2 ∂

2V

∂S2
+ (r −D)S

∂V

∂S
− rV ≤ 0.

◮ Comparison with the terminal payoff diagram

V (S, t) ≥ V (S, T ) = max(S −E, 0).

◮ A variational inequality for American Call option
◮ If V (S, t) > max(S − E, 0) ⇒ L[V ](S, t) = 0
◮ If V (S, t) = max(S − E, 0) ⇒ L[V ](S, t) < 0
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American type of options

Implicit finite difference approximation and transformation to
the linear complementarity problem

◮ spatial and time discretization yields the finite difference
mesh

xi = ih, i = ...,−2,−1, 0, 1, 2, ..., τj = jk, j = 0, 1, ...,m.

h = L/n, k = T/m.

◮ approximation of the solution u at (xi, τj) will be denoted
by

uji ≈ u(xi, τj), and also gji ≈ g(xi, τj)

◮ transformation of the boundary condition at
x = ±L,L≫ 1,

uj−N = φj := g(x−N , τj), ujN = ψj := g(xN , τj).

Idea of the Project Successive Over Relaxation method

◮ using the transformation V (S, t) = Ee−αx−βτu(x, τ), where
τ = T − t, x = ln(S/E), leads to the variational inequality

(
∂u

∂τ
− σ2

2

∂2u

∂x2

)
(u(x, τ)− g(x, τ)) = 0,

∂u

∂τ
− σ2

2

∂2u

∂x2
≥ 0, u(x, τ) − g(x, τ) ≥ 0

for any x ∈ R, 0 < τ < T .

◮ g(x, τ) = eαx+βτ max(ex − 1, 0) – the transformed pay-off
diagram,

◮ It satisfies the initial condition

u(x, 0) = g(x, 0), for any x ∈ R.

Here: α = r−D
σ2 − 1

2
, β = r+D

2
+ σ2

8
+ (r−D)2

2σ2
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American type of options
In each time level the goal is to solve linear complementarity

Au ≥ b, u ≥ g,

(Au− b)i(ui − gi) = 0 for each i.

◮ We define a recurrent sequence of approximative solution as

u0 = 0, up+1 = max (Tωu
p + cω, g) for p = 1, 2, ...,

where the maximum is taken component-wise
◮ here Tω is the linear iteration operator arising from the

classical SOR method for the linear problem Au = b. Here
cω = ω(D+ ωL)−1b

◮ in terms of vector components, the Projected SOR
algorithm reduces to

up+1
i = max

[
ω

Aii


bi −

∑

j<i

Aiju
p+1
j −

∑

j>i

Aiju
p
j


+(1−ω)upi , gi

]

where ω ∈ (1, 2) is a relaxation parameter, typically ω ≈ 1.8

The linear complementarity problem for a solution of the
discretized variational inequality can be rewritten as follows:

Auj+1 ≥ uj + bj, uj+1 ≥ gj+1 for each j = 0, 1, ...,m − 1,

(Auj+1 − uj − bj)i(u
j+1 − gj+1)i = 0 for each i,

where u0 = g0. The matrix A is a tridiagonal matrix arising
from the implicit in time discretization of the parabolic
equation ∂τu = σ2

2 ∂
2
xu, i.e.

A =




1 + 2γ −γ 0 · · · 0

−γ 1 + 2γ −γ
...

0 · · · 0
... −γ 1 + 2γ −γ
0 · · · 0 −γ 1 + 2γ


 , bj =




γφj+1

0
.
..

0
γψj+1



,

where γ = σ2k/(2h2).
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American type of options
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Two 3D views on the graph of the solution (S, t) 7→ V (S, t) for
the price of the American Call option. Five selected time
profiles and comparison with the terminal pay-off function. One
can see the effect of the smooth pasting of the solution to the
pay-off function.

A numerical solution to the problem of valuing American Call
and Put options by the Projected Successive Over Relaxation
method
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A solution S 7→ V (S, t) of an American Call (left) and Put
option (right) obtained by solving the variational inequality by
means of the Projected SOR (PSOR) algorithm.
Dotted curves corresponds to European type of options
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Nonlinear options pricing models

Nonlinear derivative pricing models

Classical Black-Scholes theory does not take into account

◮ Transaction costs (buying or selling assets, bid-ask spreads)

◮ Risk from unprotected (non hedged) portfolio

◮ Other effects
◮ feedback effects on the asset price in the presence of a

dominant investor

◮ utility function effect of investor’s preferences

Question: how to incorporate both transaction costs and risk
arising from a volatile portfolio into the Black-Scholes equation
framework?

