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1. Introduction. The present note deals with bounded endomorphisms of free
p-algebras (pseudocomplemented lattices) . The idea of bounded homomorphisms was
introduced by R . McKenzie in [8]. T. Katrinak [5] subsequently studied the properties of
bounded homomorphisms for the varieties of p-algebras. This concept is also an efficient
tool for the characterization of , so-Called, splitting as well as projective algebras in the
varieties of all lattices or p-algebras. For details the reader is referred to [2], [5], [6], [7]
and other references therein. Let us emphasize that the main results that are contained in
the above mentioned references strongly depend on the boundedness of each en­
domorphism of any finitely generated free algebra in a given variety.

In [8], R. McKenzie showed that each endomorphism of a finitely generated free
lattice FL(X) is bounded. For the variety of all p-algebras, the same statement was
proved by T. Katririak in [5]. More precisely, he has considered the countable chain of
equational classes of p-algebras

where POl is the variety of all p-algebras and the nth variety P; is determined by Lee's
identity .;en (the definition is recalled in the next section) . In [5, Lemmas 11, 12], it is
shown that each endomorphism of FPOl(X) (a free p-algebra in POl freely generated by a
finite set X) is bounded. Using this result, it is possible to characterize both the splitting
p-algebras [5, Theorem 3] and projective p-algebras [6, Proposition 5] in the variety POl'

Concerning the boundedness of endomorphisms of FPn(X), n ~ 1, Katrinak posed
the question whether the above mentioned result for FP Ol (X ) can be extended to the
remaining varieties Pn , n ~ 1. Hence the aim of this note is to investigate bounded
endomorphisms of free p-algebras FPn(X) , where n ~ 1 and X is finite.

The paper is organized as follows. In Section 4, we recall the basic notions and some
of the known results of the theory of free p-algebras. The main results of this paper are
contained in Section 3. We give necessary and sufficient conditions for an endomorphism
of FPn(X) to be bounded. We make use of the constructive method of limit tables for
endomorphisms of FPn(X). Of course, the concept of limit tables is well known from
lattice theory (see, for example [8]). However, in the case of p-algebra limit tables we
have to take into account the principal inner antisymmetry of p-algebras as well as Lee's
identity .;en' An effective algorithm for determining the boundedness of a given
endomorphism is also presented. In Section 4, we investigate the variety PI' i.e. the
equational class of all p-algebras satisfying the Stone identity x* v x** =1. In this class ,
we shall construct explicit examples of endomorphisms of FPl(X) that are not bounded.

_ 2. Preliminaries. A p-algebra (pseudocomplemented lattice) is a universal algebra
(L ; v , A, *,0,1), where (L; v, A , 0,1) is a bounded lattice and the unary operation * is
defined by a A b = °if and only if a s: b" ,

DEFINmoN (R. McKenzie [5], T. Katrinak [4]). Suppose A, Bare p-algebras and j is
a homomorphism of A into B. We say / is upper bounded if and only if, for each b E,B,
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{a eA;f(a) s b} has a greatest element f-(b). We say f is lower bounded if and only if,
for each beB, {aeA;f(a)~b} has a least elementf_(b). We say fis bounded if and
only if it is both upper and lower bounded.

In this paper we deal with the p-algebra varieties

where Pw = P is the equational class of all p-algebras and for a p-algebra L, L e P; for
1 s n < ro if and only if L satisfies the identity

(2n) :(Xl 1\ X2 1\ ••• 1\ Xn)* V (X; 1\ X2 1\ •. • I\Xn)* V ... V (Xl 1\ X2 1\ ••• 1\ X:)* = 1.

In what follows, the symbol FPn(X) , 1 szn s ro, denotes a free p-algebra freely
generated by a set X. We shall frequently use the following rules of computation in
p-algebras:

(a) asbimpliesb*sa* , (d) (avb)*=a*l\b*,
(b) a s a**, (e) (a 1\ b) ** = a** 1\ b **,
(c) a" = a***, (f) 0* = 1 and 1* = O.
If, in any p-algebra L, we write B(L) = {a eL;a =a**} then (B(L); +,1\, *,0, 1) is

a Boolean algebra when a + b is defined by a + b = (a v b)** .
Later we will need some of Katrinak's results concerning free p-algebras (see [4,

Lemmas 2,3 and Theorem 3]).
Let a p-algebra L be generated by a subset X , i.e. [X] = L. Then the set

X**={x**;xeX} generates B(L) in the class of Boolean algebras, i.e. B(L)=
[X**]bool' The set X U B(L) generates L in the class of lattices, i.e. L = [X U B(L)]lat.

