FREE NON-DISTRIBUTIVE MORGAN-STONE ALGEBRAS

Daniel Ševčovič

(Received July 1994)

Abstract. In this paper we investigate free non-distributive Morgan-Stone algebras. We construct the free non-distributive Morgan-Stone algebra as a free lattice generated by a suitable partially ordered set endowed by a unary operation of involution. A positive answer to the word problem is also proven.

1. Introduction

In [2] Blyth and Varlet have studied a new variety of so-called Morgan-Stone algebras as a common abstraction of the well known classes of De Morgan and Stone algebras. Such algebras are bounded distributive lattices with a unary operation of involution fulfilling certain identities.

The aim of this note is to investigate a larger variety of algebras containing, in particular, Morgan-Stone algebras. In such algebras the distributive identity need not be necessarily satisfied. We are mainly concerned with the construction of free non-distributive Morgan-Stone algebras. The idea of construction is based on the concept of a free lattice generated by a partially ordered set P and preserving bounds prescribed by chosen subsets of P due to Dean [3]. We then analyze the word problem for the varieties under consideration. We show that there is an algorithm for deciding when two words in a free algebra are equal.

The approach to the construction of free algebras was significantly influenced by the work of Katriňák. In [5] he has treated a similar task for the class of p-algebras. Based on the characterization of a free p-algebra Katriňák and the author were able to characterize projective p-algebras [6] as well as bounded endomorphisms of free p-algebras [7]. It is hoped that an analogous technique can be also applied in the study of projective non-distributive Morgan-Stone algebras.

The outline of the paper is as follows. In Section 2 we recall definitions of De Morgan and Morgan-Stone algebras. New varieties of non-distributive De Morgan and Morgan-Stone algebras are introduced. We also present some of results due to Dean [3] regarding free lattices generated by partially ordered sets. Section 3 is focused on the construction of a free non-distributive De Morgan algebra. In Section 4 we construct a free non-distributive Morgan-Stone algebra and give the positive answer to the word problem in this variety. Finally, some examples showing free non-distributive De Morgan and Morgan-Stone algebras with a simple generator are also presented.

¹⁹⁹¹ AMS Mathematics Subject Classification: Primary 06C16, Secondary 06B25.

Keywords and Phrases: Nondistributive Morgan-Stone algebras, Free algebras, Free lattice generated by a poset, Word problem.

DANIEL ŠEVČOVIČ

2. Preliminaries

We start by recalling definitions of De Morgan algebras, Stone algebras and Morgan-Stone algebras. By *De Morgan algebra* we understand a universal algebra $(M, \lor, \land, -, 0, 1)$ where $(M, \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary operation of involution satisfies the identities: $x = x^{--}, (x \land y)^- = x^- \lor y^-,$ $1^- = 0$. Stone algebra is a universal algebra $(S, \lor, \land, *, 0, 1)$ where $(S, \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary operation of complementation satisfies: $x \land x^* = 0, (x \land y)^* = x^* \lor y^*, 0^* = 1$. Finally, *Morgan-Stone algebra* (or MS algebra) is a universal algebra $(M, \lor, \land, \circ, 0, 1)$ where $(M, \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary operation of involution satisfies: $x \le x^{\circ\circ}, (x \land y)^\circ = x^\circ \lor y^\circ,$ $1^\circ = 0$. We refer to a book by Balbes and Dwinger [1] for a broader discussion regarding De Morgan and Stone Algebras.

Now we introduce two new varieties of so called generalized De Morgan and Morgan-Stone algebras in such a way that all the identities for the unary operation of complementation (involution) are preserved. We will consider a larger equational class of algebras satisfying all the above identities of Morgan-Stone algebras lattice skeletons of which are not assumed to be distributive lattices.

Definition 1. A generalized De Morgan algebra (or GM – algebra) is a universal algebra $(M, \lor, \land, -, 0, 1)$ where $(M, \lor, \land, 0, 1)$ is a bounded lattice and the unary operation of involution satisfies the identities:

$$GM_1: x = x^{--}, \quad GM_2: (x \land y)^- = x^- \lor y^-, \quad GM_3: 1^- = 0.$$

Definition 2. A generalized Morgan-Stone algebra (or GMS – algebra) is a universal algebra $(M, \lor, \land, \circ, 0, 1)$ where $(M, \lor, \land, 0, 1)$ is a bounded lattice and the unary operation of involution satisfies the identities:

$$\mathrm{GMS}_1 : x \leq x^{\circ \circ}, \quad \mathrm{GMS}_2 : (x \wedge y)^{\circ} = x^{\circ} \vee y^{\circ}, \quad \mathrm{GMS}_3 : 1^{\circ} = 0.$$

Let L be a GMS – algebra. We define the skeleton (the set of closed elements) S(L) of L as follows: $S(L) := \{x \in L, x = x^{\circ \circ}\}$. One can easily verify that the set S(L) endowed with induced operations from L is a GM – algebra. More precisely,

Lemma 1. Let $(L, \lor, \land, \circ, 0, 1)$ be a GMS – algebra. Then the skeleton $(S(L), \lor, \land, \circ, 0, 1)$ is a GM – algebra.