Chapter 8

◮ Modeling transaction costs

◮ Modeling investor’s risk preferences

◮ Jumping volatility model

◮ Risk adjusted pricing methodology model

◮ Numerical approximation scheme
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Transaction costs – Leland model

Transaction costs are described following the Hoggard, Whalley
and Wilmott approach (1994) (also referred to as Leland’s
model (1985) )

dΠ = dV + δdS − CSk

where

◮ C - the round trip transaction cost per unit dollar of
transaction, C = (Sask − Sbid)/S

◮ k is the number of assets sold or bought during one time
lag. Notice that

k ≈ |∆δ| = |∆∂SV | ≈ |∂2SV ||dS|, E(|dW |) =
√

2

π

√
dt

◮ Leland model for pricing Call and Put options under the
presence of transaction costs

◮ Hoggard, Whaley and Wilmott model - generalization to
other options

Volatility σ = σ(∂2SV ) is given by

σ2 = σ̂2(1− Le sgn(∂2SV ))

where σ̂ > 0 is a constant historical volatility and
Le =

√
2/πC/(σ̂

√
∆t) is the Leland number where ∆t is time

lag between consecutive transactions

∂V

∂t
+ (r −D)S

∂V

∂S
+
σ2(∂2SV, S, t)

2
S2∂

2V

∂S2
− rV = 0
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Frey - Stremme model for a large trader

◮ Frey and Stremme (1997) introduced directly the asset
price dynamics in the case when the large trader chooses a
given stock-trading strategy.

Volatility σ = σ(∂2SV, S) is given by

σ2 = σ̂2
(
1− ̺S∂2SV

)−2

where σ̂2, ̺ > 0 are constants.

∂V

∂t
+ (r −D)S

∂V

∂S
+
σ2(∂2SV, S, t)

2
S2∂

2V

∂S2
− rV = 0

∂V

∂t
+

1

2
σ2S2

(
1− Le sgn(∂2SV )

) ∂2V
∂S2

+ rS
∂V

∂S
− rV = 0

where Le =
√

2
π

C
σ
√
∆t

is the so-called Leland number depending
on

◮ C - the round trip transaction cost per unit dollar of
transaction, C = (Sask − Sbid)/S

◮ ∆t - the lag between two consecutive portfolio adjustments
(re-hedging)

For a plain vanilla option (either Call or Put) the sign of ∂2SV is
constant and therefore the above model is just the
Black-Scholes equation with lowered volatility.
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Risk adjusted pricing methodology

◮ transaction costs are described following the Hoggard,
Whalley and Wilmott approach (Leland’s model)

◮ the risk from the unprotected volatile portfolio is described
by the variance of the synthetised portfolio.

⇓

1. Transaction costs as well as the volatile portfolio risk
depend on the time-lag between two consecutive
transactions.

2. Minimizing their sum yields the optimal length of the
hedge interval - time-lag

3. It leads to a fully nonlinear parabolic PDE:

RAPM model originally proposed by Kratka (1998) and
further analyzed by Sevcovic and Jandacka (2005).

◮ If transaction costs are taken into account perfect
replication of the contingent claim is no longer possible

◮ assuming that investor’s preferences are characterized by
an exponential utility function Barles and Soner (1998)
derived a nonlinear Black-Scholes equation

Volatility σ = σ(∂2SV, S, t) is given by

σ2 = σ̂2
(
1 + Ψ(a2er(T−t)S2∂2SV )

)2

where Ψ(x) ≈ (3/2)
2
3x

1
3 for x close to the origin. σ̂2, κ > 0 are

constants.

∂V

∂t
+ (r −D)S

∂V

∂S
+
σ2(∂2SV, S, t)

2
S2∂

2V

∂S2
− rV = 0
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∂V

∂t
+

1

2
σ̂2S2

(
1− Le sgn (∂2SV )

) ∂2V
∂S2

+ rS
∂V

∂S
− rV = 0

where Le =
√

2
π

C
σ̂
√
∆t

is the so-called Leland number depending
on

◮ C - the round trip transaction cost per unit dollar of
transaction, C = (Sask − Sbid)/S

◮ ∆t - the lag between two consecutive portfolio adjustments
(re-hedging)

For a plain vanilla option (either Call or Put) the sign of ∂2SV is
constant and therefore the above model is just the
Black-Scholes equation with lowered volatility.

