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The limiting behaviour of solutions of a system of singularly perturbed equations is studied. The goal is to
construct a dissipative feedback control synthesis that stabilizes the prescribed output functional along
trajectories of solutions. The results are applied to a singularly perturbed Johnson—Sagelman—Oldroyd
model of shearing motions of a piston driven flow of a non-Newtonian fluid.

1. Introduction

The aim of this paper is to construct a dissipative feedback control synthesis that
stabilizes a given output functional along solutions of the following system of singu-
larly perturbed evolution equations

x
t
"Ge (x, y, z),

(1.1)
ey

t
#By"Fe (x, y, z),

where 0)e;1 is a small parameter, x3X, y3½, X and ½ are Banach spaces, B is
a sectorial operator in ½. In this paper we consider a specific feedback control
mechanism of the form

z"$(x),

where $ is a smooth function from X into another Banach space Z. In other words,
a synthesis z"$ (x) should only depend on the slow variable x. It is well-known that
the Cauchy problem for the full system of equations, e'0,

x
t
"Ge (x, y, $ (x)),

(1.2)
ey

t
#By"Fe (x, y, $(x))

generates a globally defined semi-flow Se(t), t*0, on a phase-space X"X]½b,
provided that the nonlinearities Ge , Fe and $ satisfy certain regularity and growth
conditions (cf. [6]). Furthermore, under a suitable assumption on a function F

0
,



system (1.2) generates a semi-flowS
0
(t), t*0, on a phase-spaceM

0
which is a Banach

submanifold of X.
Typically, the structure of the reduced system of equations (1.1), e"0, allows us to

construct a feedback law z"$
0
(x) with the property that a prescribed output

functional Q
0
asymptotically vanishes along all solutions of (1.2), i.e. Q

0
(S

0
(t)(x

0
, y

0
))P0

as tPR. We discuss an example of such a reduced dynamics in section 6. Under
assumptions made in sections 2 and 3, our goal in this work is to find a feedback
synthesis $"$e stabilizing the given output functional Qe along trajectories of the full
system of equations (1.2) whenever e'0 is sufficiently small. It should be noted that
an explicit construction of such a synthesis is not obvious, in many cases, and this is
why we have to turn to functional analytic methods in order to prove the existence of
a stabilizing feedback law and to examine the limiting behavior of $e when eP0`.

Before stating our main result we need several definitions.

Definition 1.1. Let S(t), t*0, be a semi-flow on a metric space (X, d). Let M be an
attracting invariant set forS, i.e. S(t)M"M for any t*0 and dist (S(t)u,M)P0
as tPR for any u3X. Let Q :XPE be a prescribed output functional, E is a metric
space. We say that the semi-flowS (t) is asymptotically Q-constrained onM if Q(u)"0
for any u3M.

Remark 1.1. Notice that, if Q :XPE is continuous then any Q-asymptotically con-
strained semi-flow S (t) on the attracting invariant set M, has the property
Q(S(t)u)P0 as tPRfor any u3X. Clearly, if a functional Q vanishes onX then any
semi-flow on X is Q-asymptotically constrained on the whole phase-space X.

Definition 1.2. Let e3[0, e
0
] be fixed. Let Qe :XPE be a continuous mapping, X is

the phase-space for (1.1). We say that system of equations (1.1) admits a dissipative
feedback synthesis $ : XPZ if the semi-flow Se(t) generated by solutions of (1.2)
possesses an attracting invariant manifold Me and the semi-flow S (t) is Qe-asymp-
totically constrained on Me .

We also recall the notion of an inertial manifold.

Definition 1.3. Let S (t), t*0, be a semi-flow in the Banach space X. We say that
a Banach submanifold MLX is an inertial manifold. for semi-flow S if :

(a) it is an invariant, i.e. S(t)M"M for any t*0; and
(b) M attracts exponentially all solutions, i.e. there is k'0 such that dist

(S(t)u
0
,M )"O(e~kt) as tPR for any u

0
3X.

In contrast to the classical definition of an inertial manifold due to Foias et al. [4],
we allow the exponentially attractive invariant manifold to be an infinite-dimensional
Banach submanifold of the phase-space X. (see e.g. [8]).

Given a family of output functionals Qe , e*0, the main result can be stated as
follows:

Theorem 1.1. Assume hypotheses (H1)— (H4) and the structural condition (5.1) below.
¹hen, for any e'0 small enough,

(a) system (1.1) admits a dissipative feedback synthesis $e3C1
bdd

(B, Z)WC0,1 (X, Z)
and, moreover,

(b) lime?0`$e"$
0

in C1
bdd

(B, Z) for any B bounded and open subset of X.
(c) ¹he feedback law z"$e(x) stabilizes the prescribed output functional Qe . ¹his

means that lim
t?=

Qe (x (t), y (t))"0 for any solution (x( . ), y ( . )) of (1.2).
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(d) ¹he semi-flow Se generated by solutions of system (1.2) is Qe-asymptotically
constrained on a C1 smooth inertial manifoldMe . ¹he manifoldMe is C1 close to
M

0
for e'0 sufficiently small.

The idea of the proof and the organization of the paper is as follows. In section 3 we
find a synthesis z"he(x, y) depending on the both slow and fast variables. Under
suitable assumptions (see (H3)) such a function he can be uniquely determined from the
governing equations and the condition that ed/dtQe (x (t), y (t))#Qe(x (t), y (t))"0, i.e.
EQe (x (t), y (t))E"O(e~t@e) as tP#Rfor any solution of system (1.1) with z"he(x, y).
Incorporating the feedback law z"he(x, y) into system (1.1) we then construct an
inertial manifold Me for (1.1) as a smooth graph Me"M(x, 'e(x)), x3XN. To this end
we make use of the abstract singular perturbation theorem proved in [14]. We recall
this result in section 4. Roughly speaking, the existence of such an inertial manifoldMe
means that the fast variable y is governed by the slow variable x when restricted on the
manifold Me . This enables us to construct $ as a composite function $e (x)"
he(x, 'e (x)).

