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b Comenius University in Bratislava, Slovakia
c Slovak Technical University in Bratislava, Slovakia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 November 2022
Received in revised form 11 June 2023
Accepted 24 July 2023
Available online 9 August 2023

Keywords:
Graph spectrum
Spectral index
Extreme properties of eigenvalues
Distribution of eigenvalues
Complete multipartite graphs

We analyze graphs attaining the extreme values of various spectral indices in the class of 
all simple connected graphs, as well as in the class of graphs which are not complete 
multipartite graphs. We also present results on density of spectral gap indices and its 
nonpersistency with respect to small perturbations of the underlying graph. We show 
that a small change in the set set of edges may result in a significant change of the 
spectral index like, e.g., the spectral gap or spectral index. We also present a statistical 
and numerical analysis of spectral indices of graphs of the order m ≤ 10. We analyze the 
extreme values for spectral indices for graphs and their small perturbations. Finally, we 
present the statistical and extreme properties of graphs on m ≤ 10 vertices.
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1. Introduction

In theoretical chemistry, biology, or statistics, spectral indices and properties of graphs representing the structure of 
chemical molecules or transition diagrams for finite Markov chains play an important role (cf. Cvetković [9,10], Brouwer 
and Haemers [6] and references therein). In the past decades, various graph energies and indices have been proposed and 
analyzed. For example, the sum of absolute values of eigenvalues is called the matching energy index (cf. Chen and Liu [25]), 
the maximum of the absolute values of the least positive and largest negative eigenvalue is related to the HOMO-LUMO 
index (see Mohar [29,30], Li et al. [26], Jaklić et al. [24], Fowler et al. [18]), their difference is related to the HOMO-LUMO 
separation gap (cf. Gutman and Rouvray [20], Li et al. [26], Zhang and An [39], Fowler et al. [17]).

The spectrum σ(G A) ≡ σ(A) of a simple nonoriented connected graph G A on m vertices is given by the eigenvalues of 
its adjacency matrix A:

λmax ≡ λ1 ≥ λ2 ≥ · · · ≥ λm ≡ λmin.

For a simple graph (without loops and multiple edges) we have Aii = 0, and so 
∑m

i=1 λi = trace(A) = 0. Hence λ1 > 0, λm <

0.
In what follows, we shall denote λ+(A), and λ−(A) the least positive and largest negative eigenvalues of a symmet-

ric matrix A having positive and negative real eigenvalues. Let us denote by �gap(A) = λ+(A) − λ−(A) and �ind(A) =
max(|λ+(A)|, |λ−(A)|) the spectral gap and the spectral index of a symmetric matrix A. Furthermore, we define the spectral 
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power �pow(A) = ∑m
k=1 |λk|. Clearly, all three indices �gap, �ind , and �pow depend on positive σ+(A) = {λ ∈ σ(A), λ > 0}, 

and negative σ−(A) = {λ ∈ σ(A), λ < 0} parts of the spectrum of the matrix A. In fact, λ+(A) = minσ+(A), λ−(A) =
maxσ−(A), and �pow(A) = ∑

λ∈σ+(A) λ − ∑
λ∈σ−(A) λ.

In the past decades, various concepts of introducing inverses of graphs based on inversion of the adjacency matrix have 
been proposed. In general, the inverse of the adjacency matrix does not need to define a graph again because it may 
contain negative elements (cf. [21]). Godsil [19] proposed a successful approach to overcome this difficulty, which defined 
a graph to be (positively) invertible if the inverse of its nonsingular adjacency matrix is diagonally similar (cf. [38]) to a 
nonnegative integral matrix representing the adjacency matrix of the inverse graph in which positive labels determine edge 
multiplicities. In the papers [31,32], Pavlíková and Ševčovič extended this notion to a wider class of graphs by introducing 
the concept of negative invertibility of a graph.

�gap(A) = λmax(A†)−1 − λmin(A†)−1, �ind(A) = max(λmax(A†)−1,−λmin(A†)−1).

In chemical applications, the spectral gap �gap of a structural graph of a molecule is related to the so-called HOMO-
LUMO energy separation gap of the energy of the highest occupied molecular orbital (HOMO) and the lowest unoccupied 
molecular orbital (LUMO). Following Hückel’s molecular orbital method [23], eigenvalues of a graph that describes an organic 
molecule are related to the energies of molecular orbitals (see also Streitwieser [37, Chapter 5.1]).

Finally, according Aihara [1,2], it is energetically unfavorable to add electrons to a high-lying LUMO orbital. Hence, a 
larger HOMO-LUMO gap implies a higher kinetic stability and low chemical reactivity of a molecule. Furthermore, the 
HOMO-LUMO energy gap generally decreases with the number of vertices in the structural graph (cf. [3]).

