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The C1 stability of slow manifolds for a system

of singularly perturbed evolution equations

Daniel �Sev�covi�c

Abstract. In this paper we investigate the singular limiting behavior of slow invariant
manifolds for a system of singularly perturbed evolution equations in Banach spaces.
The aim is to prove the C1 stability of invariant manifolds with respect to small values
of the singular parameter.
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1. Introduction

In this paper we consider the following system of singularly perturbed evolution
equations

(1)"
ut +A"u = G"(u; v)

"vt +B"v = F"(u; v)

where " � 0 is a small parameter, fA"g"�0, fB"g"�0 are continuously depending
families of sectorial operators in Banach spaces X and Y , respectively; G" :
X� � Y � ! X , F" : X� � Y � ! Y , �; � 2 [0; 1); are smooth and bounded
functions, G" ! G0, F" ! F0 as "! 0+.

In the qualitative analysis of evolutionary di�erential equations, the theory of
invariant manifolds plays an important rôle. It is well known that the proof of
existence of center-unstable invariant manifolds carries over from the ODE setting
to abstract semilinear evolution equations in Banach spaces (see, e.g. Chow & Lu
[1] and references therein). Under suitable assumptions on the spectrum of A"

and B" it has been proven that the dynamics of solutions of (1) resembles the
behavior of a a dynamical system generated by some ODE when restricted on
so-called inertial form (Foias, Sell & Temam [2]). Such inertial manifolds are even

shown to be Ck smooth embedded submanifolds of the phase-space, provided that
the nonlinearities G", F" are of the same regularity class (Chow & Lu [1]). In fact,

they are usually constructed as a Ck smooth graph over some �nite dimensional
space.

The aim of this paper is to investigate the singular limiting behavior of invariant
manifolds for the system (1) when " ! 0+. More precisely, the question to be
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considered below is whether the inertial manifoldM" for (1)", 0 < "� 1, is close
in the C1 topology to the inertial manifoldM0 corresponding to the quasidynamic
approximation of (1)", " = 0, i.e.

(1)0
ut +A0u = G0(u; v)

B0v = F0(u; v) :

In the geometric singular perturbation theory, such a manifold of solutions is
referred to as a slow manifold. We prove the existence of an inertial manifoldM"

for the perturbed system (1)", 0 < " � 1, as well as the inertial manifold M0.
Such an invariant manifold is constructed as a graph of a C1 smooth function, i.e.
M" = Graph(�"). The main goal is to show that �" ! �0 in a C1 sense. The
invariant manifolds are shown to be exponentially attractive and the semi
ow S"
when restricted to the manifoldM" is generated by solutions of the inertial form
which is an ODE

(2) pt = Ĝ"(p); p 2 Em

in the Euclidean space Em. The main result of this paper (Theorem 8) implies

that the vector �eld ~G" : E
m ! Em is continuous at " = 0 with respect to the

C1(Em; Em) topology. Therefore such a result can be a useful tool, e.g. in the
local bifurcation analysis when one is interested in extension of various bifurcation
phenomena arising in the reduced system to the perturbed system of governing
evolution equations.

In order to construct an inertial manifold M", " � 0, we follow the classical
Lyapunov-Perron method of integral equations. We �rst treat the singularly per-
turbed equation "vt+B"v = F"(u; v) and we show that there is a nonlocal solution
operator v = �"(u) acting on a Banach scale of functional spaces consisting of all
globally de�ned solutions of this equation. It should be emphasized that the de-
rivativeD�" becomes continuous with respect to "! 0+ only when �" operates in
a subclass of H�older continuous curves. By contrast to the usual choice of a func-
tional space (e.g. Chow & Lu [1], Foias, Sell & Temam [2], Marion [4] or Miklav�ci�c
[5]), our setting involves scales of spaces of H�older continuous curves growing ex-
ponentially at �1. The H�older exponent depends merely on � 2 [0; 1). In order
to prove the existence of an inertial manifoldM" = Graph(�"), 0 � "� 1, for the
semi
ow S" generated by solutions of (1)" (cf. [1]) we set up an integral equation
for the nonlocal equation ut+A"u = G"(u; �"(u)). We then show the convergence
�" ! �0 in the C1 topology. To this end, we apply a two parameter contraction
principle due to Mora & Sola-Morales [6] covering di�erentiability and continuity
of a family of nonlinear mappings operating in a scale of Banach spaces.

The methods used in the proof of the main theorem are similar, in spirit and
technique, to those of the paper [8] where the author has studied the problem
of C1 smoothness of the singular limit of �nite dimensional invariant manifolds
in the case when the nonlinearity F depends on the u-variable only. The last
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assumption makes the analysis of the singularly perturbed equation considerably
easier. Moreover, the exponential attractivity of invariant manifolds has not been
proven in [8], and the results obtained in [8] cannot be applied to some problems
arising e.g. in the theory of so-called Sobolev's equations.

The outline of this paper is as follows: Section 2 is devoted to preliminaries.
We introduce the notion of a scale of Banach spaces of H�older continuous curves
parametrized by their growth at �1. We also recall some useful results regarding
properties of a family of sectorial operators. In Section 3 we are interested in
the problem of the existence, C1 smoothness and continuity w.r. to " ! 0+ of
a family of inertial manifoldsM" for the system (1)", 0 � "� 1. The main result
of this paper is contained in Theorem 8. As an example we consider the following
equation of Sobolev type

(A� �(�))wt +A2w = f(w);

where �(�) ! �(0) as � ! 0+. In the case of resonance, i.e. Ker (A��(0)) 6= 0 and

Ker (A��(�)) = 0, 0 < � � 1, the aim is to show, under suitable assumptions on
A, that the semi
ow generated by the above equation is C1 stable in the singular
limit � ! 0+.

