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Abstract. In this paper we investigate free non-distributive Morgan-Stone algebras.
We construct the free non-distributive Morgan-Stone algebra as a free lattice gener-
ated by a suitable partially ordered set endowed by a unary operation of involution.
A positive answer to the word problem is also proven.

1. Introduction

In [2] Blyth and Varlet have studied a new variety of so-called Morgan-Stone
algebras as a common abstraction of the well known classes of De Morgan and Stone
algebras. Such algebras are bounded distributive lattices with a unary operation
of involution fulfilling certain identities.

The aim of this note is to investigate a larger variety of algebras containing, in
particular, Morgan-Stone algebras. In such algebras the distributive identity need
not be necessarily satisfied. We are mainly concerned with the construction of
free non-distributive Morgan-Stone algebras. The idea of construction is based on
the concept of a free lattice generated by a partially ordered set P and preserving
bounds prescribed by chosen subsets of P due to Dean [3]. We then analyze the
word problem for the varieties under consideration. We show that there is an
algorithm for deciding when two words in a free algebra are equal.

The approach to the construction of free algebras was significantly influenced by
the work of Katrindk. In [5] he has treated a similar task for the class of p-algebras.
Based on the characterization of a free p-algebra Katrinak and the author were able
to characterize projective p-algebras [6] as well as bounded endomorphisms of free
p-algebras [7]. It is hoped that an analogous technique can be also applied in the
study of projective non-distributive Morgan-Stone algebras.

The outline of the paper is as follows. In Section 2 we recall definitions of De
Morgan and Morgan-Stone algebras. New varieties of non-distributive De Morgan
and Morgan-Stone algebras are introduced. We also present some of results due
to Dean [3] regarding free lattices generated by partially ordered sets. Section
3 is focused on the construction of a free non-distributive De Morgan algebra.
In Section 4 we construct a free non-distributive Morgan-Stone algebra and give
the positive answer to the word problem in this variety. Finally, some examples
showing free non-distributive De Morgan and Morgan-Stone algebras with a simple
generator are also presented.
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2. Preliminaries

We start by recalling definitions of De Morgan algebras, Stone algebras and
Morgan-Stone algebras. By De Morgan algebra we understand a universal alge-
bra (M, V,A,—,0,1) where (M,V,A,0,1) is a bounded distributive lattice and the
unary operation of involution satisfies the identities: x =~ —, (xAy)” =2z~ Vy~,
1= = 0. Stone algebra is a universal algebra (S, V, A, *,0,1) where (S,V,A,0,1) is a
bounded distributive lattice and the unary operation of complementation satisfies:
Az =0, (zAy)* = z*Vy*, 0* = 1. Finally, Morgan-Stone algebra (or MS algebra)
is a universal algebra (M, v, A, ©,0, 1) where (M, V, A, 0, 1) is a bounded distributive
lattice and the unary operation of involution satisfies: z < z°°, (z Ay)°® = 2° V ¢°,
1° = 0. We refer to a book by Balbes and Dwinger [1] for a broader discussion
regarding De Morgan and Stone Algebras.

Now we introduce two new varieties of so called generalized De Morgan and
Morgan-Stone algebras in such a way that all the identities for the unary operation
of complementation (involution) are preserved. We will consider a larger equational
class of algebras satisfying all the above identities of Morgan-Stone algebras lattice
skeletons of which are not assumed to be distributive lattices.

Definition 1. A generalized De Morgan algebra (or GM — algebra) is a universal
algebra (M,V,A,—,0,1) where (M,V,A,0,1) is a bounded lattice and the unary
operation of involution satisfies the identities:

GM;:z=2 ", GMa:(xAy) =z Vy, GMz:1~ =0.

Definition 2. A generalized Morgan-Stone algebra (or GMS — algebra) is a uni-
versal algebra (M, V,A,©°,0,1) where (M,V,A,0,1) is a bounded lattice and the
unary operation of involution satisfies the identities:

GMS; ;2 <z, GMSs: (zAy)° =z"°Vy®, GMS3:1°=0.

