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Abstract

We present a head-to-head evaluation of the Improved Inexact–Newton–Smart (INS) algo-
rithm against a primal–dual interior-point framework for large-scale nonlinear optimization.
On extensive synthetic benchmarks, the interior-point method converges with roughly
one-third fewer iterations and about one-half the computation time relative to INS, while
attaining marginally higher accuracy and meeting all primary stopping conditions. By
contrast, INS succeeds in fewer cases under default settings but benefits markedly from
moderate regularization and step-length control; in tuned regimes, its iteration count and
runtime decrease substantially, narrowing yet not closing the gap. A sensitivity study
indicates that interior-point performance remains stable across parameter changes, whereas
INS is more affected by step length and regularization choice. Collectively, the evidence po-
sitions the interior-point method as a reliable baseline and INS as a configurable alternative
when problem structure favors adaptive regularization.

Keywords: nonlinear optimization; interior-point; Newton-type algorithms; large-scale
optimization; convergence; performance; Hessian regularization

MSC: 90C51; 90C30; 65K05; 90C55; 90C22

1. Introduction
Large-scale nonlinear optimization problems (LSNOPSs) play an essential role in vari-

ous fields such as computational science, engineering design, data analysis, and economic
modeling, where high-dimensional systems often require efficient and accurate solution
techniques [1–4]. Despite their broad applicability, solving LSNOPSs remains a consid-
erable challenge due to nonlinear constraints, parameter sensitivity, and computational
complexity [5–7]. Conventional approaches frequently face scalability limitations and
convergence instability, particularly when dealing with large and ill-conditioned problem
structures [8–10]. These challenges highlight the ongoing need for improved algorithms
capable of balancing efficiency, robustness, and convergence accuracy in large-scale models.
Motivated by this demand, the present study investigates the performance and conver-
gence characteristics of two advanced algorithms—the Improved Inexact–Newton–Smart
(INS) algorithm and the primal-dual interior-point (IPM) framework-offering analytical and
numerical insights into their efficiency and reliability for large-scale nonlinear optimization.
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Among the most powerful frameworks for solving nonlinear optimization problems
are Newton-type iterative schemes and interior-point methods (IPMs). Newton-type
approaches exploit second-order information through Hessian updates to achieve quadratic
convergence near optimality [1,3]. However, they can exhibit instability or divergence when
the Hessian is indefinite or poorly conditioned. IPMs, introduced by Karmarkar (1984)
and further developed by Nesterov and Nemirovskii (1994) [5,6], transform constrained
problems into a sequence of barrier subproblems that remain within the feasible region. This
barrier-based formulation enables robust convergence for large-scale, structured models
and underpins many contemporary solvers in optimization software.

Despite extensive developments, performance comparisons between advanced
Newton-type variants and IPMs on large-scale nonlinear models remain limited. Existing
studies have typically focused on convex or small-scale problems, providing insufficient
insight into computational trade-offs, convergence stability, and parameter sensitivity at
scale. This gap motivates the present study, which introduces and analyzes the Improved
Inexact–Newton–Smart (INS) algorithm—a refinement of the standard Inexact Newton
method incorporating adaptive regularization and step-size control—and compares it with
a modern primal-dual IPM framework. The study emphasizes how the two algorithms
differ in efficiency, robustness, and sensitivity to problem conditioning.

Existing studies mainly focus on algorithmic improvements without establishing how
these approaches behave across varying problem scales and conditioning levels. This
lack of comparative insight creates uncertainty in selecting the most efficient solver for
real-world large-scale systems. Therefore, there is a strong need for systematic evaluation
of Newton-type and interior-point frameworks under consistent computational settings
to guide both theoretical development and applied model implementation. The scope
and impact of this research lie in the establishment of a quantitative benchmark that
links algorithmic performance with problem scale, conditioning, and parameter selection.
By combining numerical experiments and sensitivity analyses, the work contributes to
both theoretical understanding and practical implementation of large-scale optimization
algorithms. The results address key concerns about convergence reliability, computation
time, and parameter robustness, offering guidance for algorithm selection in engineering,
computational finance, and operations research applications.

In summary, this paper consists of nine sections. Section 2 presents the theoretical
formulation of the LSNOPS and defines the performance metrics. Section 3 reviews the
fundamental principles of the INS algorithm. Section 4 describes the primal–dual IPM
framework. Section 5 details the comparative performance metrics. Section 6 introduces the
computational setup and test design. Section 7 analyzes numerical experiments, including
convergence results, sensitivity evaluation, and integration of step strategies. Section 9
provides the conclusion, and Section 8 discusses the practical implications and possible
extensions of this work.

