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Abstract. In this paper we study evolution of plane curves satisfying a geometric equation
v = β(k, ν), where v is the normal velocity and k and ν are the curvature and tangential angle of a
plane curve Γ. We follow the direct approach and we analyze the so-called intrinsic heat equation
governing the motion of plane curves obeying such a geometric equation. The intrinsic heat equation
is modified to include an appropriate nontrivial tangential velocity functional α. We show how the
presence of a nontrivial tangential velocity can prevent numerical solutions from forming various
instabilities. From an analytical point of view we present some new results on short time existence
of a regular family of evolving curves in the degenerate case when β(k, ν) = γ(ν)km, 0 < m ≤ 2, and
the governing system of equations includes a nontrivial tangential velocity functional.
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1. Introduction. The goal of this paper is to study curvature-driven evolution
of a family of closed smooth plane curves. We consider the case when the normal
velocity v of an evolving family of plane curves Γt : S1 → R

2, t ∈ (0, T ), is a function
of the curvature k and the tangential angle ν:

v = β(k, ν).(1.1)

In past years, geometric equations of the form (1.1) have attracted a lot of attention
from both the theoretical and the practical point of view. There is a wide range of
possible applications of geometric equations of the form (1.1). They arise from various
applied problems in mathematical modeling and scientific computing, and they can
be investigated in a purely mathematical context.

In the theory of phase interfaces separating solid and liquid phases, (1.1) cor-
responds to the so-called Gibbs–Thomson law governing the crystal growth in an
undercooled liquid [25, 39, 13]. In the series of papers [9, 10, 11] Angenent and
Gurtin studied motion of phase interfaces. They proposed to study the equation of
the form µ(ν, v)v = h(ν)k − g, where µ is the kinetic coefficient and quantities h, g
arise from constitutive description of the phase boundary. The dependence of the nor-
mal velocity v on the curvature k is related to surface tension effects on the interface,
whereas the dependence on ν (orientation of interface) introduces anisotropic effects
into the model. In general, the kinetic coefficient µ may also depend on the velocity
v itself giving rise to a nonlinear dependence of the function v = β(k, ν) on k and
ν. If the motion of an interface is very slow, then β(k, ν) is linear in k (cf. [9]) and
(1.1) corresponds to the classical mean curvature flow studied extensively from both

∗Received by the editors July 16, 1999; accepted for publication (in revised form) June 14, 2000;
published electronically January 19, 2001. This research was supported by grants 1/7132/20 and
1/7677/20 from the Slovak Scientific Grant Agency VEGA.

http://www.siam.org/journals/siap/61-5/35928.html
†Department of Mathematics, Slovak University of Technology, Radlinského 11, 813 68 Bratislava,
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the mathematical (see, e.g., [21, 1, 5, 24]) and the numerical point of view (see, e.g.,
[18, 16, 31, 35, 36]).

In the image processing the so-called morphological image and shape multiscale
analysis is often used because of its contrast and affine invariance properties. It has
been introduced by Sapiro and Tannenbaum [38] and Alvarez et al. [2, 3]. Analysis
of image silhouettes (boundaries of distinguished shapes) leads to an equation of the
form (1.1) without anisotropic part. Among various choices of a function β(k) the
so-called affine invariant scale space has special conceptual meaning and importance.
In this case the velocity v is given by v = β(k) = k1/3 [2, 38, 12]. In the context of
image segmentation, various anisotropic models with v = β(k, ν) have been studied
just recently [27, 30, 15]. For a comprehensive overview of applications of (1.1) in
other applied problems, we refer to [42].

The analytical methods for mathematical treatment of (1.1) are strongly related
to numerical techniques for computing curve evolutions. In the direct approach one
seeks for a parameterization of the evolving family of curves. By solving the so-called
intrinsic heat equation one can directly find a position vector of a curve (see, e.g.,
[17, 18, 19, 33, 39, 40]). There are also other direct methods based on solution of a
porous medium–like equation for curvature of a curve [31, 32], a crystalline curvature
approximation [22, 23, 44], special finite difference schemes [28, 29], and a method
based on erosion of polygons in the affine invariant scale case [34]. By contrast to
the direct approach, level set methods are based on introducing an auxiliary function
whose zero level sets represent an evolving family of planar curves undergoing the
geometric equation (1.1) (see, e.g., [36, 41, 42, 43, 26]). The other indirect method
is based on the phase-field formulations (see, e.g., [14, 35, 20, 13]). The level set ap-
proach handles implicitly the curvature-driven motion, passing the problem to higher
dimensional space. One can deal with splitting and/or merging of evolving curves in
a robust way. However, from the computational point of view, level set methods are
much more expensive than methods based on the direct approach.

In this paper we are concerned with the direct approach only. We consider the
power-like function β(k, ν) = γ(ν)|k|m−1k, where γ(ν) > 0 is a given anisotropy
function and m > 0. From the analytical perspective, the main purpose is to establish
short time existence of a family of regular smooth plane curves satisfying the geometric
equation (1.1). A short time existence result was obtained for the singular case in
which 0 < m < 1 as well as for the degenerate case in which 1 < m ≤ 2. Let us
emphasize that we needed additional geometric assumptions made on an initial curve
in the degenerate case 1 < m ≤ 2. Cases with higher powers of m do not seem to
be treatable by our techniques. On the other hand, recent results due to Andrews
[4] show that the value m = 2 is critical in the sense that, for higher powers of m, a
solution need not necessarily be classical in points where the curvature vanishes.