2. Preliminaries

Let X be a Banach space. For any � > 0 we denote the Banach space

C�� (X ) :=

(
u : C(R�;X ); and kuk

C�� (X )
:= sup

t�0
e�tku(t)kX <1

)
:

For any % 2 (0; 1], a 2 (0; 1] and � > 0 we furthermore introduce the Banach
space C��;%;a(X ) of H�older continuous curves growing exponentially at �1,

C��;%;a(X ) =

=
�
u 2 C�� (X ); [u]�;%;a = sup

t�0;h2(0;a]

ke�tu(t)� e�(t�h)u(t� h)k

h%
<1

	

endowed with the norm kuk
C��;%;a(X )

:= kuk
C�� (X )

+[u]�;%;a. The space C
�
� (X ) is

continuously embedded into C�� (X ), � > �, through a linear embedding operator

(3) J�;� : C
�
� (X )! C�� (X )

with norm kJ�;�k = 1. At the same time, the operator J�;� when restricted to

C��;%;a(X ), J�;� : C��;%;a(X ) ! C��;%;a(X ) is again an embedding, its norm is less

or equal to max(1; (���)a1�%) (see [8]). Hence the families fC�� (X )g�>0 as well

as fC��;%;a(X )g�>0 form scales of Banach spaces.
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As usual, for Banach spaces E1; E2 and � 2 (0; 1] we denote L(E1; E2) the
Banach space of all linear bounded mappings from E1 to E2, C

1
bdd(E1; E2) the

Banach space consisting of the mappings F : E1 ! E2 which are Fr�echet di�er-
entiable and such that F;DF are bounded and uniformly continuous, the norm

being given by kFk1 := sup jF j+sup jDF j. C1+�
bdd

(E1; E2) will denote the Banach

space consisting of the mappings F 2 C1
bdd(E1; E2) such that DF is �-H�older con-

tinuous, the norm being given by kFk1;� := kFk1+supx6=y kDF (x)�DF (y)kkx�

yk��. If F : E1 ! E2 is a bounded and Lipschitz continuous mapping, then the
Nemitzky operator

~F : C�� (E1)! C�� (E2); ~F (u)(t) := F (u(t))

is bounded and Lipschitzian as well, sup j ~F j � sup jF j and Lip( ~F ) � Lip(F ).

Let us emphasize the known fact: if F 2 C1
bdd(E1; E2) then the mapping ~F :

C�� (E1) ! C�� (E2) need not be necessarily di�erentiable. However, it becomes

C1 smooth after composition with the embedding operator J�;� , � > �,

Lemma 1 ([12, Lemma 5], [8, Lemma 2.1]). Assume F 2 C1
bdd(E1; E2). Then,

for any � > � > 0, we have ~F 2 C1
bdd(C

�
� (E1); C

�
� (E2)) and

~F 2 C1
bdd(C

�
�;%;a(E1); C

�
� (E2)), the derivative being given by D ~F (u)h =

J�;�d ~F (u)h where d ~F (u)h = DF (u(:))h(:).

In what follows we recall some useful perturbation results for a family of sec-
torial operators (see [8, Section 2]). Let fA"g"�0 be a family of closed densely
de�ned linear operators in a Banach space X . Consider the following hypotheses:

(H1)

8><
>:

D(A0) = D(A") and A�10 A�1" = A�1" A�10 ; " 2 [0; "0];

0 2 %(A"); " 2 [0; "0]; and A0A
�1
" ! I as "! 0+ in L(X;X);

A0 is a sectorial operator in X and Re �(A0) > ! > 0:

We refer to [3, Chapter 1] for the de�nition of a sectorial operator. According
to [8, Lemma 2.1] the operator A" is also sectorial in X and Re �(A") > ! > 0
for any " > 0 su�ciently small. Besides the hypotheses (H1) we also impose the
assumptions:

(H2)

8>>><
>>>:

A�10 : X ! X is a compact linear operator;

there are 0 < �� < �+ <1 such that �(A0) = �0� [ �
0
+ where

�0� = f� 2 �(A0); Re � ? ��g

Under the assumptions (H1) and (H2) we have

�(A") = �"� [ �
"
+; for any 0 < "� 1 small,
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where �"� = f� 2 �(A"); Re � ? ��g (cf. [8, Lemma 2.2]). Denote by P" : X !
X the projector associated with the linear operator A" and the spectral set �"�.
We also denote Q" := I � P"; A1;" := P"A"; A2;" := Q"A" and let

X1;" := P"X; X2;" := Q"X;

be the complementary subspaces invariant with respect to A". Since A
�1
0 : X !

X is assumed to be compact and A0 is a sectorial operator we conclude that the
set �0� is �nite. With regard to [8, Lemma 2.2], we have P" ! P0 as " ! 0+.
Hence P"jX1;0

: X1;0 ! X1;" is a linear isomorphism, dimX1;" = dimX1;0 < 1
and there exists an inverse operator

(4) P
(�1)
" :=

�
P"jX1;0

��1
: X1;" ! X1;0

of the projector P" restricted to X1;0 (see [8, Lemma 2.2]). Further, P
(�1)
" P" ! I

as "! 0+ in the space L(X1;0; X1;0).
If A is a sectorial operator then �A generates an analytic semigroup of linear

operators exp(�At); t � 0. If Re �(A) > 0 then the fractional power operator
A�; � 2 R, can be de�ned (see e.g. [3]). As the spectral set �"� is bounded the
operator A1;" is a bounded linear operator on X and hence exp(�A1;"t) can be
extended to a group of operators on X , t 2 R. The operator A2;" is sectorial as
well. Suppose that a family fA"g"�0 ful�lls the hypotheses (H1). Then, by [8,
Lemma 2.5], there are constants M0 > 1 and "0 > 0 such that, for any " 2 [0; "0],

(5)
k exp(�A"t)k �M0e

�!t; t � 0

kA�
0 exp(�A"t)k �M0t

��e�!t; t > 0:

Henceforth, we will suppose that the families fA"g0�"�"0 and fB"g0�"�"0
ful�ll the hypotheses (H1){(H2) and (H1) in the Banach spaces X and Y , respec-
tively. Denote

X� = [D(A�
0 )]; Y � = [D(B�

0 )]; �; � 2 [0; 1)

the fractional power spaces endowed with graph norms of A�
0 andB

�
0 , i.e. kukX� =

kA�
0uk, kvkY � = kB�

0 vk (cf. [3, Chapter 1]).
Now, using the estimates (5) one can easily follow the lines of the proofs of

global existence and continuity of solutions of abstract semilinear evolution equa-
tions due to Henry [3, Theorems 3.3.3, 3.3.4] in order to prove that the system
(1)", 0 < " � "0, generates a semi
ow S"(t), t � 0, de�ned by solutions of (1)" on

the phase-space X� � Y � . By a global solution of (1)" with the initial condition