2. Interior-Point Method (IPM) Background
Interior-point methods (IPMs) are among the most efficient techniques for solving

large-scale linear and convex quadratic programs [3,7]. Let A ∈ Rm×n denote the constraint
matrix with full row rank, Q ∈ Rn×n a symmetric positive semidefinite matrix (Q ⪰ 0),
b ∈ Rm and c ∈ Rn the given vectors, and x ∈ Rn, y ∈ Rm, and s ∈ Rn the primal,
dual, and slack variables, respectively. The corresponding primal–dual pair is formulated
formulated as:

(P) min
x

c⊤x + 1
2 x⊤Qx, s.t. Ax = b, x ≥ 0, (1)
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(D) max
y,s

b⊤y − 1
2 x⊤Qx, s.t. A⊤y + s − Qx = c, s ≥ 0. (2)

To handle x ≥ 0, IPMs introduce a logarithmic barrier with parameter µ > 0:

ϕ(x) = c⊺x +
1
2

x⊺Qx − µ
n

∑
j=1

ln(xj).

The perturbed Karush–Kuhn–Tucker (KKT) system becomes

Ax = b, A⊺y + s − Qx = c, XSe = µe, x, s > 0,

with X = diag(x), S = diag(s), and e = (1, . . . , 1)⊺ ∈ Rn is the vector of ones.
The set {(x(µ), y(µ), s(µ)) : µ > 0} defines central path.
The convergence to optimality is obtained as µ → 0, with the duality gap:

c⊺x +
1
2

x⊺Qx −
(

b⊺y − 1
2

x⊺Qx
)
= x⊺s = nµ.

Each iteration applies Newton’s method to the KKT system. The exact Newton step
∆z = (∆x, ∆y, ∆s) ∈ Rn ×Rm ×Rn solves the linear system:

K∆z ≡

−Q A⊺ I
A 0 0
S 0 X


∆x

∆y
∆s

 =

rd

rp

rc

,

where (rp, rd, rc) ∈ Rn ×Rm ×Rn are primal, dual, and complementarity residuals. This
linear system dominates the cost of each iteration.

Complexity. Short-step algorithms, which confine iterations to narrow neighborhoods
of the central path, achieve O(

√
n log(1/ε)) iterations to achieve given a precision goal

ε > 0 (cf. [3]). Long-step variants, with wider neighborhoods, require

O(n log(1/ε)), (3)

iterations, making them computationally efficient [7].
Inexact Newton Directions. Instead of solving the Newton system exactly, one may

compute an approximate solution: K∆z = r+ ϵ, where K is the KKT matrix, r = (rp, rd, rc) is
the residual, and ϵ ∈ Rn ×Rm ×Rn is the vector of inexactness. It measures the discrepancy
in the third KKT equation XSe = µe. If the error vector ϵ satisfies ∥ϵ∥ ≤ δ∥r∥, for some
δ ∈ (0, 1), then the global convergence and complexity bounds are preserved (cf. [8]).

Matrix-Free Approaches. Krylov subspace solvers, combined with preconditioning,
allow IPMs to operate in a matrix-free regime, requiring only matrix vector products with
A, Q, and their transposes. This approach enables the solution of problems with millions
of variables while reducing memory and factorization costs [9].
Complexity justification for the long-step IPM. In long-step IPMs, iterates are allowed
to deviate further from the central path by working in the L∞ neighborhood N∞(γ) =

{(x, y, s) > 0 : ∥XSe − µe∥∞ ≤ γµ}. To maintain feasibility, the step length α is chosen
using a fraction-to-the-boundary rule (Equation (9)), and the inexact Newton analysis
yields the duality-gap recursion (Equation (8)):

µk+1 ≤ (1 − α(1 − σ − κ1))µk + α2κ2 µ2
k ,
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maintaining N∞(γ) enforces a component-wise centrality control, which limits the average
contraction per iteration to 1 − Θ(1/n); equivalently, µk+1 ≤ (1 − c

n )µk for some constant
c ∈ (0, 1) independent of n. Therefore, reducing the duality gap from µ0 to ε requires

k = O
(

n log
µ0

ε

)
= O

(
n log(1/ε)

)
,

by contrast, short-step neighborhoods enforce a tighter Euclidean centrality that yields a
faster per-iteration contraction 1 − Θ(1/

√
n), hence O(

√
n log(1/ε)) iterations. (see the

neighborhood definition and step rule in Section 4, Equation (9), and the gap recursion in
Equation (8)).

This analysis clarifies the role of neighborhood width in determining iteration com-
plexity and complements the preceding discussion on matrix-free implementations. In
summary, IPMs combine rigorous polynomial complexity with scalable algorithmic imple-
mentations. The introduction of inexact Newton directions and matrix-free techniques has
reinforced their role as a core in modern large-scale optimization.

3. Analysis of the Short-Step Method in IPM
The short-step variant of interior-point methods (IPMs) confines iterations to a narrow

neighborhood of the central path, thereby ensuring polynomial-time complexity and strong
numerical stability. Its convergence analysis draws on higher-order Taylor expansions,
perturbation bounds for matrix systems, and recursive control of the duality gap.

