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1. INTRODUCTION 

The aim of this paper is to investigate the singular limit behavior of inertial manifolds of the 
following singularly perturbed system of evolution equations in Banach spaces 

Ut = G,(U 9 
(1.1) 

ES, + AS = F,(U, S), 

where E > 0 is a small parameter, X, Y are Banach spaces, A is a sectorial operator in a Banach 
space Y, Y” is the fractional power space and FE: X x Y* -+ Y, G,: X x Y” + X; are smooth 
bounded functions, (Y E [0, l), Fe -+ F,, G, + G,, as E + O+. It is well known that the above 
system of equations generates a C’ semi-flow S, in the phase-space Xx Y” for any E > 0 
(cf. Henry [l]). According to Marion [2] the semi-flow S, possesses an invariant attracting 
manifold 92, (inertial manifold) provided that the Lipschitz constant of F, is sufficiently small. 
This manifold can be constructed as a Lipschitz continuous graph over the Banach space X, 
i.e. 92, = ((U, Qc(U)), UE X) (see 121). From the results due to Chow and Lu [3] it follows 
that 3n, is a Ck manifold whenever F and G are Ck bounded functions. Notice that, in 
contrast to the usual definition of an inertial manifold (see, e.g. [4]), we allow 9IZ, to be an 
infinite dimensional Banach manifold. 

In the geometric singular perturbation theory much effort is being spent in order to justify 
the continuity of the singular limit E tends to O+ (see, e.g. Sviridyuk and Sukacheva [5]). The 
purpose of this paper is to examine the smoothness of the singular limit behavior of inertial 
manifolds 3n, as E -+ Of. The main goal is to show that, for small values of E > 0, the inertial 
manifold 3n, is C’ close to the manifold 3n, = ((U, S), AS = F,(U, S)] corresponding to 
the quasi-dynamic problem U, = G,(U, S) with the constraint AS = F,(U, S). Notice that the 
C’ stability of inertial or centre unstable manifolds is a useful tool in the theory of 
Morse-Smale vector fields (cf. Mora and Sol&Morales [6]). We hope that C’ stability result 
can be also applied in the theory of linearization at a steady state like, e.g. extension of the 
Hartman-Grobman lemma from the reduced problem, E = 0 to the perturbed system with E > 0 
small enough. Neverthless, such applications of the results obtained are not discussed here. 

The idea of construction of an inertial manifold for (1.1) is based on the well-known 
Lyapunov-Perron method of integral equations. This method is combined with a nonlocal 
approach using the graph transform which is applied to solutions of the singularly perturbed 
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equation in (1.1). We then seek an inertial manifold as the union of all solutions of (1 .l) 
growing exponentially at --oo. By contrast to the usual functional space setting (see, e.g. Chow 
and Lu [3], Foias et al. [4] or MiklavEiE [7]) an essential role is played by better smoothing 
properties of integral kernels enabling us to operate with Holderian spaces of curves instead of 
usual continuous ones. We first study the singularly perturbed equation E& + AS = F,(U, S) 
and prove that there is a solution operator S = 4,(U) in the space of globally defined 
solutions. It, however, turns out that the derivative of this mapping becomes continuous at 
E = 0 only when the mapping 4, operates on the space of Holder continuous curves growing 
exponentially at --co (see lemma 3.2). To construct an attractive invariant manifold 5l& as a 
C’ graph of Qc,: X + Y” we then apply the method of integral equations to the equation 
r/, = G,(U, &(U)). In order to prove that 312, is C’ close to 3n, for 0 < E 6 1 we make use of 
the two parameter contraction principle due to Mora and Sol&Morales [6, theorem 5.11 
covering differentiability and continuity of a family of nonlinear mappings operating between 
a pair of Banach spaces. 

We also notice that in [8] the author has studied the problem of C’ smoothness of the 
singular limit of finite dimensional invariant manifolds in the case when the first equation of 
(1.1) is a semilinear equation 157, + BU = G( U, S) and the nonlinearity F only depends on the 
U-variable. The last assumption makes the analysis of the singularly perturbed equation 
considerably easier. The results obtained in [8] are not capable to cover some applied problems 
like, e.g. a flow of viscous media governed by a constitutive equation of differential type. 
Such an application is discussed in Section 4 of this paper. 

The paper is organized as follows. In Section 2 we recall some useful results regarding 
properties of functional spaces of Holder continuous curves growing exponentially at --oo. 
In Section 3 we prove that QE + Q0 in the C’ topology as E + O+. The main result of this 
paper is contained in theorem 3.9. Section 4 is devoted to an application of the results obtained 
to a singular perturbation problem arising in the study of the so-called Johnson-Segalman- 
Oldroyd model of shearing motions of a non-Newtonian fluid. Following the paper by Malkus 
et al. [9] the motions of the channel Poisseule flow of a highly elastic and very viscous fluid 
(like, e.g. a polymer) can be described, in a satisfactory manner, by a system of parabolic- 
hyperbolic equations of the form 

cut - 4, =cTx+f 

ot = -cJ + (1 + z)u* (1.2) 

zt = -2 - cm x3 

where v = v(t, x), x E [0, 11, is the velocity of the channel flow between two parallel plates, 
o is the extra shear stress, z is the difference of normal stresses, fis the pressure gradient driving 
the flow. The number E > 0 is proportional to the ratio of the Reynolds number and Deborah 
number and according to rheological experiments due to Vinogradov et al. [lo] this number is 
very small, of the order of magnitude O(lO-“). It gives rise to the inertialess approximation 
E = 0. Based on such an approximation, Malkus et al. [9] were able to explain several striking 
phenomena like spurt, hysteresis, shape memory and latency observed in rheological experi- 
ments (see also [ll, 121). Using the new variable S := v, + cr + fx, S is the total stress tensor, 
system (1.2) can be rewritten in the general form (1.1) with F, = O(E) as E -+ O+. In [13], 
Nohel and Pego have justified the inertialess approximation by a clever application of the 
Morse-Conley theory. They proved that any solution of (1.2) converges pointwise for x E [0, I] 
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to a solution of the inertialess approximation as E --t O+. The purpose of Section 4 is to give 
another justification of the inertialess approximation by means of C’ closeness of infinite 
dimensional inertial manifolds. It is hoped that the C’ stability result of inertial manifolds 
can be also applied to the problem of a piston driven flow studied recently by Malkus 
et al. [l 11. Based on careful numerical simulations, their results indicate the Hopf bifurcation 
phenomenon in a piston driven Johnson-Segalman-Oldroyd fluid. Any information about C1 
stability can be a useful tool in order to prove that the Hopf bifurcation extends to the full 
system of governing equations with E > 0 sufficiently small. 