In our approach, a family of evolving curves is represented by their position vector
x satisfying the geometric equation

∂tx = β(k, ν) �N + α�T .(1.2)

Notice that the presence of an arbitrary tangential velocity functional α has no effect
on the shape of evolving curves. The usual choice is therefore α = 0. From the numer-
ical point of view, such a choice of α may lead to computational instabilities caused by
merging of numerical grid points representing a discrete curve or by formation of the
so-called swallow tails. In this paper we present an appropriate choice of a nontrivial
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tangential velocity α. It turns out that if α is a solution of the nonlocal equation

∂α

∂s
= kβ(k, ν)− 1

|Γ|
∫

Γ

kβ(k, ν) ds,(1.3)

then material points are uniformly redistributed along the evolved curve. This choice
of α results in a powerful numerical scheme having the property of uniform-in-time
redistribution of grid points and preventing the computed numerical solution from
forming the above-mentioned instabilities. Note that (1.2) can be transformed into a
one-dimensional intrinsic heat equation (see (2.2)), and the functional α can be easily
resolved from (1.3). In each time step we have to solve several linear tridiagonal
systems in order to obtain a new position of the curve.

The outline of the paper is as follows. In section 2 we present the governing system
of PDEs. Evolution of plane curves is parameterized by solutions of an intrinsic heat
equation. We discuss the effect of a nontrivial tangential velocity on numerically
computed solutions. Section 3 is focused on the analysis of the system of governing
equations. The aim is to set up a closed system of parabolic equations solutions which
include the curvature, the tangent angle, and the local length of a plane curve. The
basic theory on short time existence of classical solutions is given in section 4. Here
we consider only the case when β′

k is nondegenerate. We follow the abstract theory
due to Angenent slightly modified for the case when a nontrivial tangential velocity
functional is involved in the system of governing PDEs. Section 5 is devoted to the
study of the singular case when β(k, ν) = γ(ν)|k|m−1k, m �= 1. We extend the result
due to Angenent, Sapiro, and Tannenbaum obtained for the power m = 1/3 to the
general fast diffusion powers 0 < m < 1 as well as for degenerate slow diffusion cases
where 1 < m ≤ 2. In section 6 we present a suitable choice of a tangential velocity
leading to a powerful numerical scheme. We show how to construct a nontrivial
tangential velocity as a nonlocal curve functional in such a way that relative local
length (defined as the ratio of the local length to the total length of a curve) is
constant along the evolution. A numerical scheme for full space-time discretization of
the governing intrinsic heat equation is presented in section 7. We derive this scheme
by using the method of so-called flowing finite volumes. In section 8 we show several
numerical solutions of the governing system of equations and we make a comparison
between results obtained by considering the trivial and nontrivial tangential velocities,
respectively. One can observe the importance of the presence of a suitable nontrivial
tangential velocity functional in the governing system of equations for stability of
numerical computations.

2. Preliminaries. Consider an embedded regular plane curve Γ that can be
parameterized by a C2 smooth function x : S1 → R

2 such that Γ = Image(x) =

{x(u), u ∈ [0, 1]} and |∂ux| > 0. One can define the unit tangent vector �T = ∂ux/|∂ux|
and the unit normal vector �N in such a way that �T ∧ �N = 1, where �a ∧ �b is the
determinant of the 2× 2 matrix with column vectors �a,�b. Henceforth, we will denote
�a .�b as the Euclidean inner product of two vectors. By |�a| = (�a .�a)1/2 we denote the
Euclidean norm of a vector �a. The derivative of a function f = f(ξ) with respect
to ξ will be denoted by ∂ξf . The arc-length parameterization will be denoted by s.
Clearly, ds = |∂ux|du. By k we denote the signed curvature of the curve Γ = Image(x)
defined as

k = ∂sx ∧ ∂2
sx =

∂ux ∧ ∂2
ux

|∂ux|3 ;(2.1)
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then Frenet’s formulae read as follows: ∂s �T = k �N, ∂s �N = −k�T . The angle ν of the
tangential vector is given by ν = arg(�T ), i.e., (cos ν, sin ν) = ∂sx. To describe the
time evolution {Γt}, t ∈ [0, T ) of an initial curve Γ = Γ0 = Image(x0), we adopt
the notation Γt = {x(u, t), u ∈ [0, 1]}, t ∈ [0, T ), where x ∈ C2(QT ,R

2) and QT =
S1×[0, T ). We will frequently identify QT with [0, 1]×[0, T ) and the space Cl(QT ,R

2)
with the space of Cl differentiable functions defined on [0, 1] and satisfying periodic
boundary conditions. The main idea in describing a family of evolving plane curves
Γt, t > 0, satisfying the geometric equation (1.1) is to parameterize Γt by a solution
x ∈ C2(QT ,R

2) of the so-called intrinsic heat equation

∂x

∂t
=

1

θ1

∂

∂s

(
1

θ2

∂x

∂s

)
, x(., 0) = x0(.),(2.2)

where θ1, θ2 are geometric quantities for the curve Γt = Image(x(., t)), i.e., functions
whose definition is independent of particular parameterization of Γt and such that