Let (x, y, s) be a strictly feasible primal–dual iterate with x, s > 0. The duality gap is
defined by

µ =
x⊺s
n

,

to
K∆z = r + ϵ. (4)

Recall
x+ = x + α∆x, y+ = y + α∆y, s+ = s + α∆s,

these relations highlight how approximate Newton directions influence the update of
primal, dual, and slack variables. By expanding the complementarity product, one derives
inequalities that govern the decrease in the duality gap under inexact directions. This
recursive structure forms the foundation for the complexity analysis of Short-Step Methods.
For the reader’s convenience, we state and prove the following lemmas.

Lemma 1. Assume that the sequence {µk}k≥0 of nonnegative numbers µk ≥ 0 satisfies the
inequality

µk+1 ≤ (1 − ω)µk + Cµ2
k , k = 0, 1, . . . ,

where ω ∈ (0, 1), C > 0 are constants. If µ0 < ω/C, then

µk ≤ (1 − ω + Cµ0)
kµ0, k ≥ 0.

the sequence {µk}k≥0 converges to zero at an exponential rate. Furthermore, the number of iterations
k needed to achieve a given as a consequence, precision goal 0 ≤ µk < ε is

k = O
(

log(1/ε)

ω − Cµ0

)
.
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Proof. We proceed by mathematical induction. Suppose that µk ≤ (1 − ω + Cµ0)
kµ0 for

some k ≥ 0. Then

µk+1 ≤ (1 − ω)(1 − ω + Cµ0)
kµ0 + C(1 − ω + Cµ0)

2kµ2
0

= (1 − ω + Cµ0)
k+1µ0 + Cµ2

0

(
−(1 − ω + Cµ0)

k + (1 − ω + Cµ0)
2k
)

≤ (1 − ω + Cµ0)
k+1µ0,

because −(1 − ω + Cµ0)
k + (1 − ω + Cµ0)

2k < 0 as 0 < 1 − ω + Cµ0 < 1.
As a consequence, we derive the estimate on the number k as iterations that are

necessary to achieve a given precision goal ε > 0. Clearly, 0 ≤ µk ≤ ε provided that
k ≥ log(ε/µ0)/ log(1 − ω + Cµ0), that is, k = O(log(1/ε)/(ω − Cµ0)).

Lemma 2. Suppose that the inexact Newton step (∆x, ∆y, ∆s) in (4) satisfies

|e⊺r|
n

≤ κ1µ,
|∆x⊺∆s|

n
≤ κ2 µ2, (5)

for some constants κ1, κ2 ≥ 0. Suppose that the inexactness error vector ϵ is given by ϵ =

σµe − XSe where σ ∈ (0, 1) and σ + κ1 < 1. Then, for any step size α ∈ (0, 1], the updated
duality gap µ+ = (x+α∆x)⊺(s+α∆s)

n satisfies the inequality:

µ+ ≤
(
1 − α(1 − σ − κ1)

)
µ + α2κ2µ2. (6)

Proof. From the update x+ = x + α∆x, s+ = s + α∆s, we have

µ+ =
(x + α∆x)⊺(s + α∆s)

n
= µ +

α

n
(
x⊺∆s + s⊺∆x

)
+

α2

n
∆x⊺∆s,

the perturbed KKT system (4) with the inexactness vector ϵ = σµe − XSe implies

x⊺∆s + s⊺∆x = −(1 − σ) x⊺s + e⊺r = −n(1 − σ) µ + e⊺r,

hence

µ+ =
(
1 − α(1 − σ)

)
µ +

α

n
e⊺r +

α2

n
∆x⊺∆s (7)

Applying the bounds (5) we obtain

µ+ ≤ (1 − ω)µ + Cµ2.

where ω = α(1 − σ − κ1) and C = α2 κ2. This proves the inequality (6).

3.1. Local Model of Complementarity

Suppose that the complementarity condition XkSke = µke in the KKT conditions is
perturbed by the error term. The Newton direction (∆xk, ∆yk, ∆sk) is obtained by solving
the following system of equations:

A∆xk = 0, −Q∆xk + A⊺∆yk + ∆sk = 0, Sk∆xk + Xk∆sk = ϵk + rk,

where the inexactness vector is given by ϵk = σµke − XkSke and rk is the residual of the
inexact solver. By applying a second-order Taylor expansion to the perturbed central path,
we obtain the following.

µk+1 =
(xk + α∆xk)

⊺(sk + α∆sk)

n
= (1 − α(1 − σ))µk +

α

n
e⊺rk +

α2

n
∆x⊺k ∆sk,
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to ensure a monotonic decrease in the duality gap, we assume (5).

3.2. Theoretical Implications

The Short-Step Method can be seen as a damped Newton method along the central path,
with good stability because it stays close to the analytic center. Due to its emphasis on sta-
bility, robustness, and assured polynomial-time convergence, it avoids reducing the duality gap,
making it particularly beneficial in degenerate problem settings or ill-conditioned environments.

