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Abst ract. In t his paper we investigate free non -d ist r ibut ive Morgan-Ston e a lgebras ,
We co nstruct t he free non-distributi ve Morga n-Stone a lge bra as a free la t t ice ge ner­
at ed by a suitab le pa rt ia lly orde red set endowed by a una ry operation of involution ,
A pos itive answer to the word prob lem is also pro ven ,

1. Introduction

In [2] Blyth and Varlet have st udied a new variety of so-called Mor gan -Sto ne
algebras as a common abst ract ion of the well known clas ses of De Morgan and Stone
algebras. Such algebras are bounded distribut ive lat t ices with a un ar y operation
of involut ion fulfilling certain ident it ies.

T he aim of this note is to investigate a lar ger variety of algebra s cont aining, in
part icular , Mor gan-Stone algebras. In such algebras t he distributive identi ty need
not be necessarily sat isfied . We ar e mainly concern ed with the const ru ct ion of
free non-di stributive Morgan-Stone algebras . T he idea of const ruction is based on
the concept of a free lat t ice generated by a parti ally ordered set P and pr eserving
bo unds prescribed by chosen subsets of P due to Dean [3]. Vlfe then analyze the
word problem for the variet ies under consideration. vVe show t hat there is an
algorit hm for deciding when two words in a free algebra are equal.

T he app roach t o the construct ion of free algebras was significant ly influenced by
the work of Kat rifiak . In [5] he has treated a similar task for the class of p-algebras.
Based on the character ization of a free p-algebra Kat ririak and the author were able
to characterize projecti ve p-algebras [6] as well as bo unded endomorphisms of free
p-algebras [7]. It is hoped t hat an analogous technique can be also applied in the
st udy of project ive non-dist ributive Morga n-Stone algebras .

The outli ne of the pa per is as follows. In Sect ion 2 we recall definit ions of De
Morgan and Mor gan-Stone algebras. New vari eti es of non-distributi ve De Morgan
and Morgan-Stone algebras are int roduced . Vve also pr esent some of result s due
to Dean [3] regarding free lattices generated by parti ally ordered sets. Sect ion
3 is focused on the const ruct ion of a free non-dist ribu t ive De Morgan algebra .
In Section 4 we cons tru ct a free non-d ist ribu t ive Morgan -Stone algeb ra and give
t he posit ive answer to the word problem in t his variety. F inally, some exa mples
showing free non-di st rib utive De Morgan an d Morgan-Stone algebr as wit h a sim ple
generator are also presented .
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K eywo rds and Phrases : Nond ist r ibu t ive Morgan-Stone a lgeb ras, Free algebras , Free lat t ice gen­
erated by a poset , Word p ro blem.
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2. Preliminaries

We start by recalling definitions of De Morgan algebras, Stone algebras and
Morgan-Stone algebras. By De Morgan algebra we understand a universal alge­
bra (M, V, /\, -, 0,1) where (M, V, /\, 0,1) is a bounded distributive lattice and the
unary operation of involution satisfies the identities: x = x " > , (x /\ y)- = x" Vy-,

1- = 0. Stone algebra is a universal algebra (5, v, /\, *,0 ,1) where (5, V, /\, 0,1) is a
bounded distributive lattice and the unary operation of complementation satisfies:
x/\x* = 0, (x/\y)* = x*Vy*, 0* = 1. Finally, Morgan-Stone algebra (or MS algebra)
is a universal algebra (M, V, /\, 0, 0,1) where (M, V, /\ , 0,1) is a bounded distributive
lattice and the unary operation of involution satisfies: x :.:; xOo, (x /\ y) ° = XOV y O,
1° = 0. We refer to a book by Balbes and Dwinger [1] for a broader discussion
regarding De Morgan and Stone Algebras.