Throughout the paper the following simple rules for computation in GMS – algebras will be frequently used:

if
$$x \le y$$
 then $y^{\circ} \le x^{\circ}$, $x^{\circ \circ \circ} = x^{\circ}$, $(x \lor y)^{\circ} = x^{\circ} \land y^{\circ}$, $0^{\circ} = 1$.

The construction of free GM – as well as GMS – algebras is based on the well known characterization of free lattices generated by partially ordered sets and preserving bounds due to Dean [3]. Let us therefore summarize his results.

Let P be a partially ordered set (poset) with an order relation \prec . Let \mathcal{U}, \mathcal{L} be families of subsets of P such that

if $p \prec q, p, q \in P$ then $\{p,q\} \in \mathcal{U}$ and $\{p,q\} \in \mathcal{L}$

if $S \in \mathcal{U}$ ($S \in \mathcal{L}$) then there is $\sup_P S$ ($\inf_P S$) in the poset P.

According to [3, Theorem 6] there exists a free lattice $FL(P, \mathcal{U}, \mathcal{L})$ generated by P and preserving bounds prescribed by the sets from \mathcal{U} and \mathcal{L} . We also recall that, by [3, Theorem 10], the word problem in $FL(P, \mathcal{U}, \mathcal{L})$ has an affirmative solution if there is an affirmative solution to the problem of determining whether two ideals of P of the form $M(a) = \{p \in P, p \ge a\}, J(b) = \{p \in P, p \le b\}$ have a common element. More precisely, in the free lattice $FL(P, \mathcal{U}, \mathcal{L}) \ a \le b$ if and only if one or more of the following hold:

 $a \equiv a_1 \lor a_2 \quad \text{and} \quad a_i \leq b \quad \text{for} \quad i = 1 \quad \text{and} \quad i = 2,$ $a \equiv a_1 \land a_2 \quad \text{and} \quad a_i \leq b \quad \text{for} \quad i = 1 \quad \text{or} \quad i = 2,$ $(W) \qquad b \equiv b_1 \lor b_2 \quad \text{and} \quad a \leq b_i \quad \text{for} \quad i = 1 \quad \text{or} \quad i = 2,$ $b \equiv b_1 \land b_2 \quad \text{and} \quad a \leq b_i \quad \text{for} \quad i = 1 \quad \text{and} \quad i = 2,$ $\text{there is a } p \in P \text{ such that } a \leq p \leq b,$

(c.f. [3, Theorem 7]). With regard to [3, Definition 2] the order relation $p \leq b$ for $p \in P$ means $p \leq b(k)$ for some integer $k \geq 0$ where

$$p \leq b(0) \quad \text{iff} \ b \equiv q \in P \ \text{and} \ p \prec q \ \text{in} \ P;$$

$$p \leq b(k) \quad \text{iff either} \ b \equiv b_1 \lor b_2 \ \text{and} \ p \leq b_i(k-1) \ \text{for} \ i = 1 \ \text{or} \ i = 2,$$

$$(J) \qquad \text{or} \ b \equiv b_1 \land b_2 \ \text{and} \ p \leq b_i(k-1) \ \text{for} \ i = 1 \ \text{and} \ i = 2,$$

$$\text{or there is a} \ S \in \mathcal{U} \ \text{such that} \ p \prec \sup_P S \ \text{and}$$

 $s \leq b(k-1)$ for all $s \in S$.

Analogously, $a \leq p$ for $p \in P$ means $a \leq p(k)$ for some integer $k \geq 0$ where

	$a \le p(0)$	iff $a \equiv q \in P$ and $q \prec p$ in P ;
	$a \le p(k)$	iff either $a \equiv a_1 \lor a_2$ and $a_i \le p(k-1)$ for $i = 1$ and $i = 2$,
(M)		or $a \equiv a_1 \wedge a_2$ and $a_i \leq p(k-1)$ for $i=1$ or $i=2,$
		or there is a $S \in \mathcal{L}$ such that $\inf_{p} S \prec p$ and
		$a \leq s(k-1)$ for all $s \in S$.