Transaction costs under δ - hedging

Transaction costs are described following the Hoggard, Whalley
and Wilmott approach (1994)

◮ adopt δ = ∂V
∂S hedging

◮ construct a portfolio Π = V − δS donsisting of one option
and δ underlying assets

◮ compare risk part of the portfolio to secure bonds

dΠ = dV + δdS − CSk

r(V − δS)dt = rΠdt = dΠ

where

◮ C - the round trip transaction cost per unit dollar of
transaction, C = (Sask − Sbid)/S

◮ k is the number of assets sold or bought during one time
lag.

k ≈ |∆δ| = |∆∂SV | ≈ |∂2SV ||dS|, E(|dW |) =
√

2

π

√
dt
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◮ Using Itô’s formula the variance of ∆Π can be computed as
follows:

V ar(∆Π) = E
[
(∆Π− E(∆Π))2

]

= E

[(
(∂SV + δ) σ̂Sφ

√
∆t+

1

2
σ̂2S2Γ

(
φ2 − 1

)
∆t

)2
]
.

where φ ≈ N(0, 1) and Γ = ∂2SV .

◮ assuming the δ-hedging of portfolio adjustments, i.e. we
choose δ = −∂SV . For the risk premium rV P we have

rV P =
1

2
Rσ̂4S2Γ2∆t .

Risk adjusted pricing methodology model

◮ a portfolio Π consists of options and assets Π = V + δS

◮ is the portfolio Π is highly volatile an investor usually asks
for a price compensation.

Volatility of a fluctuating portfolio can be measured by the
variance of relative increments of the replicating portfolio

⇓

introduce the measure rV P of the portfolio volatility risk as
follows:

rV P = R
V ar

(
∆Π
S

)

∆t
.
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Total risk rTC + rV P

Dt

rTC+rVP

rTC

rVP

Dt

Tran. costs risk rTC Volatile portfolio risk rV P Total risk
rTC + rV P

Both rTC and rV P depend on the time lag ∆t

⇓
Minimizing the total risk with respect to the time lag ∆t yields

min
∆t

(rTC + rV P ) =
3

2

(
C2R

2π

) 1
3

σ̂2|S∂2SV | 43

Balance equation for Π = V + δS

◮ dΠ = dV + δdS

◮ dΠ = rΠdt+ (rTC + rV P )Sdt

Using Itô’s formula applied to V = V (S, t) and eliminating
stochastic term by taking δ = −∂SV hedge we obtain

∂tV +
σ̂2

2
S2∂2SV + rS∂SV − rV = (rTC + rV P )S

where

◮ rTC = C|Γ|σ̂S√
2π

1√
∆t

is the transaction costs measure

◮ rV P = 1
2Rσ̂

4S2Γ2∆t is the volatile portfolio risk
measure

and Γ = ∂2SV .
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∂tV +
1

2
σ̂2S2

(
1± µ(S∂2SV )1/3

)
∂2SV + rS∂SV − rV = 0

A comparison of Bid ( − sign ) and Ask (+ sign) option prices
computed by means of the RAPM model. The middle dotted
line is the option price computed from the Black-Scholes
equation.
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Nonlinear PDE equation for RAPM

∂tV +
1

2
σ̂2S2

(
1− µ(S∂2SV )1/3

)
∂2SV + rS∂SV − rV = 0

S > 0, t ∈ (0, T ) where
µ = 3

(
C2R

2π

) 1
3

fully nonlinear parabolic equation

◮ If µ = 0 (i.e. either R = 0 or C = 0) the equation reduces
to the classical Black-Scholes equation

◮ minus sign in front of µ > 0 corresponds to Bid option
price Vbid (price for selling option).
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The Risk adjusted Black-Scholes equation can be viewed as an
equation with a variable volatility coefficient

∂tV +
σ2(S, t)

2
S2∂2SV + rS∂SV − rV = 0

where σ2(S, t) depends on a solution V = V (S, t) as follows:

σ2(S, t) = σ̂2
(
1− µ(S∂2SV (S, t))1/3

)
.

Dependence of σ(S, t) on S is depicted in the left for t close to
T . The mapping (S, t) 7→ σ(S, t) is shown in the right.

E
S

Σ

Σ
�
HS,ΤL

ES
T

0

t

Σ
�
HS,ΤL

XS

RAPM and explanation of volatility smile

Volatility smile phenomenon is non-constant, convex behavior
(near expiration price E) of the implied volatility computed
from classical Black-Scholes equation.