2. PRELIMINARIES 

As usual, for Banach spaces E,, E, and q E (0, l] we denote C,“,,(E,, E2) the Banach space 
consisting of the mappings F: E, -+ E2 which are k-times Frechet differentiable and such 
that F, -.., DkF are bounded and uniformly continuous, the norm being given by llFllk := 
C$=,supID’F]. C,&YE,,E2) will denote the Banach space consisting of the mappings 
F E C&(El, E,) such that DkF is V-Holder continuous, the norm being given by 

liFllk,, := llFllk + Sup “““I;x’ ~,9;:““” . 
XZY 

X,Y 6 El 

Let X be a Banach space and p E R. Following the notation of [3,6,7] we denote 

C;(X) := u : C((-co, 01, X), and Il~]l~,-~~, := sup ef”l]u(t)jl. < CO . 
tso 1 

The linear space C;(X) endowed with the norm II . ]/c,-cn, is a Banach space. If p 5 v then the 
embedding operator J@+: C;(X) -+ C-(X) is continuous and llJ,,,ll I 1. 

For any p E (0, I], a E (0, l] and p 2 0, we furthermore denote 

cF:,,,w> = 
i 
2.t E c,-w; t~l,,,,, = sup 

IIe’c’u(t) - ecft-%(f - h)ll 

(50 hP 
\ h E (0.01 

Let 

ll4c,,,,W) := II&;;(rc, + [4,,,,, for any u E CK;,,,(X). 

The space Cp;&X) endowed with the norm II * /]c-.p,fl is a Banach space continuously 
embedded into C;(X) with an embedding constant equal to 1. Furthermore, the space 
Cp;,,,(X) is continuously embedded into Cv;p,n(X) for any 0 I ,U 5 v and p E (0, 11, its 
embedding constant being less or equal to maxi 1, (v - ~)a’-~] (see [8]). 

Let E, , E, be Banach spaces and F: E, + E, be a bounded and Lipschitz continuous 
mapping, E, , E, be Banach spaces. Denote 

I? C,-(E,) + C,-(E,) 

a mapping defined as F(u)(t) := F(u(t)) for any t 5 0 and u E C;(E,). By [6, lemma 5.11, 
for every p L 0, the mapping F is bounded and Lipschitzian with supIF 5 suplF( and 
Lip(F) I Lip(F). If F: E, + E, is Frechet differentiable then p: C;(E,) -+ C;(E,) need not be 
necessarily differentiable. Nevertheless, the following result holds. 
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LEMMA 2.1 [8, lemma 2.8, 14, lemma 51. If F: E, + E, is Frkchet differentiable with 
DF: E, + L(E,, E2) bounded and uniformly continuous, then, for every v > p, v > 0, 
the mapping l? C;(E,) --f C;(E,) (F: C,;,,,(E,) * C,-(E,)) is Frtchet differentiable, its 
derivative being given by Dp((u)h = DF(u(*))h(-) and Dl? C;(E,) + L(C;(E,), C;(E,)) 
(DZ? C,~,,,(E,) --+ L(C,-[,,,(E,), C;(E,))) is bounded and uniformly continuous. 

Throughout Sections 2 and 3 we adopt the following hypothesis 

i 

X, Y are real Banach spaces: 
A is a sectorial operator in Y, Re a(A) > w  > 0; 

(W there exist CY E [0, 1) and q E (0, 1) such that 
G, E C&(Xx Y*; X), F, E C&7(Xx Y”, Y) for any E E [0, E,,]; 
F, + 8, G, + G, as E --) Of in the respective topologies. 

We refer to [l, Chapter l] for the definition of a sectorial operator, fractional power spaces 
Y”, Q! 1 0, and their basic properties. We denote 11. llol the norm in Y” given by IIulj, = \\A”u\\, 
u E Y” = D(A*). 

By a globally defined solution of (1. l), E > 0, with initial data (U,,, S,) E X x Y a we mean 
a function (U(a), S(s)) E C([O, T]; Xx Yn) n C’((0, T); Xx Y”l) for any T > 0 such that 
(U(O), S(0)) = (U,, S,); U(t), S(t)) E Xx D(A) for t > 0 and (U(m), S(e)) satisfies (1.1) for any 
t > 0. The global existence and uniqueness of solutions of (1. l), for initial data belonging to the 
phase-space XX Y” follow from [l, theorems 3.3.3 and 3.3.41. 

In case the function F. satisfies the condition (ID,F,IIljA”-‘II < 1 the set Em0 = ](U, S), 
AS = F,(U, S)) is an embedded Banach manifold in XX Y”. More precisely, there is a 
C&-function QO: X --) Y* such that 

312, = ((U, Q&Y>) E xx Y”, CT E Xl. (2.1) 

By a solution of (l.l), E = 0, we mean a function U E C([O, T]; X) fl C’((0, T); X) for any 
T > 0, U(0) = U, and U(e) satisfies the equation U, = G,( 17, QO(U)). Since Go is assumed to 
be Lipschitz continuous the globai existence and uniqueness of solutions to (1.1) with E = 0 is 
again assured by the above references to Henry’s lecture notes. 

In summary, we have shown that the system (l.l),, E > 0 generates a semi-flow S,(t), t z 0; 
S,(t)(U,, S,,) = (U(t), S(t)), on the phase-space X x Y”. The system (1. l), defines a semi-flow 
S,(t), t 2 0, &,(t)(U,,, aO(U,)) = (U(t), @&U(t))), on the embedded manifold 3n0 C XX Y”. 

3. EXISTENCE AND SMOOTHNESS OF THE SINGULAR LIMIT 

OF INVARIANT MANIFOLDS 

Before proving the existence and smoothness of the singular limit of inertial manifolds of 
(1 ,l) we need several auxiliary lemmas. First, let us examine solutions of the following linear 
equation 

&+AS=f (3.1), 

belonging to the space Cv;p,a (Y”). We will also study the limiting case of (3.1), when E = 0, i.e. 

