
Analysis of the model of

magnetoconvection with nonlinearity

due to modified Taylor’s constraint
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1. Introduction

The fluid motion in Earth-like planet cores can be characterized by magne-
tostrophic approximation with dominating Lorentz, Coriolis, buoyancy and pres-
sure forces in the equation of motion. The approximation with zero viscous forces
has a solution, only if so-called Taylor’s constraint is satisfied (see Section 2).
A specific problem arises when magnetostrophic approximation holds but small
viscous forces in the Ekman boundary layers are present. In this case a non-zero
geostrophic flow is induced by the viscous flow in thin Ekman layers and non-
linear dynamics of the whole magnetoconvecting system is affected through the
so-called Ekman suction mechanism.

The question is, if such a nonlinear viscous system, which reflects more re-
alistically conditions in the Earth’s core, could possibly evolve into the Taylor
state. At this particular state, viscous forces have no longer major influence on
the dynamics and Taylor’s condition is met. The problem of possible achieve-
ment of the Taylor state has been studied in simpler planar or cylindrical and
also in spherical geometry for both kinematic dynamos and magnetoconvection
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models. It has been shown by Fearn, Proctor and Sellar (1994) that some specific
simplifications can be made in the case of magnetoconvection models. Namely,
non-axisymmetric instabilities of magnetic field only have to be considered for
computation of geostrophic flow, whereas contributions from basic axisymmetric
magnetic fields can be neglected (see Section 2).

In this paper we study a problem of finite amplitude rotating magnetocon-
vection affected by Ekman suction. The investigation has been motivated by
the linear stability analysis developed by Soward (1979), (see also Brestenský
and Ševč́ık 1994, 1995, and Šimkanin et al 1997 in this Issue) as well as the
nonlinear problem studied in Skinner and Soward (1988, 1991). In contrast to
the approach applied in the nonlinear study done by Skinner and Soward (1988,
1991), the purpose of the present paper is to study state of magnetoconvection
near the critical Rayleigh number Rc .

The methods and techniques of this paper are based on the regular pertur-
bation theory, linear and nonlinear functional analysis and bifurcation theory.
The main idea is to expand a solution into power series in terms of a small un-
folding parameter ε corresponding to the small increase in the Rayleigh number
beyond its critical value Rc . Let us emphasize that this approach can describe
local bifurcation structure near Rc only.

The underlying geometry is a weakly bounded cylinder, i.e. the cylinder
with a radius strongly exceeding its height. It can sufficiently approximate the
laterally unbounded geometry used in the linear study (Soward 1979). We must
emphasize that the finite extension in the radial direction is a crucial assumption
of the theory. The reason for dealing with the bounded geometry is twofold.
Firstly, it enables us to set up suitable function spaces and operators we will
work with. Secondly, as a consequence of the boundedness of the cylinder, the
third order approximation of the power series expansion is capable of describing
the Hopf bifurcation phenomenon in the amplitude equation (51) in Section 3.3.
On the other hand, the main disadvantage of this approach is that we have to
set up boundary conditions on vertical boundaries of the cylinder. In this paper
we consider the simplest case of Dirichlet boundary conditions which seem to
be less physically meaningful. The more realistic boundary conditions will be
treated in the forthcoming paper.

The outline of this paper is as follows. In Section 2 we derive a system of
nonlinear PDE’s governing the motion periodic in both time and the azimuthal
variable. Section 3.1 is devoted to the study of the constructed system of nonlin-
ear equations. We present a method on how to obtain a power series expansion
of a solution in terms of a small unfolding parameter. Using the so-called solv-
ability condition known from Fredholm’s alternative in the functional analysis,
we determine leading coefficients of the expansions in Section 3.2. In Section
3.3 we sketch a procedure how to derive an ordinary differential equation for
the time dependent amplitude. Numerical results are reported in Section 4. In
the Appendix we present formulae for the leading terms in the power series
expansions.
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2. Formulation of the nonlinear problem

2.1. Basic leading equations

The aim of this paper is a local stability analysis of a nonlinear system of PDE’s
governing a specified model of magnetoconvection.

The model considered is an infinite horizontal layer of width d rotating
rapidly with angular velocity Ω0ẑ . The layer contains an electrically conducting
Boussinesq fluid permeated by an azimuthal magnetic field linearly growing with
the distance from the vertical rotation axis. An unstable temperature gradient
is maintained by heating the fluid from below and cooling from above. The fluid
layer is supposed to have free perfectly electrically and thermally conductive
horizontal boundaries.

The convective instability in this rotating system is caused by the vertical
temperature gradient and manifests itself by perturbations of the velocity u , the
magnetic field b and the temperature ϑ which refer to the basic state represented
by U0, B0, T0 .