Volatility smile for DAX index

By RAPM model we can explain the volatility smile
analytically.
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∂τH = ∂2xβ(H) + ∂xβ(H) + r∂xH τ ∈ (0, T ), x ∈ R

Hj
i ≈ H(ih, jk) ⇓ k =

T

m
, h =

L

n

ajiH
j
i−1 + bjiH

j
i + cjiH

j
i+1 = dji , Hj

−n = 0, Hj
n = 0 ,

for i = −n+ 1, ..., n − 1, and j = 1, ...,m, where H0
i = H(xi, 0)

aji = − k

h2
β′(Hj−1

i−1 ) +
k

h
r , bji = 1− (aji + cji ) ,

cji = − k

h2
β′(Hj−1

i ) , dji = Hj−1
i +

k

h

(
β(Hj−1

i )− β(Hj−1
i−1 )

)
.

Numerical scheme for quasilinear equation

◮ denote β(H) = σ2

2 (1− µH
1
3 )H

◮ reverse time τ = T − t (time to maturity)

◮ use logarithmic scale x = ln(S/E) (x ∈ R↔ S > 0)

◮ introduce new variable H(x, τ) = S∂2SV (S, t)

Then the RAPM equation can be transformed into quasilinear
equation

∂τH = ∂2xβ(H) + ∂xβ(H) + r∂xH τ ∈ (0, T ), x ∈ R

◮ Boundary conditions: H(−∞, τ) = H(∞, τ) = 0

◮ Initial condition: H(x, 0) = PDF (d1)

σ
√
τ∗

d1 =
x+(r+σ2

2
)τ

σ
√
τ∗

where 0 < τ∗ << 1 is the switching time.
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One week behavior of Microsoft stocks (March 20 - 27, 2003)
and Call options with expiration date April 19, 2003.
Computed implied volatilities σRAPM and risk premiums R.

Calibration of RAPM model

Intra-day behavior of Microsoft stocks (April 4, 2003) and
shortly expiring Call options with expiry date April 19, 2003.
Computed implied volatilities σRAPM and risk premium
coefficients R.
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Similarly as in previously studied nonlinear Black–Scholes
models, we can introduce the new variable H(x, τ) = S∂2SV,
where x = ln(S/E) and τ = T − t. We obtain

∂H

∂τ
=
∂2β

∂x2
+
∂β

∂x
+ r

∂H

∂x
,

where β = β(H(x, τ)) is given by

β(H) =





σ̂21
2 H if H < 0,

σ̂22
2 H if H > 0.

We have to impose the boundary conditions corresponding to
the limits S → 0 (x→ −∞) and S → ∞ (x→ +∞) for
H(x, τ) = S∂2SV,

H(−∞, τ) = H(∞, τ) = 0 , τ ∈ (0, T ) .

Jumping volatility nonlinear model

Avellaneda, Levy and Paras proposed a model is to describe
option pricing in incomplete markets where the volatility σ of
the underlying stock process is uncertain but bounded from
bellow and above by given constants σ1 < σ2.

◮ Avellaneda, Levy and Paras nonlinear extension of the
Black–Scholes equation

∂V

∂t
+ (r −D)S

∂V

∂S
+
σ2(∂2SV )

2
S2∂

2V

∂S2
− rV = 0

◮ where the volatility depends on the sign of Γ = ∂2SV

σ2(S2∂2SV ) =

{
σ̂21, if ∂2SV < 0,
σ̂22, if ∂2SV > 0.
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Jumping volatility nonlinear model
Transforming back to the original variable V (S, t) we obtain
from S∂2SV = H(x, τ) where x = ln(S/E) and τ = T − t that

V (S, t) =

∫ ∞

−∞
(S − Eex)+H(x, T − t)dx,

where E = E1.
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A comparison of the Call option price V (S, 0) (left) and its delta

(right) computed from the jumping volatility model (solid line) by the

linear Black–Scholes. Option prices obtained from the linear

Black–Scholes equation are depicted by dashed curved (for volatility

σ1) and fine-dashed curve (for volatility σ2).

Results of numerical approximation of the jumping volatility
model for the case of the bullish spread.

◮ bullish spread strategy = buying one Call option with
exercise price E = E1 and selling one Call option with
E2 > E1

V (S, T ) = (S − E1)
+ − (S − E2)

+.

◮ in terms of the transformed variable H we have As for the
initial condition we have

H(x, 0) = δ(x − x0)− δ(x− x1), x ∈ R,

where x0 = 0, x1 = ln(E2/E1).
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Plots of the initial approximation of the function H(x, 0) (left) and the solution

profile H(x, T ) at τ = T (right).
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Interest rate derivatives derivatives
Modeling the short rate (overnight) stochastic process
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Daily behavior of the overnight interest rate of BRIBOR in 2007.

◮ modeling the short rate r = r(t) by a solution to a one
factor stochastic differential equation

dr = µ(t, r)dt+ σ(t, r)dw.