θ1θ2 =
k

β(k, ν)
.(2.3)

By using (2.3) and Frenet’s formulae, (2.2) can be rewritten in the following equivalent
form:

∂x

∂t
= β �N + α�T , x(., 0) = x0(.),(2.4)

where β = β(k, ν) is the normal velocity of the evolving curve and α is the tangential
velocity given by

α =
1

θ1

∂

∂s

(
1

θ2

)
.(2.5)

The normal component v of the velocity ∂tx is therefore equal to β(k, ν). By [12,
Lemma 4.1] the family Γt = Image(x(., t)) parameterized by a solution x of the

geometric equation (2.4) can be converted into a solution of ∂tx = β �N + ᾱ�T for any
continuous function ᾱ by changing the space parameterization of the original curve.
In particular, it means that one can take ᾱ = 0 without changing the shape of evolving
curves. On the other hand, as can be observed from our numerical simulations, the
presence of a suitable tangential velocity term α�T is necessary for construction of a
numerical scheme capable of suitable redistribution of numerical grid points along a
computed curve.

In [33] the authors studied the intrinsic heat equation (2.2) with θ1 = θ2 =
(k/β(k))1/2. In this case, (2.2) has the form ∂tx = ∂2

s̄x, where ds̄ = θ1ds. Using
this particular choice of θ1, θ2 we were able to simulate the evolution of plane convex
and nonconvex curves for the case where v = |k|m−1k. Satisfactory results were
obtained only for 0 < m ≤ 1, whereas various numerical instabilities appeared for
the case m > 1. The mathematical explanation for such a behavior is very simple. If

θ1 = θ2 = |k|m−1
2 , then, by (2.5), α = m−1

2 |k|m−3k∂sk = 1
2∂s(|k|m−1). In the case

m > 1 numerical grid points were driven by the tangential velocity α�T toward pieces
of the curve with the increasing curvature. It may lead to serious computational
troubles. The effect of α is just the opposite when 0 < m < 1.

Another possible choice of a nontrivial tangential velocity was studied by Deck-
elnick in [16] for the case β(k) = k. He proposed a governing PDE in the form
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∂tx = ∂2
ux/|∂ux|2. In this case α = −∂u(|∂ux|−1), and thus θ2 = θ−1

1 , θ1 = |∂ux|.
This algorithm also has the property of a suitable redistribution of grid points along
the computed curve. Notice that θ1, θ2 are not geometric quantities because of their
dependence on a particular parameterization.

Note that the arc-length parameterization s occurring in the intrinsic equation
(2.2) depends on time t and its initial position u at t = 0 via ds = |∂ux|du. We can
therefore rewrite (2.2) into the following Eulerian form:

∂x

∂t
=

1

θ1|∂ux|
∂

∂u

(
1

θ2|∂ux|
∂x

∂u

)
, x(., 0) = x0(.), (u, t) ∈ QT .(2.6)

(2.6) seems to be a parabolic PDE for x = x(u, t). However, as θ2 may depend on
the curvature, the right-hand side of (2.6) may eventually contain the third-order
derivative term ∂3

ux. In the next section we will show how to overcome this difficulty
by embedding (2.6) into a complete system of nonlinear parabolic equations.

3. Equations for geometric quantities. The goal of this section is to derive a
system of PDEs governing the evolution of the curvature k of Γt = Image(x(., t)), t ∈
[0, T ), and some other geometric quantities where the family of regular plane curves
where x = x(u, t) is a solution to the intrinsic heat equation (2.2). These equations
will be used in order to derive a priori estimates of solutions. Notice that such an
equation for the curvature is well known for the case when α = 0, and it reads as
follows: ∂tk = ∂2

sβ + k2β, where β = β(k, ν) (cf. [21, 9]). Here we present a brief
sketch of the derivation of the corresponding equations for the case of a nontrivial
tangential velocity α.

Let us denote �p = ∂ux. Then, by using Frenet’s formulae, one has

∂t�p = |∂ux|((∂sβ + αk) �N + (−βk + ∂sα)�T ),

�p . ∂t�p = |∂ux| �T . ∂t�p = |∂ux|2(−βk + ∂sα),(3.1)

�p ∧ ∂t�p = |∂ux| �T ∧ ∂t�p = |∂ux|2 (∂sβ + αk),

∂t�p ∧ ∂u�p = −|∂ux|∂u|∂ux|(∂sβ + αk) + |∂ux|3 (−βk + ∂sα),

because pu = ∂2
ux = ∂u(|∂ux| �T ) = ∂u|∂ux| �T + k|∂ux|2 �N . Since ∂u(�p ∧ ∂t�p) =

∂u�p∧∂t�p+�p∧∂u∂t�p, we have �p∧∂u∂t�p = ∂u(�p∧∂t�p)+∂t�p∧∂u�p. As k = (�p∧∂u�p) |�p|−3

(see (2.1)), we obtain

∂tk = −3|p|−5(�p . ∂t�p)(�p ∧ ∂u�p) + |�p|−3 ((∂t�p ∧ ∂u�p) + (�p ∧ ∂u∂t�p))

= −3k|�p|−2(�p . ∂t�p) + 2|�p|−3(∂t�p ∧ ∂u�p) + |�p|−3∂u(�p ∧ ∂t�p).