In section 6 we are concerned with the problem of the existence of a feedback
control law stabilizing a given output of solutions for a system of singularly perturbed
equations arising from the non-Newtonian fluid dynamics. Several authors have
considered various constitutive models of a non-Newtonian fluid in order to describe
flow instability phenomena like e.g. spurt, hysteresis loop under cyclic load for
pressure driven flows of a Johnson—Segalman—Oldroyd (JSO) fluid [9, 11, 5], or
KBKZ fluid (see [1, 5]). In this paper we consider the JSO model and research which
has been motivated by recent rheological experiments due to Lim and Schowalter [7].
Their experimental data suggests that a nearly periodic regime bifurcates from
a steady state when the volumetric flow rate was gradually loaded beyond a critical
value. In [10] Malkus et al. developed a mathematical theory capable of describing
bifurcation phenomena in a piston driven flow of shearing motions of a non-Newto-
nian fluid. They considered the Johnson—Segalman—Oldroyd model of a shear flow of
a non-Newtonian fluid leading to a system of three parabolic—hyperbolic equations.

ev
t
!vmm"pm#f,

p
t
#p"(1#n)vm , (t, m)3[0,R)][0, 1], (1.3)

n
t
#n"!pvm ,

where v is directional velocity of a planar shear flow, p is the extra shear stress and n is
the normal stress difference. The dimensionless number e'0 is proportional to the
ratio of the Reynolds number to Deborah number and, in practice, e is very small
compared to other the terms in (1.3), e"O(10~12). This gives rise to treating
0(e;1 as a small parameter and to study a reduced system of equations (1.3) in
which e"0. The problem to be considered here consists in the construction of
a driving pressure gradient f as a function of the flow variables p, n in such a way that
the output of the volumetric flow rate per unit cross-section, Q(t)":1

0
v (t, m) dm is fixed

at the prescribed value Q
&*9

. It turns out that f has the form of a non-local functional
of p, f"$

0
(p)"3gQ

&*9
!3:1

0
mp (m) dm (see, [10, (FB)]). Numerical simulations per-

formed in [10] showed that such a quasi-dynamic approximation of the full system
(1.3) is capable of capturing an interesting phenomenon of the existence of nearly
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periodic oscillations in the pressure gradient f observed recently in rheological
experiments due to Lim and Showalter [7].

We apply Theorem 1.1 in order to show that, for small values of e'0, there exists
a real valued dissipative feedback synthesis f" fe (p, n) for the pressure gradient such
that Q (t)PQ

&*9
as tPRalong solutions of the full system of equations (1.3). More-

over, there exists an infinite-dimensional inertial manifold Me for system (1.3),
0(e;1, and the volumetric flow rate Q of a solution belonging toMe is fixed at the
prescribed value Q

&*9
. These results are summarized in Theorem 6.3. The vector field

governing the motion on the invariant manifoldMe is compared to that of the reduced
problem. It is shown that they are locally C1 close for small values of the singular
parameter.

2. Preliminaries

Let E
1
, E

2
be Banach spaces and g3(0, 1]. By ¸ (E

1
, E

2
) we denote the Banach

space of all linear bounded operators from E
1

to E
2
. For an open subset BLE

1
,

Ck (B, E
2
) denotes the vector space of all k-times continuously Frechet differentiable

mappings F :BPE
2
. By Ck,1(B, E

2
) we denote the vector space consisting of all

F3Ck(B, E
2
) such that all derivatives DiF, i"0, 1,2, k are globally Lipschitz

continuous. C1
bdd

(B, E
2
) denotes the Banach space consisting of the mappings

F3C1(B, E
2
) which are Frechet differentiable and such that F, DF are bounded and

uniformly continuous, the norm being given by EFE2
1
:"(sup DF D)2#(sup DDF D )2.

Finally, C1`g
bdd

(B, E
2
) will denote the Banach space consisting of the mappings

F3C1
bdd

(B, E
2
) such that DF is g-Hölder continuous, the norm being given by

EFE
1,g :"EFE

1
#sup

xOy
EDF(x)!DF (y)E Ex!yE~g.

Throughout the paper we will assume that

(H1)

X, ½, Z are real Banach spaces;

B is a sectorial operator in X;

Rep(B)'u'0 and B~1 :½P½ is compact.

It follows from the theory of sectorial operators that!B generates the exponenti-
ally decaying analytic semigroup of linear operators exp(!Bt), t*0, on ½. Moreover,
there is a constant M*1 such that

Eexp(!Bt)E
Yb)Mt~be~ut for any t'0 and b*0. (2.1)

By ½b, b3R we have denoted a fractional power space with respect to the sectorial
operator B, ½b"[D(Bb)], EyE

Yb"EBbyE
Y
. Furthermore, EBb~1E)Mub~1

(cf [6, chapter 1]).

3. Construction of an (x, y)-dependent dissipative feedback synthesis

In this section we give a partial answer to the problem of the existence of
a dissipative feedback synthesis that stabilizes a given output functional Qe (x, y). We
present a constructive method on how to obtain a feedback law of the form
z"he (x, y) from the governing equations. In contrast to the required form of the
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synthesis z"$e(x) we allow the variable z to be a functional of both the x and
y variables. The idea is rather simple and a function he :X]½bPZ is constructed in
such a way that the E-valued functional t>Qe(x(t), y (t)) decays exponentially along
any solution (x(t), y(t)) of system (1.1). Obviously, such an asymptotic behaviour is
justified in the case when

e
d

dt
Qe(x (t), y (t))#iQe(x (t), y (t))"0, t'0 (3.1)

for any solution (x ( . ), y( .)) of (1.1). Here i'0 is a fixed positive constant. Let us
assume that Ge and Fe are X and ½ valued functions, respectively. Using the chain rule
the equation for z"he(x, y) can be deduced from equation (3.1), i.e.