Let L be a GMS - algebra. We define the skeleton (the set of closed elements)
S(L) of L as follows: S(L) :={z € L,z =x°°}. One can easily verify that the set
S(L) endowed with induced operations from L is a GM — algebra. More precisely,

Lemma 1. Let (L,V,A,°,0,1) be a GMS - algebra.  Then the skeleton
(S(L),V, A,°,0, 1) is a GM - algebra.

Throughout the paper the following simple rules [or computation in
GMS — algebras will be frequently used:

if Ly theni ¥ £4° 2°°° =&, l@Vy) =z Ay’ 0°9=1,

The construction of free GM — as well as GMS — algebras is based on the well
known characterization of free lattices generated by partially ordered sets and pre-
serving bounds due to Dean [3]. Let us therefore summarize his results.
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Let P be a partially ordered set (poset) with an order relation <. Let U, L be
families of subsets of P such that

if p<gq, p,g€ P then {p,q} €U and {p,q} € L
if SeU (S € L) then there is supp S (infp S) in the poset P.

According to [3, Theorem 6] there exists a free lattice FL(P,U, L) generated by
P and preserving bounds prescribed by the sets from U/ and £. We also recall that,
by [3, Theorem 10], the word problem in FL(P,U, £) has an affirmative solution if
there is an affirmative solution to the problem of determining whether two ideals
of P of the form M(a) = {p € P,p > a}, J(b) = {p € P,p < b} have a common
element. More precisely, in the free lattice FL(P,U, L) a < b if and only if one or
more of the following hold:

a=a;Vay and a; <b for i=1 and i=2,
a=a;Nas and a; <b for i=1 or =12,
(W) b=by Vb, and a <b; for i=1 or =2,

b=biAby and a <b; for i=1 and i=2,
there is a p € P such that a <p < b,

(c.f. [3, Theorem 7]). With regard to (3, Definition 2] the order relation p < b for
p € P means p < b(k) for some integer k£ > 0 where

p<b0) iff b=g€ P and p<gq in P;
p < b(k) iff either b=b; Vby and p<b;(k—1) for i=1 or i =2,
(J) or b=b; Aby and p<bi(k—1) for i =1 and i =2,
or there is a S € U such that p<s;13pS and

s <b(k—1) for all s€S.
Analogously, a < p for p € P means a < p(k) for some integer k > 0 where

a<p0) iff a=geP and g<p in P;
a < p(k) iff either a=a; Vay and a; <p(k—1) for i=1 and i = 2,
(M) or a=a;Nag and a; <p(k—1) for i=1 or i =2,
or there is a S € £ such that i%fS < p and

a<s(k—1) for all seS.

Suppose that p < ¢ in P. With regard to the above definition of the ordering
in the free lattice F'L we observe that if ¢ < b(k) then p < b(k) also. Similarly, if
a < p(k) then a < g(k). The proof utilizes an induction argument with respect to
k> 0.

Let L be a K — algebra in the variety K. By [X]x we denote the K — subalgebra
of L generated by a subset X C L. As usual, by [a,b] we denote the interval
[a,b] := {c,a < c < b}
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3. Free Generalized De Morgan Algebras

In this section we study free algebras in the variety of all generalized De Morgan
algebras. We begin with a general result due to Katrindk regarding free algebras
in a variety of K algebras.

Lemma 2. ([5, Lemma 1)) Let K be a class of algebras, X any set, and Fg(X)
the free algebra in K freely generated by the set X. Suppose A € K is also generated
by X and there exists a K-homomorphism h : A — Fg(X) which is the identity
function on X. Then h is an isomorphism.

Let L be a GM — algebra and X C L. We denote X ~ theset X~ := {z~,z € X}.
By a straightforward induction on the rank of a GM — term p one can easily prove

that for any aqy,as,...,a, € X there exist by, ba,... ;b € X U X~ and a lattice
term ¢ such that p(ay,as,...,a,) = q(b1,ba,... ,by). In other words, we have —
Lemma 3. If o« GM - algebra L is generated by the set X,

i.e. L =[X]|gm, then the set X U X~ generates L in the variety BL of bounded
lattices, i.e. L=[XUX |pL.