In this paper, we investigate the existence of periodic solution for these
perturbations in the vicinity of the basic state determined by

U0 = 0 , B0 = BM
s

d
ϕ̂ , T0 = T1 −

∆T

d
(z +

d

2
) . (1)

We non-dimensionalise the problem with the use of characteristic length d ,
magnetic diffusion time d2/η , magnetic field BM , and temperature difference
across the layer ∆T . In the cylindrical polar coordinates (s, ϕ, z) the equations

governing the evolution of perturbations u, b, ϑ̃ of the basic state gain the
following form

ẑ× u = −∇p+ Λ [ (∇× s ϕ̂)× b + (∇× b )× s ϕ̂] +Rϑ ẑ , (2)

∂b

∂t
−∇× ( sΩ(s) ϕ̂× b ) = ∇× (u× s ϕ̂ ) +∇2b , (3)

1

qR

(
∂ϑ̃

∂t
+ ( sΩ(s) ϕ̂ · ∇ ) ϑ̃

)
= −u · ∇T0 +∇2ϑ̃ , (4)

∇ · b = 0 , (5)

∇ · u = 0 (6)

where ϕ̂ and ẑ are the unit azimuthal and axial vectors, respectively. The di-
mensionless parameters, the modified Rayleigh number R , the Elsasser number
Λ , the Ekman number E and the Roberts number qR , are defined by

R =
gd∆Tα

2Ω0κ
, Λ =

B2
M

2Ω0ρ0ηµ
, E =

ν

2d2Ω0
, qR =

κ

η
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where κ and η are the thermal and magnetic diffusivities, ν is the kinematic
viscosity, α is the coefficient of thermal expansion, g is the acceleration due to
gravity, µ is the permeability and ρ0 is the density.

The model of magnetoconvection includes the effect of Ekman suction which
is associated with a nontrivial geostrophic flow. This gives rise to the presence
of nonlinear terms encountered in the above differential equations, namely in
(3) and (4). It is known that geostrophic flow can be expressed via so-called
modified Taylor’s constraint (see Fearn 1994).

Let 〈 . . . 〉ϕ ≡ 1/(2π)
∫ 2π

0
. . . dϕ be averaging over the azimuthal component

ϕ . Denote by FMϕ ≡ [(∇ × B) × B]ϕ the azimuthal component of Lorentz
force. Then splitting magnetic field B on basic field B0 and perturbation b,
B ≡ B0 +b ( 〈B 〉ϕ = B0, 〈b 〉ϕ = 0 ), the angular velocity Ω(s) of geostrophic
flow in our magnetoconvection model can be expressed in terms of the magnetic
field perturbation b , i.e. (see e.g. Skinner and Soward 1988)

Ω(s) =
Λ

(2E)1/2s

∫ zT

zB

〈FMϕ 〉
ϕ dz with 〈FMϕ 〉

ϕ = 〈 [(∇× b)× b]ϕ 〉
ϕ . (7)

It is significant for the model under consideration that the possible contribution
〈 [(∇ × B0) × B0]ϕ 〉ϕ from basic field to azimuthally averaged Lorentz force
〈FMϕ 〉ϕ vanishes (see also Fearn, Proctor and Sellar 1994). We note that the
expression (7) is well-known as modified Taylor’s constraint.

The vector nonlinear equations (2 - 6) together with the expression for geo-
strophic flow (7) seem rather complicated to be solved analytically. We therefore
restrict solutions to a smaller phase space of functions having special structure.
Roughly speaking, the main idea is to express all the vector fields in terms of
their scalar representing functions which are supposed to have a form of travel-
ling waves, as it is described below.

We split the velocity perturbation u as well as the magnetic field perturba-
tion b into their poloidal and toroidal parts

u = k−2(∇× (∇× w̃ ẑ) +∇× ω̃ ẑ) , (8)

b = k−2(∇× (∇× b̃ ẑ) +∇× j̃ ẑ) . (9)

Similarly as in the papers Brestenský and Ševč́ık (1994) and Brestenský, Revallo
and Ševčovič (1997)1 we have adopted the tilde notation for representing poloidal
and toroidal functions as well as for thermal function. Each of the representing
functions w̃, ω̃, b̃, j̃, ϑ̃ (all symbolized as f̃) depends on coordinates z, s, ϕ and
time t .

Suppose that the representing functions f̃ can be decomposed as

f̃(z, s, ϕ, t) = <e{fm(z, s) exp(imϕ+ λt)} (10)

1Henceforth the abbreviations (BS) and (BRS) will be used.
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where the functions of fm(z, s) , i.e. bm(z, s), jm(z, s), wm(z, s), ωm(z, s) and
ϑm(z, s) depend on vertical and radial coordinates z and s . Here m is an integer
azimuthal wave number, k is a real radial wave number and λ is a complex
frequency related to a real frequency via λ = iσ .

Inserting the above ansatz into the governing equations for perturbations
(2 - 6) and into the expression for modified Taylor’s constraint enables us to
set up a system of nonlinear equations for representing functions fm(z, s) . The
resulting nonlinear system is well posed on a suitable function space as it has
been yet shown in (BRS). Hereafter, this system of equations will be referred to
as an abstract nonlinear problem.

2.2. Abstract nonlinear problem

The procedure leading towards the abstract nonlinear problem presented below
is straightforward but rather technically tedious. It is discussed in a more detail
in (BRS).