◮ µ(t, r)dt represents a trend or drift of the process
◮ σ(t, r) represents a stochastic fluctuation part of the process

Chapter 9

◮ A stochastic differential equation for modeling the short
interest rate process

◮ Vaš́ııček and Cox-Ingersoll–Ross models for the short rate
process

◮ Interest rate derivatives – zero coupons bonds

◮ Pricing interest rate derivatives by means of a solution to
the parabolic partial differential equation
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Interest rate derivatives derivatives

Modeling the short rate (overnight) stochastic process

Oldřich Alfons Vaš́ıček, graduated from FJFI and Charles University in Prague

EUROLIBOR Short-rate (overnight) and 1 year interest rates PRIBOR

Modeling the short rate (overnight) stochastic process

◮ Among short rate models the dominant position have the
mean-reversion processes in which µ(t, r) = κ(θ − r). The
solution (if σ = 0) is therefore attracted to the stable
equilibrium θ as t→ ∞.

◮ A short overview of one factor interest rate models

Model Stochastic equation for r
Vaš́ıček dr = κ(θ − r)dt + σdw
Cox–Ingersoll–Ross dr = κ(θ − r)dt + σ

√
rdw

Dothan dr = σrdw
Brennan–Schwarz dr = κ(θ − r)dt + σrdw
Cox–Ross dr = βrdt + σrγdw
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Interest rate derivatives derivatives
The yield curves R(t, T )
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The term structure (the yield curve) R(t, T ) of governmental bonds in % p.a. from
t =27.5.2008 as a function of the yield R with respect to the time to maturity
T − t.

Australia, Brazil, Japan United Kingdom.

Bond – a derivative of the underlying short rate process

◮ Term structure models describe a functional dependence
between the time to maturity of a discount bond and its
present price

◮ Yield of bonds, as a function of maturity, forms the
so-called term structure of interest rates

◮ If we denote by P = P (t, T ) the price of a bond paying no
coupons at time t with maturity at T then the term
structure of yields R(t, T ) is given by

P (t, T ) = e−R(t,T )(T−t), i.e. R(t, T ) = − logP (t, T )

T − t
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Interest rate derivatives derivatives
Modeling the bond price by a solution to a PDE

◮ Suppose that the underlying short rate process follows the
SDE:

dr = µ̃(t, r)dt+ σ̃(t, r)dw.

◮ for the Vaš́ıček model: dr = κ(θ − r)dt + σdw
◮ for the Cox–Ingersoll–Ross model: dr = κ(θ− r)dt+ σ

√
rdw

◮ Suppose that the price of a zero coupon bond P is a
smooth function P = P (r, t, T ) of the short rate r, actual
time t and the maturity time T (t < T ).

◮ by Itō’s lemma we have

dP =

(
∂P

∂t
+ µ̃

∂P

∂r
+
σ̃2

2

∂2P

∂r2

)

︸ ︷︷ ︸
µB(t,r)

dt+ σ̃
∂P

∂r︸ ︷︷ ︸
σB(t,r)

dw

where µB(r, t) and σB(r, t) stand for the drift and volatility
of the bond price

The time dependence yields and short (overnight) rates

PRIBOR: Short-rate (overnight) and 1 year interest rates

PRIBOR = PRague Interbank Offering Rate

◮ The goal is to find a functional dependence of the yield R
and the underlying short rate r

◮

P = P (r, t, T ) = P (r, T − t)

where

R(t, T ) = − lnP (t, T )

T − t
.
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Interest rate derivatives derivatives
Modeling the bond price by a solution to a PDE

◮ similarly as in the case of options our goal is to eliminate
the volatile (fluctuating) part of the portfolio of bonds
(tenor)

◮ it can be accomplished by taking

∆ = −σB(t, r, T1)
σB(t, r, T2)

◮ then the differential of the risk-neutral portfolio of bonds
(tenor)

dπ =

(
µB(t, r, T1)−

σB(t, r, T1)

σB(t, r, T2)
µB(t, r, T2)

)
dt.

◮ to avoid the possibility of arbitrage the yield of the
portfolio should be equal to the risk-less short interest rate
r, i.e. dπ = rπdt. Therefore

µB(t, r, T1)−
σB(t, r, T1)

σB(t, r, T2)
µB(t, r, T2) = rπ .