Suppose that K is a nontrivial equational class of p-algebras. Let L = FK(X) be a
free p-algebra freely generated by X in K. Then B(L) = FB(X**) (the free Boolean
algebra freely generated by the set X**).

Put
g)l(X) = XU B(FPn(X» .

From the above results, it follows that g)l(X) =X U FB(X**) and FPn(X) =[g)l(X)]lat.
For 1 -s n < ro, a family OUn of subsets of B(FPn(X» is defined as follows:
S e 0Un if and only if

for some al> a2,' .. .a; e B(FPn(X».
For n = to, we simply set OUw = 0.
We see that VS = 1 for each S E OUn, 1 Sn < ca, because FPn(X) e Pn.
The following lemmas give an algorithm enabling us to decide whether a s b in

FPn(X) for given words a, b E FPn(X) = [g)l(X)]lat.

LEMMA 1 [3, Lemma 10]. Let a, b E FPn(X) and p e ~(X). Then p s a v b if and
only if p s a or p s b or there exists S e OUn such that s s a or s s b for every s e S.

LEMMA 2 [3, Lemma 8J. a 1\ b s c v d in FPn(X), 1 s n s ro, if and only if
(W) a -s c v d orb s c v d or a 1\ b s c or a 1\ b s d.
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With regard to the previous lemmas, the word problem for FPn(X), l::'5n::'5 ro, has
an affirmative solution. In addition, an algorithm is given which can be used to decide
whether a = bin FPn(X) for words a, b e FPn(X).

THEOREM 3 [4, Lemmas 11 and 12]. Let f:FPn(X)--+FPn(X) be an endomorphism.
Then

(i) f is upper bounded,
(ii) f is lower bounded for n = os,
(iii) f is lower bounded, 1::'5 n < ro, whenever the set {a E FPn(X); f(a) = I} has a

smallest element f-(I).

Finally, we recall that FPn(X) is infinite, whenever IXI2:=2 and l::'5n::'5 ro (see [4,
Theorem 2]).

3. Limit tables for endomorphisms of FPn(X), In this section, we give necessary
and sufficient conditions for an endomorphism of FPn(X) to be bounded. The
characterization is based on the properties of limit tables for a given endomorphism of
FPn(X). In the class of lattices the idea of limit tables was introduced by B. J6nsson and
widely exploited by R. McKenzie and A. Kostinsky. In what follows, we shall introduce a
p-algebra type of limit table similar to that in [8]. However, there are principal difficulties
arising in the direct application of the known lattice theoretical type of limit table. More
precisely, we must carefully take into account inner antisymmetries of FPn(X) (the lattice
theoretical dual of a given p-algebra need not be a p-algebra) as well as the identity .;tn'

From now on we shall suppose that f:FPn(X)--+FPn(X) is an endomorphism,
1 ::'5 n < ro, and X is a finite freely generating set.

Let the maps Pm:B(FPn(X»--+ FPn(X) , m 2:= 0, be defined inductively as follows:

Po(a) = 1\ {p E (j)(X);f(p) 2:= a}

and, for m 2:= 0,

(1)

(2)

for any a E B(FPiX».
We call the family {Pm}m;;"O a limit table for the endomorphism f. From the definition

(1), one can easily verify the following rules:
(a) Pm+l(a)::'5 Pm(a);

(b) a::'5b implies Pm(a)::'5pm(b);

(c) a ::'5f(Pm(a»;

(d) f(Pm(a» = f(Po(a»;

(e) Pm(a) ::'5 Pm(b) if and only if Po(a) ::'5 Po(b) ;

(f) Pm(a) = po(a) 1\ Pm(1);

(g) Pm+l(l) = 1\V {Pm(S); S E OUn}·

We say that a limit table {Pm}m;;"O is closed if and only if there is k 2:= 0 such that
Pk+l(a)=Pk(a) for each a E FB(X**). It is easy to see that {Pm}m,,""O is closed if and only
if there is k 2:= 0 such that Pk+l(l) =Pk(I). \
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THEOREM 4. An endomorphism f:FPn(X)-FPn(X) is bounded if and only if the
limit table for f is closed.