In this paper, we analyze the extreme and statistical properties of the spectrum of all simple connected graphs. It 
includes the analysis of maximal and minimal eigenvalues, as well as indices such as, e.g., spectral gap, spectral index, and 
the power of spectrum. We analyze graphs that attain extreme values of various indices in the class of all simple connected 
graphs, as well as in the class of graphs that are not complete multipartite graphs. We also present results on the density 
of spectral gap indices and its nonpersistency with respect to small perturbations of the underlying graph. We show that a 
small change in the set set of edges may result in a significant change of the spectral gap or spectral index. We also present 
a statistical and numerical analysis of indices of graphs of order m ≤ 10.

The paper is organized as follows. In Section 2 we first recall the known results on extreme values of maximal and 
minimal eigenvalues of adjacency matrices. We also report the number of all simple connected graphs due to McKay [28]. 
Next, we analyze the extreme values for indices for completed multipartite graphs and their small perturbations. In Section 3
we focus our attention on the statistical and extreme properties of graphs on m ≤ 10 vertices.

2. Extreme properties of indices

Denote by cm the number of simple non-isomorphic connected graphs on m vertices. According to the McKay’s list of all 
simple connected graphs [28] the numbers cm, m ≤ 10, are summarized in Table 1.

Although there exists an approximation formula for the number of labeled simple connected graphs of the given order 
m and number of edges (cf. Bender, Canfield, and McKay [5]) for small values of m the number cm can be approximated by 
the following compact the quadratic exponential function:

cm ≈ ω010ω1(m−9)+ω2(m−9)2
, where ω0 = 261080, ω1 = 1.4, ω2 = 0.09. (1)

This formula is exact for m = 9 and gives good approximation results for other orders m ≤ 10 (see Fig. 1).
Recall the following well-known facts: the maximal value of λmax = λ1 over all simple connected graphs on the m vertices 

is equal to m − 1, and it is attained by the complete graph Km . The minimal value of λmax is equal to 2 cos(π/(m + 1)), and 
it is attained for the path graph Pm . Furthermore, the lower bound for the minimal eigenvalue λmin = λm ≥ −√	m/2
�m/2�
was independently proved in [8,22,33]. The lower bound is attained for the complete bipartite graph Km1,m2 where m1 =
�m/2�, m2 = 	m/2
. The maximum value of λmin on all simple connected graphs on the m vertices is equal to −1, and it is 
attained for the complete graph Km .

2.1. Indices for complete multipartite graphs and their perturbations

The aim of this section is to analyze indices and their extreme values for simple connected graphs on the m vertices.

Proposition 1. Let us denote Km1,...,mk the complete multipartite graph where 1 ≤ m1 ≤ · · · ≤ mk denote the sizes of parts, m1 +· · ·+
mk = m, and k ≥ 2 is the number of parts. Then the spectrum of the adjacency matrix A of Km1,...,mk satisfies σ(A) ⊆ [−mk, m −m/k]. 
If mi < mi+1 then there exists a single eigenvalue λ ∈ (−mi+1, −mi). If mi = mi+1 = · · · = mi+ j then λ = −mi is an eigenvalue of A
with multiplicity j.

Finally, 0 < λ+(A) ≤ m − m/k and −m/k ≤ λ−(A) < 0. As a consequence, �gap(A) ≤ m, �ind(A) ≤ m − 1, �pow(A) ≤ 2(m −
m/k). The equalities for the indices �gap(A), �ind(A) are reached by the complete graph G A = Km.
2
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Fig. 1. The numbers cm of all simple connected as a function of number of vertices (blue solid line), and its approximation by means of the approximation 
formula (1) (red dashed line). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 1
Numbers of all simple connected graphs on m ≤ 10 vertices.

m 2 3 4 5 6 7 8 9 10

total # 1 2 6 21 112 853 11117 261080 11716571

Proof. The adjacency matrix A of Km1,...,mk has the block form:

A = 11T − diag(D1, . . . , Dk),

where 1 = (1, . . . , 1)T ∈ Rm , and Di is the mi × mi matrix consisting of ones. Now, if λ is a nonzero eigenvalue of A with 
an eigenvector x = (x1, . . . , xm)T then

α − αp = λxl, for each l = μp−1 + 1, . . . ,μp, αp =
μp∑

l=1+μp−1

xl, μp =
p∑

r=1

mr, (2)

for p = 1, . . . , k. Here α = ∑k
p=1 αp = ∑m

j=1 x j . For example, if p = 1 then 
∑m1

j=1 x j = αm1/(λ +m1) provided that λ �= −m1. 
Similarly, we can proceed with the remaining parts m2, . . . , mk . In the case α = 0 we have λ ∈ {−m1, . . . , −mk}. In the case 
α �= 0 we conclude λ /∈ {−m1, . . . , −mk}, and the eigenvalue λ satisfies the rational equation:

ψ(λ) = 1, where ψ(λ) =
k∑

i=1

mi

λ + mi
. (3)

Conversely, if λ /∈ {−m1, . . . , −mk} satisfies ψ(λ) = 1 then it is easy to verify that the nontrivial vector x ∈Rm ,

x = (y1, . . . , y1︸ ︷︷ ︸
m1 times

, y2, . . . , y2︸ ︷︷ ︸
m2 times

, . . . , yk, . . . , yk︸ ︷︷ ︸
mk times

)T , where yi = mi

λ + mi
,

is an eigenvector of A, i.e. Ax = λx.
In what follows, we shall derive necessary bounds on eigenvalues of A. Suppose to the contrary that λ < −mk is an 

eigenvalue of A. Then λ + mi ≤ λ + mk < 0 for any i = 1, . . . , k, and so ψ(λ) < 0 < 1. Therefore, λ ≥ −mk for any eigenvalue 
λ ∈ σ(A). To derive an upper bound for the positive eigenvalue of A we introduce an auxiliary function φ(ξ1, . . . , ξk) =∑k

i=1
ξi

λ+ξi
where λ > 0 is fixed. The function φ :Rk →R is concave. Using the Lagrange function L (ξ, μ) = φ(ξ1, . . . , ξk) −

μ 
∑k

i=1 ξi it is easy to verify that φ achieves the unique constrained maximum in the set {ξ ∈Rk, 
∑k

i=1 ξi = m} at the point 
ξ̂ = (m/k, . . . , m/k)T . Therefore, for any λ > 0 we have

ψ(λ) =
k∑

i=1

mi

λ + mi
= φ(m1, . . . ,mk) ≤ φ(m/k, . . . ,m/k) = m

λ + m/k
.

If λ > 0 is a positive eigenvalue of A then ψ(λ) = 1 and so λ + m/k ≤ m, that is, 0 < λ ≤ m − m/k. Therefore, σ(A) ⊂
[−mk, m − m/k].
3
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In the trivial case of an equipartite graph Km1,...,mk with m1 = · · · = mk = m/k we obtain λ−(A) ≥ −mk = −m/k and 
λ+(A) ≤ m −m/k. Thus, �gap ≤ m, and �ind ≤ m −m/k ≤ m − 1. This estimate also follows from the results of [15] and [13]. 
Therefore, for any 1 ≤ l < k we conclude that �gap(A) = λ+(A) −λ−(A) ≤ m −m/k − (−m/k) = m. Similarly, �ind(A) ≤ m −1.

Now, consider a non-equipartite graph Km1,...,mk with m1 = · · · = ml < ml+1 ≤ · · · ≤ mk where 1 ≤ l < k. Suppose that 
l = 1, that is, 1 ≤ m1 < m2 ≤ · · · ≤ mk . The function ψ is strictly decreasing in the interval (−m2, −m1) with infinite limits 
±∞ when λ → −m2 and λ → −m1, respectively. Therefore, there exists a unique eigenvalue λ ∈ (−m2, −m1) of the matrix 
A. We have m1 + (k − 1)m2 ≤ ∑k

i=1 mi = m. Define λ̃ = −m1/k − m2(k − 1)/k. Then λ̃ ≥ −m/k. In what follows we shall 
prove that ψ(λ̃) ≥ 1. The function ξ �→ ξ/(λ̃ + ξ) decreases for ξ > −λ̃. Therefore

ψ(λ̃) ≥ m1

λ̃ + m1
+ (k − 1)

m2

λ̃ + m2
= − k

k − 1

m1

m2 − m1
+ k(k − 1)

m1

m2 − m1

= k

k − 1

(k − 1)2m2 − m1

m2 − m1
≥ k

k − 1
> 1,

because k ≥ 2. Since ψ is strictly decreasing in the interval (−m2, −m1) we have −m/k ≤ λ̃ < λ because ψ(λ) = 1.
In the case l ≥ 2 we can apply a simple perturbation argument. Indeed, let us perturb the adjacency matrix A by a small 

parameter 0 < ε � 1 as follows:

Aε = 11T − diag((1 − ε)D1, D2, . . . , Dl−1, (1 + ε)Dl, Dl+1, . . . , Dk).

It corresponds to the perturbation mε
1 = (1 − ε)m1, mε

l = (1 + ε)ml . All remaining mi remain unchanged for i �= 1 and i �= l. 
Then for the corresponding perturbed function ψε there exists a solution λε ∈ (m1 − ε, m1) of the equation ψε(λε) = 1. 
Since the spectrum of Aε depends continuously on the parameter ε → 0, we see that λε → λ = −m1 = · · · = −ml is an 
eigenvalue of the graph G A provided that l ≥ 2. In this case λ = −m1 ≥ −m/k.