Now we introduce two new varieties of so called generalized De Morgan and
Morgan-Stone algebras in such a way that all the identities for the unary operation
of complementation (involution) are preserved. We will consider a larger equational
class of algebras satisfying all the above identities of Morgan-Stone algebras lattice
skeletons of which are not assumed to be distributive lattices.

Definition 1. A generalized De Morgan algebra (or GM - algebra) is a universal
algebra (M, V, /\, -,0,1) where (M, V, /\, 0,1) is a bounded lattice and the unary
operation of involution satisfies the identities:

Definition 2. A generalized Morgan-Stone algebra (or GMS - algebra) is a uni­
versal algebra (M, V, /\, 0, 0,1) where (M, V, /\, 0,1) is a bounded lattice and the
unary operation of involution satisfies the identities:

Let L be a GMS - algebra. We define the skeleton (the set of closed elements)
5(L) of L as follows: S(L) := {x E L,x = xeD}. One can easily verify that the set
5(L) endowed with induced operations from L is a GM - algebra. More precisely,

Lemma 1. Let (L,V,/\,o,O,l) be a GMS - algebra.
(5(L), V, /\, 0, 0,1) is a GM - algebra.

Then the skeleton

Throughout the paper the following simple rules [or computation III

GMS - algebras will be frequently used:

The construction of free GM - as well as GMS - algebras is based on the well
known characterization of free lattices generated by partially ordered sets and pre­
serving bounds due to Dean [3]. Let us therefore summarize his results.



FREE NON-DISTRIBUTIVE IIIO RGAN-STONE ALGEBRAS 87

Let P be a parti ally ordered set (poset) wit h an order relation -< . Let U , £.. be
families of subsets of P such that

if p -< q, p, q E P then {p , q} E U and {p , q} E £..
if 5 E U (5 E £..) t hen there is supj, 5 (inf » 5) in t he poset P .

According to [3 , Theorem 6] there exists a free lat tice F L (P,U, £.. ) generated by
P and preserving bounds prescrib ed by the sets from U and E: We also recall that ,
by [3, T heorem 10], the word pro blem in F L (P ,U , £.. ) has an affirmat ive solution if
there is an affirmative solution to the pro blem of determining whether two ideals
of P of the form M (a) = {p E P,P ~ a}, J (b) = {p E P,P :::.; b} have a common
element . More precisely, in the free lat t ice F L (P,U , £.. ) a :::.; b if and only if one or
more of t he following hold:

a == al V a 2 and a; :::.; b for i = 1 and i = 2,

a == a l 1\ a2 and ai :::.; b for i = 1 or i = 2,

(W ) b == bi V b2 and a :::.; b, for i = 1 or i = 2,

b == b1 1\ b2 and a :::.; bi for i = 1 and i = 2,

t here is ap E P such that a :::.; p :::.; b,

(c.f. [3 , Theorem 7]). With regard to [3 , Definition 2] t he order relat ion p :::.; b for
p E P means p :::.; b(k ) for some integer k ~ 0 where

(J)

» < b(O )

p :::'; b(k )

iff b == q E P and p -< q in P ;

iff eit her b == b1 V b2 and p:::'; bi(k - 1) for i = 1 or i = 2,

or b == b, 1\ b2 and p :::.; bi(k - 1) for i = 1 and i = 2,

or there is a 5 E U such that p -: sup S and
p

s :::'; b(k - 1) for all s E S.

An alogously, a :::'; p for p EP means a :::.; p(k ) for some integer k ~ 0 where

(M)

a:::'; p(O)

a :::.; p(k )

iff a == q E P and q -< p in P i

iff either a == a l V a 2 and ai :::.; p(k - 1) for i = 1 and i = 2,

or a == al 1\ a2 and ai :::.; p(k - 1) for i = 1 or i = 2,

or t here is a 5 E £.. such that inf 5 -< p and
p

a :::.;s (k - 1) for all sES.