The equations for the representing functions fm(z, s) can be finally written
as follows

0 = −Dwm(z, s) + 2ΛDbm(z, s)− imΛ jm(z, s) ,

0 = −Dωm(z, s) + 2ΛDjm(z, s) + imΛ (D2 − k2 Jm) bm(z, s)−Rk2 ϑm(z, s) ,

λ bm(z, s) + Pm(z, s) = imwm(z, s) + (D2 − k2 Jm) bm(z, s) , (11)

λ jm(z, s) + Tm(z, s) = imωm(z, s) + (D2 − k2 Jm) jm(z, s) ,

(1/qR) ( λϑm(z, s) + Sm(z, s) ) = Jmwm(z, s) + (D2 − k2 Jm)ϑm(z, s)

where the nonlinearities Pm(z, s), Tm(z, s) and Sm(z, s) are expressed in terms
of fm(z, s) and the angular velocity Ω(s) of geostrophic flow as follows

Pm(z, s) = imΩ(s) bm(z, s) − imJm
−1 {PΩ bm(z, s) } ,

Tm(z, s) = imΩ(s) jm(z, s) + Jm
−1 {TΩ D bm(z, s) } , (12)

Sm(z, s) = imΩ(s)ϑm(z, s) .

Here D = ∂/∂z and Jm−1 is the inverse operator to the linear Bessel differential
operator Jm . The operator Jm is defined as

Jm ≡ −
1

k2

(
∂2

∂s2
+

1

s

∂

∂s
−
m2

s2

)
(13)

and for the Bessel function Jm(ks) it has a useful property Jm {Jm(ks)} =
Jm(ks) . Furthermore, PΩ, TΩ are differential operators

PΩ = −
1

k2

{
∂2Ω(s)

∂s2
+
∂Ω(s)

∂s

[
2
∂

∂s
+

1

s

]}
, (14)

TΩ = −
1

k2

{
s
∂2Ω(s)

∂s2
∂

∂s
+ s

∂Ω(s)

∂s

[
m2

s2
+

2

s

∂

∂s
+

∂2

∂s2

]}
(15)
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where the partial derivative ∂/∂s reflects the fact of Ω(s) being a functional (see
below). The interested reader is referred to (BRS) for the complete derivation
of the above system of nonlinear PDE’s. Furthermore, it has been shown in
Appendix of (BRS) that Jm−1 is a well defined bounded linear operator on a
suitable function space. We notice that the above expressions for Pm and Tm in
(12) emerge after decomposition of the vector nonlinearity in induction equation
(3) into poloidal and toroidal fields. The expression for Sm represents the scalar
nonlinearity in the heat equation (4).

The geostrophic flow Ω(s) entering the set of equations (12) is given by
formula which can be directly obtained by inserting (9) together with the ansatz
(10) into (7). A straightforward series of calculations yields

Ω(s) =
Λ

2 (2E)1/2
1

s
· <e

{
1

s2
∂

∂s
[ s2 I(s) ]− B(s)

}
(16)

where

I(s) =
1

k4

∫ zT

zB

(
m2

s2
jm(z, s)Dbm(z, s) −

∂

∂s
jm(z, s)

∂

∂s
Dbm(z, s)

)
dz

is the integral part and

B(s) =
1

k2

∂

∂s
jm(z, s) Jmbm(z, s)

zT
zB

is the boundary term. Here D = ∂/∂z and an overbar denotes the complex
conjugation of bm(z, s) .

It is remarkable that the complex conjugation in the expression for geo-
strophic flow Ω(s) eliminates exponentials of the tilded representing functions
b̃(z, s, ϕ, t) and j̃(z, s, ϕ, t) . Therefore upon assumption (10), the expression for
Ω(s) does not involve the variables ϕ, t and is entered by simpler functions
bm(z, s) and jm(z, s) only. This is the important fact which approves the choice
of fm(z, s) as representing functions for our nonlinear problem. At this stage it
is yet easy to see that Pm(z, s), Tm(z, s) and Sm(z, s) are cubic nonlinearities
in fm(z, s) .

For the special case of infinitely electrically and thermally conducting hor-
izontal boundaries and vanishing viscosity2 the following boundary conditions
have to be satisfied

wm(z, s) = ϑm(z, s) = bm(z, s) = Djm(z, s) = 0 ,

for all z = zB, zT , and s ∈ (0, sn) . (17)

Notice that the above choice of boundary conditions makes the boundary term
in expression (16) vanish.

2Recall that viscosity in our model is to be taken non-zero only within the Ekman layers
along the horizontal boundaries. It is actually the viscous flow in the Ekman layers which is
responsible for Ekman suction and geostrophic flow given by (16).
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In a radial direction we impose the following boundary conditions

wm(z, s) = ϑm(z, s) = bm(z, s) = jm(z, s) = 0 ,

for all s = 0, sn, and z ∈ (zB, zT ) . (18)

Here and after sn , which delimites the layer in a radial direction, will always
stand for the n-th root of the scaled Bessel function Jm(ks) , i.e.

Jm(ksn) = 0 for all n = 1, 2, . . . . (19)

Notice that the Dirichlet-like boundary conditions (18) for the representing
functions have been set up especially due to mathematical purposes. It should
be emphasized again that in our approach the bounded geometry is needed in
order to apply some functional analytical results. Roughly speaking, the choice
of boundary conditions (18) enables us to guarantee the existence of the inverse
operator Jm−1 and, as a consequence, to justify the definitions of the cubic
nonlinearities Pm(z, s), Tm(z, s) introduced in (12).

Given a parameter k > 0 , in our case from the linear stability study for
the unbounded geometry, we are forced to restrict ourselves to a certain set
of possible radii of the underlying cylinder. Namely, these radii must meet the
condition (19).