Proof. The crucial step in the proof consists of proving the following statement:
(P) for any aeB(FPn(X» and beFPn(X), f(b)2:a implies b2:f3k(a) for some

k 2:0.
As is usual in such circumstances, we shall proceed by induction on the length of a

lattice term be FPn(X) = [~(X)]lat . For b e ~(X), it is clear that (P) holds true with
k =O. We now suppose that (P) holds for bi> b2 with corresponding indices ki> k 2 2: O.
Then, using Lemmas 1, 2 and (2), one can easily show that (P) holds for b = b, A b2 with
k =max{kl , k2} and for b = b, V b2 with k = 1 + max{kl> k2}, respectively. Now, thanks
to the property (P) , the rest of the proof can be carried out as in [8, Section 6] and
therefore is omitted.

LEMMA 5. Let m be an integer such that log210g210g2 m = IXI + 1. Then an
endomorphism f :FPn(X)- FPn(X) is bounded if and only if the limit table for f is closed
before the m-th column.

Proof. Only the necessity needs a proof. If f31(1) = 1 then f31(1) = f3o(1). Hence, the
limit table is closed in the first column.

We now consider the case f31(1) < 1. Let an equivalence relation 0 on w be defined as
follows:

O(k, m) if and only if, for any a , be FB(X**),

f3k+l(a) 2: f3k(b) ¢::} f3m +l(a) 2: f3m(b).
I

We shall prove, in a manner similar to that in [8, Lemma 6.1], the following
statement:

(H) O(k , m) implies O(k + 1, m + 1).
In order to prove (H), we assume O(k, m) holds and f3k+2(a) 2: f3k+l(b).
Let R e ou". Then

1> f31(1) 2: V f3k+l(R) 2: f3k+2(1) 2: f3k+2(a) 2: f3k+l(b) = f3o(b) A 1\V (f3k(S); S e 'Un).

From Lemma 1 and 2, we obtain either the existence of r e R such that f3k+l(r) 2:

f3k+l(b) or V f3k+l(R) 2: V f3k(SI) for some SI e 6lln. In the first event, by (2), we have
V f3m+l(R) 2: f3m+l(r) 2: f3m+l(b). In the second event two cases can arise:

(i), for every s e Sl> there is rs e R , f3k(S):5 f3k+l(rs ) ,

(ii), there exists SI e Sl> such that f3k(SI) *f3k+l(r) for any r E R.
In case (i)i> the assumption O(k, m) implies

f3m(s):5 f3m+l(rS):5 V f3m+l(R) for each s e SI.
Therefore

f3m+l(b):5 f3m+l(I):5 V f3m(SI):5 V f3m+l(R) .

In case (ii)l> by Lemma 1 and 2, we have

V f3k+l(R) 2: V f3k-l(Sz) for some s; e 6lln.

Repeating this procedure, we obtain a sequence Sj e 6lln , j 2:1 , such that
V f3k+l(R) 2: V f3k -i+l(Sj)' Again two cases can occur:

(i), for each s e Sj, there is rs e R with f3k- i+l(S):5 13k+ dr. ),
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Let j = k + 1. According to Lemmas 1 and 2, case (ii), is not possible. Thus there
exist j s k and Sk-j+l E tJUn such that, for each s E Sk-j+b there is rs E R with f3j(s) s
f3k+l(rs ) . Since f3kSf3j for jsk, the assumption O(k,m) implies f3m+l(b)sV f3m+l(R).
Thus both (i)l and (ii)l also imply f3m+l(b) -s V f3m+l(R). Therefore f3m+l(b) s f3m+2(1).
Clearly, from the assumption f3k+ia)===f3k+l(b), it follows that f3o(a)===f3o(b). Hence

f3m+2(a) = f3o(a) 1\ f3m+2(1) === f3o(b) 1\ f3m+l(b) = f3m+l(b).