AS=f (3.I), 

and examine behavior of solutions when E -+ O+. 
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Denote by 3c, and X,,, , u > 0, 0 < p I 1, a E (0, l] the following Banach spaces of 
bounded linear operators 

xv = L(c”-(v, c”-(Y”h x,., = uc,,,,m cv-(ya))* (3.2) 

LEMMA 3.1 [8, lemma 3.11. Assume that the operator A fulfils the hypothesis (H). Then, for any 
& E [O, && 0 < v < io&(p, and f E C;(Y) there is the unique solution S E C;(Y”l) of (3.1), 
given by S = L, f, where 

L,fW = i 
3 

1 exp(-A(t - s)/E)~(s) ds, (E > 0); L&f(t) = A-y(t) (E = 0). 
c.2 

for t I 0. The linear operator L, belongs to the space X, as well as to 3c,,P, 0 < p I 1, 
and there is a K,, > 0 such that llLEllrr, p I ~~~~~~~~ I K,(o - I+,)~-’ for any E E [0, co], 
0 < v.sO < w. Moreover, L, + L, as E -+ b’ in the space XV,P, 0 < p I 1. 

LEMMA 3.2. Let 0 < (1 + q),u 5 K < CL)Q -l, 0 < p 5 1 and 0 < a I 1. Assume that there 
is a 0 < 1 such that IIL,II~,II&F,w, ~)IIL~y~,y) - < 8foranyU~X,S~Y~ande.~[O,c~]. 
Then, for any U E C;(X) there is the unique solution S = r#+(U) E C;(Y”l) of the equation 
S = L,F,(U, S). Moreover, there exists a K, > 0 such that, for any E E [0, ~~1, 

(9 IM~J - &(~2)ll~~~ym, 5 llL,ll~,llF,lllU - f3-‘lluI - U~IIC~~,; 
(ii) lim,,, +4,(U) = &Jo) in C;(Y*) uniformly w.r. to U E 63, where 63 is an arbitrary 

bounded subset of C,$,(X); 
(iii) 4, E GdC;CX>, CiWh bEllI 5 KI and there is a &, E L(C;(X), Ci(Y”)) with 

the property 09, = J,,,&,, lldd 5 llL,ll~,ll4lldl - W1; 
(iv) limp,O+ 9, = & in Cidd(G3, CJY”l)) for any bounded and open subset @ of Cfl;,,,(X). 

Remark 3.3. It follows from the proof of [8, lemma 3.11 that Lyle - &lln,, = O(E’) as 
E + O+ for any 0 < r < 1. The author was able to prove neither C’ differentiability nor 
Lipschitz continuity of L, with respect to E at E = 0. 

Remark 3.4. We remind ourselves that in the case E = 0 the mapping Q0 defined in (2.1) 
coincides with &, in the sense that &(U)(t) = QO(U(t)) for any U E C;(X) and t 5 0. 

Proof of lemma 3.2. Under the assumption I~L~~~~,~~D~FEII~(~~,~ 5 0 < 1 the existence of 
the solution operator S = c&(U) as well as its Lipschitz continuity (i) follows from the 
parameterized contraction principle. 

To prove (ii), we first find an estimate of the norm of ll&(U)Ilc;,,,cr~, in terms of 
U E CF;,,,(X). To this end, we put S(t) = c&(U)(t). Then, for any t I 0, h E (0, a], we have 

e”S(t) - eacrAh)S(t - h) = (e” - eK”-h$4-1Fo(U(t), S(t)) 

+ ep”-h’A-l(FO(U(t), S(t)) - F,(U(t - h), S(t - h))). 

Notice that, for any t I 0, h E (0, a], 

/W(t) - W(t - h)llE 5 e-“fIle”‘W(t) - e p(f-h)W(t - h)llE + (1 - e-ph))IW(t - h)llE 

(3.3) 
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where E stands either for X or Y* and K, = K,(p) > 0. Thus, 

IlecfS(t) - ep(‘+h’S(t - h)llym 5 KIIIUIIc~~-,,(X,hP 

+ ((A”-‘((((DsF,((((S(t) - S(t - h)llym erc(‘-‘). 

Since Il%,-cY~, 5 llAa-‘ll l14110 and &,lls,ll~S~Oll I 8 < 1 the above inequality yields the 
estimate 

Il#omc,,,,(Y~, 5 KlU + Il~llc,,.,~,)- (3 04) 

;;trr;;u’“p similarly as above one can show I~F,(u, ~)Ilc,,,,(~ I K,(l + )I uII,~-,~(~) + 
C p.p,o(~+ Hence, 

IlW~~ d%w))llc;[p.~.(y) 5 K,U + ll~llc&#d. (3.5) 

As b,(U) = L,F,(U, 4,(U)) we obtain 

(1 - @lb,(u) - ~JO(~)/~C~,Y~, 5 IIL, - L&,,,IIW, &W))~~C~~,.(Y, 

+ IIL,lh$W~ 4duN - Mu, MWIIc;(y). 

By lemma 3.1, (H) and (3.5) we obtain lim,,,,+ 4,(U) = c&(U) in C;(Y”) uniformly w.r. to 
U E & where G3 is arbitrary bounded subset of C,;,,,(X). 

(iii) For any U, WE C;(X) we denote 

m,(u)w := [I - L,QsF,(U(~), ~,(ux~))l-‘L,~“F,(u(~), 4%(W*W. (3.6) 

A straightforward calculation yields 

MU+ W) - 4%(U) - &4(WW= B,[F,(U+ w, 4,(U)) - F,w d%(U)) - @JF,(U &(wm 

+ B,E(U + W, cb,(U + WI) - F,(U + W, 4,(W) 

where 

- &Mu, &(W(4,(U +W - #+W)l =:I, + I,> 

4 := U - L,&F,(W-1, 4GJW))I-1L,. 

Obviously, ll&ll~, I (1 - O)-‘IIL,II~~ for u = p or v = K, E E [O, ~1. Furthermore, by 
lemma 2.1, we have Il~,ll~;~~~, = o(I( wI(,~(~,) as II WI] + 0. On the other hand, as F, E C&’ 
and 0 < (1 + U),U 5 K we have 

Il&,-(Y=, = odl wll”c; + Il&(U + v - wm##N + w - w&; 

= 4ll WC;). 