Suppose that $p \prec q$ in P. With regard to the above definition of the ordering in the free lattice FL we observe that if $q \leq b(k)$ then $p \leq b(k)$ also. Similarly, if $a \leq p(k)$ then $a \leq q(k)$. The proof utilizes an induction argument with respect to $k \geq 0$.

Let L be a K – algebra in the variety K. By $[X]_K$ we denote the K – subalgebra of L generated by a subset $X \subseteq L$. As usual, by [a, b] we denote the interval $[a, b] := \{c, a \leq c \leq b\}.$

3. Free Generalized De Morgan Algebras

In this section we study free algebras in the variety of all generalized De Morgan algebras. We begin with a general result due to Katriňák regarding free algebras in a variety of K algebras.

Lemma 2. ([5, Lemma 1]) Let K be a class of algebras, X any set, and $F_K(X)$ the free algebra in K freely generated by the set X. Suppose $A \in K$ is also generated by X and there exists a K-homomorphism $h : A \to F_K(X)$ which is the identity function on X. Then h is an isomorphism.

Let L be a GM – algebra and $X \subset L$. We denote X^- the set $X^- := \{x^-, x \in X\}$. By a straightforward induction on the rank of a GM – term p one can easily prove that for any $a_1, a_2, \ldots, a_n \in X$ there exist $b_1, b_2, \ldots, b_m \in X \cup X^-$ and a lattice term q such that $p(a_1, a_2, \ldots, a_n) = q(b_1, b_2, \ldots, b_m)$. In other words, we have –

Lemma 3. If a GM – algebra L is generated by the set X, i.e. $L = [X]_{GM}$, then the set $X \cup X^-$ generates L in the variety BL of bounded lattices, i.e. $L = [X \cup X^-]_{BL}$.

Now we are in a position to define a poset $P = P_{GM}(X)$ and two families $\mathcal{U}_{GM}, \mathcal{L}_{GM}$ of subsets of $P_{GM}(X)$ in such a way that the free lattice generated by the poset $P_{GM}(X)$ and preserving bounds from $\mathcal{U}_{GM}, \mathcal{L}_{GM}$ will admit a unary operation of involution with the property that the resulting algebra is free in the category of GM – algebras.

Let X be a set. Let \widetilde{X} be a disjoint copy of X, i.e. $\widetilde{X} = \{\widetilde{x}, x \in X\}$ and $X \cap \widetilde{X} \cap \{0,1\} = \emptyset$. Define the set $P_{GM}(X) = X \cup \widetilde{X} \cup \{0,1\}$ and the ordering \prec on $P_{GM}(X)$ as follows: $0 \prec x \prec 1, 0 \prec \widetilde{x} \prec 1$ for any $x, \widetilde{x} \in P_{GM}(X)$. The families $\mathcal{U}_{GM}, \mathcal{L}_{GM}$ are defined as $\mathcal{U}_{GM} = \mathcal{L}_{GM} = \{\{p,q\} \subset P_{GM}(X), p \prec q \text{ in } P_{GM}(X)\}$. Then there is a free lattice $FL(P_{GM}(X), \mathcal{U}_{GM}, \mathcal{L}_{GM})$ generated by the poset $P_{GM}(X)$. In what follows, we will show that there is an operation of involution – with the property that the free lattice $FL(P_{GM}(X), \mathcal{U}_{GM}, \mathcal{L}_{GM})$ endowed with such a unary operation is a free GM – algebra. To this end, we first introduce the mapping $\theta : FL(P_{GM}(X), \mathcal{U}_{GM}, \mathcal{L}_{GM}) \to FL(P_{GM}(X), \mathcal{U}_{GM}, \mathcal{L}_{GM})$ defined on the set of generators as follows:

$$\theta(x) = \widetilde{x}, \quad \theta(\widetilde{x}) = x, \quad \theta(0) = 1, \quad \theta(1) = 0.$$
 (3.1)

This mapping extends to a dual endomorphism of $FL(P_{GM}(X), \mathcal{U}_{GM}, \mathcal{L}_{GM})$ preserving bounds prescribed by sets from $\mathcal{U}_{GM}, \mathcal{L}_{GM}$ ([3, Theorem 6]).

Let p be any lattice term. By \overline{p} we denote a lattice term which is obtained from p by replacing all the symbols \wedge by \vee, \vee by $\wedge, 0$ by 1 and 1 by 0.