He (x, y, z)"0, (3.2)

where x"x (t), y"y(t), t'0, z"he(x, y) and

He (x, y, z)"eD
x
Qe (x, y)Ge (x, y, z)#D

y
Qe(x, y)[Fe (x, y, z)!By]

#iQe (x, y). (3.3)

Suppose that there are constants b3[0, 1), g3(0, 1] such that, for any e3[0, e
0
],

(H2) Qe3C2,1(X]½b~1, E), E is a real Banach space.

The functionHe :X]½b]ZPE is well-defined because Fe (x, y, z)!By3½b~1 for
any (x, y, z)3X]½b]Z and D

y
Qe3¸ (½b~1, E).

(H3)

For any bounded and open subset BLX]½b there is a function

he3C1,1
bdd

(B, Z)WC0,1(X]½b, Z) such that

He(x, y, z)"0 iff z"he (x, y) for any (x, y)3X]½b, and

hePh
0

as eP0` in C1,1
bdd

(B, Z)

If, in addition to (H2), hypothesis (H3) is fulfilled then by (3.1) we have

Qe(x (t), y (t))"O(e~it@e) as tPR for 0(e)e
0 (3.4)

Q
0
(x(t), y(t))"0 for any t*0.

Henceforth, the property

lim
e?0`

/e"/
0

in C1
bdd

(B, E
2
) for any bounded and open subset BLE

1

will be referred to as localC1 closeness of /e and /
0
.

Up to this point we did not make any precise assumptions on smoothness of
non-linearities Ge and Fe appearing in (1.1) as right-hand sides. Henceforth, we will
assume that Ge and Fe are such that

(H4)

Ge3C1
bdd

(X]½b, X ), Fe3C1`g
bdd

(X]½b, ½ ),

EGe!G
0
E
1
#EFe!F

0
E
1
"O(e) as eP0`,

where Ge (x, y) :"Ge (x, y, he(x, y)), Fe (x, y) :"Fe (x, y, he(x, y)).

We remark that Ge(Fe) need not be necessarily a function from X]½b]Z into
X(½ ). We only require that the composite function Ge (Fe) takes X]½b into X (½ ).
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According to the theory of abstract parabolic equations due to Henry [6, Theo-
rems 3.3.3, 3.3.4], the initial value problem for the system of equations

x
t
"Ge (x, y),

(3.5)
ey

t
#By"Fe(x, y)

possesses global-in-time strong solutions and system (3.5) generates a global C1

semiflow SM e, t*0, on the phase-space

X"X]½b.

By a global strong solution of (3.5) with an initial condition (x
0
, y

0
)3X we mean

a function (x, y)3C
-0#

([0,R); X)WC1
-0#

((0,R); X) such that (x (t), y (t))3X]D(B) for
any t'0, and (x ( ·), y ( ·)) solves system (3.5) on (0,R).

Let us denote

d(F
0
, h

0
)"sup

(x,y)

ED
y
F

0
(x, y)E, where F

0
(x, y) :"F

0
(x, y, h

0
(x, y)). (3.6)

If d(F
0
, h

0
)(u1~b/M then we have

EB~1D
y
F

0
(x, y)E¸ (½b, ½b))EBb~1EsupED

y
F

0
E)Mub~1d(1.

By the implicit function theorem there exists a C1
bdd

function '
0
:XP½b such that

By"F
0
(x, y) iff y"'

0
(x). By a global strong solution of (3.5), e"0, with an initial

condition x
0
3X we mean a function x3C

-0#
([0,R); X)WC1

-0#
(0,R); X ) such that x( ·)

solves the equation x
t
"G

0
(x, '

0
(x)) on R`. Again due to the above references to

Henry’s lecture notes this equation generates a global semi-flow SK
0
(t), t*0, on X.

The semi-flow SK
0

can be naturally extended to a semi-flow SM
0

acting on the Banach
submanifold

M
0
"M(x, '

0
(x)), x3XNLX (3.7)

by SM
0
(t) (x, '

0
(x)) :"SK

0
(t)x for any x3X. In what follows, we will identify the semi-

flow SK
0

with SM
0
.

4. Abstract singular perturbation theorem

This section is focused on the C1 singular limiting behaviour of inertial manifolds
Me for semiflowsSM e generated by solutions of the e-parameterized system of equations
(3.5). We recall an abstract result on limiting behaviour of inertial manifolds for
a singularly perturbed system of evolution equations (3.5). The theorem below ensures
both the existence ofMe as well as C1 closeness ofMe andM

0
for e'0 small enough.

Theorem 4.1. ([14, Theorem 3.9]). Assume that hypotheses (H1) and (H4) hold. ¹hen
there are constants d

0
'0 and 0(e

1
)e

0
such that if sup

(x,y)
ED

y
Fe(x, y)E¸(½b, ½ ))

d
0

then, for any e3[0, e
1
], there exists an inertial manifold Me for the semi-flow SM e

generated by the system of evolution equations (3.5) and, moreover,
(a) Me"M(x, 'e(x)), x3XN, where 'e3C1

bdd
(X, ½b);

(b) 'eP'
0

as eP0` in C1
bdd

(B, ½b) for any bounded open subset BLX.
If dim(X)"R then Me is an infinite-dimensional Banach submanifold of the phase-

space X"X]½b. If dim(½ )"R then codim(Me)"R.
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5. Construction of an x-dependent dissipative feedback synthesis.
Proof of Theorem 1.1