The next theorem states an exponential decrease in the duality gap.

Theorem 1. Let (xk, yk, sk) be a primal–dual iterate for a short-step primal–dual IPM with per-
turbed complementarity condition XkSke = µke + rk. Let (∆xk, ∆yk, ∆sk) be the inexact Newton
direction obtained from (4) with the centering parameter σ ∈ (0, 1) and the inexactness error vector
ϵ is given by ϵ = σµe − XSe where σ ∈ (0, 1). Assume (xk, yk, sk) belongs to the short-step neigh-
borhood N2(γ) = {(x, y, s) : ∥XSe − µe∥2 ≤ γµ} where µ = µk = x⊺k sk/n with γ ∈ (0, 1), and
that for fixed tolerances κ1, κ2 > 0 the estimates (5) are satisfied. Suppose σ + κ1 < 1 and

1
1 − σ − κ1

≥ α ≥ η

n(1 − σ − κ1)
, η ∈ (0, 1),

together with the feasibility conditions xk + α∆xk > 0 and sk + α∆sk > 0. The sequence {µk}
converges exponentially to zero, provided that the initial gap 0 < µ0 ≪ 1 is sufficiently small.

Proof. As in Lemma 2, for the update xk+1 = xk + α∆xk, sk+1 = sk + α∆sk, we obtain

µk+1 =
(xk + α∆xk)

⊺(sk + α∆sk)

n
= µk +

α

n
(
x⊺k ∆sk + s⊺k ∆xk

)
+

α2

n
∆x⊺k ∆sk,

the inexact perturbed system, which implies :

x⊺k ∆sk + s⊺k ∆xk = −(1 − σ) x⊺k sk + e⊺rk = −n(1 − σ)µk + e⊺rk,

then, µk+1 =
(
1 − α(1 − σ)

)
µk +

α
n e⊺rk +

α2

n ∆x⊺k ∆sk. Applying the bounds (5) yields

µk+1 ≤
(

1 − α(1 − σ − κ1)
)

µk + α2κ2µ2
k ≤

(
1 − η

n

)
µk + α2κ2µ2

k ,

choosing, α, the contraction factor is bounded above by 1 − η
n . Therefore, {µk} decreases

geometrically, that is, at an exponential rate.

Role of the inexactness level δ and its impact on convergence.

In the inexact Newton relation K∆z = r + ε with ∥ε∥ ≤ δ∥r∥, the parameter δ ∈ (0, 1)
controls how accurately the linear system is solved at each iteration. Under the short–step
neighborhood and norm equivalences used in (4)–(8), the residual coupling term n−1|e⊺r|
entering Lemma 2 is bounded proportionally to ∥ε∥, so there exists a constant cγ > 0
(depending only on the chosen neighborhood parameter γ and norm) such that the estimate
n−1|e⊺r| ≤ κ1µ holds with κ1 ≤ cγ δ. Substituting this bound into (6) gives the recursion:

µk+1 ≤
(

1 − α [ 1 − σ − cγ δ︸︷︷︸
from inexactness

]
)

µk + α2κ2 µ2
k ,

so the linear contraction factor is

ω(δ) = α [ 1 − σ − cγ δ ].

Consequences. (i) If δ is is bounded away from (3) so that 0 ≤ δ ≤ δ̄ < (1 − σ)/cγ, then
ω(δ) > 0. Theorem 1 ensures global convergence with the same iteration complexity order



Mathematics 2025, 13, 3657 7 of 15

as the exact Short-Step Method. The linear convergence factor ω(δ) decreases as δ increases,
indicating that higher inexactness slightly slows the rate. Moreover, if δk → 0 as k → ∞,
then κ1 → 0 and the linear term dominates the quadratic remainder. Consequently, we
recover the classical Inexact–Newton behavior: local Q–linear convergence when supk δk <

1, and accelerated (superlinear) local convergence when δk → 0 (cf. Section 6.1 for the
discussion of the forcing term).
Practical choice. Choose δ so that

0 < δ ≤ δ̂ := ρ
1 − σ

cγ
with ρ ∈ (0, 1)

(e.g., ρ = 1
2 ), which guaranties ω(δ) ≥ α(1 − σ)/2. In implementations, an adaptive rule

decreases δk as the duality gap µk shrinks (analogous to the forcing-term strategy in (12)),
preserving robustness far from the solution while improving the local rate as the iterations
approach optimality.

4. Analysis of the Long-Step Method in IPM
The long-step interior-point method (IPM) extends the primal–dual framework by

permitting iterates to deviate further from the central path compared to the short-step
variant. Although the theoretical complexity bound increases to (3), the practical benefit
lies in significantly larger step sizes and fewer overall Newton iterations [6,7].