Hence, 4, E C&,(C;(X), C;(Y*)); D&(U) W = J,,,d$,(U) W, where the mapping W ++ 
dq5,(U)Wis defined by the right-hand side of (3.6) and so lldc$,ll 5 II~,lI,,ll&ll~(l - 0)-l. 
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Finally, we prove the assertion (iv). Let 63 c Cfi$,(X) be an arbitrary bounded set. With 
regard to (ii) it is sufficient to show the uniform convergence D&(U) --t D&,(U) as E --, O+ for 
U E 63. For any U E C&$+(X) we have 

W,(U) - m,(u) = (4 - mhTel(~, 9clWN 

+ &P,F,(U, &(U) - &mu, ddw1. 
Now one can readily verify that 

&F,W b(u)) - D,F,W 9dW = D,Mu, d,(u)) - F,(u, &(u))l 

+ D,[F,(u, k(u)) - F,(u, rbo(Wl. 
Thus, 

lID,F,(W), +,(WW - DsFdWO, ~,WW)IIL(Y~,~ 

5 IIF, - Foil1 + llFoh+,bMJ)W - &,U-W)~tb 

Since 0 < (1 + u)y 5 K, we obtain 

IlDsF,(u, do - QsF,(U ~~(~))I~L(c;(YL*),c,(Y)) 

5 IIF, - &III + IIFoll1+,lk#-4 - d~(u)lk~-‘c,-cr~,~ 

However, the right-hand side of the above inequality tends to 0 as E + O+ uniformly w.r. to 
u E 65. Similarly, one has 

hF,W d&J)) - DdW, ~o~~~~IIL~c,-cy~,c~~y~~ -+ 0 as E + O+ 
uniformly w.r. to U E 03. Now we notice that \IB,D,F,(u, ~o(U))IILcc;cx,,c;cr~,, 5 K, and 

11 [I + DsF,W ~o(WW~,FOUL ~o(U))II~(c~,,,(x),c,,,,(y)) 5 K,(l + 11 Ulk,y,,,cx,h 
Indeed, let us denote 

A(f) := 11 + D,FdW), ~O(U)(~))B~IDCTFO(U(~), AWW)), t 5 0. 

Then, by (3.3) and (3.4), 

II40 - A(t - wll ,q,Y,y) 5 K,(lI u(t) - wt - Ml:: + II4JLw)w - hAWf - m4 
5 K, e-““‘P(l + II UI(~p~‘,P,oVo). 

As 0 < (1 + VIP 5 K we obtain II~(~)~llC~vu,o~Y) 5 ~~ll~IIC~p~~CY~(~ + IIUlli$~p,,& for any 
WE CP;&X). According to lemma 3.2 it 1s now obvious that D&(U) + D40(U) as E + O+ 
uniformly w.r. to U E 65. The proof of lemma 3.2 is complete. n 

We will construct an inertial manifold ‘JK, for the semi-flow S, as the union of all Holder 
continuous curves growing exponentially at -o;), i.e. 

3X, = ((Y(T), T E R, YE Cp~,,,(Xx YcI), (U(e), S(s)) = Y(a) solves (1.1)) (3.7) 
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for some ,D > 0, p E (0, 1) and a E (0, 11. The invariance property of 3n, under the semi- 
flow S,(t), t I 0, generated by system (1 .l) is obvious. According to lemmas 3.1 and 3.2 
(V(a), S(m)) E Cp;[p,a(X x Y”) is a solution of (1.1) if and only if it satisfies the following 
integral equation 

I 
U(t) = x + 

i’ 
G,(W), cP,(WG) d.s =: T,(x, W(t) for any t I 0 (3.8) 

0 

for some x E X. Using the invariance property of 3n, we can write the set EJK, as 

312, = t(x, d,VW)), x E x, u = T,k U) E cp:p,awN. (3.9) 

In what follows we will investigate the existence and the limiting behavior of fixed points of the 
two parameter family of mappings 

T,(-G -1: c,-, .w - c,-lp,sw)~ (3.10) , 1 E E [O, Eel, x E x, 

defined by the right-hand side of (3.8). We are going to prove that T,(x, *) is a uniform 
contraction. If I(L,llz&F,ll I 0 < 1 then by lemma 3.2(i), we have 

~IGW,~ +,(U,)) - G,(U,, c~‘GJd)Iic;~x~ 

5 IlGcllAl + ~ollF,lh(~ - w,Y-‘(1 - W’)Il4 - U,II,;,,> (3.11) 

where K, > 0 is a constant independent of 0 < p < mail. Assume that 0 < p < 1 and I, > 0. 
Then the linear operator 

-I 
3:g b-b 

I 
g(s) h 3: c”-(x) -+ cv;p,Am 

-0 

is bounded its norm being estimated by 

II 3 ILcc;cx,, c,,,,(m) 5 ; (3.12) 

provided that a = a(v) > 0 sufficiently small (c.f. [8, lemma 3.2,c]). 
By the next lemma 3.5 we will show that under an additional assumption on Ds F, the 

following hypotheses are fulfilled 

f (1) there is 0 < 1 with the property I( T,(x, V,) - T,(x, V&II, 5 8(( LJ, - ~~11, for 
any x E LK, U,, U, E U and E E [0, co]; 

(2) there is a Q < 00 such that IIq(xi, U) - z(x2, ~)ll, I Q/lx1 - x2(Ix for any 

U-7 x1,x, E X, WE ‘IL and E E [O,eOJ; 

(3) for any bounded open subset B C X, 

sup, E E II w, HOW - T,k ~0wIlu + 0 & + o+ 
\ where U,(x), x E X, E E [0, co], is the unique fixed point of T,(x, U) = U in U 

on the Banach spaces 

Q := C,-lp,aw), ‘ii := c&7m 0 < (1 + tj),U < K < U&i’, (3.13) 

where 0 < p < 1 is fixed and a E (0, l] is such that the estimate (3.12) holds for both values 
v = p as well as v = K. 
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LEMMA 3.5. Assume that the hypotheses (H) are fulfilled. Then there is a positive number 6 > 0 
such that if I]DSFE]]Loa,Y) _ < 6 for any E E [0, eO] then there exists an invariant manifold ‘5lZ,, 
E E [0, eO], for the semi-flow S, generated by the system of equations (1.1). This manifold 
is a graph, ‘3& = 1(x, at(x)), x E X), where aE: X + Y” is a bounded Lipschitz continuous 
function. Moreover, for any bounded subset B c X, lim,,,+ Qe(x) = ‘-I+,(x) uniformly w.r. to 
x E B. 