Suppose that p -< q in P. With regard to t he above definit ion of the ord ering
in the free lat t ice FL we observe that if q :::.; b(k ) t hen p:::'; b(k ) also. Similarly, if
a :::'; p(k ) t hen a :::.; q(k ). The proof utili zes an induction arg ument wit h respect to
k ~ O.

Let L be a K - algebra in t he variety K . By [X ]K we denot e t he K - subalgebra
of L generated by a subset X ~ L . As usual, by [a,b] we denote the interval
[a, b] := {c,a :::,; c :::'; b} .
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3. Free G eneralized D e Morgan Algebras

In this sect ion we study free algebras in t he variety of all generalized De Morgan
algebras . We beg in wit h a general resul t due to Kat rinak regardi ng free algebras
in a variety of K algebras .

Lemma 2. ([5 , Lemma 1]) Let K be a class of algebras, X any set, and FK(X )
the free algebra in K freely generated by the set X. Suppose A E K is also generated
by X and there exists a K -homomorphism h : A ----t FK(X ) which is the identity
fun ction on X . Then h is an isomorphism.

Let L be a GM - algebra and X c L. We denote X - t he set X- := {x - , x E X }.
By a stra ightforward induct ion on the rank of a GM - term p one can easily prove
that for any ar , a2, . .. , an E X t here exist br , bz, . . . , bm E X u X - and a lat ti ce
te rm q such that p(al , a2, . .. , an) = q(bl ,b2, . .. , bm ) . In ot her words, we have -

Lemma 3. If a GM algebra L i s generated by the set X ,
i.e. L = [X] CM, then the set X u X - generates L in the variety B L of bounded
lattices, i.e. L = [X U X - ]BL.

Now we are in a position to define a poset P = PCM(X ) and two families
UCM, LCM of subsets of PCM(X ) in such a way t hat the free lat t ice generated
by the pos et PCM(X ) and preserving bounds from UCM,LCM will admit a un ar y
op eration of involut ion with th e property th at t he resu lt ing alge bra is free in the
category of GM - algebra s.

Let X be a set . Let X be a disjoint copy of X , i.e. X = {x , x E X } and
X n X n {O, I } = 0. Define the set PCM(X ) = X U XU {O, I} and the order­
ing --< on PCM(X ) as follows: 0 --< x --< 1, 0 --< x --< 1 for any x, x E PCM(X).
The fam ilies UCM, LCM are defined as UCM = LCM = { {p, q} C PCM(X ),
P --< q in PCM(X )} , Then there is a free lat t ice FL (PCM(X ),UCM, LCM) gener­
ated by the poset PCM(X ). In wha t follows, we will show that there is an operation
of involution - wit h the property t hat the free lat t ice FL (PCM(X ),UCM, LCM)
endowed wit h such a un ary operat ion is a free GM - algebr a. To this end, we first
introduce the mapping e : F L (PCM(X ),UCA-J , LCM) ----t FL (PCM(X ),UCM, LCM)
defined on the set of generators as follows:

e(x ) = x, e(x ) = x, e(O ) = 1, e(l ) = o. (3.1)

This mapping extends to a dual endomorphism of FL (PCM(X ),UCM, LCM) pr e­
servi ng bounds pr escr ibed by sets from UCM, LCM ([3, T heorem 6]).

Let p be any lat t ice te rm. By p we denote a lat t ice term which is obta ined from
p by replacing all t he symbols /\ by v , V by /\ , 0 by 1 and 1 by O.

Usin g t he prop erties (W) , (J) and (M) of F L(PCM(X ), UCM, LCM) and re­
ca lling that S = {p, q}, p --< q in PCM(X ) for any S E UCM = LCM: we obtain
by a st raight forward induction on t he rank of lat t ice terms p,q : p(ar , a2, . . . , an)
:::; q(al , a2, . . . , an) in FL (PCM(X ),UCM, LCM), where al ,a2 ,· .., an E PCM(X) ,
implies N eal , ea2,' .. , ean) :2: q(eal , ea2:' " , ean).