Thus f3k+2(a) === f3k+l(b) implies f3m+2(a) === f3m+l(b) and vice versa. The proof of (H) is
complete.

The result of the proof is essentially the same as that of [5, Lemma 6.1]. Indeed, a
simple combinatorial argument shows that 0 partitions OJ into less than 2r

.
r classes of

integers, where r = IFB(X**)I. This can be visualized by introducing the following
one-to-one map

[k]O- {(a, b) E B(FPn(X», f3k+l(a) === f3k(b)}.

Then we infer the existence of I such that 1< m s 2r
.
r and 0(1,m) holds. Clearly, by (H),

I will be O-equivalent to an arbitrarily large integer. Since f is bounded, then, by Theorem
4, there exists ko such that f3k+l:; 13k for all k === ko. Hence f3m+l:; 13m. The fact that
logj log, r = IX**I = IXI (see [3, Chapter 2, Section II, Theorem 2]) completes the proof
of Lemma 5.

THEOREM 6. Let f be an endomorphism of FPn(X), where 1 s n < OJ and X is finite.
Then there exists an effective algorithm for determining whether f is bounded.

Proof In order to decide whether f is bounded, one can construct the first m
columns of the limit table for f, where log210g210g2 m = IXI + 1. By Lemma 5, f is
bounded if and only if f3m+l(l) = f3m(l). Since the word problem for FPn(X) has a
solution, there is an effective algorithm that determines whether f3m+l(l) = f3m(1).

COROLLARY 7. Let n ===2Ix 1• Then each endomorphism of FPn(X) is bounded.

Proof It can readily be shown that n === 21x 1 implies 1 E S for each S E tJUn • Hence
131(1) = 130(1) and f is bounded by Theorem 4.

On the set au,. we define a quasiordering « in the following manner:

for Sb Sz E 6lln , S, « Sz if and only if either V f3o(Sz) = 130(1) or, for each s1 E Sb there
is S2 E s; such that f30(Sl) s f30(S2). (3)

Defining Sl :; Sz if and only if S, «Sz and Sz« Sl' one gets an equivalence relation
and the resulting classes are made into a partially ordered set (611n , «) in the standard
fashion. In what follows we shall ignore the classes and refer directly to their
representatives.

LEMMA 8. Assume V I3k(So) = f3k+l(l) for some So E 6lln • Then the poset (tJUn , «) has a
least element Sm.

Proof We shall proceed by induction on k === O. Assume k = O. Put Sm = So. Then
V f3o(Sm) = 131(1) S V f3o(S) for each S E u; Let S E v; Then either V f3o(S) = lor, by
Lemma 1, for each s E Sm, there is s' E S such that f3o(s) s f3o(s'). In both cases we have
Sm «S. Hence Sm is the least element of (611n , «).
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Assume k > O. First we consider the case where So« S for each S E 6U". Then Sm = So
is the least element of (aun , «), Now we suppose that there exists S, E au" with the
property So is not «St. Then V 13o(St) =1= 1 and there is So E So such that 13o(so) :f 13o(s) for
any S E St. Since

13o(so) 1\ /\ (V 13k-t(S); S E aun ) = 13k(So) :::; V 13k(So) =13k+t(1):::;V13k(St)

and V13k(St):::; V13o(St) =1= 1, then , by Lemmas 3 and 4, we get V 13k-t(S~):::; V13k(St) for
some S~ E au". But this yields

From the induction hypothesis , we obtain that (aun , «) has a least element Sm'

THEOREM 9. Assume that f :FPiX) - FPn (X) is an endomorphism, 1:::; n < to and X
is finite. Then

(i) iff is bounded then the poset (aun , «) has a least element,
(ii) if (au" , «) has a least element and 130(1) < 1 then f is bounded.