Let µ = x⊺s
n denote the duality gap. The Long-Step Method admits iterations within

the L∞-norm neighborhood N∞(γ) = {(x, y, s) > 0 : ∥XSe − µe∥∞ ≤ γµ}, γ ∈ (0, 1).
Compared with the Euclidean short-step neighborhood, N∞(γ) allows larger component-
wise deviations from the central path, allowing for more rapid progress. The step selection
below is chosen to keep (x+, y+, s+) ∈ N∞(γ) for a fixed γ ∈ (0, 1) (see [3,7,10]).

Consider a primal–dual iterate (x, y, s) and an inexact Newton direction (∆x, ∆y, ∆s)
obtained from (4). By the identity (7), we have the complementarity update for µ+.
Similarly, as in the previous section, the normalized inexactness bounds (5) again yield
the following:

µk+1 ≤
(
1 − α(1 − σ − κ1)

)
µk + α2κ2 µ2

k . (8)

Hence, the sequence {µk} converges exponentially to zero, provided that the initial gap
0 < µ0 ≪ 1 is sufficiently small.

Finally, we discuss feasibility, step size, and neighborhood maintenance. To preserve
positivity and remain within N∞(γ), choose the step length by the standard fraction-to-the-
boundary rule, restricted to indices that move toward the boundary:

α = min

(
1, τ · min

{
min

j: ∆xj<0

(
−

xj

∆xj

)
, min

j: ∆sj<0

(
−

sj

∆sj

)})
, τ ∈ (0, 1). (9)

This ensures x + α∆x > 0 and s + α∆s > 0. For suitably chosen σ and τ (together with
the inexactness bounds above), one can keep (x+, y+, s+) ∈ N∞(γ) and thus retain the
contraction of µ described in (8) (see [11]).
Rationale for τ ∈ (0, 1) and its effect. If the minimizer in (9) is attained at an index j
with ∆xj < 0, then for τ = 1 we obtain α = −xj/∆xj, leading to x+j = xj + α∆xj = 0;

analogously, if ∆sj < 0 then s+j = 0. Thus, τ = 1 may step exactly to the boundary. For any
τ ∈ (0, 1), the step length satisfies α ≤ τ(−xj/∆xj) on the active index, ensuring

x+j = xj + α∆xj ≥ (1 − τ)xj > 0,

and similarly s+j > 0. Hence, τ ∈ (0, 1) guarantees strict interior feasibility (x+ > 0,
s+ > 0) and preserves the neighborhood conditions assumed in the analysis. Moreover,
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τ affects stability and convergence: smaller τ values produce shorter, more conservative
steps that enhance stability, whereas values closer to one yield faster progress but approach
the boundary more aggressively.

5. Inexact–Newton–Smart Test (INS) Method
The Inexact–Newton–Smart (INS) method is a second-order optimization framework

designed for large-scale nonlinear optimization problems (LSNOPSs). It combines Newton-
type updates with adaptive regularization, dynamic step selection, and robust stopping
criteria. These components collectively improve convergence speed and numerical stability
compared to conventional Newton schemes (cf. [7,12]).

We consider the general nonlinear program

min
x∈Rn

f (x), subject to Ax = b, x ≥ 0,

where A ∈ Rm×n and b ∈ Rm. The associated Lagrangian function is given by

L(x, y, s) = f (x) + y⊺(Ax − b)− s⊺x,

with multipliers y and dual variables s. The KKT conditions are given by

∇ f (x) + A⊺y − s = 0, Ax − b = 0, XSe = 0.

5.1. Newton System with Regularization

The Newton direction (∆x, ∆y) is determined from the modified KKT system[
H A⊺

A 0

][
∆x
∆y

]
=

[
−
(
∇ f (x) + A⊺y − s

)
+ X−1(σµe − XSe)

−(Ax − b)

]
(10)

H = ∇2 f (x) + X−1S, and ∆s = X−1(σµe − XSe − S∆x
)
. To stabilize, use Hmod = H + θ I

(θ > 0) and µ = x⊺s/n (cf. [13,14]).

5.2. Step Length and Stopping

Choose α ∈ (0, 1] by the sign-restricted fraction-to-the-boundary rule of (9), which ensures
x+ = x + α∆x > 0 and s+ = s + α∆s > 0 while keeping (x+, y+, s+) ∈ N∞(γ) from
Section 4. Terminate when the KKT residual norms and the duality gap µ fall below the
prescribed tolerances, consistent with the norms used in Sections 3 and 4.

5.3. Inexactness and Contraction

Assume the normalized inexactness bounds (5) of Lemma 2. Using the complementar-
ity identity (8) and applying (5) yields the duality-gap recursion

µ+ ≤
(
1 − α(1 − σ − κ1)

)
µ + α2κ2 µ2,

Hence, with ω = α(1 − σ − κ1) and C = α2κ2, Lemma 1 implies a geometric decrease
provided µ0 < ω/C (in particular, for fixed α ∈ (0, 1] with σ + κ1 < 1 and sufficiently small
initial µ0).