Now we are in a position to prove the existence of a dissipative feedback synthesis
of the required form z"$e(x). We assume that hypotheses (H1)—(H4) hold and,
moreover,

d(F
0
, h

0
)(d

0
, (5.1)

where d
0
'0 is the constant of Theorem 4.1. Then sup(x, y) ED

y
Fe(x, y)E(d

0
for any

e3[0, e
0
], e

0
'0 small enough. As an immediate consequence of Theorem 4.1 we

obtain the existence of an inertial manifold

Me"M(x, 'e(x)), x3XNLX (5.2)

for the semi-flow SM e generated by system (3.5). Moreover, 'e3C1
bdd

(X, ½b) and

'eP'
0

as eP0` in C1
bdd

(B, ½b) (5.3)

for any bounded and open subsetBLX. Let us define the feedback law $e : XPZ as
follows:

$e (x) :"he (x, 'e(x)) x3X. (5.4)

Since we have assumed he3C1,1
bdd

(B, Z)WC0,1 (X, Z) and hePh
0

in C1
bdd

(B, Z) as
eP0` for any bounded and open subsetBLX"X]½b we infer from Theorem 4.1
that

$e3C0,1 (X, Z)WC1
bdd

(B, Z), $eP$
0

in C1
bdd

(B, Z) as eP0`, (5.5)

where B is an arbitrary bounded and open subset of X. Again due to Henry’s theory
the system

x
t
"Ge (x, y, $e (x)),

(5.6)
ey

t
#By"Fe (x, y, $e (x))

generates a global semiflow Se on X for 0(e)e
1

and S
0

on M
0
, respectively.

Furthermore, we observe that the right-hand side of system (5.6) and that of system
(3.5), i.e.

x
t
"Ge (x, y, he (x, y)),

(5.7)
ey

t
#By"Fe (x, y, he(x, y))

coincide on the set Me , e3[0, e
1
]. Thus Se (t) (x0

, y
0
)"SM e (t) (x0

, y
0
) for any

(x
0
, y

0
)3Me and t*0. SinceMe is invariant for the semi-flowSM e we conclude that the

setMe is an invariant manifold for the semi-flowSe as well. Notice thatS
0
andSM

0
are

defined on M
0

and they are equal. Although the set Me is an attractive invariant
manifold (inertial manifold) forSM e it should be emphasized that it is not obvious that
Me is an attractive set forSe . The reason is that governing systems (5.6) and (5.7) may
differ outside the setMe . Nevertheless, we will show that the semi-flowsSe andSM e are
exponentially asymptotically equivalent.
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Lemma 5.1. ¹here exists a constant k'0 such that for any (x
0
, y

0
)3X there is

(x*
0
, y*

0
)3Me with the property

ESe (t) (x0
, y

0
)!SM e (t)(x*

0
, y*

0
)EX"O(e~kt) as tPR. (5.8)

Proof. This is just the proof of [3, Theorem 5.1] and it follows the lines of the proof of
the existence of exponential tracking to a centre-unstable manifold. A slightly modi-
fied version of this proof is also contained in [14, Lemma 3.5]. This version utilizes
compactness of the operator B~1.

The idea is as follows. Let us fix 0(e)e
1
. Given a solution (x( · ), y( ·))"Se ( ·)

(x
0
, y

0
) of (5.6) we will prove the existence of an initial condition (x*

0
, y*

0
)3Me with the

property (u ( ·), v ( · ))3C`k (X), where (u (t), v (t))"SM e (t) (x*
0
, y*

0
)!Se (t)(x0

, y
0
) and

C`k is the Banach space

C`k (X) :"M f3C([0,R),X ), E f EC`k
"sup

tw0

ektE f (t)EX(RN.

Obviously, the existence of such an initial condition (x*
0
, y*

0
) implies statement (5.8).

Let us choose k'0. Taking into account the decay estimate (2.1) for the semigroup
exp(!Bt) we have that (u, v) belongs to C`k , if and only if it is a solution of the
following pair of integral equations:

u(t)"P
t

~=

g(s, u (s), v(s)) ds

(5.9)

v(t)"exp(!Bt/e)m#
1

e P
t

0

exp(!B (t!s)/e) f (s, u (s), v(s)) ds, t*0,

for some m3½b, where

g(s, u, v)"Ge (x* (s), y*(s), he (x* (s), y* (s)))!Ge (x*(s)!u, y* (s)

!v, $e(x* (s)!u)),

f (s, u, v)"Fe (x*(s), y* (s), he(x* (s), y* (s)))!Fe(x* (s)!u, y*(s)

!v, $e (x*(s)!u)).

Since Me is invariant for SM e we have y* (s)"'e (x*(s)) and hence he (x* (s), y*(s))"
$e (x* (s)) for any s*0. Thus, Ef (s, u, v)E

X
)C(EuE

X
#EvE

Yb) where f stands either
for g or f and C'0 is a positive constant depending only on the Lipschitz constants
of the mappings Ge , Fe , he , 'e . Notice that the constant C'0 can be chosen to be
independent of e3(0, e

1
]. The rest of the proof is essentially the same as that of

[3, Theorem 5.1] or [14, Lemma 3.5] and therefore is omitted. We only remind
ourselves that, using the integral equations (5.9), the main idea is to set-up a suitable
fixed point equation for m3½b by requiring that (x*

0
, y*

0
)"(x

0
!u(0), y

0
!m) must

be an element of the manifoldMe"Graph('e). To solve such a fixed point equation
k'0 must be chosen large enough. K

Lemma 5.2. ¹he output functional Qe vanishes on Me , i.e. Qe(x0
, y

0
)"0 for any

(x
0
, y

0
)3Me .

Proof. The proof utilizes a simple invariance argument. Let (x
0
, y

0
)3Me be fixed.