Now, it should be obvio us that t he mapping e:F L ----t F L sat isfies t he identit ies
e(a /\ b) = e(a) V e(b), e(a V b) = e(a) /\ e(b) and e (e(a)) = a for any a, b E FL.
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a- := e(a) .

89

(3.2)

Then any element

The lattice F L ~ F L(PCM(X),UCM, LCM) endowed with such a unary operation
is a GM - algebra.

Theorem 4. Let X be any set. Then the free lattice FL ~ FL(PCM(X) ,UCM,
LCM) endowed with the unary operation - defined in (3.2) is a free GM - algebra,
i.e. FCM(X) ~ (FL, - ) .

Proof. Note that FL = [X ]CM = [X U X]BL' Let us define the mapping
h : PCM(X) ---+ FCM(X) as follows: h(x) := x, h(x) := x>, h(O) = 0, h(l) = l.
According to [3 , Theorem 6] the mapping h can be extended to a homomorphism
h: FL ---+ FCM(X), By an induction on the rank of a lattice term a E FL we will
show that h(a-) = h(a)-. If a E PCM(X) the statement is obvious. If a == a1 /\ a2
or a == a1 Va2 then the statement follows from the induction hypothesis made on
terms a1, a2 and the properties of the mapping e. Hence h : F L ---+ FCM(X) is a
GM - homomorphism which is an identity function on X. According to Lemma 2
h is an isomorphism and the proof of theorem follows. I

We end this section by proving that the word problem in FCM(X) has an affir­
mative solution.

Lemma 5. Let FCM(X) be a free GM - algebra.
p E X u X - U {O, I} is join and meet irreducible .

Proof. With regard to Theorem 4 it is sufficient to show that any p E PCM(X) is
join and meet irreducible in the lattice FL. We will proceed by an induction on the
rank. According to (J) p :S a1 Voa, P E PCM(X), a1, a2 E F L iff p :S a1 Va2(k) for
some integer k ~ O. This means that either p :S ai(k - 1) i = 1 or i = 2, or there is
S E Uc M, S = {q1, Q2}, Q1 --< q2 such that p --< supp S = Q2 and Q2 :S a1 V a2(k - 1).
The latter implies p :S a1 V a2(k - 1) and so one can again decrease the rank
(k - 1) by one. Since p :S a1 V a2(0) is impossible we may conclude that eit her
p :S a1 or P :S a2. Hence p is join irreducible. The proof of meet irreducibility of a
p E PCM(X) utilizes a dual argument because UCM = LCM. I

The next lemma is an immediate consequence of the property (W) and Lemma
5.

Lemma 6. a1 /\ a2 :S b1 V b2 in FCM(X) if and only if [a1 /\ a2, b1 V b2]
n {a1, a2, b1, b2} f 0.

Knowing the above characterization of the ordering in FCM(X) we ar e in a
position to state the following theorem.

Theorem 7. The word problem in FCM(X ) has an affirmat'ive solution.

Proof. Let a = a(xl, X2," . , x n ) E FCM(X) be arbitrary GM - term, Xi E X .
Taking into account the identities G j1,;[l, GJvh, GJvh one can construct a lat­
tice term a = a(x1,x2,'" ,xn,x1, .T 2, ... , x;,) such that a = a. According
to Lemmas 5 and 6 there is an effective algorithm for decision when a = b in
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FL (PCM(X ),UCM, LCM)' From this we can conclude that the word problem in
FC1vdX ) has a solut ion. •

4 . Free G eneralized l\!Iorga n-St one A lgebras

In this section we focus on the construct ion of and analyzing th e word problem
for th e free GMS - algebra FCMs (X ) freely generated by a set X. T he next lemma
gives us the complete characterization of the skeleton S(FCMS(X )) .