Using the properties (W), (J) and (M) of $FL(P_{GM}(X), \mathcal{U}_{GM}, \mathcal{L}_{GM})$ and recalling that $S = \{p, q\}, p \prec q$ in $P_{GM}(X)$ for any $S \in \mathcal{U}_{GM} = \mathcal{L}_{GM}$, we obtain by a straightforward induction on the rank of lattice terms $p, q : p(a_1, a_2, \ldots, a_n)$ $\leq q(a_1, a_2, \ldots, a_n)$ in $FL(P_{GM}(X), \mathcal{U}_{GM}, \mathcal{L}_{GM})$, where $a_1, a_2, \ldots, a_n \in P_{GM}(X)$, implies $\overline{p}(\theta a_1, \theta a_2, \ldots, \theta a_n) \geq \overline{q}(\theta a_1, \theta a_2, \ldots, \theta a_n)$.

Now, it should be obvious that the mapping $\theta : FL \to FL$ satisfies the identities $\theta(a \wedge b) = \theta(a) \vee \theta(b), \ \theta(a \vee b) = \theta(a) \wedge \theta(b)$ and $\theta(\theta(a)) = a$ for any $a, b \in FL$.

Let us denote

$$a^- := \theta(a). \tag{3.2}$$

The lattice $FL \equiv FL(P_{GM}(X), \mathcal{U}_{GM}, \mathcal{L}_{GM})$ endowed with such a unary operation is a GM – algebra.

Theorem 4. Let X be any set. Then the free lattice $FL \equiv FL(P_{GM}(X), \mathcal{U}_{GM}, \mathcal{L}_{GM})$ endowed with the unary operation – defined in (3.2) is a free GM – algebra, i.e. $F_{GM}(X) \cong (FL, -)$.

Proof. Note that $FL = [X]_{GM} = [X \cup \widetilde{X}]_{BL}$. Let us define the mapping $h: P_{GM}(X) \to F_{GM}(X)$ as follows: h(x) := x, $h(\widetilde{x}) := x^-$, h(0) = 0, h(1) = 1. According to [3, Theorem 6] the mapping h can be extended to a homomorphism $h: FL \to F_{GM}(X)$. By an induction on the rank of a lattice term $a \in FL$ we will show that $h(a^-) = h(a)^-$. If $a \in P_{GM}(X)$ the statement is obvious. If $a \equiv a_1 \wedge a_2$ or $a \equiv a_1 \vee a_2$ then the statement follows from the induction hypothesis made on terms a_1, a_2 and the properties of the mapping θ . Hence $h: FL \to F_{GM}(X)$ is a GM – homomorphism which is an identity function on X. According to Lemma 2 h is an isomorphism and the proof of theorem follows.

We end this section by proving that the word problem in $F_{GM}(X)$ has an affirmative solution.

Lemma 5. Let $F_{GM}(X)$ be a free GM – algebra. Then any element $p \in X \cup X^- \cup \{0, 1\}$ is join and meet irreducible.

Proof. With regard to Theorem 4 it is sufficient to show that any $p \in P_{GM}(X)$ is join and meet irreducible in the lattice FL. We will proceed by an induction on the rank. According to $(J) \ p \leq a_1 \lor a_2, \ p \in P_{GM}(X), \ a_1, a_2 \in FL$ iff $p \leq a_1 \lor a_2(k)$ for some integer $k \geq 0$. This means that either $p \leq a_i(k-1)$ i = 1 or i = 2, or there is $S \in \mathcal{U}_{GM}, \ S = \{q_1, q_2\}, \ q_1 \prec q_2$ such that $p \prec \sup_P S = q_2$ and $q_2 \leq a_1 \lor a_2(k-1)$. The latter implies $p \leq a_1 \lor a_2(k-1)$ and so one can again decrease the rank (k-1) by one. Since $p \leq a_1 \lor a_2(0)$ is impossible we may conclude that either $p \leq a_1$ or $p \leq a_2$. Hence p is join irreducible. The proof of meet irreducibility of a $p \in P_{GM}(X)$ utilizes a dual argument because $\mathcal{U}_{GM} = \mathcal{L}_{GM}$.

The next lemma is an immediate consequence of the property (W) and Lemma 5.

Lemma 6. $a_1 \wedge a_2 \leq b_1 \vee b_2$ in $F_{GM}(X)$ if and only if $[a_1 \wedge a_2, b_1 \vee b_2] \cap \{a_1, a_2, b_1, b_2\} \neq \emptyset$.

Knowing the above characterization of the ordering in $F_{GM}(X)$ we are in a position to state the following theorem.

Theorem 7. The word problem in $F_{GM}(X)$ has an affirmative solution.