Since Me is invariant for the semi-flow SM e , for any t*0, there is (x
~t

, y
~t

)3Me such
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that SM e (t)(x~t
, y

~t
)"(x

0
, y

0
). Clearly, x

0
"x

~t
#:0

~t
Ge (SM e(s)(x~t

, y
~t

)) ds. Hence,
Ex

0
!x

~t
E)EGeE0t. Furthermore, as (x

~t
, y

~t
)3Me we have y

~t
"'e (x~t

) and so
Ey

~t
E)E'eE0 . Solving the linear homogeneous equation (3.1) we obtain Qe (x0

, y
0
)

"Qe(SM e (t)(x~t
, y

~t
))"Qe (x~t

, y
~t

)e~it@e, t*0. We remind ourselves that the output
functional is assumed to be globally Lipschitz continuous and this is why

EQe (x0
, y

0
)E(eit@e!1)"EQe (x~t

, y
~t

)!Qe(x0
, y

0
)E

)lip(Qe)(Ex
~t

!x
0
E
X
#Ey

~t
!y

0
E
Yb))lip(Qe)(2E'eE0#EGeE0t).

Comparing the growth in t*0 of the left- and right-hand sides of the above inequality
we conclude Qe(x0

, y
0
)"0. Since (x

0
, y

0
)3Me was arbitrary the proof of the lemma

follows. K

Proof of ¹heorem 1.1. Under hypotheses (H1)—(H4) and assumption (5.1) we have
established the existence of a dissipative feedback synthesis $e (see (5.4) and
Lemma 5.2). The regularity and convergence properties of $e were shown in (5.5).
Since, Qe is globally Lipschitz continuous the statement c) of Theorem 1.1 follows from
Lemmas 5.1 and 5.2. Again with regard to Lemma 5.1, the manifoldMe is an inertial
manifold for the semi-flowSe generated by system (5.6). By (5.2)Me is a C1 graph over
the space X and the convergence property 'eP'

0
as eP0` follows from (5.3).

Hence, the statement (d) also holds. K

6. An application to the Johnson–Segalman–Oldroyd model of shearing motions
of a piston driven non-Newtonian fluid

6.1. Governing equations

In order to examine the behaviour of a piston driven flow of a non-Newtonian fluid
we consider the Johnson—Segalman—Oldroyd constitutive model of shearing motions
of a planar Poiseuille flow within a thin channel. The channel is aligned along the
y-axis and extends between x3[!1, 1]. The flow is assumed to be symmetric with
respect to x"0 and the fluid undergoes simple shearing. Therefore, we can restrict
ourselves to the interval x3[0, 1]. Moreover, the flow variables (velocity and stresses)
are independent of y so vl"(0, v(t, x)). To determine the extra stress tensor as
a functional of the rate of a deformation tensor we consider the Johnson—Segal-
man—Oldroyd constitutive law (see [9] for details). In non-dimensional units the
system of partial differential equations governing the motion of such a fluid is a system
of parabolic—hyperbolic equations:

p
t
"!p#(1#n)v

x
,

n
t
"!n!pv

x
, (6.1)

ev
t
"gv

xx
#p

x
# f ,

(t, x)3[0,R)][0, 1], subject to boundary and initial conditions

v
x
(t, 0)"v (t, 1)"p (t, 0)"0 for any t*0

v(0, x)"v
0
(x), p (0, x)"p

0
(x), n (0, x)"n

0
(x) for x3[0, 1]. (6.2)
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Here p is the extra shear stress, n is the normal stress difference. It should be noted that
in the case of a pressure driven flow studied in [9, 11, 15] the pressure gradient f3R is
fixed. On the other hand, in the case of a piston driven flow (see [10] or [5, chapter 3])
the pressure gradient f is assumed to vary with respect to time. The parameters e'0
and g'0 are proportional to the ratio of the Reynolds number to the Deborah
number and the Newtonian viscosity to shear viscosity, respectively. In rheological
experiments the number e is very small compared to other terms in (6.1), e"O(10~12)
(see [9]). This gives rise to treating 0(e;1 as a small parameter and investigate the
singular limiting behavior of system (6.1)— (6.2) when eP0`. We refer to [9] for the
complete derivation of a system of governing equations.

For the purpose of this analysis, let us introduce the following change of variables:

(p, n, v) % (&, n, u), & (x) :"!P
1

x

p (m) dm, u :"gv#&. (6.3)

In terms of the new variables (&, n, u) system (6.1) has the form

&
t
"G(&),

n
t
"G(n), (6.4)

eu
t
!gu

xx
"g f#eG(&),

where the non-linear functions G(&), G(n) are defined as

G(&)"G(&)(&, n, u)"!&!

1

g P
1

x

(1#g (m))[u
x
(m)!&

x
(m)] dm,

(6.5)

G(n)"G(n)(&, n, u)"!n!
1

g
&

x
[u

x
!&

x
].

The corresponding boundary conditions are

u
x
(t, 0)"u (t, 1)"&

x
(t, 0)"&(t, 1)"0 for any t*0. (6.6)

Let Q
&*9
3R be a prescribed value of the volumetric flow rate. If Q denotes the

variation in the volumetric flow rate of a planar flow per unit cross-section, i.e.
Q":1

0
v (m) dm!Q

&*9
then Q can be rewritten in terms of & and u as

Q(&, u)"
1

g P
1

0

[u (m)!& (m)] dm!Q
&*9

. (6.7)

The feedback law f"he((&, n), u) can be then readily deduced from equation (3.2). In
our application (3.1) and (3.2) become

eD&Q° G(&)#D
u
Q ° [eG(&)#g f#gu

xx
]

"!

e
g P

1

0

G(&)#
1

g P
1

0

[gu
xx

(m )#g f#eG(&)] dm#
i
g P

1

0

[u (m)!& (m)] dm

!iQ
&*9
"0.