If, in addition, the operator A has a compact resolvent A-‘: Y + Y then the manifold 3n, is 
also exponentially attractive, i.e. there is a p > 0 such that dist((U(t), s(t)), nt,) = O(e-“‘) 
when t + 00 for any solution (U(e), S( *)) of (1. l), E E (0, .eO] . 

Proof. According to lemma 3.2, for any p > 0, we can choose an E,, = E(P) < 1 such that 
l]~~]l~ I K&o - ,ue,)“-’ I &(0/2)*-l for any E E [0, Ed]. Let 0 < 6 Q 1 be such that 
&(0~72)~-‘6 < 1. Now, if we suppose /l~~~,ll I 6, E E [0, E,,], we obtain the estimate (3.11) 
for the Lipschitz constant of the mapping C;(X) 3 U c G,(U, @J,(U)) E C;(X) with some 
13 = &(0/2)*-‘6 < 1. With regard to (3.12) one can furthermore choose p % 1 large enough 
and such that the mapping T,(x, e): U -+ ‘It fulfils the hypothesis (T), . The Lipschitz constant 
Q of the mapping x y T, (x, U) is equal to 1. Let U,, = U,,(x) be the unique fixed point of 
U, = T,(x, U,). Then, for any bounded and open subset B C X, we have II U,(x)ll, I ]lx]lx + 
Il~llLcc;cx,,u, llGo]lo I K,(B) for every x E B. Moreover, 

5 W411G~11$#~~Wo> - hdU,)IIqcx, + O(liG, - Gall>. 
Due to lemma 3.3(ii), we know that I]+,(UO(x)) - &,(U,,(X))I]~,-(~~) -+ 0 as E 4 O+ uniformly 
w.r. to x E B and so the hypothesis (T), is also satisfied. 

Define QE(x) : = $,(U,(x))(O). According to (3.9) we have that the set ‘3& is a graph over the 
Banach space X, i.e. 3n, = ((x, QE(x)), x E X) and moreover, as the mapping x - U,(x) and 4, 
are Lipschitz continuous, @c is Lipschitz continuous as well. Hence, 312, is an invariant 
Lipschitz manifold for the semi-flow S, generated by (1 .l), E E (0, a,,]. Since IJL~J]~~ = ll~*-‘11 
we have ]]~“-‘]l ]]D~F~I] I 19 < 1 and so, by definition of a solution of (l.l), E = 0, the set ‘& 
defined by (2.1) is an invariant manifold for the semi-flow S,,. With regard to remark 3.4, we 
again have a,,(x) = &,(UO(x))(0). 

Let B C X be a bounded subset. From (T), and (T), it follows that U,(x) + U,(x) as E + O+ 
uniformly w.r. to x E B. Then by lemma 3.2(i),(ii), we have QE(x) -+ aO(x) in Y” as E + Of 
uniformly w.r. to x E B. 

The proof of exponential attractivity of 312,) E E (0, sO] is similar, in spirit, to that of the paper 
by Chow and Lu [3, theorem 5.11. In fact, it follows the lines of known proofs of existence 
of stable invariant foliation to a centre-unstable manifold. Let E E (0, a,,] be fixed. Given a 
solution (U, s) of (1.1) we want to find a solution (U*, S*) E 3n, with the property (U, S) E 
C,‘(X x Y”) for some p > 0 where U = U * - U, S = S* - Sand C,’ is the Banach space 

C,‘(XX Ya) := 
l 
f E C(R+,Xx Ya), Ilf ]lc- = supeP’l]f(t)l/xxr~ < 00 . 

tzo 1 

Obviously, the existence of such a solution would imply that the %, manifold has the exponen- 
tial tracking property and as a consequence we would have dist((U(t), S(t)), Em,) = O(e-“‘) 
when t + 00, i.e. 311, is an exponentially attractive invariant manifold. 
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Now, one easily verifies that (U, S) belongs to C,‘, p > 1) G,I/ t, if and only if the following 
integral equations are satisfied 

t u(t) = G&&s) + U(s), s;(s) + S(s)) - G,@(s), s(s)) ds =: fF”(U, S)(t) 
co 

S(t) = exp(-At/&)( + f 
1’ 

t 
exp(-A(? - s)/c)[F,(U(.s) + U(s), S(s) + S(s)) 

(3.14) 

0 

for some t E Y”. The operator 5” defined by the right-hand side of the first equation in 
(3.14) is well posed on the space C,‘(X x Y”) with values in C,‘(X). Moreover, the mapping 
U - S”(U, S) is a uniform contraction in C,‘(X) provided that p > llGElll. More precisely, 
one has 

Il+w, 9 s> - ~“W, 3 wll c,‘(x) 5 IIG~~IP-‘I~-‘~ - u,IIc;,, 
and, similarly, 

By the parameterized contraction principle there is a mapping h: C,‘(YU) + C,‘(X) such 
that, for any S E C,‘(Y”), U E C,‘(X) is a solution of U = S”(U, S) iff U = h(S). The Lipshitz 
constant of the mapping h can be estimated as 

(3.15) 

It means that (U, S) E C,’ is a solution of (3.14) iff U = h(S) and S solves the equation 

S(t) = exp(-At/e)r + i 
.i 

’ exp(-A(t - s)/e)f(S)(s) ds = S’(Y, S) 
0 

for any t 2 0, wheref(S)(s) := F,(U(.r) + h(S)(s), $‘.s) + S(s)) - F,(U(s), S(s)). Since 

IlfG) - .m III 2 C&?(y, 5 IElI I Ilw,) - w&~(x) + llhxll IIS, - &I/c;(r~) 

5 <lkll1IIG,ll1(~ - llGk)-’ + Il&F,Ii)lb, - &,,+(~y 

the mapping S - S’(t, S) is a uniform contraction on C’(Ycl) with respect to < E Y”, provided 
that P % 1 is large enough and lj~~~,ll I 6 Q 1 is suffkiently small for E E (0, co], &o 6 1. 