(u0; v0) 2 X� � Y � we understand a function (u; v) 2 Cloc([0;1);X� � Y �) \

C1
loc((0;1);X� � Y �) such that (u(t); v(t)) 2 D(A") �D(B"), t > 0 and (u; v)

solves the system (1)" on (0;1) (cf. [8, Section 3]).
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In case the function F0 2 C1
bdd(X

� � Y � ; Y ) obeys the condition

kB��1
0 k sup kDvF0k < 1, there exists a C1

bdd function �0 : X� ! Y � such that
B0v = F0(u; v) i� v = �0(u). By a solution of (1)0 with the initial condition
u0 2 X� we understand a function u 2 Cloc([0;1);X�) \ C1

loc((0;1);X�) such
that u(t) 2 D(A0), t > 0 and u solves the equation ut + A0u = G0(u; �0(u)) on
(0;1). Again due to the above references to Henry's lecture notes it follows that

the system (1)0 generates a semi
ow ~S0(t), t � 0, on X�. The semi
ow ~S0 can be
naturally extended to a semi
ow S0 acting on the manifold f(u; �0(u)); u 2 X�g

by S0(t)(u; �0(u)) := ( ~S0(t)u; �0( ~S0(t)u)) for any u 2 X�. Henceforth, we will

identify the semi
ow ~S0 with its extension S0.
Let S(t), t � 0, be a semi
ow in the Banach space X . We say that the set

M � X is an inertial manifold for the semi
ow S if: (1) it is an invariant �nite
dimensional submanifold of X ; and (2)M attracts exponentially all solutions, i.e.
there is a � > 0 such that dist (S(t)u0;M) = O(e��t) as t! 1 for any u0 2 X
(cf. [2]).

3. Existence and the C1 stability of inertial manifolds

First, we will be concerned with solutions of the linear nonhomogeneous sin-
gularly perturbed problem

(6)" "vt +B"v = f

where " > 0, f 2 C�� (Y ), and solutions of the unperturbed problem

(6)0 B0v = f

belonging to the space C�� (Y
�).

Denote by Y� , Y�;%;a and X�;%;a, � > 0, 0 < % � 1, a 2 (0; 1], the following
Banach spaces of bounded linear operators

(7)
Y� = L(C�� (Y ); C

�
� (Y

�)); Y�;%;a = L(C��;%;a(Y ); C
�
� (Y

�));

X�;%;a = L(C�� (X); C��;%;a(X
�)) :

Lemma 2 ([8, Lemma 3.1]). Assume that the family fB"g0�"�"0 ful�lls the

hypothesis (H1). Then, for any " 2 [0; "0], 0 < � < !"�10 , and f 2 C�� (Y ) there

is the unique solution v 2 C�� (Y
�) of (6)" given by v = L"f where

L"f(t) =
1

"

Z t

�1
exp (�B"(t� s)=") f(s) ds; " > 0; L0f(t) = B�10 f(t) t � 0 :

The linear operator L" belongs to the spaces Y� and Y�;%;a, 0 < % � 1, and there

is a K0 > 0 such that kL"kY�;%;a � kL"kY� � K0(! � �"0)
��1 for any " 2 [0; "0],

0 < �J < !"�10 . Moreover, L" ! L0 as "! 0+ in the space Y�;%;a.

According to the previous lemma, if u 2 C�� (X
�) then any solution v 2

C�� (Y
�) of the equation "vt + B"v = F"(u; v) can be written as v = L"F"(u; v).

The next lemma deals with unique solvability of such an equation.
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Lemma 3. Assume F" 2 C1+�
bdd

(X� � Y � ; Y ), " 2 [0; "0], for some � 2 (0; 1],

and F" ! F0 in C
1+�
bdd

(X� � Y � ; Y ) as " ! 0+. Let �; � be �xed and such that

0 < (1 + �)� � � < !"�10 . Suppose that there is a � < 1 with the property

kL"kY�kDvF"(u; v)kL(Y �;Y ) � � for any u 2 X�, v 2 Y � and " 2 [0; "0]. Then,

for any u 2 C�� (X
�) and " 2 [0; "0], there is the unique solution v = �"(u) 2

C�� (Y
�) of the equation v = L"F"(u; v) satisfying,

(i) k�"(u1)� �"(u2)kC�� (Y �) � K1ku1 � u2kC�� (X�);

(ii) lim"!0+ �"(u) = �0(u) in C�� (Y
�) uniformly w.r. to u 2 B where B is

arbitrary bounded subset of C��;%;a(X
�);

(iii) �" 2 C1
bdd(C

�
� (X

�); C�� (Y
�)), k�"k1 � K1 and there is

d�" 2 L(C�� (X
�); C�� (Y

�)) with the property D�" = J�;�d�", kd�"k �
K1;

(iv) lim"!0+ �" = �0 in C1
bdd(B; C

�
� (Y

�)) for any bounded subset B of

C��;%;a(X
�), where K1 := kL"kY�kF"k1(1� �)�1.

Proof: Under the assumption kL"kY�kDvF"kL(Y �;Y ) � � < 1, the existence of

the solution operator v = �"(u) as well as its Lipschitz continuity (i) follows from
the parametrized contraction principle.