A complete multipartite graph G A = Km1,m2,...,mk has exactly one positive eigenvalue λ1 > 0 (cf. Smith [12]). Since ∑m
i=1 λi = 0 we have �pow(A) = ∑m

i=1 |λi| = 2λ1 ≤ 2(m − m/k). The spectrum of the complete graph Km consists of eigen-
values m − 1, and −1 with multiplicity m − 1. Therefore, �gap = m, �ind = m − 1, as claimed. �
Remark 1. The main idea of the proof of Proposition 1 is a non-trivial generalization of the interlacing theorem [15, Theorem 
1] due to Esser and Harary. It is based on a solution λ to the dispersion equation (3), that is ψ(λ) = 1 (see [15, Eq. (9)]). 
In [15, Corollary 1] they showed that σ(A) ⊆ [−mk, m − m1]. Because km1 ≤ ∑k

i=1 mi = m, we obtain m − m/k ≤ m − m1. 
Using the concavity of the function φ : Rk →R and the constrained optimization argument, we were able to improve this 
estimate. We derived the estimate σ(A) ⊆ [−mk, m − m/k] which yields optimal bounds �gap ≤ m, �ind ≤ m − 1 derived 
in Proposition 1. Furthermore, we introduced a novel analytic perturbation technique to handle the case when the sizes 
m1 = · · · = ml of parts coincide.

Remark 2. It follows from the proof of Proposition 1 that λ is an eigenvalue of A if and only if the vector z = (α1, . . . , αk)
T ∈

Rk (see (2)) is an eigenvector of the k × k matrix A , i.e. A z = λz, where Ai j = mi for i �= j, Aii = 0.
As a consequence, the spectrum of the complete bipartite graph Km1,m2 consists of m1 + m2 − 2 zeros and ±√

m1m2. 
Therefore, �gap(Km1,m2 ) = �pow(Km1,m2 ) = 2

√
m1m2, and �ind(Km1,m2 ) =

√
m1m2. Furthermore, if m is even, then 

�gap(Km/2,m/2) = m = �gap(Km), i.e., the complete bipartite graph Km/2,m/2 as well as the complete graph Km maximize the 
spectral gap �gap . The smallest example is the complete graph K4 with eigenvalues {3, −1, −1, −1} and the circle C4 ≡ K2,2
with eigenvalues {2, 0, 0, −2} that yields the same maximum value of �gap = 4.

Similarly, one can derive the equation for spectrum of the complete tripartite graph Km1,m2,m3 . It leads to the following 
depressed cubic equation λ3 + rλ + s = 0 with r = −(m1m2 + m2m3 + m1m3), s = −2m1m2m3. However, the discriminant 
� = −(4r3 + 27s2) is positive for a non-equipartite graph, and there are three real roots of the depressed cubic. With regard 
to Galois theory, roots cannot be expressed by an algebraic expression, and Cardano’s formula leads to “casus irreducibilis”.

Proposition 2. Let us consider the class of all simple connected graphs on m vertices. The following statements regarding the indices 
�gap, �ind and �pow hold.

a) If G A is not a complete multipartite graph of order m, then �gap(A) ≤ m − 1, �ind(A) ≤ m/2 for m even, and �gap(A) ≤
m − 3/2, �ind(A) ≤ √

m2 − 1/2 for m odd.
b) The maximum value of �pow on the m ≤ 7 vertices is equal to 2m − 2, and it is attained for the complete graph Km. For m = 7

there are two maximizing graphs with �pow = 12 - the complete graph K7 and the noncomplete graph shown in Fig. 4. Starting 
m ≥ 8 the maximal �pow is attained by noncomplete graphs depicted in Fig. 5 for 8 ≤ m ≤ 10.

Proof. According to Smith [12], a simple connected graph has exactly one positive eigenvalue (i.e. λ2(A) ≤ 0) if and only 
if it is a complete multipartite graph Km1,...,mk where 1 ≤ m1 ≤ · · · ≤ mk denotes the sizes of parts, m1 + · · · + mk = m, and 
k ≥ 2 is the number of parts (see [12, Theorem 6.7]).
4
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To prove a), let us consider a graph G A different from any complete multipartite graph Km1,...,mk . Therefore, λ2(A) > 0. 
We combine this information with the result due to D. Powers regarding the second largest eigenvalue λ2(A). According to 
[33] (see also [34], [35]), for a simple connected graph G A on m vertices we have the following estimate for the second 
largest eigenvalue λ2(A):

−1 ≤ λ2(A) ≤ 	m/2
 − 1

(see also Cvetković and Simić [11]). Since λ2(A) > 0 we have 0 < λ+(A) ≤ λ2(A) ≤ 	m/2
 − 1, and −√	m/2
�m/2� ≤
λmin(A) ≤ λ−(A) < 0. Hence the spectral gap �gap = λ+(A) − λ−(A) ≤ √	m/2
�m/2� + 	m/2
 − 1. If m is even, it leads to 
the estimate �gap ≤ m − 1. If m is odd, then it is easy to verify �gap ≤ m − 3/2. Analogously, �ind ≤ m/2 if m is even, and 
�ind ≤ √

m2 − 1/2 if m is odd.
The part b) is contained in Section 3 dealing with statistical properties of eigenvalue indices. �
Recall that for the complete bipartite graph Km,m the spectrum consists of zeros and ±m. As a consequence 

limm→∞ �gap(Km,m) = ∞. The next result shows that a small change in a large graph Km,m caused by the removal of a 
single edge may result in a huge change in the spectral gap.