The relation (19) represents itself a kind of a duality for the choice of the pair
(k, s) ; 1) either we firstly fix k and subsequently restrict the radial extension to
sn , or 2) we prescribe the radius, say S , first and then we find a set of possible
values of k ’s satisfying the relation Jm(knS) = 0 . Although both approaches
are beneficial, in this paper we discuss the first approach only.

We also notice that in the approach 1) the minimisation of R(k) leading to
the critical Rc and kc is performed over a continuum of values of k whereas in
the approach 2) minimisation is performed over a discrete set of k ’s. Finally, we
remark that the discrete set of k ’s is asymptotically dense in (0, ∞) as S →∞ .
Therefore, for large values of the radius S , both approaches appear to be the
same from numerical point of view.

3. Solution of abstract nonlinear problem by perturbation
methods

3.1. Properties of the adjoint operator

In this section we recall derivation of the so called solvability condition made
in (BRS). The computations to follow are based on methods of the functional
analysis, namely on the Fredholm alternative argument which is applicable to
linear operators on Hilbert spaces. In this paper we will not report all the
relevant mathematics except of some remarks on the choice of function spaces
setting.
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Following the idea of a matrix representation (see e.g. Proctor and Weiss
1982) we rewrite the linear part of equations (11) in the matrix form

L ≡


−D 0 2ΛD −imΛ 0
0 −D imΛD2 2ΛD −Rck2

im 0 (D2 − λc) 0 0
0 im 0 (D2 − λc) 0
Jm 0 0 0 (D2 − λc/qR))

 (20)

where D2 = D2 − k2Jm . Thus the linear part of (11) has the form Lψ where ψ
is a vector function

ψ(z, s) ≡ (wm(z, s), ωm(z, s), bm(z, s), jm(z, s), ϑm(z, s))T .

The linear kernel problem, i.e. the homogeneous matrix equation

Lψ = 0 (21)

has been studied in Soward (1979) where the critical values of Rayleigh number
Rc , the complex frequency λc = iσc as well as the solution ψ have been found.

The full nonlinear problem (11) can be rewritten as

Lψ = N(ψ) (22)

where the term N(ψ) contains all the nonlinearities Pm(z, s), Tm(z, s), Sm(z, s)
involved in (11).

At this stage it is worthwhile noting that the nonlinear problem (11) has
an important symmetry, i.e. the vector function ψ = (wm, ωm, bm, jm, ϑm)T

solves (11) if and only if −ψ does. This is based upon the useful property of
the nonlinearities Pm(z, s), Tm(z, s) and Sm(z, s) being cubic in representing
functions fm(z, s) .

To solve the above semilinear problem by means of the functional analysis we
have to find the kernel of the corresponding adjoint operator L+ , i.e. a solution
ψ+ of the adjoint linear equation

L+ψ+ = 0 . (23)

A solution of the above problem will be taken for as so-called test function in
order to determine higher order terms in power series expansion for a solution
ψ of (22).

We define a bilinear form 〈 .
. 〉 as follows

〈ψ
χ 〉 = 〈ψ χ 〉zs ≡∑ ∫

G

f(z, s) g(z, s) s ds dz (24)

where
∑

denotes the summation over all components f and g of vectors ψ and
χ , respectively. Here Gn is a bounded domain of the vertical and radial variable,
Gn = (zB, zT )× (0, sn) .
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Now we are in a position to define an adjoint operator to L with respect to the
inner product 〈 .

. 〉 . The adjoint linear operator L+ is completely determined
by the relation

〈 Lψ
ψ+ 〉 = 〈ψ

L+ ψ+ 〉 for all ψ ∈ X , ψ+ ∈ X+ (25)

where X and X+ are domains of definitions of the linear operators L and L+ ,
respectively. Applying Green’s formula on 〈 Lψ

ψ+ 〉 yields

〈 Lψ
ψ+ 〉 = 〈ψ

L+ ψ+ 〉+ B (26)

where B is a boundary term. With the use of (26) it can be shown that the
matrix linear operator

L+ =


D 0 −im 0 Jm
0 D 0 −im 0

−2ΛD −imΛD2 (D2 + λc) 0 0
imΛ −2ΛD 0 (D2 + λc) 0

0 −Rck2 0 0 (D2 + λc/qR)

 (27)

obeys the definition (25) (i.e. the boundary term B vanishes), provided that
ψ(z, s) satisfies the boundary conditions (17, 18) and ψ+(z, s) = (w+

m(z, s),
ω+
m(z, s), b+m(z, s), j+m(z, s), ϑ+

m(z, s))T satisfies dual boundary conditions at z =
zB, zT

ω+
m(z, s) = ϑ+

m(z, s) = b+m(z, s) = Dj+m(z, s) = 0 ,

for all z = zB, zT and s ∈ (0, sn) (28)

and radial boundary conditions at s = 0, sn

ψ+(z, 0) = ψ+(z, sn) = 0 ,

for all s = 0, sn and z ∈ (zB, zT ) . (29)

We proceed by construction of a kernel function ψ+ satisfying the adjoint
equation L+ψ+ = 0 . The components of a vector ψ+ = (w+

m, ω
+
m, b

+
m, j

+
m, ϑ

+
m)T

are assumed to be separated as follows

f+
m(z, s) = f+(z)Jm(ks) (30)

where the adjoint functions f+(z) depend only on a vertical coordinate while
the radial dependence is expressed here by the Bessel function Jm(ks) . Plugging
the above ansatz into the matrix equation L+ψ+ = 0 , we obtain a system of
linear differential equations in z variable (see BRS). The existence of a nontrivial
solution of this adjoint system satisfying the dual boundary conditions (28) in
the z variable is a consequence of the spectral theorem for the adjoint operator
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and the fact that the equation Lψ = 0 has a solution decomposable in each
vector component to the form fm(z, s) = f(z)Jm(ks) (see BS).