Now we are in a position to define a poset P = Pgy(X) and two families
Uecnr, Ly of subsets of Pep(X) in such a way that the free lattice generated
by the poset Pgas(X) and preserving bounds from Ugpns, Lo will admit a unary
operation of involution with the property that the resulting algebra is free in the
category of GM — algebras.

Let X be a set. Let X be a disjoint copy of X, i.e. X = {z,z € X} and
XNXnN{0,1} = @. Define the set Pgy(X) = X U X U {0,1} and the order-
ing < on Pgp(X) as follows: 0 < 2 <1, 0 <7 < 1 for any x,T € Pgpn(X).
The families Ugpr, Lonr are defined as Ugy = Loy = {{p, qt C Peu(X),
p < gq in PGM(X)}. Then there is a free lattice F'L (PGM(X),UGM, EGM) gener-
ated by the poset Pgps(X). In what follows, we will show that there is an operation
of involution — with the property that the free lattice F'L (PGM(X ), Ucr, CGM)
endowed with such a unary operation is a free GM — algebra. To this end, we first
introduce the mapping 0 : FL(PGM(X),UGM, EGM) — FL(PGM(X),L{GM, EGM)
defined on the set of generators as follows:

0(z) =%, 0@F) =z, 00)=1, 6(1)=0. (3.1)

This mapping extends to a dual endomorphism of F'L (PGM(X),LIGM, ﬁGM) pre-
serving bounds prescribed by sets from Ugar, Lo ([3, Theorem 6)).

Let p be any lattice term. By P we denote a lattice term which is obtained from
p by replacing all the symbols A by V, V by A, 0 by 1 and 1 by 0.

Using the properties (W), (J) and (M) of FL(Pgn(X), Ugnr, Loar) and re-
calling that S = {p,q}, p < ¢ in Pgy(X) for any S € Ugy = Laar, we obtain
by a straightforward induction on the rank of lattice terms p,q : p(ai,as,... ,a,)
= q(al, @5y s w0 5 an) in FL(PGIW(X),MG]V[, CGI\J): where aq,as, ...,a, € ngw(X),
implies p(0ay, Oas, . .. ,0a,) > G(0ay,bas, ... ,0a,).

Now, it should be obvious that the mapping 6 : FIL — FL satisfies the identities
0(a Ab) = 0(a) V O(b), B(aVb) = b(a) AO(b) and 6(6(a)) = a for any a,b € FL.
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Let us denote
a” = 6(a). (3.2)

The lattice FL = FL (PGM(X),L{GM, CGM) endowed with such a unary operation
is a GM - algebra.

Theorem 4. Let X be any set. Then the free lattice FL = FL(PGM(X),Z/{GM,
EGM) endowed with the unary operation — defined in (3.2) is a free GM — algebra,
ie. Fon(X) = (FL,—).

Proof. Note that FIL = [X|gny = [X U X]BL. Let us define the mapping
h: Pou(X) — Fou(X) as follows: h(z) := z, h(Z) :== z—, h(0) = 0, A(1) = 1.
According to [3, Theorem 6] the mapping h can be extended to a homomorphism
h: FL — Fgp(X). By an induction on the rank of a lattice term a € F'L we will
show that h(a™) = h(a)”. If a € Pgp(X) the statement is obvious. If a = a1 A ay
or a = aj V ay then the statement follows from the induction hypothesis made on
terms a1, as and the properties of the mapping 6. Hence h : FL — Fgp(X) is a
CM — homomorphism which is an identity function on X. According to Lemma 2
h is an isomorphism and the proof of theorem follows. ]

We end this section by proving that the word problem in Fgas(X) has an affir-
mative solution.

Lemma 5. Let Foy(X) be a free GM — algebra. Then any element
pe X UX™U{0,1} is join and meet irreducible.