Finally, by applying identities (3.1), we end up with the second-order nonlinear
parabolic PDE, the equation for the curvature:

∂tk = ∂2
sβ + α∂sk + k2β, k(., 0) = k0(.).(3.2)

Similarly, as in (2.6), the above equation can be rewritten into the Eulerian form

∂k

∂t
=

1

|∂ux|
∂

∂u

(
1

|∂ux|
∂

∂u
β(k, ν)

)
+ α

1

|∂ux|
∂k

∂u
+ k2β(k, ν),(3.3)

k(., 0) = k0(.),
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where (u, t) ∈ QT . The identities (3.1) can be used in order to derive an evolu-
tionary equation for the local length |∂ux|. Indeed, |∂ux|t = (∂ux . ∂u∂tx)/|∂ux| =
(�p . ∂t�p)/|∂ux|. By (3.1) we have the local length equation

∂

∂t
|∂ux| = −|∂ux| kβ +

∂α

∂u
, |∂ux(., 0)| = |∂ux0(.)|,(3.4)

where (u, t) ∈ QT . In other words, ∂tds = (−kβ + ∂sα)ds. By integrating (3.4)
over the interval [0, 1] and taking into account that α satisfies periodic boundary
conditions, we obtain the total length equation

d

dt
Lt +

∫
Γt

kβ(k, ν)ds = 0,(3.5)

where Lt = L(Γt) is the total length of the curve Γt, Lt =
∫
Γt ds =

∫ 1

0
|∂ux(u, t)| du.

If kβ(k, ν) ≥ 0, then the evolution of plane curves parameterized by a solution of (2.2)
represents a curve shortening flow, i.e., Lt2 ≤ Lt1 ≤ L0 for any 0 ≤ t1 ≤ t2 ≤ T . The
condition kβ(k, ν) ≥ 0 is obviously satisfied in the case β(k, ν) = γ(ν)|k|m−1k, where
m > 0 and γ is a nonnegative anisotropy function.

The area enclosed by an embedded non-self-intersecting curve Γ = Image(x) can

be computed as A = 1
2

∫ 1

0
x ∧ ∂ux du. Applying the identities (3.1) and taking into

account that 0 =
∫ 1

0
∂u(x ∧ ∂tx) du =

∫ 1

0
(�p ∧ ∂tx + x ∧ ∂t�p) du, where �p = ∂ux, we

obtain the area equation

d

dt
At +

∫
Γt

β(k, ν)ds = 0.(3.6)

If β(k, ν) is nonnegative along the evolution, then the area is a nonincreasing function
of the time.

Denote by [∂t, ∂s] the commutator of the differential operators ∂t and ∂s, i.e.,
[∂t, ∂s] = ∂t∂s − ∂s∂t. Since ds = |∂ux|du it follows from the local length equation
(3.4) that the commutation relation

[∂t, ∂s] = (βk − ∂sα)∂s.(3.7)

Recall that the tangential vector ν to a curve Γ = Image(x) is given by ν = arg(�T ),
i.e., (cos ν, sin ν) = ∂sx. From (3.7) we obtain ∂tν = ∂sx ∧ ∂t∂sx = ∂sx ∧ ∂s∂tx +
(βk−∂sα)(∂sx∧∂sx). Applying Frenet’s formulae and (2.4), we obtain the tangential
vector equation

∂tν = ∂sβ + αk, ν(., 0) = ν0(.).(3.8)

Clearly,

∂sν = ∂sx ∧ ∂2
sx = k.(3.9)

Differentiating the curvature equation (3.2) with respect to t and taking into
account (3.8) yield an equation for the normal velocity v = β(k, ν), i.e., the normal
velocity equation

∂tv = β′
k

(
∂2
sv + α∂sk + k2v

)
+ β′

ν (∂sv + αk) ,(3.10)

v(., 0) = v0(.) = β(k0(.), ν0(.)),
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where β′
k and β′

ν are partial derivatives of the function β = β(k, ν) with respect to k
and ν, respectively. Next we derive an equation for the gradient of the normal velocity
w = ∂sv = ∂sβ(k, ν). Using the commutation relation (3.7) we have

∂tw = ∂t∂sv = ∂s∂tv + (vk − ∂sα)∂sv

= ∂s
(
β′
k(∂sw + α∂sk + k2v)

)
+ β′

ν(w + αk) + (vk − ∂sα)w.

Since

w = ∂sβ(k, ν) = β′
k∂sk + β′

ν∂sν = β′
k∂sk + β′

νk,(3.11)

we end up with an equation for the gradient w of the velocity v:

∂tw = ∂s (β
′
k∂sw) + α∂sw + ∂s

(
β′
kk

2v + β′
νw
)
+ kvw,(3.12)

w(., 0) = w0(.) = ∂sv
0(.).