Proof. Let $a = a(x_1, x_2, \ldots, x_n) \in F_{GM}(X)$ be arbitrary GM – term, $x_i \in X$. Taking into account the identities GM_1, GM_2, GM_3 one can construct a lattice term $\tilde{a} = \tilde{a}(x_1, x_2, \ldots, x_n, x_1^-, x_2^-, \ldots, x_n^-)$ such that $a = \tilde{a}$. According to Lemmas 5 and 6 there is an effective algorithm for decision when $\tilde{a} = \tilde{b}$ in $FL(P_{GM}(X), \mathcal{U}_{GM}, \mathcal{L}_{GM})$. From this we can conclude that the word problem in $F_{GM}(X)$ has a solution.

4. Free Generalized Morgan-Stone Algebras

In this section we focus on the construction of and analyzing the word problem for the free GMS – algebra $F_{GMS}(X)$ freely generated by a set X. The next lemma gives us the complete characterization of the skeleton $S(F_{GMS}(X))$.

Lemma 8. The skeleton $S(F_{GMS}(X)) = \{a \in F_{GMS}(X), a = a^{\circ\circ}\}$ is isomorphic to the free GM – algebra $F_{GM}(X^{\circ\circ})$ generated by the set $X^{\circ\circ} = \{x^{\circ\circ}, x \in X\}$.

Proof. The proof is essentially the same as that of [5, Lemma 2 and 3] for the variety of *p*-algebras. We therefore only sketch the main ideas. First, we observe that the skeleton $S(F_{GMS}(X))$ is a GM – algebra generated by the set $X^{\circ\circ}$. Indeed, it suffices to show that $a^{\circ\circ} \in [X^{\circ\circ}]_{GM}$ whenever $a \in F_{GMS}(X)$. This can be readily verified by an induction on the rank of a term $a \in F_{GMS}(X)$. Furthermore, let us consider the GMS – homomorphism $h : F_{GMS}(X) \to F_{GM}(X^{\circ\circ})$ defined as $h(x) := x^{\circ\circ}$ for any $x \in X$. The mapping h restricted to the set $S(F_{GMS}(X))$ is a GM – homomorphism which is an identity mapping on $X^{\circ\circ}$. With regard to Lemma 2 we obtain that $S(F_{GMS}(X))$ is isomorphic to $F_{GM}(X^{\circ\circ})$.

Following the same idea of the construction of $F_{GM}(X)$ as a free lattice $FL(P, \mathcal{U}, \mathcal{L})$ generated by some poset P and preserving bounds prescribed by sets from \mathcal{U} and \mathcal{L} we will define the poset $P_{GMS}(X)$ and two families $\mathcal{U}_{GMS}, \mathcal{L}_{GMS}$ of finite subsets of $P_{GMS}(X)$ and a unary operation of involution \circ in such a way that the resulting free lattice $FL(P_{GMS}(X), \mathcal{U}_{GMS}, \mathcal{L}_{GMS})$ with the operation \circ is isomorphic to the free GMS – algebra $F_{GMS}(X)$ freely generated by the set X.

Let X be a set. Take a disjoint copy $\overline{X} := \{\overline{x}, x \in X\}$ of X with the property $X \cap F_{GM}(\overline{X}) = \emptyset$. Let us define the poset $P_{GMS}(X) = X \cup F_{GM}(\overline{X})$ and the order relation \prec on $P_{GMS}(X)$ as follows:

- $0 \prec a \prec 1$ for any $a \in P_{GMS}(X)$;
- $x \prec a, x \in X, a \in F_{GM}(\overline{X})$ iff $\overline{x} \leq a$ in $F_{GM}(\overline{X})$;
- $a \prec b, a, b \in F_{GM}(\overline{X})$ iff $a \leq b$ in $F_{GM}(\overline{X})$.

The sets \mathcal{U}_{GMS} , \mathcal{L}_{GMS} are defined as follows: a finite subset $S \subseteq P_{GMS}(X)$ belongs to $\mathcal{U}_{GMS} = \mathcal{L}_{GMS}$ iff either $S = \{p, q\}, p \prec q$ in $P_{GMS}(X)$ or S is a subset of $F_{GM}(\overline{X})$.

Lemma 9. Let $FL \equiv FL(P_{GMS}(X), \mathcal{U}_{GMS}, \mathcal{L}_{GMS})$ be the free lattice generated by the poset $P_{GMS}(X)$ and preserving bounds from \mathcal{U}_{GMS} and \mathcal{L}_{GMS} . Then there exists the unique lattice epimorphism $\pi : FL \to F_{GM}(\overline{X})$ such that $\pi(x) = \overline{x}$ for any $x \in X$ and $\pi(a) = a$ for any $a \in F_{GM}(\overline{X})$. Moreover, $a \leq \pi(a)$ for any $a \in FL$.