Proposition 3. Let us denote by K −e
m,m the bipartite noncomplete graph constructed from the complete bipartite graph Km,m by deleting 

exactly one edge. Then its spectrum consists of 2m − 4 zeros and four real eigenvalues

λ±,± = ±
(

1 − m ±
√

m2 + 2m − 3
)

/2. (4)

For the spectral gap we have �gap(K −e
m,m) = 1 − m + √

m2 + 2m − 3, and

2
√

1 − 2/(m + 1) < �gap(K −e
m,m) < 2

√
1 − 1/m.

As a consequence, limm→∞ �gap(K −e
m,m) = 2.

Proof. Without loss of generality, we may assume that the adjacency matrix A of the graph K −e
m,m has the form

A =
(

0 11T

11t 0

)
−

(
0
e1

)
(e1,0) −

(
e1
0

)
(0, e1),

where 1 = (1, . . . , 1)T , e1 = (1, 0, . . . , 0)T ∈ Rm . Assume that λ is an eigenvalue of A, and (0, 0) �= (x, y) ∈ Rm × Rm is an 
eigenvector. Denote α = ∑m

i=1 xi, β = ∑m
i=1 yi . Then

β − y1 = λx1, α − x1 = λy1, β = λxi, α = λyi, i = 2, . . . ,m.

Assuming λ = ±1 leads to an obvious contradiction, as it implies α = β = 0, and x = 0, y = 0. The matrix A has zero 
eigenvalue λ = 0, with 2(m − 1) dimensional eigenspace {(x, y) ∈Rm ×Rm, x1 = y1 = 0}. Therefore, for λ �= ±1, 0 we have 
x1 = (α − βλ)/(1 − λ2), y1 = (β − αλ)/(1 − λ2), and x2 = β/λ, yi = α/λ, i = 2, . . . , m. It results in a system of two linear 
equations for α, β:

α = m − 1

λ
β + α − βλ

1 − λ2
, β = m − 1

λ
α + β − αλ

1 − λ2
,

which has a non-trivial solution (α, β) �= (0, 0) provided that λ �= ±1, 0, is a solution of the following dispersion equation:(
1

1 − λ2
− 1

)2

−
(

m − 1

λ
− λ

1 − λ2

)2

= 0.

After rearranging terms, λ is a solution of the cubic equation

±λ3 + mλ2 − m + 1 = 0,

having roots ∓1 (which are not eigenvalues of A), and four other roots λ±,± given as in (4), as claimed. The rest of the 
proof easily follows. �

A similar property to the result of Proposition 3 regarding indices can be observed when adding one edge to a complete 
bipartite graph, that is, destroying the bipartiteness of the original complete bipartite graph by small perturbation.
5
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Proposition 4. Let us denote by G A = K +e
m,m a graph of the order 2m constructed from the complete bipartite graph Km,m by adding 

exactly one edge to the first part. Then its spectrum consists of 2m − 4 zeros and four real eigenvalues λ(1),(2),(3),(4) where λ(4) =
λ−(A) = −1, and three other roots λ(3) < −1 < 0 < λ(2) < λ(1) solve the cubic equation λ2(1 −λ) −m(m −2 −mλ) = 0. The smallest 
positive eigenvalue has the form λ+(A) ≡ λ(2) = 1 −2/m −2/m3 + O (m−4) as m → ∞. As a consequence, limm→∞ �gap(K +e

m,m) = 2, 
and limm→∞ �ind(K +e

m,m) = 1.

Proof. It is similar to the proof of the previous Proposition 3. Arguing similarly as before, one can show that λ(4) = −1 is an 
eigenvalue with multiplicity one. The other nonzero eigenvalues are roots of the cubic equation λ2(1 −λ) −m(m −2 −mλ) =
0 which can be transformed into a depressed cubic equation with a positive discriminant �. Thus, it has three distinct real 
eigenvalues λ(1),(2),(3) . Performing the standard asymptotic analysis, we conclude λ+(A) = λ(2) = 1 − 2/m − 2/m3 + O (m−4)

as m → ∞, as claimed. �
Remark 3. In [16] it is shown that for a bipartite graph Km1,m2 of the order m = m1 + m2 and the average valency d of 
vertices, one has λm/2 − λ1+m/2 ≤ √

d.