The linear operators L and L+ are defined on suitable Hilbert spaces X and
X+ , respectively, with values in a Hilbert space Z . These function spaces can
be constructed with respect to boundary conditions for vector functions ψ and
ψ+ , respectively. It turns out that these spaces are subclasses of Sobolev spaces
W 2,2(Gn) . The space Z is the weighted Lebesgue space L2

%(Gn) with the weight
%(s) = s . The reader is referred to the analysis made in (BRS) for further details
of construction and properties of the underlying function spaces.

Let us emphasize that the crucial assumption of the theory is that we operate
with function spaces defined on a bounded domain Gn . Then the operator
Jm defined on a subclass of a Sobolev space has a discrete spectrum bounded
away from zero. This justifies the usage of the inverse operator Jm−1 in (12).
Furthermore, the boundedness of the domain implies that the coefficients β
defined in Appendix and consequently R2 determined in (43) are generically
non-zero. Thus the amplitude equation (51) in Section 3.3 is indeed a prototype
for the Hopf bifurcation phenomenon.

3.2. Derivation of the solvability condition

At this stage, we are yet able to make use of perturbation techniques and ad-
jointness properties in order to solve the abstract nonlinear problem (11) in its
matrix representation (22).

Suppose that the unknown function ψ and the Rayleigh number R (the
system parameter) can be expanded into a power series in terms of a small
unfolding parameter ε , (ε� 1)

ψ = ε ψ1 + ε2 ψ2 + ε3 ψ3 + . . . , (31)

R = Rc + εR1 + ε2R2 + . . . (32)

where the first order term ψ1 is identical to the solution of the linearized problem
(21) and Rc is a critical value of Rayleigh number known from linear stability
analysis made in (BS). Higher order coefficients in the expansion are assumed
to satisfy ψk 6∈ Ker(L) for k ≥ 2 .

The nonlinear system (11), however, when being driven through the critical
value Rc within its parameter regime, gives rise to the oscillatory instability.
Therefore a complex frequency λ has to be expanded into a power series as well

λ = λc + ε λ1 + ε2 λ2 + . . . (33)

where λc is a critical frequency corresponding to Rc . Now we can insert the
above expansions (31 - 33) into the system (11). Collecting the terms of the
same power of ε and using the well-known matrix representation one obtains a
series of linear problems.
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In the first order of ε1 , we obtain a homogeneous linear problem

Lψ1 = 0 (34)

where the components of the vector ψ1 can be sought in the form fm1(z, s) =
f(z)Jm(ks) . The exact expression for each vector component f(z) can be found
e.g. in (BS) or in (Šimkanin et al 1997) in this Issue.

In the second order of ε2 , we have

Lψ2 =


0

R1k
2 ϑm1(z, s)

λ1 bm1(z, s)
λ1 jm1(z, s)

(λ1/qR)ϑm1(z, s)

 (35)

where the components fm2(z, s) of a vector ψ2 are yet unknown. At this order
of perturbation expansion the influence of the cubic nonlinearities Pm(z, s),
Tm(z, s) and Sm(z, s) is still not present. Taking the inner product 〈 .

. 〉 of (35)
with the dual kernel function ψ+ yields a simple complex equation

−α1R1 + λ1 = 0 . (36)

With regard to the requirement λ1 = iσ1 , σ1 is real, the unique solution of this
equation is R1 = 0 , λ1 = 0 and so Lψ2 = 0 . As ψ2 does not belong to the
kernel of L we finally obtain ψ2 = 0 . This property can be also seen from the
symmetry of the abstract nonlinear problem.

In the third order of ε3 , the solvability condition yields a nonhomogeneous
problem

Lψ3 =


0

R2k
2ϑm1(z, s)

Pm1(z, s) + λ2bm1(z, s)
Tm1(z, s) + λ2jm1(z, s)

(1/qR)Sm1(z, s) + (λ2/qR)ϑm1(z, s)

 . (37)

It is obvious that the nonlinear terms in first order representing functions
fm1(z, s) , namely Pm1(z, s), Tm1(z, s) and Sm1(z, s) , arise at this order of ex-
pansion. Now the angular velocity Ω(s) of geostrophic flow (in its leading term)
is a function of bm1(z, s) and jm1(z, s) . We therefore adopt the notation Ω1(s)
for convenience.

We briefly sum up the notation used for this stage of perturbation method.
All the nonlinearities are functions of fm1(z, s) which are separable in z and s
coordinate. They can be therefore expressed in terms of the simple representing
functions f(z) , known from the linear stability study, as follows

Pm1(z, s) = imΩ1(s)Jm(ks) b(z)− imJm
−1{PΩ1 Jm(ks)} b(z) ,

Tm1(z, s) = imΩ1(s)Jm(ks) j(z) + Jm
−1{TΩ1 Jm(ks)}Db(z) , (38)

Sm1(z, s) = imΩ1(s)Jm(ks)ϑ(z)
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with PΩ1 , TΩ1 corresponding to PΩ, TΩ in (14, 15) where Ω(s) has been substi-
tuted by Ω1(s) .