Modeling the bond price by a solution to a PDE

◮ Construct a portfolio from two bonds with two different
maturities T1 and T2

◮ It consits of one bond with maturity T1 and ∆ – bonds
with maturity T2

◮ Its value is therefore π = P (r, t, T1) + ∆P (r, t, T2)

◮ the change of the portfolio dπ is equal to:

dπ = dP (r, t, T1) + ∆dP (r, t, T2)

= (µB(r, t, T1) + ∆µB(r, t, T2)) dt

+(σB(r, t, T1) + ∆σB(r, t, T2)) dw.
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Interest rate derivatives derivatives
Modeling the bond price by a solution to a PDE

◮ ReCall that

µB(t, r) =
∂P

∂t
+ µ̃

∂P

∂r
+
σ̃2

2

∂2P

∂r2

σB(t, r) = σ̃
∂P

∂r

where we supposed that the underlying short rate process
follows the SDE: dr = µ̃(t, r)dt+ σ̃(t, r)dw.

◮ In summary, we can deduce the parabolic PDE for the zero
coupon bond price

∂P

∂t
+ (µ̃(r, t)− λ̃(r, t)σ̃(r, t))

∂P

∂r
+
σ̃2(r, t)

2

∂2P

∂r2
− rP = 0.

◮ At the maturity t = T the price of the bond is prescribed
and it is independent of the short rate r, i.e.

P (r, T, T ) = 1 for any r > 0.

Modeling the bond price by a solution to a PDE

◮ inserting the value of the portfolio π we obtain

µB(t, r, T1)−
σB(t, r, T1)

σB(t, r, T2)
µB(t, r, T2)

= r

(
P (t, r, T1)−

σB(t, r, T1)

σB(t, r, T2)
P (t, r, T2)

)
.

◮ Since maturities T1 and T2 were arbitrary we may conclude
that there is a common value λ̃ such that

λ̃(r, t) =
µB(r, t, T ) − rP (r, t, T )

σB(r, t, T )
for any T > t.

◮ λ̃ may depend on r but not on the maturity T , i.e.
λ̃ = λ̃(r).
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Interest rate derivatives derivatives
An explicit solution for the Cox–Ingersoll–Ross model

◮ construct a solution in the form P (r, τ) = A(τ)e−B(τ)r

◮ inserting this ansatz into the CIR equation and comparing
the terms of the order 1 and r we obtain

Ȧ+ κθAB = 0,

Ḃ + (κ+ λσ)B +
σ2

2
B2 − 1 = 0,

◮ functions A, B satisfy initial conditions A(0) = 1, B(0) = 0
◮ the explicit solution to the system of ODEs for A,B is:

B(τ) =
2
(
eφτ − 1

)

(ψ + φ) (eφτ − 1) + 2φ
,

A(τ) =

(
2φe(φ+ψ)τ/2

(φ+ ψ)(eφτ − 1) + 2φ

) 2κθ
σ2

,

where ψ = κ+ λσ, φ =
√
ψ2 + 2σ2 =

√
(κ+ λσ)2 + 2σ2.

Modeling the bond price by a solution to a PDE

◮ for the Vaš́ıček model where dr = κ(θ − r)dt+ σdw we take
λ̃(r, t) ≡ λ and we obtain the PDE:

−∂P
∂τ

+ (κ(θ − r)− λσ)
∂P

∂r
+
σ2

2

∂P

∂r2
− rP = 0

◮ for the Cox–Ingersoll–Ross model where
dr = κ(θ − r)dt+ σ

√
rdw we take λ̃(r, t) = λ

√
r and we

obtain the PDE:

−∂P
∂τ

+ (κ(θ − r)− λσr)
∂P

∂r
+
σ2

2
r
∂2P

∂r2
− rP = 0,

◮ In both models τ = T − t stands for the time remaining to
maturity of the bond
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Interest rate derivatives derivatives

An explicit solution for the Vaš́ıček model

0 0.1 0.2 0.3 0.4 0.5
T

0.035

0.04

0.045
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R

0 0.1 0.2 0.3 0.4 0.5
T

0.035

0.04

0.045

0.05

R

The term structure of interest rates R(r, t, T ) on bonds computed by the Vaš́ıček

model for two different values of the short rate r (r = 0.03 and r = 0.05) at given

time t < T .

An explicit solution for the Vaš́ıček model

◮ construct a solution in the form P (r, τ) = A(τ)e−B(τ)r

◮ one can construct an analogous system of ODEs for
functions A,B

◮ the explicit solution of the system of ODEs yields:

B(τ) =
1− e−κτ

κ
,

lnA(τ) =

[
1

κ
(1− e−κτ )− τ

]
R∞ − σ2

4κ3
(1− e−κτ )2,

where R∞ = θ − λσ
κ − σ2

2κ2 .
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Itō’s lemma and Fokker–Planck equation

◮ Suppose that a process {x(t), t ≥ 0} follows a SDE (It0̄’s
process)

dx = µ(x, t)dt + σ(x, t)dW,

where µ a drift function and σ is a volatility of the process.