We end this section with the following statement regarding the density of values of the spectral index �gap in the class 
of complete bipartite graphs.

Proposition 5. For every pair of real numbers 0 ≤ δ < γ < 1, there exist an order m and a complete bipartite graph Km1,m2 of the 
order m = m1 + m2 such that m − γ ≤ �gap(Km1,m2 ) ≤ m − δ.

Proof. Recall the known fact (see, e.g. [14]) that the set of fractional parts 
√

m − [√m] of roots of all positive integers m is 
dense in the interval [0, 1). Hence, there exists an integer m2, such that 

√
δ ≤ √

m2 −[√m2] ≤ √
γ . Take m1 := [√m2]2 ≤ m2. 

Then 
√

δ ≤ √
m2 − √

m1 ≤ √
γ . By squaring and rearranging terms, we obtain (m1 + m2) − c ≤ 2

√
m1m2 ≤ (m1 + m2) − d. 

Now we take the bipartite graph Km1,m2 , of order m = m1 + m2. Since �gap(Km1,m2 ) = 2
√

m1m2 the claim follows. �
2.2. Indices for noncomplete graphs

The purpose of this section is to analyze indices for noncomplete multipartite graphs.

Proposition 6. If G A is a bipartite but not complete bipartite graph, with the average vertex degree d, and the multiplicity of the zero 
eigenvalue of the order k, then

�gap(G A) ≤ 2

√
d(m − 2d)

m − k − 2
. (5)

Proof. Let G A be a bipartite but not complete bipartite graph with adjacency matrix A having null space of dimension k. 
Since G A is not complete bipartite, we have k ≤ m − 4. It follows that m and k have the same parity, so that m − k = 2r for 
some positive integer r ≥ 2. By bipartiteness of G A we may assume that its eigenvalues have the form λ1 ≥ λ2 ≥ . . . ≥ λr >

0 = λr+1 = . . . = λr+k > −λr ≥ . . . ≥ −λ2 ≥ −λ1, so that λ+ = λr and λ− = −λr . The earlier used fact that λ1 ≥ d trivially 
implies that

r∑
i=1

λ2
i ≥ d2 + (r − 1)λ2+ . (6)

It is well known that the sum of squares 
∑m

i=1 λ2
i = trace(A2) = md, where d is the average valency of vertices of G A , 

that is, md/2 is the number of edges in the graph G A (cf. Bapat [4]). Combined with the inequality λ1 ≥ d used earlier, we 
obtain

md = 2
r∑

i=1

λ2
i ≥ 2d2 + 2(r − 1)λ2+ = 2d2 + (m − k − 2)λ2+ (7)

and evaluation of λ+(A) from (7) gives λ+(A) = −λ−(A) ≤
√

d(m−2d)
m−k−2 which implies the inequality (5) in our statement. �

Remark 4. The estimate (5) is nearly optimal. For example, for the graph K −e
m1,m1

we have m = 2m1, d = m1 − 1
m1

and 
k = m − 4, and (5) for these values gives �gap(K −e

m1,m1
) ≤ 2

√
1 − 4/m2, which is a slightly worse estimate than the one 

derived in the analysis of the spectrum of K −e
m ,m .
1 1
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Finally, we show that the maximal (minimal) eigenvalue can increase (decrease) by adding one vertex to the original 
graph.

Proposition 7. Assume G A is a simple connected graph on the vertices m with the maximal and minimal eigenvalues λmax(A), and 
λmin(A). Then there exists a graph GA on the m + 1 vertices constructed from G A by adding one vertex connected to each of the 
vertices G A that has the maximal eigenvalue such that

λmax(A ) ≥ λmax(A) + √
(λmax(A))2 + 4

2
.

Similarly, there exists a vertex i0 of G A such that the graph GA on m + 1 vertices constructed from G A by adding a pendant vertex to 
the vertex i0 has the minimal eigenvalues satisfying the estimate

λmin(A ) ≤ λmin(A) − √
(λmin(A))2 + 4/m

2
.

Proof. The sum of all eigenvalues of the symmetric matrix A is zero because the trace of A is zero. Hence λmin(A) < 0 <
λmax(A). Let A be the (m + 1) × (m + 1) adjacency matrix of the graph GA obtained from G A by adding a vertex connected 
to a subset of vertices of G A . Its adjacency matrix A has the block form

A =
(

A e
eT 0

)
, (8)

where e = (e1, . . . , em)T , ei ∈ {0, 1}. The maximal eigenvalue λmax(A ) can be computed by means of the Rayleigh ratio, i.e.