Following (16) and the boundary conditions (17), for geostrophic flow Ω1(s)
in terms of the simple representing functions f(z) we have

Ω1(s) = Z · Ωs(s) . (39)

Here

Z =
Λ

2 (2E)1/2 k2
· <e

{∫ zT

zB

j(z)Db(z)dz

}
(40)

is the functional involving the functions b(z) and j(z) and

Ωs(s) =
1

k2 s3
∂

∂s

[
m2J2

m(ks)− s2
(
∂

∂s
Jm(ks)

)2
]

describes the radial dependence of geostrophic flow. Using the property of the
Bessel differential operator Jm defined by (13), the above expression can be
simplified and written as

Ωs(s) =
1

s

d

ds
J2
m(ks) . (41)

The solvability condition for the 3-rd order of the expansion yields an inner
product equation

〈F3

ψ+ 〉 = 0 (42)

where F3 is a vector of right-hand side terms in (37) and ψ+ is the previously
constructed solution of L+ψ+ = 0 . By straightforward integrations one finds
the solvability condition schematically written as

−αR2 + λ2 − β = 0 . (43)

This condition can be thought of as a complex equation for determining the
parameters R2 and λ2 = iσ2 where σ2 is real, giving us information about
bifurcation and frequency response of the dynamical system in the vicinity of
the critical Rayleigh number Rc .

The complex coefficients α and β entering (43) depend on the parameters
m, Λ, E, qR as well as on the critical parameters Rc, kc and λc . Their full form
is given in terms of analytical expressions (see Appendix).

Now the solution ψ of the nonlinear problem Lψ = N(ψ) has the power
series expansion

ψ = εψ1 + ε3ψ3 + o(ε3) . (44)
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Similarly, up to the second order terms, we have

R ∼ Rc + ε2R2 , (45)

λ ∼ λc + ε2λ2 . (46)

Finally, if we put

ε =
√

(R−Rc)/R2 (47)

then, in the first order approximation, the representing functions f̃(z, s, ϕ, t)
associated to a solution of the evolution problem (2 - 6) through (8, 9) can be
written as

f̃(z, s, ϕ, t) ∼

√
R−Rc
R2

<e{f(z)Jm(ks) exp(imϕ+ λt)} . (48)

The expression
√

(R −Rc)/R2 therefore relates to the amplitude of representing

functions f̃(z, s, ϕ, t) . It can be seen that if R2 > 0 , the Hopf bifurcation arising
in Rc is supercritical. On the other hand, if R2 < 0 , the bifurcation is subcritical.
The complex frequency in the neighbourhood of Rc varies according to

λ ∼ λc + ε2λ2 = λc +
R−Rc
R2

λ2 . (49)

Some useful properties of the constructed solution, i.e. its dependence on the
system parameters and its asymptotics, are presented on Figures 1 - 4 below.

3.3. The amplitude modulation and stability properties of the solution

In the previous paragraph it has been shown that the nonlinear problem (2 - 6)
has a nontrivial periodic solution when Rayleigh number R is increased beyond
its critical value Rc . This periodic solution, branching at Rc from trivial one,
can be either supercritical or subcritical, depending on the sign of parameter
R2 . Such a behaviour should indicate the Hopf bifurcation arising at the critical
Rayleigh number Rc .

The above analysis, however, does not cover stability properties of the peri-
odic solution constructed above. To analyze stability of the basic state and the
bifurcating periodic orbit we have to study a larger phase space than the space
of all functions periodic in t and ϕ variable as it has been proposed by ansatz
(10). To this end, one may enlarge this class of functions by assuming that the

representing functions b̃, j̃, w̃, ω̃ and ϑ̃ have the form

f̃(z, s, ϕ, t) = <e{A(ε2t) fm(z, s) exp(imϕ+ λct)} . (50)

Notice that in (50) each of the functions fm(z, s) is modulated by complex
amplitude A(ε2t) varying in the so-called slow time scale ε2t where ε is a small
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unfolding parameter as in (31 - 33). As it is indicated by expansions (45, 46) we
are forced to choose the scale ε2t in order to capture slowly varying periodic
solutions with the complex frequency λ ∼ λc + ε2λ2 . The meaning of all other
variables and parameters involved in (50) is left unchanged.

Under the above assumption, straightforward computations based on the
same Fredholm alternative argument and on the same function spaces setting
can be carried out to derive solvability condition. It can be shown that in this
case solvability condition gains a form of an ordinary differential equation for
the time dependent complex amplitude A(ε2t) . For the modulus |A(ε2t)| the
third order approximation of the corresponding ordinary differential equation
reads as follows

1

αr

d|A(ε2t)|

dt
= (R −Rc) |A(ε2t)| −R2 |A(ε2t)|3 (51)

where the coefficients αr (the real part of α) andR2 are the same as in solvability
condition (43).