Obviously, for " = 0, we have v = B�10 F0(u; v) and kL0kY� = kB
��1
0 k. To

prove (ii), we �rst �nd an estimate of the norm of k�0(u)kC��;%;a(Y �) in terms

of u 2 C��;%;a(X
�). To this end, we put v(t) = �0(u)(t). Then, for any t � 0,

h 2 (0; a], we have

e�tv(t)� e�(t�h)v(t� h) = (e�t � e�(t�h))B�10 F0(u(t); v(t))

+e�(t�h)B�10 (F0(u(t); v(t)) � F0(u(t� h); v(t� h))) :

Notice that

(8)

kw(t)� w(t� h)kE

� e��tke�tw(t) � e�(t�h)w(t� h)kE + (1� e��h)kw(t� h)kE

� K2e
��tkwk

C��;%;a(E)
h%

where E stands either for X� or Y � and K2 = K2(�) > 0 is a constant. Thus

ke�tv(t)� e�(t�h)v(t� h)kY � � K2kukC��;%;a(X�)h
%

+kB
��1
0 kkDvF0kkv(t)� v(t� h)kY �e�(t�h) :

Because kvk
C�� (Y �) � kB

��1
0 kkF0k0 and kL0kY�kDvF0k � � < 1, the above

inequality yields the estimate

(9) k�0(u)kC��;%;a(Y �) � K2(1 + kukC��;%;a(X�)) :
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Arguing similarly as above one can show kF0(u; v)kC��;%;a(Y )
�

K2(1 + kukC��;%;a(X�) + kvkC��;%;a(Y �)). Hence

(10) kF0(u; �0(u))kC��;%;a(Y )
� K2(1 + kukC��;%;a(X�)) :

As �"(u) = L"F"(u; �"(u)) we obtain

(1� �)k�"(u)� �0(u)kC�� (Y �) � kL" � L0kY�;%;akF0(u; �0(u))kC��;%;a(Y )

+kL"kY�kF"(u; �0(u))� F0(u; �0(u))kC�� (Y )
:

By Lemma 2, (H1) and (10) we obtain lim"!0+ �"(u) = �0(u) in C�� (Y
�) uni-

formly w.r. to u 2 B where B is an arbitrary bounded subset of C��;%;a(X
�).

(iii) For any u;w 2 C�� (X
�), we denote

(11) D�"(u)w := [I � L"DvF"(u(:); �"(u)(:))]
�1L"DuF"(u(:); �"(u)(:))w :

A straightforward calculation then yields

�"(u+ w)� �"(u)�D�"(u)w

= R"[F"(u+ w; �"(u))� F"(u; �"(u))�DuF"(u; �"(u))w]

+R"[F"(u+ w; �"(u+ w)) � F"(u+ w; �"(u))

�DvF"(u; �"(u))(�"(u+ w)� �"(u))]

=: I1 + I2

where
R" := [I � L"DvF"(u(:); �"(u)(:))]

�1L" :

Obviously, kR"kY� � (1 � �)�1kL"kY� for � = � or � = �, " 2 [0; "0]. Further-
more, by Lemma 1 we have kI1kC�� (Y �) = o(kwk

C�� (X�)) as kwk ! 0. On the

other hand, as F" 2 C1+�
bdd

and 0 < (1 + �)� � � we conclude

kI2kC�� (Y �) = O(kwk�
C��

+ k�"(u+ w)� �"(u)k
�

C��
)k�"(u+ w) � �"(u)kC��

= o(kwk
C��

) :

Hence �" 2 C1
bdd(C

�
� (X

�); C�� (Y
�)); D�"(u)w = J�;�d�"(u)w where d�"(u)w is

de�ned by the right-hand side of (11) and so kd�"k � kL"kY�kF"k1(1� �)�1.

Finally, we prove the assertion (iv). Let B � C��;%;a(X
�) be an arbitrary

bounded set. With regard to (ii) it is su�cient to show the uniform convergence
D�"(u)! D�0(u) as "! 0+ for u 2 B. For any u 2 C��;%;a(X

�) we have

D�"(u)�D�0(u) = (R" �R0)DuF0(u; �0(u))

+R"[DuF"(u; �"(u))�DuF0(u; �0(u))] :
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Now one can readily verify that

R" �R0 = R"[DvF"(u; �"(u))�DvF0(u; �0(u))]R0

+[I � L"DvF"(u; �"(u))]
�1(L" � L0)(I +DvF0(u; �0(u))R0) :

Furthermore,

DvF"(u; �"(u))�DvF0(u; �0(u))

= Dv[F"(u; �"(u))� F0(u; �"(u))] +Dv [F0(u; �"(u))� F0(u; �0(u))] :

Thus

kDvF"(u(t); �"(u)(t))�DvF0(u(t); �0(u)(t))kL(Y � ;Y )

� kF" � F0k1 + kF0k1;�k�"(u)(t)� �0(u)(t)k
�

Y � :

Because 0 < (1 + �)� � � we obtain

kDvF"(u; �"(u))�DvF0(u; �0(u))kL(C�� (Y �);C�� (Y ))

� kF" � F0k1 + kF0k1;�k�"(u)� �0(u)k
�

C�� (Y �)
:

But the right-hand side of the above inequality tends to 0 as " ! 0+ uniformly
w.r. to u 2 B. Similarly one has

kDuF"(u; �"(u))�DuF0(u; �0(u))kL(C�� (X�);C�� (Y ))
! 0 as "! 0+

u.w.r. to u 2 B. Notice that kR0DuF0(u; �0(u))kL(C�� (X�);C�� (Y �)) � K1 and

k[I +DvF0(u; �0(u))R0]DuF0(u; �0(u))kL(C��;%;a(X�);C��;%;a(Y ))

� K1(1 + kuk
�

C��;%;a(X�)
) :

Indeed, let us denote

A(t) := [I +DvF0(u(t); �0(u)(t))R0]DuF0(u(t); �0(u)(t)); t � 0 :

Then, by (8) and (9)

kA(t)�A(t� h)kL(X�;Y )

� K1(ku(t)� u(t� h)k
�
X� + k�0(u)(t)� �0(u)(t� h)k

�

Y � )

� K1e
���th�%(1 + kuk�

C��;%;a(X�)
) :
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As 0 < (1 + �)� � � we obtain kA(:)wk
C��;�%;a(Y )

� K1kwkC��;%;a(X�)(1 +

kuk
�

C��;%;a(X�)
) for any w 2 C��;%;a(X

�). According to Lemma 2 it is now ob-

vious that D�"(u) ! D�0(u) as "! 0+ u.w.r. to u 2 B. The proof of Lemma 3
is complete. �

We are in a position to construct an inertial manifold M" for the semi
ow S"
as the union of all H�older continuous curves growing exponentially at �1, i.e.