Thus, for any e*0, we obtain

f"h(&, u)"!u
x
(1)!

i
g P

1

0

[u (m)!& (m)] dm#iQ
&*9

. (6.8)
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Remark 6.1. It should be noted that in the case of the reduced problem (e"0) one can
calculate that u (x)"(1!x2) f /2. Taking into account (6.8) one has f"3gQ

&*9
#

3 :1
0
& (m) dm. In terms of the flow variable p it means that

f"3gQ
&*9
!3 P

1

0

mp(m ) dm

which is, up to rescaling, the same formula for the driving pressure gradient as that
obtained in [10], formulae (FB).

Incorporating the feedback law f"h (&, u) into system (6.4) we can rewrite the
system of governing equations (6.4) in an abstract form

&
t
"G(&) (&, n, u),

n
t
"G(n)(&, n, u), (6.9)

eu
t
#Bu"Fe(&, n, u),

where B is a linear operator, Bu(x)"!gu
xx

(x)#gu
x
(1)#i:1

0
u (m) dm, x3[0, 1], and

Fe (&, n, u)"i P
1

0

&#igQ
&*9
#eG(&) (&, n, u) (6.10)

and the non-linearities G(&), G(n) are as defined in (6.5). Notice that the derivative D
u
Fe

vanishes for e"0.

6.2. Function space and operator setting

Let ½ denote the real Hilbert space ¸2(0, 1) of square integrable functions; EuE2
Y
"

:1
0
Du D2. For fixed positive real numbers g, i'0, we denote by B the linear operator

Bu"!gu
xx
#gu

x
(1)#i:1

0
u (m) dm its domain being the Sobolev space D(B)"

Mu3H2(0, 1), u
x
(0)"u(1)"0N. B is a non self-adjoint nonlocal operator. In what

follows, we will show that B is a sectorial operator in ½, and, moreover, Rep (B)'0.
To this end, we decompose the operator B as B"B#L where Lu"gu

x
(1)#

i:1
0
u (m) dm and B is a self-adjoint operator in ½, Bu"!gu

xx
for any u3D(B)"

D(B). The operator B is sectorial in ½ and Rep(B)*gn2/4'0 (see [6, chapter 1]).
Since the embedding [D(Bb)]9C1

bdd
(0, 1) is continuous for any b'3/4 we have

ELuE
Y
)CEBbuE for any u3D(B) and b'3

4
. According to [6, Corollary 1.4.5 and

Example 11, p. 28] we conclude that the sum B"B#L is a sectorial operator in
½ as well. Moreover, the norm in the fractional power space [D(Bb)] is equivalent to
that of [D(Bb)]. It remains to estimate the spectrum of B from below. First we notice
that the operator B~1 :½P½ exists and is given by B~1g":1

0
K(. , m)g (m) dm, where

K is a Green function.

K(x, m)"G
1!x

g
#

3

2i
(1!x2)!

3

4g
(1!x2) (1!m2), 0)m)x)1,

1!m
g

#

3

2i
(1!x2)!

3

4g
(1!x2) (1!m2), 0)x(m)1.

Since, the kernel K is bounded the operator B~1 is compact and therefore the
spectrum p (B) consists of eigenvalues, i.e. p (B)"p

P
(B). Let j3p (B) be an eigenvalue

and uO0 be the corresponding eigenfunction. Then!gu
xx

(x)#gu
x
(1)#i:1

0
u(m) dm"

ju(x), x3[0, 1]. Integrating this equation over [0, 1] and taking into account the
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boundary condition u
x
(0)"0 we obtain (i!j) :1

0
u"0. Then either j"i'0 or

:1
0
u"0. The latter implies!gu

xx
(x)#gu

x
(1)"ju(x). By taking the inner product in

a complexification of ½ with uN we obtain g:1
0
Du

x
D2"g:1

0
Du

x
D2#gu

x
(1) :1

0
uN "j:1

0
Du D2.

Hence j is a real number and, moreover, j*infuO0gEu
x
E2/EuE2"gn2/4. Summariz-

ing we have shown the following proposition.

Lemma 6.2. ¸et g, i be any positive constants. ¹hen the linear operator Bu"!gu
xx
#

gu
x
(1)#i:1

0
u(m ) dm, D (B)"Mu3H2(0, 1), u

x
(0)"u(1)"0N, is sectorial in

½"¸2(0, 1). Furthermore, p (B)L[u,R) where u"minMi, gn2/4N'0. ¹he frac-
tional power space ½b": [D(Bb)] is imbeded into the Sobolev—Slobodeckii space
H2b(0, 1) for 1'b'3/4. ¹he resolvent operator B~1 :½P½ is compact.

Let X be the Banach space X :"M(&, n)3C1
bdd

(0, 1)]C0
bdd

(0, 1), &
x
(0)"& (1)"0N.

With regard to the continuity of the imbedding ½b9 C1
bdd

(0, 1) for b'3
4
, we conclude

that the nonlinearities G :"(G(&), G(n) ) :X]½bPX and Fe : X]½bP½ are locally
Lipschitz continuous. Thus local solvability inX"X]½b, 3

4
(b(1, of system (6.9)

follows from [6, Theorem 3.3.3]. To prove global-in-time solvability of solutions we
have to find a priori estimates of any solution of (6.9).