Now we are in a position to derive a closed system of governing equations for
the geometric motion satisfying (1.2). It follows from (3.9) and (3.11) that ∂tν =
β′
k∂

2
sν+ k(α+β′

ν). Denoting g = |∂ux|, we can rewrite (3.3), (3.4), and (3.8) into the
following closed form governing equations

∂k

∂t
=

1

g

∂

∂u

(
1

g

∂

∂u
β(k, ν)

)
+

α

g

∂k

∂u
+ k2β(k, ν),

∂ν

∂t
=

β′
k(k, ν)

g

∂

∂u

(
1

g

∂ν

∂u

)
+ k(α+ β′

ν(k, ν)),(3.13)

∂g

∂t
= −gkβ(k, ν) +

∂α

∂u
,

(u, t) ∈ [0, 1]× (0, T ). A solution to (3.13) is subject to the initial conditions

k(., 0) = k0, ν(., 0) = ν0, g(., 0) = g0(3.14)

and periodic boundary conditions. Notice that the initial conditions for k0, ν0, g0 are
related through the identity

∂uν
0 = g0k0.(3.15)

In general, the function α = α(k, ν, g) is a nonlinear function that will be determined
later. In section 6 of this paper we present the choice of α leading to a powerful
numerical algorithm preserving relative local length between numerical grid points.

4. Short time existence of solutions in the nondegenerate case. In this
section we prove short time existence of a classical solution of the governing system
of equations (3.13) by using the abstract result due to Angenent (cf. [8]).

Denote Φ = (k, ν, g)T . Then (3.13) can be rewritten as a fully nonlinear PDE of
the form

∂tΦ = f(Φ), Φ(0) = Φ0,(4.1)

where f(Φ) = F (Φ, α(Φ)) and F (Φ, α) is the right-hand side of (3.13). Suppose that
β = β(k, ν) is a C2 smooth function such that

0 < λ− ≤ β′
k(k, ν) ≤ λ+ < ∞ for any k, ν,(4.2)
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where λ± > 0 are constants and β′
k is a partial derivative of β with respect to k.

Given 0 < σ < 1, we denote by E0, E1/2, E1 the following Banach spaces:

E0 = cσ(S1)× cσ(S1)× c1+σ(S1),

E1/2 = c1+σ(S1)× c1+σ(S1)× c1+σ(S1),

E1 = c2+σ(S1)× c2+σ(S1)× c1+σ(S1),(4.3)

where ck+σ, k = 0, 1, 2, is the little Hölder space, i.e., the closure of C∞(S1) in the
topology of the Hölder space Ck+σ(S1) (see [6]). Let Oi ⊂ Ei be an open subset in
Ei such that g > 0 for any (k, ν, g)T ∈ Oi, i =

1
2 , 1. If we assume

α ∈ C1(O1/2, c
2+σ(S1)),(4.4)

then the mapping f is a smooth mapping from O1 ⊂ E1 into E0.
If the Fréchet derivative df(Φ̄) ∈ L(E1, E0) belongs to the maximal regularity

class M1(E0, E1) for any Φ̄ ∈ O1, then by [8, Theorem 2.7], (4.1) has a unique
solution Φ ∈ Y T = C([0, T ], E1)∩C1([0, T ], E0) on some small enough interval [0, T ].
Recall that the class M1(E0, E1) ⊂ L(E1, E0) consists of those generators of analytic
semigroups A : D(A) = E1 ⊂ E0 → E0 for which the linear equation ∂tΦ = AΦ+h(t),
0 < t ≤ 1, Φ(0) = Φ0, has a unique solution Φ ∈ Y 1 for any h ∈ C([0, 1], E0) and
Φ0 ∈ E1. In other words, (E0, E1) is a maximal parabolic regularity pair.

Theorem 4.1. Assume that (k0, ν0, g0)T ∈ O1 ⊂ E1, where k0 is the curva-
ture, ν0 is the tangential vector, and g0 = |∂ux0| > 0 is the local length element
of the initial regular curve Γ0 = Image(x0). If β = β(k, ν) is a C3 smooth func-
tion satisfying (4.2) and α obeys (4.4), then there exists a unique classical solution
Φ = (k, ν, g)T ∈ C([0, T ], E1) ∩ C1([0, T ], E0) of the governing system of equations
(3.13) defined on some small time interval [0, T ]. Moreover, if Φ is a maximal solu-
tion defined on [0, Tmax) and Tmax < ∞, then max |k(., t)| → ∞ as t → Tmax.

Proof. Let Φ0 ∈ O1 where O1 ⊂ E1 is an open and bounded subset of E1, g > 0,
for any (k, ν, g)T ∈ O1. The linearization of f at Φ̄ = (k̄, ν̄, ḡ)T ∈ O1 has the form
df(Φ̄) = dΦF (Φ̄, ᾱ) + dαF (Φ̄, ᾱ) dΦα(Φ̄), where ᾱ = α(Φ̄) and

dΦF (Φ̄, ᾱ)Φ = ∂u(D̄∂uΦ) + B̄∂uΦ+ C̄Φ,

dαF (Φ̄, ᾱ)α =
(
αḡ−1∂uk̄, αk̄, ∂uα

)T
;

D̄ = diag(D̄11, D̄22, 0), D̄11 = D̄22 = β′
k(k̄, ν̄)ḡ

−2 ∈ C1+σ(S1), and B̄, C̄ are 3 × 3
matrices with Cσ(S1) smooth coefficients, B̄3j = 0, C̄3j ∈ C1+σ. By (3.9) we have
g−1∂uβ(k, ν) = g−1β′

k∂uk + β′
νk, and so the principal part is indeed a diagonal one.