Lemma 8 . The skeleton S(FCMs (X )) = {a E FCMs (X ),a = aOO} is isomo rphic
to the free GM - algebra FCM(X OO) generated by the set X OO= {XOO, X E X }.

Proof. T he pro of is essent ially the same as that of [5, Lemma 2 and 3] for the
var iety of p-algebras . We therefore only sketch t he main ideas. First , we observe
that t he skeleto n S (FCMS(X )) is a GM - algebra generated by the set X Oo. Indeed ,
it suffices to show that aDOE [X OO]CM whenever a E FCMS(X ), T his can be readily
verified by an induction on the rank of a term a E FCMS(X ). Furthermore , let
us consider the GMS - homomorphism h : FCMS(X ) -t FCM(X OO) defined as
hex ) := xOo for any x E X . The mapping h restrict ed to t he set S(FCMS(X) )
is a GM - homomorphism which is an ident ity mapping on X OO. W ith regard to
Lemma 2 we obtain that S (FGMS(X )) is isomorphic to FCM(X OO). •

Following the same idea of the construction of FCM(X ) as a free lat tice
F L (P,U , L ) generated by some poset P and preserving bounds prescribed by sets
from U and L we will define the poset PCMS(X ) and two families UCMs , LCMS
of finit e subsets of PGI'Id S(X ) and a un ary operation of involut ion 0 in such a way
that th e resulting free lat t ice FL (PCMS(X ),UCMS, LCMS) with the operatio n 0

is isomorphic to the free GM S - algebra FGMS(X ) freely generate d by the set X .

Let X be a set . Take a disjoint copy X := {x,x E X } of X with the property
X n FCM(X ) = 0 . Let us define the poset PCMS(X ) = X U FCM(X ) and t he
ord er relation -< on PCMS(X ) as follows:

0 -< a -< 1 for any a E PCMS(X );

x -< a, x E X , a E FCM(X ) iff x::; a in FCM(X) ;

a -< b, a, b E FCM(X ) iff a ::; b in FCM(X ).

The sets UGMS, LCMS are defined as follows: a finite subset S S;; PCMS(X )
belongs to UCMS = LCMS iff eit her S = {p,q}, p -< q in PCMS(X ) or S is a subset
of FCM(X ).

Lemma 9. Let FL == FL (PCMS(X ),UCMS,LCMS) be the free lattice generated
by the poset PCMS(X ) and preserving bounds from UCMS and LCMS' Then there
exists the unique lattice epimorphism 7r : F L ----+ FCM(X ) such that 7r (x) = X for
any x E X and 7r(a) = a for any a E FCM(X) . Moreover, a ::; 7r (a) for any
a E F L .

Proof. T he mappin g T : PCMs (X ) ----+ FCM(X ) defined by T(X) = x for any
x E X and T(a) = a for any a E FCM(X ) preserves l.u.b .'s and g.l.b .'s pr e­
scribed by set s from UCMS and LCMS, respectively, i.e. T(SUpp S ) = VT(S ) and
T(infp S ) = 1\ T(S ) for any S E UCMS = LCMS' Hence, by [3 , T heorem 6] there
is a unique lat t ice homomorph ism 7r : F L ----+ FCM(X ) ext ending the mapping T.
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Since FCM(X) C PCMS(X) the homomorphism 7f is also onto. Furthermore, the
inequality a ::; 7f(0) is satisfied for any a E PCMS(X). Then one can proceed by
an induction on the rank of a lattice term a E F L to verify that a ::; 7f(a) for any
a E FL. I

For any a E FL(PGlVIS(X) ,UCMS , LCMS) we set

(4.1)

where the unary operation - is taken in the free GM - algebra FCM(X). Notice
that 0° = 0- for any a E FCM(X).

Theorem 10. Let X be any set. Then the free lattice FL == FL(PCMS(X),
UCMS,LCMS) endowed with the unary operation 0 defined in (4.1) is a free GMS
- algebra freely generated by the set X, i.e. (FL , 0) ~ FCMS(X).