Proof. The mapping $\tau : P_{GMS}(X) \to F_{GM}(\overline{X})$ defined by $\tau(x) = \overline{x}$ for any $x \in X$ and $\tau(a) = a$ for any $a \in F_{GM}(\overline{X})$ preserves l.u.b.'s and g.l.b.'s prescribed by sets from \mathcal{U}_{GMS} and \mathcal{L}_{GMS} , respectively, i.e. $\tau(\sup_P S) = \bigvee \tau(S)$ and $\tau(\inf_P S) = \bigwedge \tau(S)$ for any $S \in \mathcal{U}_{GMS} = \mathcal{L}_{GMS}$. Hence, by [3, Theorem 6] there is a unique lattice homomorphism $\pi : FL \to F_{GM}(\overline{X})$ extending the mapping τ .

Since $F_{GM}(\overline{X}) \subset P_{GMS}(X)$ the homomorphism π is also onto. Furthermore, the inequality $a \leq \pi(a)$ is satisfied for any $a \in P_{GMS}(X)$. Then one can proceed by an induction on the rank of a lattice term $a \in FL$ to verify that $a \leq \pi(a)$ for any $a \in FL$.

For any $a \in FL(P_{GMS}(X), \mathcal{U}_{GMS}, \mathcal{L}_{GMS})$ we set

$$a^{\circ} := \left(\pi(a)\right)^{-} \tag{4.1}$$

where the unary operation $\bar{}$ is taken in the free GM – algebra $F_{GM}(\overline{X})$. Notice that $a^{\circ} = a^{-}$ for any $a \in F_{GM}(\overline{X})$.

Theorem 10. Let X be any set. Then the free lattice $FL \equiv FL(P_{GMS}(X), U_{GMS}, \mathcal{L}_{GMS})$ endowed with the unary operation \circ defined in (4.1) is a free GMS – algebra freely generated by the set X, i.e. $(FL, \circ) \cong F_{GMS}(X)$.

Proof. First we will verify the identities GMS₁, GMS₂ and GMS₃. By Lemma 9, we have $a^{\circ\circ} = (\pi(\pi(a)^{-}))^{-} = \pi(a)^{--} = \pi(a) \ge a$. Further $(a \land b)^{\circ} = (\pi(a \land b))^{-} = (\pi(a) \land \pi(b))^{-} = \pi(a)^{-} \lor \pi(b)^{-} = a^{\circ} \lor b^{\circ}$. Finally, $1^{\circ} = \pi(1)^{-} = 1^{-} = 0$.

As $x^{\circ\circ} = (\pi(\pi(x)^{-}))^{-} = \overline{x}^{--} = \overline{x}$ we have $P_{GMS}(X) = X \cup F_{GM}(\overline{X}) \subset [X]_{GMS}$ and so $(FL, \circ) = [X]_{GMS}$. Let us define the mapping $h : P_{GMS}(X) \to F_{GMS}(X)$ as follows:

$$h(x) := x$$
 for $x \in X$, $h(\overline{x}) := x^{\circ \circ}$ for $\overline{x} \in \overline{X}$.

Since $F_{GM}(\overline{X})$ is a free GM – algebra the mapping $h: \overline{X} \to F_{GMS}(X)$ uniquely extends to a GM – homomorphism $h: F_{GM}(\overline{X}) \to F_{GMS}(X)$. Hence the mapping $h: P_{GMS}(X) \to F_{GMS}(X)$ is well defined. Moreover, it preserves all bounds prescribed by sets from $\mathcal{U}_{GMS} = \mathcal{L}_{GMS}$. Again due to [3, Theorem 6] the mapping h can be extended to a lattice homomorphism $h: FL(P_{GMS}(X), \mathcal{U}_{GMS}, \mathcal{L}_{GMS})$ $\to F_{GMS}(X)$. In what follows, we will show that h is even a GMS – homomorphism, i.e. $h(a^{\circ}) = h(a)^{\circ}$. We will argue by an induction on the rank of the lattice term $a \in FL$. For an $a \in P_{GMS}(X)$ the statement is obvious. If $a \equiv a_1 \lor a_2$ then $h(a^{\circ}) = h(\pi(a_1 \lor a_2)^-) = h(\pi(a_1)^- \land \pi(a_2)^-) = h(\pi(a_1)^-) \land h(\pi(a_2)^-)$ $= h(a_1^{\circ}) \land h(a_2^{\circ}) = h(a_1)^{\circ} \land h(a_2)^{\circ} = (h(a_1) \lor h(a_2))^{\circ} = h(a)^{\circ}$. The case $a \equiv a_1 \land a_2$ is similar.