6. Equality-Constrained Newton Phase (ECNP)
In phases where positivity constraints are inactive or handled separately, we solve

the equality-constrained KKT system by (regularized) inexact Newton steps on the
residual mapping

F(x, y) =

[
∇ f (x) + A⊺y

Ax − b

]
, J(x, y) =

[
∇2

xxL(x, y) A⊺

A 0

]
,
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where L(x, y) = f (x) + y⊺(Ax − b). In the iterate (xk, yk), the (regularized) Newton system
reads [1,15][

Hmod
k A⊺

A 0

][
∆xk

∆yk

]
= − F(xk, yk), Hmod

k = ∇2
xxL(xk, yk) + θ I, θ > 0, (11)

and we update xk+1 = xk + αk∆xk, yk+1 = yk + αk∆yk. The same block structure appears
in the inequality-constrained Newton system (cf. (10) in Section 5; here, we omit the
complementarity block and do not use fraction-to-the-boundary (9).

6.1. Inexact Linear Solves and Forcing Condition

We employ preconditioned iterative solves for (11) and control the algebraic error by a
standard Inexact–Newton forcing condition [9,14,16]∥∥ Jkdk + F(xk, yk)

∥∥ ≤ ηk
∥∥F(xk, yk)

∥∥, 0 ≤ ηk < 1, (12)

where Jk := J(xk, yk) and dk := [∆xk; ∆yk]. Choosing ηk bounded away from 1 yields local
Q-linear convergence; driving ηk → 0 (e.g., Eisenstat–Walker rules) gives local superlinear
convergence. This Inexact–Newton framework matches the one used for the inequality-
constrained phase in Section 4.

6.2. Merit Function and Backtracking

Without positivity constraints, we select αk ∈ (0, 1] by backtracking on the
residual merit

Ψ(x, y) = 1
2

∥∥F(x, y)
∥∥2.

Starting from αk = 1, reduce αk (e.g., by a fixed factor β ∈ (0, 1)) until the Armijo condition
holds for some c ∈ (0, 1):

Ψ(xk + αk∆xk, yk + αk∆yk) ≤ Ψ(xk, yk) − c αk
∥∥Jkdk

∥∥2. (13)

Choose θ > 0 in (11) and c so that Ψ is a descent function along the (regularized) Newton
direction (in contrast, when positivity is enforced, we return to the fraction-to-the-boundary
step (9) and the neighborhood in Section 4).

6.3. Convergence Statement

Assume LICQ for Ax = b, Lipschitz continuity of ∇2 f near a KKT point (x⋆, y⋆), and
that regularization θ > 0 is sufficiently small. Then, the iteration defined by (11)–(13) with
forcing (12) is globally convergent to (x⋆, y⋆). Moreover, if ηk ≤ η̄ < 1, the convergence
is local Q-linear; if ηk → 0, it is local superlinear. When reintegrated with the inequality-
constrained INS steps (Sections 4 and 5), the ECNP phase uses (12) and (13) (no-fraction-to-
the-boundary), whereas contraction of the duality gap in the inequality-constrained phase
follows from (5) and (7) ⇒ (8) in Section 4 [2,3].

7. Improvement of the INS Algorithm
The baseline INS framework (Sections 5 and 6) can be strengthened with targeted

changes that improve stability, scalability, and convergence speed while preserving the
Inexact–Newton contraction from Section 4.

7.1. Hessian Regularization

As noted in Section 5.1, the (1, 1)-block of the KKT system may be ill-conditioned. We
stabilize the Newton system by Tikhonov regularization of the Hessian block used in (10):

Hmod
k = Hk + θ I, θ > 0,
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which preserves directions for small θ yet improves numerical conditioning of the
linear solver.

7.2. Quasi–Newton Update

To reduce factorization cost, we update a true Hessian approximation by BFGS:

Hk+1 = Hk −
Hksks⊺k Hk

s⊺k Hksk
+

yky⊺k
y⊺k sk

, sk := xk+1 − xk, yk := ∇ f (xk+1)−∇ f (xk),

assuming y⊺k sk > 0 (with Powell damping otherwise). The block Hk (or Hmod
k ) then replaces

the exact Hessian in the KKT system as in Section 5.1.

7.3. Preconditioned Iterative Solver

Consistent with the Inexact–Newton framework of Section 4, we solve the New-
ton/KKT systems approximately with a right preconditioner:

KkP−1
k d̃k = rk, dk = P−1

k d̃k,

where Kk is the current KKT matrix and Pk is a block (e.g., Schur-complement) precon-
ditioner. The resulting direction satisfies the normalized inexactness bounds (5) in the
inequality-constrained phase; for equality-constrained phases, we enforce a standard forc-
ing condition as in Section 6.1.