Notice that the amplitude equation (51) is a prototype for the Hopf bifurca-
tion phenomenon and therefore can be conceived as normal form for the Hopf
bifurcation. Both the trivial solution and the bifurcating periodic (nontrivial)
solution can be sought as stationary solutions (fixed points) of amplitude equa-
tion (51). The only nontrivial steady state solution of the ODE (51) is the
constant function

|A| =

√
R−Rc
R2

(52)

which in fact coincides with the unfolding parameter ε . Therefore inserting the
steady state amplitude (52) into (50) yields the same periodic solution as the
one previously constructed in Section 3.2.

As a result, depending on the sign of R2 one observes either supercritical or
subcritical type of the Hopf bifurcation. The stability of both steady state and
periodic solutions depends on the sign of coefficient αr . More details concerning
the amplitude modulation as well as derivation and analysis of the normal form
equation (51) will be presented in the forthcoming paper.

4. Bifurcation diagrams and asymptotic properties of the
solution

In our numerical experiments the values of the critical Rayleigh number Rc ,
the critical radial wave number kc and the critical complex frequency λc = iσc
were obtained from the linear stability analysis made in (BS). We studied four
particular cases related to the azimuthal wave numbers m = 1, 2, 3 and 5 , with
the Elsasser number Λ ranging from 10−3 to 2500 . The Ekman number and the
Roberts number were chosen E = 3× 10−7 and qR = 0.005 , respectively. More
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details concerning the typical values of the critical parameters can be found e.g.
in Šimkanin et al (1997) in this Issue.

The Figures 1, 2 are bifurcation diagrams in the space of system parameters
R (Rayleigh number) and Λ (Elsasser number). The dependence Rc = Rc(Λ) is
known from linear stability studies made in Soward (1979) and (BS). The weakly
nonlinear analysis from previous sections is capable of describing behaviour
of solutions (trivial and nontrivial one) and their stability properties in the
underlying space of parameters. This enables us to classify qualitatively the
bifurcation diagrams to follow.

Fig.1. T and MW modes for the az-
imuthal wave number m = 1 .

Fig.2. T modes for the azimuthal
wave number m = 5 .

The marked curves in Figures 1, 2 show the dependence of the critical Rayleigh
number Rc on the Elsasser number Λ for azimuthal wave numbers m = 1, 5 .
Here T and MW are to symbolize thermally and magnetically driven waves
propagating westwards, respectively, as they have been classified in (BS); in
Figure 1 the T wave changes into MW wave by increasing Λ at Λ ∼ 100. The
parameter space (Λ, R) divided by the curveRc = Rc(Λ) , splits into two regions.
In the region labeled by BS−S there is no periodic orbit near the locally stable
basic state whereas in the region BS−U , PO−S the basic state is unstable and
there is a stable periodic solution. Here the abbreviation BS stands for ”Basic
State” and PO for ”Periodic Orbit”.

The other studied cases of the azimuthal wave number m = 2, 3 result
into qualitatively same plots and therefore are omitted. We only mention that
for large values of the Elsasser number, there is an indication for the Hopf
bifurcation to be subcritical for the case m = 2 . This is due to the change in
sign of the coefficient αr . This special case however needs to be investigated in
a more detail. Note that in Skinner and Soward (1990) the subcritical behaviour
has been observed for qR of order unity and for smaller Λ only.



332 M. Revallo, D. Ševčovič, J. Brestenský

The Figures 3, 4 show asymptotic properties of the finite amplitude solution
when the radius of the layer becomes larger. We remind ourselves that the radial
extension of the layer measured by sn has to be finite as it has been proclaimed
in previous sections.

Recall that in general the critical Rayleigh number Rc and the critical com-
plex frequency λc = iσc are functions of the critical radial wave number kc . In
the linear stability study in (BS) related to the unbounded geometry, for any
value of Elsasser number Λ , the wave number k = kc has been chosen such that
the corresponding Rc was minimal. For the particular case of m = 5 and for the
choice of Λ = 1.0 , it follows from (BS) that kc = 5.16 .

Fig.3. The modulus |A| of the am-
plitude versus Γ for the azimuthal
wave number m = 5 , the Elsasser
number Λ = 1 and various radii sn .

Fig.4. The difference σ − σc of fre-
quencies versus Γ for the azimuthal
wave number m = 5 , the Elsasser
number Λ = 1 and various radii sn .

Figure 3 above depicts the dependence of the modulus of the amplitude |A| ,
given by (52), on the so-called surplus thermal energy Γ = (R − Rc)s2n . More
precisely, the quantity Γ is qualitatively proportional to the thermal energy
needed to heat the bottom circular domain of the radius sn which is, in effect,
associated with increase of the Rayleigh number R beyond Rc . This picture can
be also viewed as a supercritical bifurcation diagram. Indeed, if R < Rc (i.e.
Γ < 0) there is no periodic solution in the vicinity of the stable basic state.
On the other hand, when R > Rc (i.e. Γ > 0) there is a stable periodic orbit
with the modulus of amplitude equal to |A| and the basic state is unstable. The
bifurcation curves are plotted for various radial extensions sn of the cylinder.
The reason for introducing the quantity Γ is to compare bifurcation curves for
various radii sn . In terms of the new system parameter Γ , for the amplitude we
have |A| = (Γ/R2)

1/2s−1
n instead of (52).