This way we have shown that h is a GMS – homomorphism. As h(x) = x for any $x \in X$ and $F_{GMS}(X) = [X]_{GMS}$ we infer that h is a surjection. According to Lemma 2 h is a GMS – isomorphism and the proof of theorem follows.

In accord to the previous theorem we will henceforth identify $F_{GMS}(X)$ with the free lattice $FL(P_{GMS}(X), \mathcal{U}_{GMS}, \mathcal{L}_{GMS})$ endowed with the unary operation \circ defined in (4.1).

In the following lemma, we examine the property of join and meet irreducibility of elements of $F_{GMS}(X)$ belonging to the set $X \cup S(F_{GMS}(X))$.

Lemma 11. Let $F_{GMS}(X)$ be a free GMS – algebra. Then any $p \in X \cup S(F_{GMS}(X))$ is both join and meet irreducible.

Proof. Notice that, as $X^{\circ\circ} = \overline{X}$ in FL we obtain $S(F_{GMS}(X)) \cong F_{GM}(\overline{X})$. We will distinguish two cases: $p \equiv x \in X$ and $p \in F_{GM}(\overline{X})$.

Let us consider the case $p \equiv x \in X$. From the definition of the ordering in FL we know that $x \leq a_1 \lor a_2$ means $x \leq a_1 \lor a_2(k)$ for some integer k > 0. By (J), either $x \leq a_i(k-1), i = 1$ or i = 2 or there exists an $S \in \mathcal{U}_{GMS}$ such that $x \prec \sup_P S$ and $s \leq a_1 \lor a_2(k-1)$ for any $s \in S$. The first event immediately implies $x \leq a_i$, i = 1 or i = 2. On the other hand, if $S = \{p,q\}, p \prec q$ in $P_{GMS}(X)$, then we obtain $x \leq a_1 \lor a_2 (k-1)$. If S is a finite subset of $F_{GM}(\overline{X})$ then with regard to the definition of the order relation we infer that $x < \overline{x} \leq \sup_P S = \bigvee S$. Since any \overline{x} is join irreducible in $F_{GM}(\overline{X})$ (see Lemma 5) there is an $s \in S$ such that $\overline{x} \leq s$. This however means that $x \leq a_1 \lor a_2 (k-1)$. Now, decreasing step by step the rank k by one and taking into account that the case $x \leq a_1 \lor a_2(0)$ is impossible we end up with the claim that either $x \leq a_1$ or $x \leq a_2$. Hence any $x \in X$ is join irreducible in $F_{GMS}(X)$.

To prove meet irreducibility of an $x \in X$ we cannot employ a dual argument because the ordering in $P_{GMS}(X)$ is not symmetric $(x < \overline{x})$. Nevertheless, if $a_1 \wedge a_2 \leq x$ then there is a k > 0 such that $a_1 \wedge a_2 \leq x(k)$. By (M), either $a_i \leq x$, i = 1 or i = 2 or there is a finite subset $S \subset F_{GM}(\overline{X})$ with the property $\inf_P S \prec x$ and $a_1 \wedge a_2 \leq s(k-1)$ for any $s \in S$. Since there are no nonzero elements in $F_{GM}(\overline{X})$ less than x we have $\inf_P S = 0$ and so $a_1 \wedge a_2 = 0$. Thus $a_1^{\circ\circ} \wedge a_2^{\circ\circ} = 0$ in $F_{GM}(\overline{X})$. We remind ourselves that 0 is meet irreducible in $F_{GM}(\overline{X})$. Hence either $a_1 \leq a_1^{\circ\circ} = 0 < x$ or $a_2 \leq a_2^{\circ\circ} = 0 < x$. Hence $x \in X$ is also meet irreducible.