Proof. (i) By Theorem 4, there is k 2= 0 such that 13k+t(l) = 13k(l). If, for each
S E ou" , V 13o(S) = 130(1) then St«~ for any Sl> ~ E aun • Hence (aun , «) possesses a least
element. Suppose that there exists So E ou" with the property V13o(So) < 130(1). Then

By Lemma 2, two cases can occur: 13k(l):::; 13k(so) for some So E So or V 13k-t(St)es
V 13k(SO) for some SI E aun • In the first case, we have 13o(so) = 130(1) and therefore
V 130(80) = 130(1), a contradiction. Thus only the second case is possible, i.e. 13k(l):::;
V13k-l (SI) -s V13k(So):::; 13k(l).

Applying Lemma 8, we obtain the existence of a least element of (ou" , «).
(ii) Let Sm be the least element of (aun , «) and S Eaun. If V 13o(S) = 130(1) < 1 then,

from Lemma 1, we obtain 13o(s') = 130(1) for some s ' E S. By Lemma 1, (2) and (3), we
can establish that, for each s E Sm, there is S' E S such that 13k(s):::; 13k(s') for all k 2= O.
Thus 13k+1(1) =V 13k(Sm) for all k 2= O. Therefore 131(1) =V 13o(Sm) and, for each s E Sm,
we have 13t(s) = 13o(s) 1\ 13t(1) = 13o(s). Then

132(1) = V 131(Sm) = V 13o(Sm) =13t(l).

Hence , by Theorem 4, f is bounded.

REMARK 10. From (1), we see that 130(1) < 1 if and only if there exists a in
B(FPn(X» with a =1= 1 andf(a) =1.

4. Examples of nonbounded endomorphisms in the variety p.. In thii section, we
shall construct endomorphisms of FPI(X) which are not bounded. Recall that PI is the
equational class of all p-algebras satisfying the Stone identity x* v x** = 1.

THEOREM 11. For every finite set X with IXI = 2, there exists a nonbounded en­
domorphism of FP I (X).
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Proof. Consider an endomorphism [ :FP1(X) -+ FP1(X) with

f(xl)=(xivx;)**, [(x2)=(xi*vxi)**, where X= {XI>X2} and XI=FX2' (4)

Let a Boolean endomorphism g of B(FPI(X» be defined by g(a) =[(a) for each
a E B(FPI(X». Since B(FP1(X» is finite, g is a bounded Boolean endomorphism.
Clearly, g_(a + b) =g_(a) +g_(b) for every a, be B(FPI(X». Moreover g_(a) =Pti*(a)
for each a E B(FPI(X».

Suppose to the contrary that [is bounded. Then, by Theorem 5, (OUt, «) possesses a
least element Sm = {a, a*}, where a E B(FPI(X».

Take S;= {x7, x;**} for i = 1,2. Then Sm« S;, i = 1,2. It is routine to check that

fJo(xi*) =X2,

Po(xi*) = «xi 1\ xi*) v (xi* 1\ x;»** and Po(l) = (xi 1\ x;)* < 1.

Then, by Lemmas 1 and 2, VPo(S;) < flo(l) for i = 1, 2 and

Po(l) ~g-(1)= g_(a + a*) = g_(a) +g_(a*) = Pti*(a) + Pti*(a*).

Without loss of generality, we may suppose that

Then either

or

In the first case, we see that

P6*(a) ~xi* 1\ xi* and fl6*(a*) ~xi 1\ xi*.

Then (xi 1\ xi)* =Po(l) ~xi*< (xi 1\ xi) *, a contradiction.
The second case can be handled in the same way. Therefore Sm cannot be the least

element of the poset (rJUn , «), Hence, by Theorem 5, the endomorphism [ is not
bounded.

In order to construct nonbounded endomorphisms of FP1(X), where IXI> 2, let us
consider an endomorphism

h :FP1(X)-+FPI(X)

defined by h(a) =[(T(a», where [ is a nonbounded endomorphism of FP I(2) and the
endomorphism

T:FP1(X)-+FP1(2)

is defined by T(XI) = x I> T(X2) = X2 and 'r(x;) = 1 for i > 2. i~ ..

Since [is not bounded, h is a nonbounded endomorphism of FP1(X).
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