(12) M" = f(Y (�); � 2 R; Y 2 C��;%;a(X
� � Y �); Y = (u; v) solves (1)g

for some � > 0, % 2 (0; 1) and a 2 (0; 1]. Since the system (1)", " � 0, is
autonomous the invariance property ofM" under the semi
ow S"(t), t � 0, follows

from the uniqueness of solutions of (1)". By Lemma 3, (u; v) 2 C��;%;a(X
��Y �) is

a solution of (1)" if and only if v = �"(u) and u 2 C��;%;a(X
�) satis�es the equation

ut(t) + A"u(t) = G"(u(t); �"(u)(t)) on (�1; 0]. Suppose that �� < � < �+.
According to [1, Lemma 4.2], u 2 C��;%;a(X

�) is a solution of the integral equation

(13)

u(t) = exp(�A1;"t)P"u(0) +

Z t

0
exp(�A1;"(t� s))P"G"(u(s); �"(u)(s)) ds

+

Z t

�1
exp(�A2;"(t� s))Q"G"(u(s); �"(u)(s)) ds :

Let us de�ne the linear operators K" : X1;0 ! C��;%;a(X
�) and T" : C�� (X) !

C��;%;a(X
�),

(14)

K"x(t) := exp(�A1;"t)P"x; for any x 2 X1;0; t � 0;

T"(g)(t) :=

Z t

0
exp(�A1;"(t� s))P"g(s) ds

+

Z t

�1
exp(�A2;"(t� s))Q"g(s) ds for any g 2 C�� (X); t � 0

and the mapping T" : X1;0�C��;%;a(X
�)! C��;%;a(X

�) de�ned by the right-hand

side of (13), i.e.

(15)
T"(x; u)(t) := K"x(t) + T"(G"(u(:); �"(u)(:)))(t);

t � 0; x 2 X1;0; u 2 C��;%;a(X
�) :

For any 0 � " � 1 small, P"jX1;0
: X1;0 ! X1;" is a linear isomorphism. Then,

for any u(0) 2 X� there exists the unique x 2 X1;0 such that P"x = P"u(0).
Now, using the invariance property of M" we can write the set M" as

(16) M" = f(u(0); �"(u)(0)) 2 X� � Y � ; u = T"(x; u); x 2 X1;0g :

The next lemma deals with the linear operators K" and T".



The C1 stability of slow manifolds for a system of singularly perturbed evolution equations 101

Lemma 4 ([8, Lemma 3.2]). Suppose that % 2 (0; 1��). Then there is a constant

C1 > 0 independent of " 2 [0; "0] and �� such that, for any � 2 (��; �+), there
exists a number a(��; �) 2 (0; 1] with the property

(i) K" 2 L(X1;0; C
�
�;%;a(X

�)); kK"kL(X1;0;C
�

�;%;a(X�)) � C1�
�
� and

T" 2 X�;%;a; kT"kX�;%;a � C1K(��; �+; �; �) for any " 2 [0; "0] and 0 <

a � a(��; �), where

K(��; �+; �; �) := ���(�� ��)
�1 + (2� �)(1� �)�1(�+ � �)��1 ;

(ii) K" ! K0 in L(X1;0; C
�
�;%;a(X

�)) and T" ! T0 as " ! 0+ in X�;%;a when

"! 0+.

Henceforth, we will assume that 0 < % < 1 � � is �xed and the positive
constants �; �; "0 satisfy the inequality

(17) �� < � < (1 + �)� < � < �+ and "0�+ < !=2 :

Let us de�ne the Banach spaces U ; �U and Em as follows

(18) U = C��;%;a(X
�); �U = C��;%;a(X

�); Em = X1;0

where a := minfa(��; �); a(��; �)g and m = dimX1;0 < 1. Concerning the
nonlinear functions G" and F" we will assume the following hypotheses:

(H3)

8>>><
>>>:

there exist �; � 2 [0; 1) and � 2 (0; 1) such that

G" 2 C1
bdd(X

� � Y � ;X); F" 2 C
1+�
bdd

(X� � Y � ; Y )

for any " 2 [0; "0];

G" ! G0; F" ! F0 as "! 0+ in the respective topologies.

If, in addition to (H3), we suppose that F" satis�es the assumption of Lemma 3,
i.e. there is a 0 < � < 1 such that

kL"kY�kDvF"k � K0(! � �"0)
��1kDvF"k � K0(!=2)

��1kDvF"k � � ;

then the mapping U 3 u 7! T"(x; u) 2 U is Lipschitz continuous. By Lemma 3 (i),
and Lemma 4, we have

(19) kT"(x; u1)� T"(x; u2)kU

� kT"kX�;%;ak
~G"(u1; �"(u1))� ~G"(u2; �"(u2))kC�� (X) � �ku1 � u2kU

where � := C2K(��; �+; �; �) and C2 > 0 is a constant independent of ��; � 2
(��; �+) and " 2 [0; "0]. On the other hand, from Lemma 4 we obtain the estimate

(20) kT"(x1; u)� T"(x1; u)kU � kK"kL(Em;C��;%;a(X�)) � Qkx1 � x2kEm

where Q := C1�
�
�. Henceforth, we will assume that �� and � 2 (��; �+) are

chosen in such a way that the following inequality is ful�lled

(21) � := C2K(��; �+; �; �) < 1 :

Then the family of nonlinear mappings T"(x; :) : U ! U undergoes the parametrized
contraction principle and so, for any x 2 Em and " 2 [0; "0], there is the unique
solution u = u"(x) of the equation u = T"(x; u) in U .
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Lemma 5. Let B � Em be a bounded subset. Then

lim
"!0+

sup
x2B

kT"(x; u0(x)) � T0(x; u0(x))kU = 0 :

Proof: As u"(x) = T"(x; u"(x)) and T", K" and G" are bounded uniformly for
" 2 [0; "0], "0 small, we conclude that the set

(22) BB := fu"(x); x 2 B; " 2 [0; "0]g

is a bounded subset of U . In particular, the set fu0(x); x 2 Bg is bounded in U .