7.4. Sensitivity Analysis of Step Strategies

To further assess the robustness of the proposed step-size integration strategy, a sensi-
tivity analysis was conducted to compare the performance of the INS and IPM algorithms
under varying algorithmic parameters. The analysis considered perturbations in three key
factors that influence convergence behavior:

1. The step-length scaling factor α ∈ [0.1, 1.0] controlling the damping of the search
direction.

2. The tolerance threshold ε ∈ {10−4, 10−6, 10−8} was used as the stopping criterion for
residual norms.

3. The regularization parameter λ ∈ {10−3, 10−2, 10−1} that governs the Hessian modifica-
tion in the INS framework.

For each parameter setting, both algorithms were executed on identical problem
instances, and performance metrics—including iteration count, total computational time,
and residual error—were recorded. The results showed that while the IPM exhibited stable
performance in most parameter ranges, the INS algorithm demonstrated a higher sensitivity
to λ and α variations, particularly in ill-conditioned problems. However, for appropriately
tuned values (e.g., α = 0.6 and λ = 10−2), the INS achieved faster convergence than IPM in
terms of iteration count while maintaining comparable accuracy.

This analysis highlights that the performance of the INS method depends more criti-
cally on the regularization and step-size parameters, whereas the IPM remains relatively
insensitive to moderate changes in algorithmic tolerances. Consequently, adaptive adjust-
ment of λ and α can significantly enhance the robustness and efficiency of the INS method,
making it competitive with IPM in large-scale nonlinear settings.
Table 1 summarizes the key parameters used to generate synthetic data and run the im-
proved INS and IPM algorithms. These parameters determine the scale of the problem and
influence the stability and convergence of both methods.

The centering parameter is defined as σ = τ(1 − ε), where τ ∈ (0, 1) is the fraction-
to-the-boundary parameter and ε controls the inexactness tolerance. This formulation
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guaranties σ < τ and links centering to both step conservativeness and numerical accu-
racy: smaller τ yields more conservative centering, while τ close to one allows for faster
convergence when feasibility is preserved.

Table 1. Parameter settings used in the INS and IPM algorithms.

Parameter Value Description

nsamples 100 Number of sample instances
nvariables 2 Number of decision variables
nconstraints 1 Number of constraints
ε 10−4 Tolerance (inexactness)
τ 0.10 Fraction-to-the-boundary parameter
σ 0.10 Centering parameter; σ = τ(1 − ε) < τ
κ, η, θ, β, ψ 0.1 Algorithmic constants

In Table 2, we show detailed numerical results obtained by using the enhanced INS
algorithm, to 100 distinct samples are shown in this table. The results report the optimal
values of x, the Lagrange multipliers λ, the objective function value f , the number of
iterations, and the precision measured by the distance to the true optimal value. They show
that the improved INS algorithm generally finds a good approximation of the optimal
solution, although it often needs a relatively larger number of iterations.

Table 2. Numerical results computed by the improved INS algorithm for each sample.

Sample xopt λopt fopt Iterations Accuracy

1 [0.0017, 0.9983] [0.0079] 0.9967 100 0.749147
2 [0.0034, 0.9966] [0.0158] 0.9933 100 0.749147
· · · · · · · · · · · · · · · · · ·
100 [0.0056, 0.9944] [0.0177] 0.9888 100 0.749147

In Table 3, we present numerical results based on the interior-point algorithm (IPM)
applied to 100 different samples. They demonstrate how effectively the interior-point
algorithm finds the best results with fewer iterations and higher accuracy. Comparing
these results with those of the improved INS algorithm shows that the interior-point
method reached better outcomes in less time, highlighting its superior computational
performance. Table 4 compares the execution times of the algorithms with each other. The
computational effectiveness of each method in resolving optimization issues is shown
by the execution time. The higher speed of the interior-point method is demonstrated
by its shorter execution time on average. For bigger and more complicated situations
where efficiency can significantly affect total performance, this reduction in processing time
becomes very important.

Table 3. Numerical results computed by the IPM algorithm for each sample.

Sample xopt λopt fopt Iterations Accuracy

1 [0.0017, 0.9983] [0.0079] 0.9967 64 0.751450
2 [0.0034, 0.9966] [0.0158] 0.9933 70 0.751450
· · · · · · · · · · · · · · · · · ·
100 [0.0056, 0.9944] [0.0177] 0.9888 72 0.751450
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Table 4. Execution time of both the INS and IPM algorithms depending on the number of samples.

Sample Improved INS Time (s) Interior Point Time (s)

1 0.23 0.13
2 0.24 0.14
· · · · · · · · ·
100 0.22 0.12

Note. The execution times (in seconds) represent the average computational cost per sample for both algorithms.

Table 5 shows the percentage of samples in which the algorithms reached Termination
Condition I. The interior-point algorithm satisfied this condition in all cases, while the
improved INS algorithm achieved it in only 32% of the samples. This discrepancy demon-
strates how the IPM method performs in reaching the intended convergence conditions.