6.3. A priori estimates of solutions, dissipativeness of a semi-flow,
modification of governing equations

If (&, n, u) is a local solution of (6.9) in the phase space X then (p, n, v), p"&
x
, v"

(u!&)/g is a local solution of (6.1) in C
bdd

(0, 1)WMp, p (0)"0N]C
bdd

(0, 1)]½b. Let us
multiply the first equation in (6.1) by p and the second one by (1#n). Their
summation leads to the identity (d/dt)(p2#(1#n)2)#2(p2#(1#n)n)"0. As
p2#(1#n)2)2(p2#n (1#n))#1 we obtain for & and n the estimate

E& (t, · )E2
1
#E1#n(t, · )E2

0
)2#2e~t (E&

0
E2
1
#E1#n

0
E2
0
). (6.11)

To obtain a bound of a solution u we take the inner product in ½"¸2(0, 1) of the
equation

eu
t
!gu

xx
#gu

x
(1)#i P

1

0

u"Fe (6.12)

with 3iu!gu
xx

. Since u
x
(1)":1

0
u
xx

for any u3D(B) we have

e
2

d

dt
(3iEuE2#gEu

x
E2)#g (3iEu

x
E2#gEu

xx
E2)

#AJ3i P
1

0

u#gu
x
(1)/J3B

2
"

4

3
g2 Du

x
(1) D2#(Fe , 3iu!gu

xx
)
Y
.

Clearly, 4
3
g2Du

x
(1)D2"8

3
g2:1

0
u
xx

u
x
)4

3
J g

3ig(3iEu
x
E2#gEu

xx
E2). Notice that 4

3
J g

3i(1
iff i'16

27
g. Furthermore, as EuE

Y
)Eu

x
E
Y
)Eu

xx
E
Y

for any u3D(B), we have
E3iu!gu

xx
E2
Y
)maxM6i, 2gN(3iEu

x
E2#gEu

xx
E2). Assuming i'16

27
g and ap-

plying Schwartz’s inequality to the inner product (Fe , 3iu!gu
xx

)
Y

one can show the
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existence of positive constants d, C'0 independent of e*0, such that the following
Lyapunov-type inequality is satisfied

e
2

d

dt
(3iEuE2#gEu

x
E2)#d (3iEu

x
E2#gEu

xx
E2))CEFeE2

Y
. (6.13)

Henceforth, C, d will denote any generic positive constant independent of e*0 and
initial conditions. Now, it follows from the definition of G(&) and Fe that

EFeEY
)EFeE0

)C(1#E&E2
1
#EnE2

0
) (1#eEu

x
E
Y
). (6.14)

Then differential inequality (6.13) implies that

e
dº

dt
#dº)C(1#E&E4

1
#EnE4

0
)(1#eº), (6.15)

where º(t) :"3iEu(t, · )E2
Y
#gEu

x
(t, · )E2

Y
. To obtain a bound for Eu

t
E
Y

we differen-
tiate equation (6.12) with respect to time. Denoting w"u

t
, w is a solution of

ew
t
!gw

xx
#gw

x
(1)#i P

1

0

w"

d

dt
Fe (6.16)

subject to the boundary conditions w
x
(t, 0)"w(t, 1)"0. Since,

d

dt
Fe"i P

1

0

&
t
#e A!&

t
!

1

g P
1

x

[(1#n)(w
x
!&

tx
)#n

t
(u

x
!&

x
)]B

and

E&
t
E
0
)C(1#E&E2

1
#EnE2

0
#Eu

x
E2
Y
)

D&
tx

(· , x) D)C(1#E&E2
1
#EnE2

0
#E1#nE

0
Du

x
(· , x) D )

Dn
t
(· , x) D)C(1#E&E2

1
#EnE2

0
#E&E

1
Du

x
(· , x) D )

for a.e. x3[0, 1], we have

KK
d

dt
Fe KK

Y

)KK
d

dt
Fe KK

0

)C(1#E&E4
1
#EnE4

0
) (1#Eu

x
E2
Y
#eEw

x
E
Y
). (6.17)

Now one can proceed similarly as in the proof of inequality (6.15). By taking the inner
product in ½ of (6.16) with 3iw!gw

xx
we obtain a differential inequality

e
d¼

dt
#d¼)C(1#E&E8

1
#EnE8

0
)(1#º2#e¼ ), (6.18)

where ¼ (t) :"3iEw (t, ·)E2
Y
#gEw

x
(t, ·)E2

Y
. Now it follows from the evolution equa-

tion for u that EuE
Y1"EBuE

Y
)eEu

t
E
Y
#EFeEY . Since Re p (B)'0 the norm EuE

Yb ,
3/4(b(1 is dominated by EBuE

Y
. Taking into account estimates (6.11), (6.14), (6.15)

and (6.18) and using a simple Gronwall’s lemma argument we obtain a priori estimate

E& (t, ·)E1#En(t, ·)E0#Eu (t, ·)E
Yb)const for any t3(0, ¹

.!9
),

where ¹
.!9

is the maximal time of existence of a solution (&(t, ·), n (t, ·), u (t, ·)). Hence,
¹

.!9
"R and the global-in-time existence of solutions in the phase space

X"X]½b, 3/4(b(1, is established.

A Piston Driven Flow of a Non-Newtonian Fluid 91



In what follows, we will prove the existence of a ball in the phase-space X that
dissipates any solution of (6.9). Let (&

0
, n

0
, u

0
)3X be an initial condition. With regard

to (6.11) there exists time ¹
1
"¹

1
(&

0
, n

0
)'0 such that

1#E&Ep
1
#EnEp

0
)1995 for any t*¹

1
p"4, 8.

One can choose 0(e
0
;1 such that 1995Ce

0
(d where constants C, d'0 appear in

inequalities (6.15) and (6.18). Then

e
dº (t)

dt
#dº(t))C,

e
d¼ (t)

dt
#d¼ (t))C(1#º2(t)) for any t*¹

1
,

where C, d'0 are constants independent of e3[0, e
0
] and the initial condition

(&
0
, n

0
, u

0
). It should be noted that the first differential inequality does not involve ¼.

Then solving the above differential inequalities one can show the existence of a time
¹"¹ (&

0
, n

0
, u

0
)*¹

1
such that º(t)#¼ (t))C for any t*¹. Recall that

Eu
t
(t, ·)E2

Y
)¼ (t) and EFeEY can be estimated in terms of º(t) for t*¹ (see (6.15)).