◮ Denote by

G = G(x, t) = P (x(t) < x | x(0) = x0)

the conditional probability distribution function of the
process {x(t), t ≥ 0} starting almost surely from the initial
condition x0.

◮ Then the cumulative distribution function G can be
computed from its density function g = ∂G/∂x where
g(x, t) is a solution to the Fokker–Planck equation:

∂g

∂t
=

1

2

∂2

∂x2
(
σ2g
)
− ∂

∂x
(µg) , g(x, 0) = δ(x − x0).

Appendix
◮ Stochastic differential calculus

◮ Density distribution function and the Fokker–Planck
equation

◮ Multidimensional extension of Itō’s lemma
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Itō’s lemma and Fokker–Planck equation

Intuitive proof of the Fokker-Planck equation:

◮ Let V = V (x, t) be any smooth function with a compact
support, i.e. V ∈ C∞

0 (R× (0, T ))

◮ By Itō’s lemma we have

dV =

(
∂V

∂t
+
σ2

2

∂2V

∂x2
+ µ

∂V

∂x

)
dt+ σ

∂V

∂x
dW.

◮ Let Et be the mean value operator with respect to the
random variable having the density function g(., t), i.e.

Et(V (., t)) =

∫

R
V (x, t) g(x, t) dx

Here δ(x− x0) is the Dirac function with support at x0. It
means:

δ(x − x0) =

{
0 if x 6= x0,

+∞ if x = x0
and

∫ ∞

−∞
δ(x − x0)dx = 1.

In our case we have, at the origin t = 0,

G(x, 0) =

∫ x

−∞
δ(ξ − x0)dξ =

{
0 if x < x0,
1 if x ≥ x0,

so the process {x(t), t ≥ 0} at t = 0 is almost surely equal to x0.
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Itō’s lemma and Fokker–Planck equation
◮ Since V ∈ C∞

0 we have V (x, 0) = V (x, T ) = 0 and
V (x, t) = 0 for |x| > R, where R > 0 is sufficiently large.

◮ By integration by parts we obtain

0 =

∫ T

0

d

dt
Et(V (., t))dt =

∫ T

0
Et

(
∂V

∂t
+
σ2

2

∂2V

∂x2
+ µ

∂V

∂x

)
dt

=

∫ T

0

∫

R

(
∂V

∂t
+
σ2

2

∂2V

∂x2
+ µ

∂V

∂x

)
g(x, t) dx dt

=

∫ T

0

∫

R
V (x, t)

(
−∂g
∂t

+
1

2

∂2

∂x2
(
σ2g
)
− ∂

∂x
(µg)

)
dx dt.

◮ Since V ∈ C∞
0 (R× (0, T )) is an arbitrary function we

obtain the Fokker–Planck equation for the density
g = g(x, t):

−∂g
∂t

+
1

2

∂2

∂x2
(
σ2g
)
− ∂

∂x
(µg) = 0, x ∈ R, t > 0,

g(x, 0) = δ(x− x0), x ∈ R.

Then

dEt(V (., t)) = Et(dV (., t)) = Et

(
∂V

∂t
+
σ2

2

∂2V

∂x2
+ µ

∂V

∂x

)
dt.

because random variables σ(., t)∂V∂x (., t) and dW (t) are
independent and E(dW (t)) = 0. Therefore

Et

(
σ(., t)

∂V

∂x
(., t)dW (t)

)
= 0

Analytical and numerical methods for pricing financial derivatives 89



Itō’s lemma and Fokker–Planck equation

◮ Example: dr = κ(θ − r)dt+ σdW and and r(0) = r0.
This is the so-called Ornstein-Uhlenbeck mean reversion
process used arising the modeling of the the rate interest
rate stochastic process {r(t), t ≥ 0}.

◮ The Fokker–Planck equation reads as follows:

∂f

∂t
=
σ2

2

∂2f

∂r2
− ∂

∂r
(κ(θ − r)f)

◮ Its solution (normalized to be a probabilistic density
function)

f(r, t) =
1√
2πσ̄2t

e
− (r−r̄t)

2

2σ̄2
t

is the density function for the normal random variable
r(t) ∼ N(r̄t, σ̄

2
t ) satisfying the above SDE. Here

r̄t = θ(1− e−κt) + r0e
−κt, σ̄2t =

σ2

2κ
(1− e−2κt).