For a given [ E Y”, we denote S’ E C,‘(Y”l) the unique fixed point of S = Ss(<, S). Again, 
due to the parameterized contraction principle the mapping < H S’ is Lipschitzian and, hence, 
the mapping Y” 3 < - (i?, S’) E C,‘(X x Y”l), .CJ[ := I#), is Lipschitz continuous as well. 
Finally, if we denote 

g(<) := U(O) + UC(O), < E Y*, 
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then the mapping g: Y” -+ X is also Lipschitz continuous. We recall that (U*(O), S*(O)) E 3n, 
iff S*(O) = Qc((u*(0)). However, the last condition is satisfied if and only if 

( = S”(0) - c(O) E Y” 

is a solution of 

@,,k(O) - s(O) = c. (3.16) 

Now, if we suppose that A-‘: Y + Y is a compact linear operator than, by [l, chapter l] 
the embedding Yp ++ Y” is compact whenever (Y < /3. We then claim that the mapping 
X3X- a8(x) E Y” has a compact range. Indeed, by lemmas 3.2 and 3.3 we know that 

se(x) = f 
\ 
‘I exp(As/dF, UJ, (x)(s), 4, (U, WK9) b. 

u = 
This yields the estimate 

IIwaY~ 5 a%~-’ O !., 
(-S/E)-@ eos” ds =: Ko(P) < CD for any x E X 

for any 015 /I < 1. Then the mapping Y* 3 r ,+ Qc(g([)) - $0) E Y* is compact and Lipschitz 
continuous. Moreover, it takes a ball B(0, R) c Y* into itself, R = K,(a) + l/S(0)ljra. Due to 
the Schauder fixed point theorem there is a solution c E Y” of (3.16). In other words, there 
exists a (U*(O), S*(O)) E 312,, U*(O) = g(r), S*(O) = s(O) + r, such that IIU(t> - boil, + 
IIS - ~*(t)ll,~ = O(emCf) when t ++ co. It completes the proof of lemma 3.5. n 

Remark 3.6. In case the Lipschitz constants of @E and g are less than 1, equation (3.16) can 
be solved by means of the Banach fixed point theorem (see, [3, theorem 5.11). Since we 
have provided no bounds on the Lipschitz constant of QE we cannot apply a contraction 
principle here. This is why we have to turn to Schauder’s fixed point principle and therefore 
the compactness of A -’ is needed in our proof. 

In the following we will show that this family of fixed points U,(x) and their derivatives 
D,U,(x) depend continuously on E > 0 when E tends to O+ uniformly w.r. to x E B, where 
B C X is an arbitrary bounded subset. 

The proof uses abstract results due to Mora and Sol&Morales [6] regarding the limiting 
behavior of fixed points of a two-parameter family of nonlinear mappings. The main difficulty 
is that the mapping (U, S) H (G,(U, S), F,(U, S)) from the space Cfi;,JXx Ya) into 
Cb;,,JX x Y) need not be generally C’ differentiable and, therefore, T,(x, *): C;(X) -+ 
C;(X) need not be C’ as well. According to lemma 3.1 one can, however, expect that it 
becomes differentiable after composition with an embedding operator JIL,K for some 
0 < fi < K. This is why we need a version of a contraction theorem covering the case in which 
differentiability involves a pair of Banach spaces. 

Consider a two parameter family of mappings T,(x, D): U + U, E E [O, co], x E X, where X 
is a Banach space. We assume that the Banach space U is continuously embedded into a 
Banach space U through a linear embedding operator J. We also denote T, := Jr, and 
u,(x) := JU,(x). 

Now a slightly modified version of [6, theorem 5.11 reads as follows. 
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THEOREM 3.7 [8, theorem 3.61. Besides the hypothesis (T) we assume also that the mappings 
Fc : X x U + %., E E [0, E,,] satisfy the following conditions: 

(1) for any E E [0, q,], $ is Frechet differentiable with Or, : Xx ‘U + L(X x U, %) bounded 
and uniformly continuous and there exist mappings 

d,T,;XxU+L(U,‘U); d,T,:XxU-tL(%,%); d,T,:XxU+L(X,%.) 

such that 

DuT,(x, U) = Jd,T,(x, U) = &(x, U)J, D, T,(x, U) = Jd, T,(x, U) 

hT,(x> U)llr~u,u~ 5 0, Il&r,CXl u&ii,,, 5 89 Ildxr,(x, ~)I~LK’u) 5 Q; 

(2) for any B bounded and open subset of X, D?;,(x, U) + DT,(x, U) as E + Oc uniformly 
for k W E W, uE(x)),x E B, E E lo, d. 

Then the mappings u,: X --) %‘i have the following properties: 
(a) for any E E [0, E,,]; u,: X + $ is Frechet differentiable, with DOE: X + L(X, a) 

bounded and uniformly continuous, 
(b) for any B bounded and open subset of X, DUE(x) + Duo(x) as E + O+ uniformly with 

respect to x E B. 

In order to apply theorem 3.7 we choose the Banach spaces defined in (3.13). The space U 
is continuously embedded into % through the linear embedding operator 

J = JF,K: C~&m = Q -+ Gp,AX) = a. 

If we suppose that the assumptions of lemma 3.2 are satisfied then the mapping 9, is well 
defined and, hence, we can introduce the mapping SE: ‘u -+ C,‘(X) 

MWW := G,(U(s), &(WW for any U E ZL and s I 0. (3.17) 

Now assume that B c X is a bounded subset and define the set 

cRB := (U,(x), x E B, E E [0, q,]]. 

Since U,(x) = T,(x, U,(x)) = x + 3&(U,(x)) and both 6, and 3 are bounded, we obtain 

638 is a bounded subset of U. (3.18) 

Lemmas 2.1 and 3.2 enables us to conclude that 
- 
6, := Jp,& E GLdW C,-(X))9 & E w, G31 (3.19) 

and there exists a mapping dg,: U + L(U, C;(X)) such that DG, = J,,,d$, 

G(WJ+’ = QP%(W-), &(W(-))W + D,G,(W*), &(uX-)W,(WW 

We also remind ourselves that ‘u - C;(X) and so 9, E GkOL C~;+,~,(Y”h D6, = 
J 8,(1+9jP d& (see lemma 3.2(iii)). 
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LEMMA 3.8. D&(V) + D!&(U) as E + O+ uniformly with respect to U E B3,. 