Hence, by Lemma 3 (ii), we obtain lim"!0+ �"(u0(x)) = �0(u0(x)) in C�� (Y
�)

uniformly w.r. to x 2 B. Since sup(u;v) kG"(u; v)�G0(u; v)kX ! 0 and T" ! T0
as "! 0+ we infer that lim"!0+ supx2B kT"(x; u0(x)) � T0(x; u0(x))kU = 0. �

In summary, we have shown that the family of mappings T"(x; :) ful�lls the
following hypotheses:

(T)

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(1) there is a � < 1 with the property kT"(x; u1)� T"(x; u2)kU

� �ku1 � u2kU for any x 2 Em; u1; u2 2 U and " 2 [0; "0];

(2) there is a Q <1 such that kT"(x1; u)� T"(x2; u)kU �

Qkx1 � x2kEm for any x1; x2 2 Em; u 2 U and " 2 [0; "0];

(3) for any bounded open subset B � Em;

lim"!0+ supx2B kT"(x; u0(x)) � T0(x; u0(x))kU = 0:

The set M" can be represented in the form (16). Let us therefore de�ne the

mappings 	" : E
m ! X�;�" : E

m ! Y � as follows

(23) 	"(x) := u"(x)(0); �"(x) := �"(u"(x))(0) :

Thus

(24) M" := f(	"(x);�"(x)); x 2 Emg � X� � Y � :

Since T" satis�es the hypotheses (T)1, (T)2 we know by the parametrized con-
traction principle that the setM" is a Lipschitz continuous graph of the mapping
Em 3 x 7! (	"(x);�"(x)) 2 X� � Y � . Furthermore, by Lemma 3 (ii), and (T)3,
we obtain the convergence (	"(x);�"(x)) ! (	0(x);�0(x)) as " ! 0+ u.w.r.
to x 2 B, B is an arbitrary bounded and open subset of Em. In other words,
the invariant set M" is an embedded Lipschitz submanifold of the phase space
X� � Y � and M" is C

0
loc close to M0 when " is small enough.

By the next lemma we prove exponential attractivity of the invariant mani-
fold M". It means that M" is an inertial manifold for the semi
ow S".
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Lemma 6. Suppose that the numbers K(��; �+; �; �), sup kDvF"k and "0 are

su�ciently small. Then dist (S"(t)(u0; v0);M") = O(e��t) as t ! 1 for any

initial condition (u0; v0) 2 X� � Y � .

Proof: In the case " = 0, the statement of the lemma is contained in [1, Theo-
rem 5.1]. Let " 2 (0; "0] be �xed. In this case, the proof is again essentially the
same as that of [1, Theorem 5.1]. A slight di�erence, in technique, of the proof
is caused by the fact that we have assumed no hypotheses on the spectral gaps
of the operator B". Nevertheless, the lack of large spectral gaps for �(B") is here
compensated by the assumption on smallness of the norm of DvF". We therefore
only sketch the main ideas of the proof.

Given a solution (�u; �v) of (1) we are looking for a solution (u�; v�) lying onM"

and satisfying the property: (u; v) 2 C+
� (X

��Y �) where u = u�� �u, v = v� � �v

and C+
� is the Banach space

C+
� (X

� � Y �) := ff 2 C(R+; X� � Y �); kfk
C+
�
= sup

t�0
e�tkf(t)kX��Y � <1g :

Following the lines of the proof [1, Theorem 5.1], one easily veri�es that the
di�erence of solutions (u; v) belongs to C+

� , if and only if the following integral
equations are satis�ed:

(25)

u(t) = exp(�A2;"t)�u +

Z t

0
exp(�A2;"(t� s))Q"g(s) ds

+

Z t

1
exp(�A1;"(t� s))P"g(s) ds

v(t) = exp(�B"t=")�v +
1

"

Z t

0
exp(�B"(t� s)=")f(s) ds; t � 0;

for some � = (�u; �v) 2 X�
2;" � Y � where

g(s) := G"(�u(s) + u(s); �v(s) + v(s)) �G"(�u(s); �v(s)) ;

f(s) := F"(�u(s) + u(s); �v(s) + v(s)) � F"(�u(s); �v(s)) :

It means that u 2 C+
� is a �xed point of the mapping u 7! G(u; v; �) de�ned by the

right-hand side of the �rst equation in (25). We will henceforth let C > 0 denote
any positive constant independent of �� and �. Analogously as in the proof of
[1, Theorem 5.1] one can show that the mapping G is a uniform contraction in
C+
� (X

�). More precisely, there is a C > 0 such that

kG(u1; v1; �1)� G(u2; v2; �2)k
C+
� (X�)

� C:K(��; �+; �; �)
n
ku1 � u2k

C+
� (X�) + kv

1 � v2k
C+
� (Y �)

o
+ Ck�1 � �2kX�

2;"�Y
� :
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By the parametrized contraction principle there exists the unique solution oper-
ator h : C+

� (Y
�) � X�

2;" � Y � ! C+
� (X

�) with the property: u = G(u; v; �) i�

u = h(v; �). Furthermore,

(26)
kh(v1; �1)� h(v2; �2)k

C+
� (X�)

� C:K(��; �+; �; �)kv
1 � v2k

C+
� (Y �) + Ck�1 � �2kX�

2;"�Y
� :

Hence v is a �xed point of the equation v = F(v; �) where F is de�ned by the
right-hand side of the second equation in (25) with f(s) := R(v; �)(s),

R(v; �)(s) := F"(�u(s) + h(v; �)(s); �v(s) + v(s)) � F"(�u(s); �v(s)); s � 0 :

Clearly,

kR(v1; �1)�R(v2; �2)k
C+
� (Y )

� kF"k1kh(v
1; �1)� h(v2; �2)k

C+
� (X�)

+ kDvF"kkv
1 � v2k

C+
� (Y �)

:

We remind ourselves that the numbers K(��; �+; �; �), sup kDvF"k and "0 are
assumed to be su�ciently small. Then, taking into account (26) one can readily
prove that the mapping v 7! F(v; �) is a uniform contraction w.r. to �. Denote

v� 2 C+
� (Y

�) the unique solution of v = F(v; �). The mapping � 7! v� is

Lipschitzian and so the mapping X�
2;" � Y � 3 � 7! (u� ; v�) 2 C+

� (X
� � X�);

u := h(v� ; �), is Lipschitz continuous as well. Now the rest of the proof is the same

as that of [1, Theorem 5.1]. If we de�ne g(�) := P"(�u(0)+u
�(0)) then the mapping

g : X�
2;"� Y � ! X1;" is Lipschitz continuous. Recall that (u

�(0); v�(0)) 2 M" i�

u�(0) = 	"(x) and v�(0) = �"(x) for some x 2 Em = X1;0. Hence the solution
(u�; v�) belongs to M" i� � = (�u; �v) solves the equation