◮ Example: dx = dW and x(0) = 0 a.s.
It means x(t) is a Wiener process

◮ The Fokker–Planck (diffusion) equation reads as follows:

∂g

∂t
− 1

2

∂2g

∂x2
= 0, x ∈ R, t > 0,

◮ Its solution (normalized to be a probabilistic density)

g(x, t) =
1√
2πt

e−
x2

2t

is indeed a density function of the normal random variable
W (t) ∼ N(0, t)

90 Daniel Ševčovič



Multidimensional Itō’s lemma

◮ Multidimensional stochastic processes

dxi = µi(~x, t)dt+

n∑

k=1

σik(~x, t)dwk ,

where ~w = (w1, w2, ..., wn)
T is a vector of Wiener processes

having mutually independent increments

E(dwi dwj) = 0 for i 6= j , E((dwi)2) = dt .

◮ It can be rewritten in a vector form

d~x = ~µ(~x, t)dt+K(~x, t)d~w ,

where ~x = (x1, x2, ..., xn)
T and K is an n× n matrix

K(~x, t) = (σij(~x, t))i,j=1,...,n.

◮ Simulation of the process r(t) satisfying dr = κ(θ − r)dt + σdW and

r(0) = r0 = 0.08. Here θ = 0.04.

◮ Time steps of the evolution of the density function f(r, t) for various times t.

The process r(t) started from r0 = 0.02. The limiting value θ = 0.04.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
r

0

20
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Shift of the density function f(r, t)
is due to the drift in the F-P equation

∂f

∂t
=
σ2

2

∂2f

∂r2
− ∂

∂r
(κ(θ − r)f)
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Multidimensional Itō’s lemma

◮ The multidimensional Itō’s lemma gives the SDE for the
composite function f = f(~x, t) in the form:

df =

(
∂f

∂t
+

1

2
K : ∇2

xf K

)
dt+∇xf d~x

where

K : ∇2
xf K =

n∑

i,j=1

∂2f

∂xi∂xj

n∑

k=1

σikσjk

◮ Expanding a smooth function
f = f(~x, t) = f(x1, x2, ..., xn, t) : Rn × [0, T ] → R into the
second order Taylor series yields:

df =
∂f

∂t
dt+∇xf.d~x

+
1

2

(
(d~x)T∇2

xf d~x+ 2
∂f

∂t
.∇xfd~xdt+

∂2f

∂t2
(dt)2

)
+ h.o.t.

◮ The term (d~x)T∇2
xf d~x =

∑n
i,j=1

∂2f
∂xi∂xj

dxi dxj can be

expanded using the relation between processes xi and xj

dxi dxj =
n∑

k,l=1

σikσjldwk dwl +O((dt)3/2) +O((dt)2)

≈ (
n∑

k=1

σikσjk)dt+O((dt)3/2) +O((dt)2) as dt→ 0.
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Multidimensional Itō’s lemma and Fokker-Planck

equation
◮ Example: The multidimensional Fokker–Planck equation

for a system of uncorrelated SDE’s

dx1 = µ1(~x, t)dt+ σ̄1dw1

dx2 = µ2(~x, t)dt+ σ̄2dw2

...
...

...

dxn = µn(~x, t)dt+ σ̄ndwn

with mutually independent increments of Wiener processes

E(dwi dwj) = 0 for i 6= j , E((dwi)2) = dt .

◮ The Fokker–Planck equations reads as follows:

∂g

∂t
+ div(~µg) =

1

2

n∑

i=1

∂2

∂x2i

(
σ̄2i g
)

This is a scalar parabolic reaction–diffusion equation for g

◮ By following the same procedure of as in the scalar case we
obtain, for the joint density distribution function
g(x1, x2, ..., xn, t),

g(x1, x2, ..., xn, t) = P (x1(t) = x1, x2(t) = x2, ..., xn(t) = xn, t)

conditioned to the initial condition state
x1(0) = x01, x2(0) = x02, ..., xn(0) = x0n that:

∂g

∂t
+ div(~µg) =

1

2

n∑

i,j=1

n∑

k=1

σikσjk
∂2g

∂xi∂xj

g(~x, 0) = δ(~x− ~x0),

Fokker–Planck equation in the multidimensional case
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Fong, H. G., Vaš́ıček, O. A. (1991): Fixed-Income Volatility Management.
Journal of Portfolio Management (Summer), 41-46.

Zhu, S.P. (2006): A new analytical approximation formula for the optimal
exercise boundary of American put options. International Journal of
Theoretical and Applied Finance 9, 1141–1177.

Papanicolaou, G.C. (1973): Stochastic Equations and Their Aplications.
American Mathematical Monthly 80, 526 - 545.
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◮ The lecture slides are available for download from
www.iam.fmph.uniba.sk/institute/sevcovic/slides-hitotsubashi/
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