The linear operator A1 = ∂u(D̄∂uΦ), D(A1) = E1, is a generator of an analytic semi-
group on E0, and moreover A1 ∈ M1(E0, E1) (cf. [8]). Notice that dαF (Φ̄, ᾱ) belongs
to L(C2+σ(S1), E1/2) and this is why we can write dΦf(Φ̄) as the sum A1 + A2

where A2 ∈ L(E1/2, E0), ‖A2Φ‖E0 ≤ C‖Φ‖E1/2
≤ C‖Φ‖1/2

E0
‖Φ‖1/2

E1
is a relatively

bounded linear perturbation of A1 with zero relative bound (cf. [8]). Since the
class M1 is closed with respect to such perturbations (see [8, Lemma 2.5]), we have
dΦf(Φ̄) ∈ M1(E0, E1). The proof of the short time existence of a solution Φ now
follows from [8, Theorem 2.7].

Finally, we will show that the maximal curvature becomes unbounded as t →
Tmax < ∞. Suppose to the contrary that maxΓt |k(., t)| ≤ M < ∞ for any t ∈
[0, Tmax). According to [6, Theorem 3.1], there exists a unique maximal solution
Γ : [0, T ′

max) → Ω(R2) satisfying Γ(0) = Γ0 and the geometric equation (1.1). Recall
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that Ω(R2) is the space of C1 regular curves in the plane (cf. [6]). Moreover, Γ(t) is
a C∞ smooth curve for any t ∈ (0, T ′

max) and the maximum of the absolute value of
the curvature tends to infinity as t → T ′

max. Thus Tmax < T ′
max and therefore the

curvature and, subsequently, ν remain bounded in the C2+σ′
norm on the interval

[0, Tmax] for any σ′ ∈ (σ, 1). Applying compactness arguments one sees that the limit
limt→Tmax

Φ(., t) exists and remains bounded in the space E1 and one can continue
the solution Φ beyond Tmax, which is a contradiction.

Next we will show how to construct a classical solution x = x(u, t) of the intrinsic
heat equation (2.2). Suppose that Φ̃ = (k̃, ν̃, g̃)T is a classical solution of the system
(3.13) existing on the time interval [0, T ]. Let us construct a flow of plane curves
Γt = Image(x(., t)), t ∈ [0, T ], as follows:

x(u, t) = x0(u) +

∫ t

0

(β̃ �̃N + α̃ �̃T ) dτ,(4.5)

where �̃N = (− sin ν̃, cos ν̃)T , �̃T = (cos ν̃, sin ν̃)T , β̃ = β(k̃, ν̃), and α̃ = α(k̃, ν̃, g̃). We
claim that x(u, t) is a classical solution of (2.2).

Theorem 4.2. Assume β and α satisfy assumptions of Theorem 4.1. Let Φ̃ =
(k̃, ν̃, g̃)T be a classical solution of (3.13) such that the quantities k̃, β̃, and g̃−1∂uα̃
are bounded. Then x = x(u, t) given by (4.5) satisfies |∂ux| = g̃, k = k̃, ν = ν̃,

�N = �̃N , �T = �̃T , where k, ν, �N, �T represent the curvature, the tangent angle, and the
unit normal and tangent vectors of the curve Γt = Image(x(., t)). Moreover, x ∈
C([0, T ]; (C2+σ(S1))2) ∩ C1([0, T ]; (Cσ(S1))2) is a classical solution of the intrinsic
heat equation (2.2).

Proof. First we prove that ∂uν̃ = g̃k̃ for any classical solution of (3.13). Indeed,
if we denote K = k̃ − g̃−1∂uν̃, then it is easy calculus to verify that K satisfies the
linear parabolic equation

∂K

∂t
=

1

g̃

∂

∂u

(
β′
k(k̃, ν̃)

g̃

∂K

∂u

)
− 1

g̃

∂

∂u

(
β′
ν(k̃, ν̃)K

)
+

(
k̃β̃ − 1

g̃

∂α̃

∂u

)
K.

Moreover, K(u, 0) = 0 because ∂uν̃
0 = g̃0k̃0 (see (3.15)). The term k̃β̃ − g̃−1∂uα̃

is assumed to be bounded and therefore we may conclude that K(u, t) = 0 for any

u ∈ [0, 1], t ∈ [0, T ]. As g̃k̃ = ∂uν̃ we end up with Frenet’s formulae ∂u �̃T = g̃k̃ �̃N

and ∂u �̃N = −g̃k̃ �̃T . Similarly as in the proof of the identities (3.1), the equation

∂tx = β̃ �̃N + α̃ �̃T yields p.∂tp = g̃2(−kβ̃ − g̃−1∂uα̃), where p = ∂ux. Thus ∂t(|p|2) =
2p.∂tp = 2∂t(g̃

2) and therefore |∂ux| = |p| = g̃ because |∂ux0| = g0. Again, using the
last two equations in (3.1) we obtain k = (∂ux ∧ ∂2

ux)/|∂ux|3 = k̃ and subsequently

ν = ν̃, which gives us �N = �̃N, �T = �̃T . Hence x = x(u, t) obeys (2.4), i.e., ∂tx =

β(k, ν) �N + α(k, ν, g)�T . Therefore x is a solution of the intrinsic heat equation (2.2).
The regularity properties of x follow directly from the regularity of the solution Φ̃ and
(4.5) (see Theorem 4.1).