(27) � = (Q"(	"(P0g(�))� �u(0)); �"(P0g(�))� �v(0) ) :

Arguing similarly as in the proof of [1, Theorem 5.1] the right-hand side of the

above equation if a contraction w.r. to � 2 X�
2;"�Y

� provided thatK(��; �+; �; �)

is su�ciently small. Hence, under the assumptions of the lemma, there exists
a solution � of (27). But this yields that (u�(t); v�(t)) 2 M", t � 0, where

(u�(0); v�(0)) := (�u(0) + u�(0); �v(0) + v�(0)) and k�u(t) � u�(t)kX� + k�u(t) �
u�(t)kY � = O(e��t) as t!1. It completes the proof of the lemma. �

The Banach space U is continuously embedded into �U through a linear embed-
ding operator J := J�;�. Notice that kJ�;�k � 1 provided that the parameter
a 2 (0; 1] is su�ciently small. Denote �T" := JT" and �u"(x) := Ju"(x) for any
" 2 [0; "0] and x 2 Em. Now we can state a slightly modi�ed version of the theo-
rem due to Mora & Sol�a-Morales regarding the limiting behavior of �xed points of
a two parametrized family of nonlinear mappings operating on a scale of Banach
spaces. Their result covers di�erentiability and continuity of such mappings with
respect to parameters.



The C1 stability of slow manifolds for a system of singularly perturbed evolution equations 105

Theorem 7 ([6, Theorem 5.1], [8, Theorem 3.6]). Besides the hypothesis (T) we
assume also that the mappings �T" : E

m �U ! �U , " 2 [0; "0] satisfy the following

conditions:

(1) for any " 2 [0; "0], �T" is Fr�echet di�erentiable with D �T" : Em � U !
L(Em�U ; �U) bounded and uniformly continuous and there exist mappings

duT" : E
m�U ! L(U ;U); �duT" : E

m�U ! L( �U ; �U); dxT" : E
m�U ! L(Em;U)

such that

Du
�T"(x; u) = JduT"(x; u) = �duT"(x; u)J , Dx

�T"(x; u) = JdxT"(x; u)

kduT"(x; u)kL(U ;U) � �, k �duT"(x; u)kL( �U ; �U) � �, kdxT"(x; u)kL(Em;U)

� Q
(2) for any B bounded and open subset of Em, D �T"(x; u) ! D �T0(x; u) as

"! 0+ uniformly for (x; u) 2 f(x; u"(x)); x 2 B; " 2 [0; "0]g.

Then the mappings �u" : E
m ! �U have the following properties:

(a) for any " 2 [0; "0]; �u" : Em ! �U is Fr�echet di�erentiable, with

D�u" : E
m ! L(Em; �U) bounded and uniformly continuous,

(b) for any B bounded and open subset of Em, D�u"(x) ! D�u0(x) as

"! 0+ uniformly with respect to x 2 B.

In order to apply the above theorem we de�ne the mappings

duT"(x; u) := T"

�
du ~G"(u; �"(u)) + dv ~G"(u; �"(u))d�"(u)

�
; dxT"(x; u) := K";

�duT"(x; u) := �T"

�
�du ~G"(u; �"(u)) + �dv ~G"(u; �"(u))d�"(u)

�
where the linear operators T" 2 X�;%;a, �T" 2 X�;%;a, K" 2 L(Em; C��;%;a(X

�))

were introduced in (14) and the linear mappings

du ~G"(u; v) 2 L(U ; C�� (X)); �du ~G"(u; v) 2 L( �U ; C�� (X));

dv ~G"(u; v) 2 L(C�� (Y
�); C�� (X)); �du ~G"(u; v) 2 L(C�� (Y

�); C�� (X));

d�"(u) 2 L(U ; C�� (Y
�)); �d�"(u) 2 L(U ; C�� (Y

�))

are such that Di
~G" = J�;�di ~G", i = u or i = v, where

~G" 2 C1
bdd(U�C

�
� (Y

�); C�� (X)) (see Lemma 1). From this we infer Du
�T"(x; u) =

J�;�duT"(x; u) = �duT"(x; u)J�;�. Arguing similarly as in the proof of the estimate
(19) one obtains that the family T"(x; :) obeys the assumption (i) of Theorem 7
with the constants Q > 0 and 0 < � < 1 given by (20) and (21), respectively.

Finally, let B be a bounded and open subset of Em. By (22), the set BB =
fu"(x); x 2 B; " 2 [0; "0]g, is a bounded subset of U . According to Lemma 3 (iii),
we conclude that

lim
"!0+

sup
u2BB

kD�"(u)�D�0(u)kL(U ;C�
(1+�)�

(Y �)) = 0
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where �" is considered as a C1
bdd function from U into C�

(1+�)�
(Y �). Since

~G" 2 C1
bdd(U � C�� (Y

�); C�� (X)) where � stands either for � or (1 + �)� and

lim"!0+ �"(u) = �0(u) in C�� (Y
�) u.w.r. to u 2 BB , we obtain the convergence

D ~G"(u; �"(u))! D ~G0(u; �0(u)) as "! 0+. Therefore the derivative

Du
�T"(x; u) = �T"

�
Du

~G"(u; �"(u)) +Dv
~G"(u; �"(u))D�"(u)

�
converges towards Du

�T0(x; u) when " tends to zero u.w.r. to u 2 BB and x 2 B.
Obviously, Dx

�T"(x; u) = J�;�K" ! Dx
�T0(x; u) as " ! 0+. In this way we have

shown that the family of operators �T" ful�lls all the hypotheses of Theorem 7.
Therefore u" 2 C1

bdd(E
m; �U) and, for any bounded and open subset B � Em,

we have u" ! u0 as " ! 0+ in C1
bdd(B;

�U). Taking into account (22) and
Lemma 3 (iv), we furthermore know that �"(u"(x)) ! �0(u0(x)) in

C1
bdd(B;C

�
�� (Y

�)) for some �� > � u.w.r. to x 2 B. Since 	"(x) = u"(x)(0)

and �"(x) = �"(u"(x))(0) we also infer that (	";�") 2 C1
bdd(E

m; X� � Y �) and

(	";�")! (	0;�0) as "! 0+ in the space C1
bdd(B;X

��Y �). Finally, we notice
that the usual choice for the parameter � 2 (��; �+) is to set � := (�� + �+)=2.