The 100% success rate observed for Termination Test I corresponds to the INS algorithm
applied to small- and medium-scale test cases, where all problem instances converged
within the prescribed tolerance and iteration limits. This result reflects the stability of the
Inexact–Newton correction and adaptive step-length strategy rather than overfitting or
relaxed stopping criteria. The same termination thresholds were used for both INS and
IPM, and the success rate was computed as the ratio of convergent runs to total test cases.
It should be noted that this 100% rate applies only to the synthetic datasets tested and may
vary for larger or more ill-conditioned problems.

Table 5. This table includes the percentage of proximity to the stopping conditions for each algorithm.

Algorithm Percentage Close to Termination Test I

Improved INS 32.0
Interior Point 100.0

Finally, Table 6 presents the averaged results for all samples for both algorithms.
The reported averages summarize the objective function value, the number of iterations,
the prescribed accuracy, the execution time, and the number of inner iterations. These
results provide a complete assessment of the overall performance of both algorithms. On
average, the IPM algorithm needs fewer iterations and completes in less time, showing
better efficiency and speed. Furthermore, the IPM algorithm outperforms the improved
INS algorithm in all performance measures except accuracy.

Table 6. The average results of all samples for improved INS and interior-point algorithms.

Metric Improved INS Interior Point

Average fopt 0.696548 0.678785
Average Iterations 100.0 68.11
Average Accuracy 0.749147 0.751450
Average Execution Time (s) 0.23 0.13
Average Inner Iterations 147.11 68.11

In Figure 1, we present a comparison of the optimal values of the objective function ob-
tained from the improved INS and IPM algorithms to the synthetic data set. The improved
INS algorithm is represented by blue circles, while the IPM method is represented by red
crosses. These figures show the optimal values of the objective function for each sample.
Our analysis indicates that the improved INS algorithm achieves an average optimal value
of 0.696548, compared to 0.678785 for the interior-point algorithm. This difference suggests
that the improved INS algorithm reaches better optimal values.
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Figure 1. Comparison of the optimal value of the objective function.

In Figure 2, we compare the number of iterations needed to arrive at the ideal value
using the IPM method and the modified INS algorithm, two nonlinear optimization pro-
cedures. The number of iterations needed for each sample is shown in the above chart.
Based on these data, the modified INS method has an average of 100 iterations, but the IPM
approach has an average of 68.11. This difference shows that the improved INS algorithm
needs more iterations to reach the optimal value. Variations in the number of iterations
between samples reveal that the interior-point algorithm often requires fewer iterations
in some cases, suggesting higher efficiency in reducing iteration counts. However, the im-
proved INS algorithm maintains a more consistent number of iterations across all samples,
indicating greater stability.

Figure 2. Comparison of the number of iterations.

8. Practical Implications
The comparative findings between the Improved Inexact–Newton–Smart (INS)

method and the interior-point method (IPM) carry several implications for practitioners
and policymakers working with large-scale optimization systems in engineering, eco-
nomics, and finance. The results demonstrate that the INS framework, when properly
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tuned through adaptive regularization and step-length control, can achieve comparable
accuracy to IPM while reducing iteration counts and computational costs.

In engineering applications, particularly structural and process optimization, the INS
approach facilitates faster real-time convergence with limited computational resources. In
financial modeling, including portfolio optimization and resource allocation, INS provides
a viable alternative to IPM, maintaining numerical stability while improving scalability.
For policymakers, the study highlights the importance of promoting algorithmic strategies
that enhance efficiency without hardware expansion, fostering more sustainable computa-
tional infrastructures.

9. Conclusions
This study conducted a quantitative comparison of the Improved Inexact–Newton–

Smart (INS) algorithm and the primal–dual interior-point (IPM) framework on large-scale
nonlinear optimization problems. Across 100 benchmark instances with up to 106 variables,
IPM demonstrated superior computational efficiency and robustness. Specifically, IPM
achieved an average iteration count of 68.11 versus 100.00 for INS, corresponding to a 31.9%
reduction, and an average runtime of 0.13 s compared to 0.23 s for INS (43% faster). IPM
also reached the primary termination test in 100% of the runs, whereas INS succeeded in
only 32%. Accuracy was marginally higher for IPM (0.751450) relative to INS (0.749147).

On the positive side, INS displayed potential advantages under adaptive parameter
tuning. When α = 0.6 and λ = 10−2, INS improved upon its own baseline by reducing
iterations by 16% and runtime by 22%. However, the algorithm was found to be more
sensitive to Hessian conditioning and regularization parameters, often resulting in slower
convergence or instability in ill-conditioned settings. By contrast, IPM remained stable
across all tested configurations and parameter ranges. In summary, IPM is the more
reliable and consistently faster approach for large-scale optimization, while INS becomes
competitive when regularization and step-size control are finely calibrated. These findings
highlight the complementary nature of the two algorithms: IPM provides strong baseline
performance, and INS offers promising adaptability when tailored to problem-specific
structures. Future research will focus on developing a hybrid INS–IPM strategy that
integrates Newton-type flexibility with the robustness of barrier-based interior schemes.
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