5. Analysis of the equations for geometric quantities and short time
existence of solutions in the degenerate case. The aim of this section is to prove
the short time existence of smooth solutions of the curve shortening flow governed by
the intrinsic heat equation (2.2). Throughout the rest of the paper we will assume
that the normal velocity function v = β(k, ν) has the form

β(k, ν) = γ(ν)|k|m−1k,
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where m > 0 and γ : R → R
+ is a given C∞ smooth anisotropy function satisfying

0 < C−1
1 ≤ γ(ν) ≤ C1, |γ′

ν(ν)| ≤ C1 for any ν ∈ R,(5.1)

where C1 > 0 is a constant.
The assumptions guaranteeing the local existence of classical solutions of a nonlin-

ear curve shortening flow developed by Angenent in [6, 7] as well as those of Theorem
4.1 do not directly apply to the case β(k, ν) = γ(ν)|k|m−1k for m �= 1. Recall that
these theories require β to satisfy (4.2). To use the result established in Theorem 4.1
we must go through a regularization argument. A similar technique was applied in
the paper by Angenent, Sapiro, and Tannenbaum [12] for the case of an isotropic
function β(k) = k1/3. In what follows, we will slightly modify their approach for
the more general anisotropic power-like function β(k, ν) and for the case when the
curvature equation involves a nontrivial tangential velocity term α.

Henceforth, we denote by Ci,Mi any generic positive constant independent on
the regularization parameter 0 < ε ≤ 1. Constants Mi may also depend on the initial
curve Γ0. We make the following regularization assumption on the function β:

There is a family of nondecreasing C∞ functions βε, 0 < ε ≤ 1, such that
(i) βε(k, ν) → β0(k, ν) = β(k, ν) as ε → 0+ locally uniformly with respect to

(k, ν) ∈ R
2;

(ii) |βε(k, ν)| ≤ C2(1 + |k|m) for any k, ν ∈ R;
(iii) there exist constants λε± = λε±(M1) > 0 such that λε− ≤ βε ′

k (k, ν) ≤ λε+;

(iv) |βε ′
k (k, ν)k4(βε(k, ν))2|+ |βε ′

ν (k,ν)|2
βε ′
k

(k,ν) ≤ C3(M1) for any |k| ≤ M1 and ν ∈ R.

It is easy to verify that the regularization family (βε) defined as

βε(k, ν) = mγ(ν)

∫ k

0

(ε2 + ξ2)
m−1

2 dξ if 0 < m ≤ 1,

βε(k, ν) = β(k, ν) + εk if m > 1

satisfies the above assumptions (i)–(iv) with constants λε± > 0 given by

λε− = δ, λε+ = C1mεm−1 if 0 < m ≤ 1,

λε− = ε, λε+ = 1 + max
|k|≤M1

β′
k(k, ν) if m > 1,(5.2)

where δ > 0 is a constant independent of 0 < ε ≤ 1. Furthermore,

0 ≤ βε(k, ν)

k
≤ max(1,m−1)βε ′

k for any k, ν ∈ R and 0 < ε ≤ 1.(5.3)

Let us emphasize the fact that the tangential velocity α may also depend on the
regularization parameter ε, i.e., α = αε. For instance, αε may depend on k and
βε = βε(k, ν). Concerning the structural properties of αε we make the following
hypotheses:

sup
Φ∈B1/2

{|αε|+ |∂sαε|; αε = αε(Φ), 0 ≤ ε ≤ 1} < ∞(5.4)

for any set B1/2 = {(k, ν, g)T ∈ O1/2, |k| ≤ M1} and

‖αε(k, ν, g)‖C2(S1) ≤ C
(
1 + ‖g‖C1(S1) + ‖βε(k, ν)‖qC1(S1)

)
(5.5)
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for any Φ = (k, ν, g)T ∈ B1/2, where C = C(M1) > 0 is a constant and 1 ≤ q < 4
3 . In

section 6 we will show how to construct a so-called tangential velocity preserving the
relative local length satisfying the above hypotheses.

Let Γ0 be a smooth initial curve such that Φ0 = (k0, ν0, g0)T ∈ O1 ⊂ E1. By
Φε = (kε, νε, gε)

T we denote the classical solution of the governing system of equations
(3.13) with β = βε and α = αε. The short time existence of Φε has been justified by
Theorem 4.1 for any 0 < ε ≤ 1. From (4.5) and Theorem 4.2 we furthermore know
that the function

xε(u, t) = x0(u) +

∫ t

0

(
βε �Nε + αε �Tε

)
dτ

is a classical solution of the intrinsic heat equation (2.2) for any 0 < ε ≤ 1.
First we will show that the maximum of |k| remains bounded in a short time

interval [0, T ] and the parameterization of the curve Γt is regular.
Lemma 5.1. Suppose that the regularization assumptions (i), (ii) are satisfied.

Then there exist constants T > 0 and M1 > 0 such that

max
Γt

|kε(., t)| ≤ M1 for any t ∈ [0, T ] and ε ∈ (0, 1].

If αε satisfies (5.4), then there are constants g± > 0 such that

0 < g− < gε(u, t) < g+ < ∞ for any (u, t) ∈ QT and ε ∈ (0, 1].