Proof. First observe that 

for any U E aB and WE U. By lemma 3.2(ii), we know that lim,,,+(U, 4,(U)) = (V, &,(U)) 
in C;(Xx Y”l) uniformly w.r. to U E a3,. According to lemma 2.1, G, E C&,(C,(X x Y”), 
C,(X)) for v = p or v = (1 + u)p and DG,( U, I#Q( U)) + Dd,( U, 4,,(U)) as E + O+ 
uniformly w.r. to U E a3,. Now the proof of lemma follows from the fact that DG,(U, S) = 
J,,,DG&J, 9. n 

Now we are in a position to apply theorem 3.7 to the family of operators [q). To do so we 
define the following operators 

d,T,: Xx U --t L(U, U), d,T,: Xx U -+ L(X, U), &T,: Xx 7.L -+ L(%, %) 

as follows 

d,T,(x, U) := 3d$&(U); d,T,(x, u) := Ix; d&(x, U) := 5&,(U), 

where the linear operators 3 E L(C,(X), U) and 3 E L(C,(X), %) were introduced in (3.12), 
v = P or v = K, respectively. Furthermore, if we denote 

T,:= JwKT,:XxQ-% and %‘,<x> := JIL,,c U,(x) 

then we obtain from (3.18), (3.19) and lemma 3.5, 

and lim Dc(x, U) = DG(x, U) 
E-+0+ 

uniformly for (x, U) E ((x, U,(x)), x E B, E E [0, co]]. Under the assumptions of lemma 3.5 we 
also know that the mappings d,T, , d, T, and &T, satisfy all the hypotheses of theorem 3.7 
with some 0 < 0 < 1 and Q = 1, provided that p s 1 is large enough. 

Finally, we recall that the mapping QD, was defined as Qe(x) = +,(U,(x))(O) (see lemma 3.5). 
With regard to theorem 3.7 and lemma 3.2(iii), (iv); the mapping X 3 x - $E(U,(x)) E C;(Ya) 
becomes C’& differentiable, for some ji > K, and &(U,(x)) + $o(Uo(x)), x E B, as E -+ O+ in 
the respective topology. Hence, QE -+ <Do as E + O+ in Cldd(B, Ya) where B C X is arbitrary 
bounded open subset. 

Summarizing all the preceding results we can state the main result of this paper. 

THEOREM 3.9. Assume that the hypothesis (H) is fulfilled. Then there are constants 6 > 0 and 
0 < e1 4 e. such that if llD s E L(ya,Y) I 6 for any E E [0, EJ then there exists an invariant F/I 
manifold 3n, for the semi-flow S, generated by the system of evolutionary equations (1. l), 

312, = MU, @dW, u E Xl, where QE E Ci,,(X, Y”), 

% * @o as E + O+ in C&,(B, Y”) 

for any bounded open subset B cX. 
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If dim(X) = 00 then Em, is infinite dimensional Banach submanifold of the phase-space 
Xx Y”. If dim(Y) = 00 then codim(5&) = 00. 

If, in addition, the resolvent operator A-‘: Y + Y is compact then the manifold 3n,, 
E E (0, cr] is also exponentially attractive, i.e. 312, attracts exponentially any bounded subset 
of xx YU. 

Remark 3.10. One may ask whether the assumption that the F, and G, are globally bounded 
in the respective topologies is not too much restrictive from the point of view of possible applica- 
tions of the results obtained in theorem 3.9. In case of dissipative semi-flows one can, however, 
prepare the nonlinearities F,, G, in such a way that they are vanishing far from the vicinity of a 
globally attracting set (see, e.g. [4, 6, 81). In Section 4 we present an example of such a modifica- 
tion of the governing equations. Let us also emphasize that having modified the nonlinearities in 
(1.1) by their truncation we are afterwards dealing with local invariant manifolds only. 

4. AN APPLICATION TO THE JOHNSON-SEGALMAN-OLDROYD MODEL OF 
SHEARING MOTIONS OF A PRESSURE DRIVEN NON-NEWTONIAN FLUID 

Many striking phenomena like spurt or hysteresis were apparently observed in rheological 
experiments involving the channel flow of highly elastic and very viscous non-Newtonian fluid 
like some synthesized polymers. The interested reader is referred to the paper by Vinogradov 
et al. [lo] for details. Much effort has been spent to explain such and related phenomena 
mathematically. In [9, 12, 131 Nohel et al. have considered the Johnson-Segalman-Oldroyd 
model of shearing motions of the planar Poisseule flow within a thin channel. The channel is 
aligned along the y axis and extends between x E [- 1, 11. The flow is assumed to be symmetric 
with respect to x = 0 and the fluid undergoes the simple shearing. Therefore, we can restrict 
ourselves to the interval x E [0, 11. Moreover, the flow variables (velocity and stresses) are 
independent of y so v = (0, v(t, x)). In order to determine extra stress tensor as a functional of 
the rate of deformation tensor we consider the Johnson-Segalman-Oldroyd constitutive law 
(see [9]). In nondimensional units the system of partial differential equations governing the 
motion of such a fluid is a system of parabolic-hyperbolic equations 

0, = -0 + (1 + Z)V* 

zt = -z - cw x (4.1) 

EV, = v, + a, + f 

subject to boundary and initial conditions 

v,(t, 0) = v(t, 1) = a(t, 0) = 0 for any t 2 0 
(4.2) 

vK4 xl = u,(x), dO,X) = a,(x), z(O, xl = z&> for x E [0, 11. 

We omit here the complete derivation of the initial-boundary value problem (4.1)-(4.2) 
by referring to [9]. We only remind ourselves that o is the extra stress, z is the difference of 
normal stresses, f E R is a constant pressure gradient driving the flow. The parameter E > 0 is 
proportional to the ratio of the Reynolds number to the Deborah number and is very small 
compared to other constants in (4.1), E = 0(10-12) (see [9]). It gives rise to treating 0 < E e 1 
as a small parameter and investigating the singular limiting behavior of inertial manifolds of 
system (4.1)-(4.2) when E + O+. 
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For the purpose of the analysis, let us introduce the total stress function S = V, + CT + fx, 
x E [0, 11. Since the flow is assumed to be symmetric about the centerline the extra shear stress 
function must be an odd function, i.e. a(t, 0) = 0. System (4.1)-(4.2) can, therefore, be 
rewritten as 

(Tt = -0 + (1 + z)(S - CJ -1x) 

zt = -2 - o(S - CT - fx) 

ES, - s,, =&(-r3 + (1 + z)(S - cr -fx)) 

subject to boundary and initial conditions 

(4.3), 

qt, 0) = qt, 1) = 0 for any t 2 0 
(4.4) 

WAX) = &&4, do, xl = q&4 z(O, xl = zow for x E [0, 11. 