Proof. First we will verify the identities GMS 1 , GMS 2 and GMS 3 . By Lemma 9,
we have 0°° = (7f (7f(0)-)) - = 7f(a) -- = 7f(a) ~ a. Further (a 1\b)O= (7f(a 1\b))-

= (7f (a) 1\7f (b)r = 7f (a )- V 7f (b)- = a° V b0
. Finally, 1° = 7f (1) - = 1- = O.

As z ?? = (7f(7f(.T)-)r =x- - = xwe have PCMS(X) = X UFCM(X ) C [X JcMS
and so (FL,o) = [X] CMS' Let us define the mapping h : PCMS(X) ----+ FCMS(X)
as follows :

h(x):=x for x EX, h(x) := xOo for x E X.

Since FCM(X) is a free GM - algebra the mapping h : X ----+ FCMS(X) uniquely
extends to a GM - homomorphism h : FCM(X) ----+ FCMS(X) . Hence the mapping
h : PCMS(X) ----+ FCMS(X) is well defined. Moreover, it preserves all bounds
prescribed by sets from UCMS = LCMS' Again due to [3 , Theorem 6] the mapping
h can be extended to a lattice homomorphism h : F L(PCMS(X ), UCMS, LCMS)
----+ FCMS(X). In what follows, we will show that h is even a GMS - homomorphism,
i.e. h(o,O) = h(o)o. We will argue by an induction on the rank of the lattice
term a E FL. For an a E PCMS(X) the statement is obvious. If a == 0,1 V 0,2
then h(o,O ) = h(7f(o,1 V 0,2) -) = h(7f(Ol) - 1\ 7f(02) -) = h(7f(od -) 1\ h(7f(o,2 )-)

= h(oJ.)I\h(o~) = h(odO I\h(o,2)0 = (h(od Vh(02 )f = h(o,)o. The case a == 01 1\0,2
is similar.

This way we have shown that h is a GMS - homomorphism. As h(x) = x for
any x E X and FCMS(X) = [X ]CJ\i/ s we infer that h is a surjection. According to
Lemma 2 h is a GMS - isomorphism and the proof of theorem follows. I

In accord to the previous theorem we will henceforth identify FGlVIS(X) with
the free lattice FL(PCMS(X),UCMS, LCMS) endowed with the unary operation 0

defined in (4.1) .

In the following lemma, we examine the property of join and meet irreducibility
of elements of FCMS(X) belonging to the set XU S(FCMS(X)).



92 DANIEL SEVCOVIC

Lemma 11. Let FCMS(X ) be a free GMS - algebra.
p E X u S( FCMS(X )) is both jo in and m eet irreducible.

Th en any

Proof. Notice that , as X Oo = X in F L we obtain S(FCMS(X )) ~ FCM(X ). We
will dist ingu ish two cases: p == x E X and p E FCM(X ).

Let us conside r the case p == x EX. From the defini t ion of the orde ring in F L we
know t hat x :::; a1V a2 means x :::; a1 V a2(k ) for some integer k > 0. By (J) , either
x :::; ai (k - 1) , i = 1 or i = 2 or there exist s an S E UCMS such that x --< sup j- S
and s :::; a1 V a2(k - 1) for any s E S . T he first event immediately implies x :::; tu,

i = 1 or i = 2. On the other hand , if S = {p, q}, p --< q in PCMS(X ), t hen we
obtain x :::; al V a2 (k - 1). If S is a finit e subset of FCM(X ) then wit h regard to
the definit ion of t he order relation we infer that x < x :::; supj, s = VS. Since any
x is join irreducible in FCM(X ) (see Lemm a 5) there is an s E S such that x :::; s.
This however means that x :::; a1 V a2 (k - 1). Now, decreasing ste p by ste p the
rank k by one and taking into acco unt tha t the case x :::; a1 V a2(0) is impossible
we end up with the claim that eit her x :::; a1 or x :::; a2. Hence any x E X is join
irr educible in FCMS( X) .