λmax(A ) = max
x∈Rm,ξ∈R

(xT , ξ)

(
A e

eT 0

)(
x
ξ

)
|x|2 + ξ2

= max
x∈Rm,ξ∈R

xT Ax + 2(eT x)ξ

|x|2 + ξ2
,

where |x| is the Euclidean norm of the vector x. Let x̂ be an eigenvector for corresponding to the maximal eigenvalue 
λmax(A), that is, Ax̂ = λmax(A)x̂. Then

λmax(A ) ≥ max
ξ∈R

λmax(A) + 2(eT x̂)ξ

1 + ξ2
= λmax(A)max

ξ∈R
1 + αξ

1 + ξ2
,

where α = 2(eT x̂)/λmax(A). Let us introduce the auxiliary function ψ :R →R, ψ(ξ) = (1 + αξ)/(1 + ξ2), where α ∈R is a 
parameter. Using the first-order necessary condition it is easy to verify that the maximum of the function ψ is attained at 
ξ = (−1 + √

1 + α2)/α. As a consequence, we have

max
ξ

1 + αξ

1 + ξ2
= 1 + √

1 + α2

2
> 0.

Notice that the adjacency matrix contains only nonnegative elements. With regard to the Perron-Frobenius theorem, an 
eigenvector corresponding to the maximal eigenvalue λmax(A) is nonnegative, i.e. x̂ ≥ 0. Consider the vector e = (1, . . . , 1)T

consisting of ones. It corresponds to the new vertex connected to all the vertices of G A . Then (eT x̂)2 = (x̂1 + · · · + x̂m)2 ≥
|x̂|2 = 1 because all x̂i ≥ 0 are nonnegative. Inserting the parameter α2 = 4(eT x̂)2/(λmax(A))2 ≥ 4/(λmax(A))2 we obtain 
λmax(A ) ≥ 1

2 (λmax(A) + √
(λmax(A))2 + 4), as claimed.

Similarly, let x̄ be the unit eigenvector corresponding to the minimal eigenvalue λmin(A), that is, Ax̄ = λmin(A)x̄, |x̄| = 1. 
Let i0 be the index such that |x̂i0 | = maxi |x̂i |. Since |x̂| = 1 we have |x̂i0 | ≥ 1/

√
m. Assume that the graph GA is constructed 

from G A by adding one vertex connected to the vertex i0. That is e = (e1, . . . , em)T , ei0 = 1, and ei = 0 for i �= i0. Then 
(eT x̂)2 = (x̂i0 )

2 ≥ 1/m. Hence

λmin(A ) = min
x∈Rm,ξ∈R

xT Ax + 2(eT x)ξ

|x|2 + ξ2
≤ min

ξ∈R
λmin(A) + 2(eT x̄)ξ

1 + ξ2
= λmin(A)max

ξ∈R
1 + αξ

1 + ξ2

because λmin(A) < 0. Here α = 2(eT x̄)/λmin(A). Consider the index i0 for which |xi0 | is maximal. Then (x̄0)
2 ≥ 1/m, and

λmin(A ) ≤ λmin(A)
1 + √

1 + α2

2
≤ λmin(A) − √

(λmin(A))2 + 4/m

2
,

and the proof of the proposition follows. �
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Table 2
Descriptive statistics of the maximal (minimal) eigenvalues λmax (λmin), spectral gap �gap , spectral index �ind , and spectral power �pow for all simple 
connected graphs on m ≤ 10 vertices.

m 2 3 4 5 6 7 8 9 10
total # 1 2 6 21 112 853 11117 261080 11716571

E(λmax) 1 1.7071 2.1802 2.6417 3.0582 3.4856 3.9288 4.4001 4.8895
σ(λmax) 0 0.4142 0.5228 0.5968 0.6368 0.6562 0.6595 0.6529 0.6471
S(λmax) – 0 0.5096 0.5171 0.4142 0.2855 0.1536 0.0608 0.0132
K(λmax) – 1 1.9715 2.6351 2.9901 3.0804 3.0578 3.0313 3.0096
max(λmax) 1 2 3 4 5 6 7 8 9
min(λmax) 1 1.4142 1.6180 1.7321 1.8019 1.8478 1.8794 1.9021 1.9190

E(λmin) −1 −1.2071 −1.5655 −1.7911 −2.0302 −2.2264 −2.4191 −2.6018 −2.7756
σ(λmin) 0 0.2929 0.3305 0.2981 0.3012 0.2995 0.2994 0.2915 0.2832
S(λmin) – 0 0.5740 0.2506 −0.4079 −0.5438 −0.4937 −0.4121 −0.3927
K(λmin) – 1 2.7899 4.2278 4.1917 3.5318 3.3933 3.3626 3.3289
max(λmin) −1 −1 −1 −1 −1 −1 −1 −1 −1
min(λmin) −1 −1.4142 −2 −2.4495 −3 −3.4641 −4 −4.4721 −5

max(�gap) 2 3 4 5 6 7 8 9 10
min(�gap) 2 2.8284 1.2360 1.0806 0.7423 0.6390 0.3468 0.2834 0.1565
max(�ind) 1 2 3 4 5 6 7 8 9
min(�ind) 1 1.4142 0.6180 0.6180 0.4142 0.3573 0.1826 0.1502 0.0841
max(�pow ) 2 4 6 8 10 12 14.3253 17.0600 20
min(�pow ) 2 2.8284 3.4642 4.0000 4.4722 4.8990 5.2916 5.6568 6.0000