Denote AS = -S,, the selfadjoint operator in Y = L,(O, 1) its domain being the Sobolev space 
D(A) = (S E W272(0, l), S(0) = S’(1) = 0). The operator A is sectorial in Y, Re a(A) > 1 and 
A -l: Y + Y is compact. Moreover, Y 1’2 = Wks2 = (S E Wly2(0, l), S(0) = O]. Let us consider 
the Banach space X = (L,(O, 1))2. The problem (4.3)-(4.4) can be viewed as an abstract 
problem (1.1) where the nonlinear functions G( U, S), F,( U, S), U = (a, z) are defined by the 
right-hand side of (4.3), i.e. G(U, S) = [-a + (1 + z)(S - cr - fx), -z - a(S - cr - fx)]r 
and F,(U, S) = E(-CJ + (1 + z)(S - ~7 - fx)). Nohel et al. [12] proved global existence and 
uniqueness of solutions of the initial-boundary problem (4.3)-(4.4) in the phase-space X x Y1’2 
(cf. [12]). The inertialess approximation of system (4.3), when E = 0 yields S = 0 and, hence, 
(4.3), becomes a system of ordinary differential equations in the Banach space X = (L&O, 1))2 

0‘ = -0 - (1 + z)(a + fx) 
(4.3), 

zt = -z + ci((i + fx) 

extensively studied by Nohel et al. [9, 11, 131. 
Let us emphasize that nonlinear functions F,, G do not satisfy the assumptions of the 

hypothesis (H). In fact they are not smoothly bounded functions. Nevertheless, as is usual in 
similar circumstances (see, e.g. [6]) we will smoothly modify the functions F,, G far from the 
vicinity of some globally attracting bounded set. In what follows, we will seek a bounded 
attracting set in X x Yl” independent of E E [0, so]. To do so, let us first multiply the first 
equation in (4.3) by cr and the second one by 1 + z. Their summation then leads to the estimate 

x ~~~~~(oZ(t, X) + (1 + z(t, x))~) 5 1 + e-’ s~~rl(o,Z(x) + (1 + z~(x))~). 

We will let K,, = K,( Ilaolla + l/z,& + ~~S0X~~2) denote any positive constant increasingly depending 
on its argument. By C > 0 we will denote any generic constant independent of E E [0, E,,] and 
initial conditions. From the above inequality it should be obvious that a ball in X of the 
radius 2 is an attracting set, i.e. for any (a,,, zO, S,) cz Xx Y1’2 there is T = T(q,, z,,) > 0 such 
that IIa(t, *)llm + Ilz(t, *))I, I 2 for every t L T. Now we observe that 

II-0 + (1 + z)(S - 0 - .fx)l12 5 C(1 + &e-%1 + IlSl12) for t L 0. 
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Taking the inner product in L,(O, 1) of the third equation in (4.3) with -S,, we obtain 

5 W1 + &e-%1 + Il~l12)llLl12 5 C&U + ll&ll3 
for any t 1 Gdao, 2,). Since IL% 5 IlS,ll, 5 IlSxxl12 f or any S E D(A) we obtain ed/dtll$l]: + 
]Is,[/~ I CE provided that E E [0, E& and e0 is small enough. Then 

IIW, ->llf 5 II&K *>IIi ew((T - WE) + Cc for any t 2 T. 

Furthermore, as the growth of the third equation in (4.3), is only linear in S one can easily 
prove that the time-one map (cr,,, zO, S,,) ++ (a(1, e), ~(1, e), S(1, m)) takes bounded sets into 
bounded sets of the phase-space Xx Y1”. This and the above estimates yield bounded 
dissipativity of the semiflow generated by (4.3)-(4.4). More precisely, there is a constant R, > 0 
independent of E E [0, eO] and such that, for any bounded set of initial conditions 
@ C Xx Y1’2 there is a T = T(E, aS) > 0 with the property 

forany(a,,zo,S0)E63andt2 T. 
Let 0 E C,“,,(R+, R+) be a smooth cut-off function with the property 8 = 1 on [0,2R,], 

0=0on[3R,, m) and define the modified functions Gb, F,” as follows 

Gb(U, S)(x) := O((o(x)12 + l~(x)1~ + llSll2,~z)G(U, S)(x) 

F:(K fWx) := e(b(x)12 + lz(x)12 + lk%4F,W, Wx) 

for a.e. x E [0, 11. Here CT = (a, z) E X = (L-(0, 1))2 and S E Y”’ = Wi’2(0, 1). Note that 
Wip’ is a Hilbert space its norm squared being two times continuously differentiable and 
Wi*” -L-(0, 1). Recall also that the Nemitzky operator is C2 smooth when considered as a 
function from L&O, 1) into itself. Thus 

F,” E C&,(Xx Y1’2, Y) and Gb E C,“,,(Xx Y1’2, X). 

For the norm of D,F,b we have an estimate ~ID~F,“/~ = O(E) as E + O+. Since 

X0 = ((U, S), AS = F,(U, S) = 0) = ((U, 0), U E X) 

we have Q0 = 0. Now we can apply theorem 3.9 to obtain the following theorem. 

THEOREM 3.11. There exists an e0 > 0 such that, for any E E (0, a,,] the nonlinear system of 
equations (4.3)-(4.4) governing shearing motions of a Poisseule planar flow of the Johnson- 
Segalman-Oldroyd fluid: 

(i) possesses an infinite dimensional local invariant manifold 3n, attracting any solution of 
(4.3),-(4.4); 

(ii) there is an R,, > 1 such that any solution of (4.3),-(4.4) enters a ball of the radius R, in 
the space (L,(O, 1))2 x Wi’2(0, 1); 

(iii) % = Ha, z, @,(a, zh (a, z) E BR,,J, % E C&&h,, WYv2C0, 111, where &, = Ka, z> E 
&&4 1>12, Iloll: + lIzlIt < R,J; 

(iv) a8 + 0 as E + O+ in the topology of the space C’,,,(B,,,, Wi,“(O, 1)). 
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