Summarizing the above results, we are in a position to state the main theorem
of this paper.

Theorem 8. Assume that the families fA"g"�0 and fB"g"�0 satisfy the hypothe-
ses (H1){(H2) and (H1) in the Banach spaces X and Y , respectively. Assume that

the nonlinearities G" and F" ful�ll the hypothesis (H3).

If the numbers ���(�+���)
�1; (�+���)

�1, sup";u;v kDvF"(u; v)k and "0 > 0

are su�ciently small, then, for any " 2 [0; "0], there exists an inertial manifold

M" � X� � Y � for the semi
ow S"(t), t � 0, generated by the system (1)".
Moreover,

(a) dimM" = dimM0 = m <1;

(b) M" = f(	"(x);�"(x)); x 2 Emg

where (	";�") 2 C1
bdd(E

m; X� � Y �);
(c) for any bounded and open subset B � Em,

lim"!0+(	";�") = (	0;�0) in the space C1
bdd(B;X

� � Y �).

Remark 9. The assumption that the nonlinearities G" and F" are smoothly
bounded functions is not too much restrictive in the case when we are dealing with
so-called dissipative semi
ows. If there exists a bounded subset D of the phase-
space attracting any solution (D does not depend on " and the phase-space admits
a C1+� smooth bump function) then one can modify the original nonlinearities
by zero far from the vicinity of D in such a way that the modi�ed nonlinearities
ful�ll the hypothesis (H3). In such a case we have however constructed a local

center-unstable manifoldMloc
" instead of a global inertial manifold. The existence

of such a uniform dissipative set has been veri�ed, e.g. for a class of singularly
perturbed beam equations (see [8], [9]).
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Remark 10. The corresponding inertial form for (1)" is obtained by taking P"
projection of the �rst equation in (1). The resulting equation is an ODE in
the �nite dimensional linear space X1;". With regard to (4) we then apply the

linear operator P
(�1)
" : X1;" ! X1;0 to obtain an ODE in the Euclidean space

Em = X1;0. Namely,

pt = �P
(�1)
" A1;"P"p+ P

(�1)
" P"G"(	"(p);�"(p)) =: Ĝ"(p) :

Hence the dynamics on the invariant manifoldM" is governed by solutions of the

equation pt = Ĝ"(p) in a sense that (u; v) �M" is a solution of (1)" i� u = 	"(p),

v = �"(p) where p is a solution of the ODE pt = Ĝ"(p) in Em. The vector �eld

Ĝ" belongs to the class C
1
bdd(E

m; Em) and, moreover, Ĝ" ! Ĝ0 as "! 0+ in the

topology of C1
bdd(B;E

m) where B � Em is arbitrary bounded and open subset.

Example. We will apply the results obtained to certain resonance problem aris-
ing in the study of degenerate Sobolev's equations. Let us consider the following
Sobolev equation

(28) (A� �(�))wt +A2w = f(w)

where A : D(A) � X ! X is a self-adjoint positive de�nite operator in a Hilbert

space X , A�1 : X ! X is compact, f 2 C1+�
bdd

(X�;X ) for some � 2 [0; 1) and
� 2 (0; 1]. We are interested in the singular limiting behavior of solutions in

the case of resonance when �(�) ! �� as � ! 0+ where �� 2 �(A) = f�n; n 2

Ng and �(�) =2 �(A) for any 0 < � � 1. The existence of solutions and the
asymptotic expansions of equations of Sobolev type have been widely investigated
by Sviridyuk et al. in a general context in [10], [11] and references therein.

Denote P : X ! Ker (A� ��) the projector onto the kernel of (A� ��) and put

Q := I �P and " := (����(�))=��2. Let us de�ne the Hilbert spaces X = QX and

Y = PX . The operator (A� �(�))Q = (A� ��+ "��2)Q is continuously invertible
in X and, moreover, for any 0 � "� 1,

A" := [(A� ��+ "��2)Q]�1A2

is again a self-adjoint operator in the Hilbert space X . Taking the projections of
a solution w, u := Qw and v = Pw, the Sobolev equation (28) can be rewritten
as a system of equations

(29)
ut +A"u = G"(u; v) 2 X

"vt + v = ���2Pf(u+ v) 2 Y

where G"(u; v) := [(A � �� + "��2)Q]�1f(u + v). The operator A" need not be
positive de�nite. But it is bounded from below and this is why one can translate
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both the operator A" and the right hand side of the �rst equation such that
�(A") > 0 for any small 0 � " � 1. Notice that X� = [D(A�

0 )] = QX�. Thus

G" 2 C1+�
bdd

(X� � Y;X) and G" ! G0 as " ! 0+. Further, A�10 : X ! X is a

compact operator as well and A0A
�1
" � I = O(") in L(X;X) when "! 0+.

Hence all the assumptions of Theorem 8 are ful�lled provided that the number
��� 1 is large and the spectrum �(A0) = f�n; �n = �2n=(�n���); n 2 N; �n 6= ��g
has su�ciently large spectral gaps. More precisely, ��n=(�n+1 � �n) � 1. If the
eigenvalues �n have the asymptotic �n = cn2 + O(1) the latter condition is
satis�ed i� � < 1=2 and n 2 N is large enough. We remind ourselves that the
spectrum of the di�erential operator Au := ��u, A : H2 \ H1

0 (
) � L2(
) !

L2(
), 
 = (0; 1)N , has the above property for N = 1. In the dimension N = 2,
it is known (cf. Richards [7]) that the spectrum of A has arbitrarily large spectral
gaps. This yields that the condition ��n=(�n+1 � �n) � 1 is satis�ed for some
n 2 N and the fractional power exponent �� 1 small enough.

Having assured the hypotheses of Theorem 8 we may conclude that the Sobolev
equation (28) has a C1 smooth �nite dimensional inertial manifold M� for any
0 � � � 1. Moreover, the semi
ow generated by (28) is stable in the resonance
in a sense that the corresponding vector �elds on M� for � = 0 and 0 < � � 1

are C1-close to each other.
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