Proof. With regard to Theorem 4 it is sufficient to show that any p € Pgp(X) is
join and meet irreducible in the lattice F'L. We will proceed by an induction on the
rank. According to (J) p < aiVag, p € Poy(X), a1,a2 € FLUf p < ay Vas(k) for
some integer k£ > 0. This means that either p < a;(k—1) i =1 or i = 2, or there is
S elUam, S ={q1,92}, @1 < g2 such that p < supp S = gz and g2 < a1 Vaz(k—1).
The latter implies p < a1 V as(k — 1) and so one can again decrease the rank
(k— 1) by one. Since p < a1 V az(0) is impossible we may conclude that either
p < aj or p < as. Hence p is join irreducible. The proof of meet irreducibility of a
p € Poy(X) utilizes a dual argument because Ugpr = Lo ]

The next lemma is an immediate consequence of the property (W) and Lemma
5.

Lemma 6. a; Aay < by V by in Fagu(X) if and only if [ar A ag,by V bs)
m{a1,a27b1,b2} 7é .

Knowing the above characterization of the ordering in Fgp (X) we are in a
position to state the following theorem.

Theorem 7. The word problem in Fear(X) has an affirmative solution.

Proof. Let a = a(z1,22,... ,2,) € Faum(X) be arbitrary GM - term, z; € X.
Taking into account the identities GM;, GM>, GM3 one can construct a lat-
tice term @ = a(w1,%2,... ,Tp, 2], 25 ,... &, ) such that a = @. According
to Lemmas 5 and 6 there is an effective algorithm for decision when a = b in
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FL(PG m(X), U, L M). From this we can conclude that the word problem in
Fep(X) has a solution. 1

4. Free Generalized Morgan-Stone Algebras

In this section we focus on the construction of and analyzing the word problem
for the free GMS — algebra Fgars(X) freely generated by a set X. The next lemma
gives us the complete characterization of the skeleton S (FG ms(X ))

Lemma 8. The skeleton S(FGMS(X)) = {a € Feps(X),a = a®°} is isomorphic
to the free GM — algebra Fgpr(X°°) generated by the set X°° = {z°°,z € X }.

Proof. The proof is essentially the same as that of [5, Lemma 2 and 3] for the
variety of p-algebras. We therefore only sketch the main ideas. First, we observe
that the skeleton S(FGMS(X)) is a GM - algebra generated by the set X°°. Indeed,
it suffices to show that a®® € [X°°|ga whenever a € Fgas(X). This can be readily
verified by an induction on the rank of a term a € Fgarg(X). Furthermore, let
us consider the GMS — homomorphism h : Fous(X) — Fom(X°°) defined as
h(x) := x°° for any € X. The mapping h restricted to the set S(FGMS(X))
is a GM — homomorphism which is an identity mapping on X°°. With regard to
Lemma 2 we obtain that S(FGMS(X)) is isomorphic to Fgpr(X°°). ]

Following the same idea of the construction of Fgp(X) as a free lattice
FL(P,U, L) generated by some poset P and preserving bounds prescribed by sets
from U and £ we will define the poset Pgars(X) and two families Ugnrs, Lams
of finite subsets of Pgars(X) and a unary operation of involution © in such a way
that the resulting free lattice F'L (PGMS(X),Z/{GMS,EGMS) with the operation ©
is isomorphic to the free GMS — algebra Fars(X) freely generated by the set X.

Let X be a set. Take a disjoint copy X := {7,z € X} of X with the property

X N Fem(X) = @. Let us define the poset PGMS(X) =XU FGM(X) and the
order relation < on Pgprs(X) as follows:

0<a=<1forany a€ Pays(X);

z<a,z€X,ac Fey(X)iff T <ain Fopu(X);

a—<b,a,bc Fou(X)iff a <bin Fop(X).

The sets Uans, Loms are defined as follows: a finite subset S C Pgars(X)
belongs to Usms = Lams iff either S = {p,q}, p < ¢ in Pops(X) or S is a subset

of FGM(X)

Lemma 9. Let 'L = FL(PGMS(X),Z/{GMS.,EGMS) be the free lattice generated
by the poset Pays(X) and preserving bounds from Ugnrs and Lays. Then there

exists the unique lattice epimorphism w : FL — Fapa(X) such that n(x) = T for

any z € X and w(a) = a for any a € Fop(X). Moreover, a < w(a) for any
a€ FL.