It follows from (43) and the expressions for α and β in Appendix that R2 =
O(s−1

n ) as sn → +∞ . Therefore for fixed values of the parameter Γ we have
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|A| = O(s
−1/2
n ) as sn → +∞ . This is in agreement with an observation that if

the input energy proportional to Γ is constant, the amplitude of motion becomes
smaller with growth of the radial extension of the layer.

One has to be careful, however, about the asymptotics like this. The proof
of existence of finite amplitude periodic solution based on the weakly nonlinear
theory is limited to the parameter range Rc ≤ R < R̂(sn) only. Gathering
from the expression ε =

√
(R −Rc)/R2 , where ε has to be chosen small (i.e.

ε � 1), and from the asymptotics R2 = O(s−1
n ) as sn → +∞ , we can see that

R̂(sn)→ Rc as sn → +∞ , i.e. the region of parameter space evaporates.

Figure 4 shows the dependence of the complex frequency λ = iσ on Γ . For
m = 5 and Λ = 1 the critical frequency is λc = iσc with σc = 0.0376392 .
Actually, the difference σ−σc has been plotted versus Γ . In terms of Γ we have
σ = σc + (Γσ2)/(R2s

2
n) . Therefore the dependence of σ on Γ is linear.

Notice that the Γ scale in Figures 3, 4 is magnified in order to show the
qualitative features of behaviour of amplitude modulus and frequency response
of the nonlinear system. The maximal value of the parameter Γ , however, must
be chosen small enough as it is interrelated with the small unfolding parameter
ε through the relation Γ = ε2R2s

2
n .

5. Conclusions

It has been shown in this paper that the weakly nonlinear analysis is capable of
proving the existence of a nontrivial periodic solution in the vicinity of the crit-
ical Rayleigh number Rc for a nonlinear model of rotating magnetoconvection
affected by Ekman suction. Although the basic governing equations together
with modified Taylor’s constraint yield a rather complicated structure, they can
be solved analytically in the vicinity of Rc . It has been shown that besides
the trivial (zero) solution, there is a periodic solution of the nonlinear problem
representing wave propagation in the azimuthal direction.

The existence of a non-trivial periodic solution is neither an obvious matter
emerging from the corresponding linearized theory nor a direct consequence of
the form of nonlinear governing equation. Among the assumptions guaranteeing
the existence of such a solution a crucial role is played by boundedness of the
underlying geometry. In case of a rotating horizontal layer it naturally means a
restriction to the radially bounded cylinder.

The symmetry of governing equations which is due to cubic nonlinearities
implies that the transition from a trivial (conductive) solution towards a non-
trivial (convective) periodic solution is via Hopf bifurcation. Applying methods
and techniques of the functional analysis, namely solvability conditions from
Fredholm’s alternative, leads towards derivation of the normal form for the
Hopf bifurcation and analytical expressions of its coefficients.

The obtained analytical formulae for the normal form coefficients were eval-
uated numerically. The bifurcation diagrams showing domains of existence and



334 M. Revallo, D. Ševčovič, J. Brestenský

stability of the solutions have been depicted for the parameter space (Λ, R) . Also
the asymptotic properties of the amplitude and frequency of periodic solution
for different radial extensions of the layer have been portrayed.
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Appendix

The coefficients α and β in the solvability condition (55) are

α = − k2
c

〈ϑ(z)ω+(z) 〉z

M
, β = 4Z

I2

I1

〈Db(z) j+(z) 〉z

M

where M = 〈 b(z) b+(z) 〉z + 〈 j(z) j+(z) 〉z + (1/qR) 〈ϑ(z)ϑ+(z) 〉z and Z is a
functional given by (41).
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The above expressions are entered by the integrals over the radial coordinate

I1 =

∫ sn

0

J2
m(kcs) s ds , I2 =

∫ sn

0

J2
m(kcs)

(
d

ds
Jm(kcs)

)2

s ds

which are to be computed numerically and by the integrals over the z coordinate

〈 f(z) f+(z) 〉z =

∫ zT

zB

f(z) f+(z) dz .

Particular integrals needed for evaluation of the coefficients are

〈ϑ(z)ω+(z) 〉z =
1

2Rck2
c

∑
l

clγl ,

〈 b(z) b+(z) 〉z = −
1

2

∑
l

γl

( πl

m2Λ
sωl − 1

)
,

〈 j(z) j+(z) 〉z = −
1

2m2Λ

∑
l

sjl clγlπl ,

〈ϑ(z)ϑ+(z) 〉z = −
5

2Rck2
c

,

〈Db(z) j+(z) 〉z = −
1

2

∑
l

γ2
l π

2
l cl

where

cl = π2
l + k2

c + λ ,

γ−1
l =

π2
l

m2Λ
(π2
l + k2

c + λ− 2imΛ)2 +m2Λ(π2
l + k2

c ) ,

sωl = πl(π
2
l + k2

c + λ− 2imΛ) clγl ,

sjl =
sωl
cl

with πl = (2l− 1)π, λ = iσ and l equals to 5.
Let us emphasize that the integral I1 diverges to +∞ whereas I2 converges

as sn → +∞ . Thus the coefficient β vanishes when sn tends to +∞ . We also
notice that the integrals over the z coordinate are entered by functions of f(z)
which solve the linearized (eigenvalue) problem and by functions of f+(z) which
solve the homogeneous adjoint problem in Section 3.1.