Thus, EBu(t, ·)E
Y
)C for t*¹. In summary, we have shown the existence of a con-

stant .
0
'0 independent of e3[0, e

0
] and initial data, such that

Eu (t, ·)E2
Yb#E (&(t, ·), n(t, ·))E2

X
).

0
for any t*¹ (&

0
, n

0
, u

0
). (6.19)

This means that the ball in X]½b of radius .1@2
0

is a dissipative set for solutions of
(6.9), i.e. any solution enters this ball after a certain amount of time. In other words,
the long-time behavior of solutions takes place inside this ball.

As is usual, we will modify the governing equation outside the ball of radius .1@2
0

.
Let f3C2

bdd
(R`, R`) by any smooth cut-off function with the property f,1 on

[0, 2.
0
], f,0 on [3.

0
,R). We define the modified functions

GM "GM (&), GM (n) : X]½bPX and Fe :X]½bP½ as follows:

GM (i)(&, n, u)(x) :"f( D& (x) D2#D&
x
(x) D2#Dn (x) D2#EuE2

Yb)G(i) (&, n, u)(x),

FM e (&, n, u)(x) :"f( D&(x) D2#D&
x
(x) D2#Dn(x) D2#EuE2

Y b)Fe (&, n, u) (x)

for x3[0, 1], i stands either for & or n. We remind ourselves that the mapping
u> EuE2

Y b is a twice continuously Frechet differentiable function from ½b to R. The
modified functions GM and FM e obey hypothesis (H4). With regard to the definitions of
Q and h (see (6.7), (6.8)) it is easy to verify that hypotheses (H2) and (H3) are also
fulfilled. Since F

0
does not depend on u, the structural condition (5.1) is satisfied for

any d
0
'0. Taking into account Lemma 6.2 and (6.3) we have shown that all the

conclusions of Theorem 1.1 hold for system (6.9) except for the statement thatMe is an
invariant manifold for the semi-flow generated by solutions of (6.9). This is due to the
fact that we have modified the governing equations far from the vicinity of a dissi-
pative ball of the radius .1@2

0
. Hence,Me need not be invariant outside this ball. On the

other hand, it should be emphasized that the long-time behaviour of solutions of (6.9)
takes place inside this ball as it was shown in (6.19). Henceforth, we will therefore refer
to Me as a local invariant manifold for solutions of (6.9).
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Now we can rewrite the feedback law in terms of the flow variables p, n, v as follows:
f" fe (p , n) where f e (p , n)"$e(&, n). For the velocity field on the manifold Me we
obtain the expression v"(e (p, n)"(u!&)/g"('e (&, n)!&)/g where &(x)"
!:1

x
p (m ) dm. We infer from the continuity of the imbedding ½b 9 C1

bdd
(0, 1), 3

4
(b,

(see Lemma 6.2) that

(e : C0
bdd

(0, 1)WMp, p (0)"0N]C0
bdd

(0, 1)PC1
bdd

(0, 1)

is C1 smooth and (e is locally C1 close to (
0
. Similarly, one has

fe : C0
bdd

(0, 1)WMp, p (0)"0N]C0
bdd

(0, 1)PR

is C1 smooth and f e is locally C1 close to (
0
. Furthermore, with regard to Remark 6.1

we have an explicit formula for f
0

and (
0
,

f
0
"3gQ

&*9
#3 P

1

0

& (m) dm

v(x)"(
0
(p , n) (x)"A(1!x2) f

0
/2#P

1

x

p (m) dmB .

Summarizing the results of section 6 we can state the following theorem.

Theorem 6.3. ¹here exists 0(e
0
;1 such that, for any e3[0, e

0
], the system of

equations governing the Poiseuille flow of the Johnson—Segalman—Oldroyd fluid
(6.1)— (6.2) admits a dissipative feedback synthesis of the pressure gradient

f" f e (p , n), p, n3C0
bdd

(0, 1)

that stabilizes the volumetric flow rate at the prescribed value Q
&*9

. ¹he mapping
fe : C0

bdd
(0, 1)WMp, p (0)"0N]C0

bdd
(0, 1)PR is C1-smooth and fe is locally C1 close to

f
0

whenever e'0 is small enough. ¹he feedback law f
0

for the reduced system of
equations has the form

f
0
(p , n)"3gQ

&*9
!3 P

1

0

mp(m) dm.

¹he initial-value problem (6.1)— (6.2) with f" fe (p, n) possesses an infinite dimensional
locally invariant attractive manifoldMe . ¹he volumetric flow rate for solutions belonging
to Me is fixed at the prescribed value Q

&*9
. ¹he manifold Me is a C1 smooth graph,

Me"M(p, n, v), v"(e (p, n), p, n3C0
bdd

(0, 1), EpE2
0
#EnE2

0
(.

0
N,

where (e : C0
bdd

(0, 1)WMp, p (0)"0N]C0
bdd

(0, 1)PC1
bdd

(0, 1) is a C1 function which is
locally C1 close to (

0
,

(
0
(p , n) (x)"

1

g A(1!x2) f
0
(p , n)/2#P

1

x

p (m) dmB , x3[0, 1].

Finally, the flow when restricted to the manifoldMe is governed by the following system
of functional differential equations:

p
t
"!p#(1#n)(e (p, n)

x
,

(FDE)
n
t
"!n!p(e (p, n)

x
,
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(t, x)3[0,R)][0, 1], subject to boundary and initial conditions (6.2). For small values of
e'0, the vector field defined by the right-hand side of (FDE) is locally C1 close to that of
the reduced system of equations

p
t
"!p#(1#n)(¹!p)/g,

(QFDE)
n
t
"!n!p (¹!p)/g,

where ¹"!f
0
(p , n)x.
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