Proof. The mapping 7 : Poas(X) — Fgu(X) defined by 7(z) = Z for any
r € X and 7(a) = a for any a € Fgu(X) preserves Lu.b.’s and g.l.b.’s pre-
scribed by sets from Ugprs and Lgars, respectively, i.e. 7(supp S) = V/ 7(S) and
T(infp S) = A 7(S) for any S € Ugnms = Loms- Hence, by [3, Theorem 6] there
is a unique lattice homomorphism 7 : FL — Fgu(X) extending the mapping 7.
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Since Fgun(X) € Paars(X) the homomorphism 7 is also onto. Furthermore, the
inequality a < 7(a) is satisfied for any a € Pgars(X). Then one can proceed by
an induction on the rank of a lattice term a € F'L to verify that a < w(a) for any
a € FL. ]

For any a € FL(PGMS(X),MGMS,EC;MS) we set
(4.1)

where the unary operation ~ is taken in the free GM — algebra Fe (X). Notice
that a® = a~ for any a € Fgp(X).

Theorem 10. Let X be any set. Then the free lattice FL = FL(Pgys(X),
Z/{GMS,EGMS) endowed with the unary operation © defined in (4.1) is o free GMS
— algebra freely generated by the set X, i.e. (FL,°) = Faps(X).

Proof. First we will verify the identities GMS;, GMSy and GMS3. By Lemma 9,
we have a°® = (7(w(a)”)) =n(a)™~ =n(a) > a. Further (a Ab)° = (7(aAb))
= (n(a ) 7(b)) =m(a)” Vr(b)” =a® V. Finally, 1° =n(1)" =1~ = 0.

Asz® = (n(n(z)”)) =7z~ =T wehave Pous(X) = XUFau(X) C [X]ams
and so (FL ©) = [X]gms- Let us define the mapping h : Poys(X) — Foms(X)
as follows:

h(z):=z for z€X, h(Z) :=2°° for 7€ X.

Since Fgp(X) is a free GM — algebra the mapping h : X — Fgpre(X) uniquely
extends to a GM — homomorphism A : Fga(X) — Fanrs(X). Hence the mapping
h @ Poms(X) — Fams(X) is well defined. Moreover, it preserves all bounds
prescribed by sets from Uagnrs = Loms. Again due to [3, Theorem 6] the mapping
h can be extended to a lattice homomorphism A : FL(PGMS(X),L{GMS,LGMS)
— Fanms(X). In what follows, we will show that A is even a GMS — homomorphism,
ie. h(a®) = h(a)°. We will argue by an induction on the rank of the lattice
term @ € FL. For an a € Pous(X) the statement is ObViOllb Ifa=a Vay
then h(a®) = h(m(ar V az)™) = h(w(a1)™ A m(az)”) = h(n(a1)”) A h(m(az)")
= h(a)Ah(a3) = h(a1)° Ah(a)® = (h(al)\/h(ag)) = h{a)°. The case a = a1 Aag
is similar.

This way we have shown that h is a GMS — homomorphism. As h(z) = z for
any x € X and Fgprs(X) = [X]gms we infer that i is a surjection. According to
Lemma 2 h is a GMS - isomorphism and the proof of theorem follows. ]

In accord to the previous theorem we will henceforth identify Fgars(X) with
the free lattice F'L (PGMS(X).,Z/{GMS, EGMS) endowed with the unary operation ©
defined in (4.1).

In the following lemma, we examine the property of join and meet irreducibility
of elements of Fgprs(X) belonging to the set X U S(FGMS(X)).
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Lemma 11. Let Fgys(X) be a free GMS - algebra. Then any
p € X US(Feus(X)) is both join and meet irreducible.

Proof. Notice that, as X°° = X in FL we obtain S(Fgns(X)) = Feu(X). We

will distinguish two cases: p =2 € X and p € Fop(X).