The proof of join and meet irreducibility of an element $p \in F_{GM}(X)$ again follows from Lemma 5. Indeed, if $p \leq a_1 \lor a_2(k)$, k > 0 then either $p \leq a_i(k-1)$, i = 1 or i = 2 or there is a finite subset $S \subset F_{GM}(\overline{X})$ such that $p \prec \sup_P S$ and $s \leq a_1 \lor a_2(k-1)$ for any $s \in S$. Taking into account join irreducibility of any $s \in F_{GM}(\overline{X})$ we infer that either $p \leq a_i(k-1)$, i = 1 or i = 2 or $p \leq a_1 \lor a_2(k-1)$. Now the standard argument enables us to conclude that $p \leq a_1$ or $p \leq a_2$. On the other hand, if $a_1 \land a_2 \leq p$ then $a_1^{\circ\circ} \land a_2^{\circ\circ} \leq p^{\circ\circ} = p$. As the element $p \in F_{GM}(\overline{X})$ is meet irreducible in $F_{GM}(\overline{X})$ we obtain $a_i \leq a_i^{\circ\circ} \leq p$ for i = 1 or i = 2. This means that $p \in F_{GM}(\overline{X})$ is meet irreducible. The proof of lemma is complete.

The next lemma is a direct consequence of Lemma 11 and the property (W).

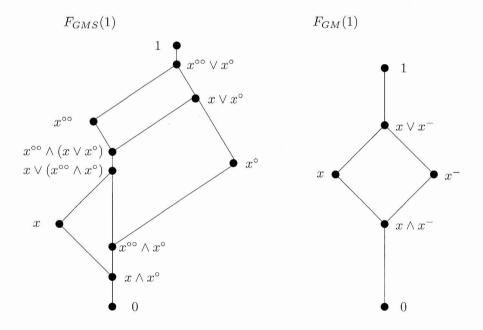
Lemma 12. $a_1 \wedge a_2 \leq b_1 \vee b_2$ in $F_{GMS}(X)$ if and only if $[a_1 \wedge a_2, b_1 \vee b_2] \cap \{a_1, a_2, b_1, b_2\} \neq \emptyset$.

We conclude this paper with the following result proving that the word problem in the free algebra $F_{GMS}(X)$ has a solution, i.e. there is an algorithm for decision when two word in $F_{GMS}(X)$ are equal.

Theorem 13. Let X be any set. Then the word problem in the free generalized Morgan – Stone algebra $F_{GMS}(X)$ has an affirmative solution.

Proof. Let $F_{GMS}(X) \cong (FL, \circ)$ be a free GMS – algebra and let $a, b \in FL$ be two GMS – terms. Since the identities $x^{\circ} = x^{\circ\circ\circ}, x^{\circ} \wedge y^{\circ} = (x \vee y)^{\circ}, x^{\circ} \vee y^{\circ} = (x \wedge y)^{\circ}$ are fulfilled in any GMS – algebra one can construct lattice terms \tilde{a}, \tilde{b} with letters belonging to the set $X \cup X^{\circ} \cup X^{\circ\circ}$ and such that $a = \tilde{a}, b = \tilde{b}$. As $\tilde{a} = \tilde{b}$ iff $\tilde{a} \leq \tilde{b}$ and $\tilde{b} \leq \tilde{a}$ one can recursively apply Lemma 12 in order to decrease the rank of the lattice terms \tilde{a}, \tilde{b} . After performing finite number of steps we end up with the problem to decide whether $p \leq q$ in $F_{GMS}(X)$ for letters from the set $X \cup X^{\circ} \cup X^{\circ\circ}$. With regard to the definition of the ordering in $P_{GMS}(X)$, this is true iff either $p \equiv q$ or $p \equiv x$ and $q = x^{\circ\circ}$ for some $x \in X$. Hence there is an algorithm for determining whether a = b in $F_{GMS}(X)$.

Examples. The free GMS and GM – algebras with |X| = 1 have diagrams as shown by the figures below:



Acknowledgements. The author wishes to thank to Professor T. Katriňák for his helpful comments.

DANIEL ŠEVČOVIČ

References

- 1. R. Balbes and P. Dwinger, *Distributive Lattices*, Univ. Missouri Press, Columbia, 1983.
- T.S. Blyth and J.C. Varlet, On a common abstraction of De Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinburgh A 94 (1983), 301–308.
- R.A. Dean, Free lattices generated by partially ordered sets and preserving bounds, Canad. J. Math. 16 (1964), 136–148.
- 4. G. Grätzer, General Lattice Theory, Birkhäuser Verlag, 1978.
- 5. T. Katriňák, Free p-algebras, Algebra Univ. 15 (1982), 176–186.
- T. Katriňák and D. Ševčovič, *Projective p-algebras*, Algebra Univ. 28 (1991), 280–300.
- D. Ševčovič, Bounded endomorphisms of free p-algebras, Glasgow Math. Journal 34 (1992), 207–214.

Daniel Ševčovič Institute of Applied Mathematics Comenius University Mlynská dolina 842 15 Bratislava SLOVAK REPUBLIC sevcovic@fmph.uniba.sk