Fig. 2. Histograms of distribution of maximal (top row) and minimal (bottom row) eigenvalues for all simple connected graphs on 7 ≤ m ≤ 9 vertices. For 
their statistical properties, see Table 2.

3. Statistical properties of indices

The purpose of this section is to report statistical results on maximal (minimal) eigenvalues, and indices for the class 
of all simple connected graphs on m ≤ 10 vertices. In Table 2 the operators E, σ , S and K represent the mean value, 
standard deviation, skewness and kurtosis of the corresponding sets of eigenvalues λmax , and λmin , respectively. For larger 
m the skewness S(λmax) approaches zero and the kurtosis K(λmax) tends to 3 meaning that the distribution of maximal 
eigenvalues of all simple connected graphs on the m vertices becomes normally distributed as m increases. The skewness 
S(λmin) < 0 is negative and the kurtosis K(λmin) > 3 meaning that the distribution of minimal eigenvalues of connected 
graphs on the m vertices is skewed to the left. It has fat tails (leptokurtic distribution) because it has positive excess kurtosis 
K(λmin) − 3 > 0 as m increases. We employed the list of all simple connected graphs due to B. McKay which is available at 
the repository [28]. We calculated the spectra for all graphs and the corresponding indices. Calculating indices for m = 10 is 
8
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Fig. 3. Histograms of distribution of �gap (top row), �ind (middle row), and �pow (bottom row) for all simple connected graphs on 7 ≤ m ≤ 9 vertices. For 
their statistical properties, see Table 2.

Fig. 4. The noncomplete graph on m = 7 vertices with eigenvalues {5, 1, −1, −1, −1, −1, −2} maximizing the value �pow = 12 in the class of all simple 
connected graphs of the degree m = 7.

a computationally complex task, since the number 11716571 of all simple connected graphs is very large. To our knowledge, 
a consolidated list of connected nonisomorphic graphs is not available for orders m ≥ 11. (See Figs. 2 and 3.)

Interestingly enough, for the values of m ≤ 7 the maximum value of �pow is achieved for the complete graph Km with 
the eigenvalues {m −1, −1, . . . , −1} and the maximal value �pow = 2m −2. For m = 7 there are exactly two graphs with the 
same maximal value �pow = 12. The noncomplete maximizing graph with eigenvalues {5, 1, −1, −1, −1, −1, −2} is shown 
in Fig. 4. Starting from the degree m = 8 the maximal value of �pow is attained for noncomplete graphs shown in Fig. 5. 
In Fig. 6 we show graphs on 5 ≤ m ≤ 10 minimizing �gap . Path graphs Pm minimize �gap and �ind for m = 2, 3, 4 (see 
Table 2). In Fig. 7 we show graphs on m = 6, 7, 9, 10 minimizing �ind . For m = 5, 8 the minimizing graphs are the same as 
those for �gap shown in Fig. 7 (see Table 2).

Remark 5. According to Caporossi et al. [7, Theorem 2], for a general simple connected graph G A we have �pow(G A) ≥
2
√

m − 1. The unique minimal value of �pow = 2
√

m − 1 is attained by the star graph Sm ≡ Km−1,1. For related results, we 
refer to Stanic [36, (2.11), p. 33] and McClelland [27].
9
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Fig. 5. Noncomplete graphs on 8 ≤ m ≤ 10 vertices maximizing �pow which is greater than the value = 2m − 2 attained by the complete graph Km . For 
values of �pow see Table 2.

Fig. 6. Graphs on 5 ≤ m ≤ 10 minimizing �gap . For values of �pow see Table 2.

Fig. 7. Graphs on 5 ≤ m ≤ 10 minimizing �ind . For values of �pow see Table 2.

4. Conclusions

In this paper we analyzed the spectral properties of all simple connected graphs. We focus our attention to the class 
of graphs which are complete multipartite graphs. We also present results on density of spectral gap indices and its 
nonpersistency with respect to small perturbations of the underlying graph. We also analyzed the spectral properties of 
graphs different from those of complete multipartite graphs. We presented statistical and numerical analysis of the indices 
�gap, �ind , and �pow of graphs of order m ≤ 10.

Declaration of competing interest

The authors declare no conflict of interest.
10
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