Let us consider the case p = z € X. From the definition of the ordering in F'L we
know that z < a; V ay means z < a; V az(k) for some integer k > 0. By (J), either
z < ai(k—1),i=1ori=2 or there exists an S € Ugn s such that z < supp S
and s < aj Vaz(k —1) for any s € S. The first event immediately implies z < a;,
i = 1ori =2 On the other hand, if S = {p,¢}, p < ¢ in Pays(X), then we
obtain x < a; Vay (k—1). If S is a finite subset of Fgas(X) then with regard to
the definition of the order relation we infer that z < T < supp .S =\/ 5. Since any
7 is join irreducible in Fgar(X) (see Lemma 5) there is an s € S such that 7 < s.
This however means that x < a1 V az (k —1). Now, decreasing step by step the
rank k by one and taking into account that the case z < a; V az(0) is impossible
we end up with the claim that either © < a; or x < ay. Hence any z € X is join
irreducible in Fgars(X).

To prove meet irreducibility of an z € X we cannot employ a dual argument
because the ordering in Pgprs(X) is not symmetric (z < ). Nevertheless, if
ay A as < z then there is a k > 0 such that a3 A ay < z(k). By (M), either a; < z,
i =1ori=2or there is a finite subset S C Fgp(X) with the property infp S < x
and a; Aay < s(k— 1) for any s € S. Since there are no nonzero elements in
Fga(X) less than z we have infp S = 0 and so a; A ay = 0. Thus ai®Aa3® =0in
Fea(X). We remind ourselves that 0 is meet irreducible in Fgj(X). Hence either
a; <aj®=0<zora; <a3®=0<zx Hencez € X is also meet irreducible.

The proof of join and meet irreducibility of an element p € Fgp(X) again
follows from Lemma 5. Indeed, if p < ay V az(k), k > 0 then either p < a;(k — 1),
i =1 or i =2 or there is a finite subset S C Fgar(X) such that p < supp S and
s < ay Vay(k—1) for any s € S. Taking into account join irreducibility of any
s € Fgu(X) we infer that either p < a;(k—1),i=1ori=2orp < aj;Vas(k—1).
Now the standard argument enables us to conclude that p < a; or p < as. On the
other hand, if a1 A a2 < p then a3° A a3° < p°° = p. As the element p € Fgp(X)

is meet irreducible in Fizp(X) we obtain a; < af® < pfor i =1 or ¢ = 2. This

means that p € Fgar(X) is meet irreducible. The proof of lemma is complete. [
The next lemma is a direct consequence of Lemma 11 and the property (W).

Lemma 12. a1 A as < by V b in Foums(X) if and only if a1 A as,by V bs)
m{a'haval)bZ} 7é a.

We conclude this paper with the following result proving that the word problem
in the free algebra Fars(X) has a solution, i.e. there is an algorithm for decision
when two word in Fgars(X) are equal.

Theorem 13. Let X be any set. Then the word problem in the free generalized
Morgan — Stone algebra Fears(X) has an affirmative solution.
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Proof. Let Feps(X) = (FL,°) be a free GMS — algebra and let a,b € FL be two
GMS - terms. Since the identities #° = z°°°, z° Ay® = (x Vy)°, 2° Vy° = (z Ay)°
are fulfilled in any GMS — algebra one can construct lattice terms a, b with letters
belonging to the set X U X° U X°° and such that a =@, b = b.Asg=bifa<b
and b < @ one can recursively apply Lemma 12 in order to decrease the rank of
the lattice terms a, b. After performing finite number of steps we end up with the
problem to decide whether p < ¢ in Fgars(X) for letters from the set X UX°UX°°.
With regard to the definition of the ordering in Pgprs(X), this is true iff either
p=qorp=xand g =z for some z € X. Hence there is an algorithm for
determining whether a = b in Fgprs(X). |

Examples. The free GMS and GM - algebras with |X| = 1 have diagrams as
shown by the figures below:

Fems(1) Feum(1)
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