To prove meet irr edu cibility of an x E X we cannot emp loy a dual argument
because t he ordering in PC1v[s (X ) is not symmet ric (x < x) . Nevertheless , if
a1 1\ a2 :::; x t hen t here is a k > 0 such that a1 1\ a2 :::; x (k ). By (M) , either a ; :::; x,
i = 1 or i = 2 or there is a finite subset S c FCM(X) wit h the property inf p S --< x
and a1 1\ a2 :::; s( k - 1) for any s E S . Since there are no nonzero elements in
FCM(X ) less t han x we have infp S = 0 and so a1 1\ a2 = O. Thus a)'o 1\ a~o = 0 in
FCM(X ), We remind ourselves that 0 is meet irreducib le in FCM(X ). Hence eit her
a1 :s; a)'o = 0 < x or a2 :::; a~o = 0 < x. Hence x E X is also meet irr educible .

The proof of join and meet irr educibility of an element p E FCM(X ) again
follows from Lemma 5. Indeed , if p :::; a1 V a2(k ), k > 0 then eit her p :::; ai(k - 1) ,

i = 1 or i = 2 or there is a finite subset S c FCM(X ) such that p --< supp Sand
s :::; a1 V a2(k - 1) for any s E S. Taking into acco unt join irr ed ucibi lity of any
s E FCM(X ) we infer that eit her p :::; ai(k-1 ), i = 1 or i = 2 or p :::; a1V a2(k - 1).
Now the standard argument enables us to conclude t hat p :::; a1 or P :::; a2. On the
other hand , if a1 1\ a2 :::; P t hen a)'o 1\ a~o :::; pOD= p. As the element p E FClvI( X)
is meet irr educible in FCM(X ) we obtain a; :::; a~o :::; p for i = 1 or i = 2. This
means that p E FCM(X) is meet irr edu cible. The proof of lemma is complet e. •

T he next lemma is a di rect consequence of Lemma 11 and the property (W ).

Lemma 12. a1 1\ a2 :s; b, V b2 in FCMS( X) if and only if [al 1\ a2, 61 V 62 ]

n{a1 ,a2,ht ,b2} =1= 0 .

We conclude this paper with the following result proving that t he word problem
in the free algebra FCMS(X ) has a solut ion, i.e. t here is an algorit hm for decision
when two word in FCl\lS(X ) are equal.

Theorem 13 . Let X be any set. Th en the word problem in the free genem lized
Morgan - Stone algebm FCMs (X ) has an affirm ative solution.
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Proof. Let FCMS(X) ~ (F L, 0) be a free GMS ~ algebra and let a, bE FL be two
GMS - terms. Since the identities XO= x ooo , XO/\ yO= (x V y )O, XOV y o = (x /\ y) O

ar e fulfilled in any GMS ~ algebra on e can construct lattice teEms a, b w~th letter~

belo~ging to the set X U XO U X OO and such that a = a, b = b. As a= b iff a :::; b
and b :::; a one can Eecursively apply Lemma 12 in order to decrease the rank of
the lattice t erms a, b. After performing finite number of ste ps we end up with the
problem to decid e whether » < q in FCMS(X) for letters from t he set X UxoUXoo.
With regard to the definition of the ordering in PCMS(X ), this is true iff either
p == q or p == x and q = x OO for some x E X. Hence there is an algorithm for
determining whet her a = b in FCMS(X ). I

Examples. The free GMS and GM - algebras wit h IXI
shown by the figures below:

1 have diagrams as

FCMs (l ) FCM(l )

1
x Oo V Xo 1

x V Xo

x Oo x v x:

x oo /\ (x V XO)

x V (XOO/\ XO)
XO

x x

x x /\ x:

xO o /\ XO

x /\ XO

0 0
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