Proof. The proof of the first part is essentially the same as that of [12, The-
orem 6.2]. Indeed, as ∂tkε = ∂2

sβ
ε + αε∂skε + k2

εβ
ε, then by applying a max-

imum principle argument we get ∂t(maxΓt
ε
|kε(., t)|) ≤ F ε(maxΓt

ε
|kε(., t)|), where

F ε(k) = maxν k
2|βε(k, ν)| ≤ C2k

2(1+|k|m) for any 0 < ε ≤ 1. Solving this differential
inequality we conclude the proof of the bound for the total variation of the curvature.
To prove estimates on g we integrate the third equation in (3.14) with respect to time.

We obtain gε(u, t) = g0(u) exp(
∫ t
0
(−kεβ

ε + g−1
ε ∂uα

ε) dτ), where βε = βε(kε, νε). The
proof now follows from the fact that both kεβ

ε and g−1
ε ∂uα

ε = ∂sα
ε are bounded for

|k| ≤ M1 and 0 < g0 < ∞ uniformly with respect to ε ∈ (0, 1].
In the next lemma we analyze the degenerate case when 1 < m ≤ 2. It is a

key technical tool in order to establish some a priori estimates needed in the proof of
short time existence of a solution in this degenerate case. Interestingly enough, a new
geometric assumption on the initial curve is needed.

Lemma 5.2. Assume 1 < m ≤ 2. Suppose that the initial curve Γ0 satisfies∫
Γ0

k0

β(k0, ν0)
ds < ∞.(5.6)

Then there exists a constant M2 > 0 such that

max
t∈[0,T ]

∫
Γt

kε
βε(kε, νε)

ds+

∫ T

0

∫
Γt

|∂skε|2 ds ≤ M2 for any 0 < ε ≤ 1.(5.7)

Proof. Denote v = βε(kε, νε), k = kε, and ν = νε. By using (3.4), the curvature
equation (3.2) and the velocity equation (3.10), we obtain

d

dt

∫
Γt

k

v
ds =

∫
Γt

∂

∂t

(
k

v

)
+

k

v
(−kv + ∂sα) ds
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=

∫
Γt

(
1

v
− kβε ′

k

v2

)(
∂2
sv + α∂sk + k2v

)
(5.8)

− kβε ′
ν

v2
(∂sv + αk)− k2 +

k

v
∂sαds

=

∫
Γt

(
1

v
− kβε ′

k

v2

)
∂2
sv − k3βε ′

k

v
− kβε ′

ν

v2
∂sv ds

because of the identity 0 =
∫
Γt ∂s

(
αk
v

)
ds =

∫
Γt

k
v∂sα + α

v ∂sk − αk
v2 ∂sv ds, (3.3), and

(3.11). Recall that βε ′
k = β′

k + ε = mβ
k + ε and therefore

kβε ′
k

v
= m+ ε(1−m)

k

v
.

Plugging the above expression into (5.8) and integration by parts yield the identity

d

dt

∫
Γt

k

v
ds+ (m− 1)

∫
Γt

1

v2

(
|∂sv|2 + ε∂sv∂sk − 2ε

k

v
|∂sv|2

)
ds

= −m

∫
Γt

k2 ds+ ε(m− 1)

∫
Γt

k3

v
ds−

∫
Γt

kβε ′
ν

v2
∂sv ds.

It follows from (3.11) that ∂sk = (∂sv − βε ′
ν k)/βε ′

k . Thus

d

dt

∫
Γt

k

v
ds+ (m− 1)

∫
Γt

∣∣∣∣1v ∂sv
∣∣∣∣
2(

1 +
ε

βε ′
k

− 2ε
k

v

)
ds

= −m

∫
Γt

k2

(
1− εk

v

)
ds− ε

∫
Γt

k3

v
ds+

∫
Γt

kβε ′
ν

v2
∂sv

(
ε(m− 1)

βε ′
k

− 1

)
ds

≤
∫

Γt

γ′(ν)
γ(ν)

k

v
∂sv

(
ε(m− 1)

βε ′
k

− 1

)
ds ≤ mC2

1

∫
Γt

∣∣∣∣kv ∂sv
∣∣∣∣ ds

because of the inequalities |βε ′
ν

v | = |γ′(ν)
γ(ν) | ≤ C2

1 , 0 ≤ εk
v ≤ 1, and 0 < ε

βε ′
k

≤ 1. Let us

consider the auxiliary function φ defined as follows:

φ(k) =
1

k2

(
1 +

ε

βε ′
k

− 2εk

v

)
=

1

k2

(
1 +

ε

mγ(ν)|k|m−1 + ε
− 2ε

γ(ν)|k|m−1 + ε

)
.

It is easy calculus to verify that if 1 < m ≤ 2 then there exists a constant M3 > 0
independent of 0 < ε ≤ 1 and such that inf |k|≤M1

φ(k) ≥ M3. Using the Cauchy–
Schwarz inequality we get

d

dt

∫
Γt

k

v
ds+M3(m− 1)

∫
Γt

∣∣∣∣kv ∂sv
∣∣∣∣
2

ds ≤ mC2
1

∫
Γt

∣∣∣∣kv ∂sv
∣∣∣∣ ds

≤ m2C4
1

2(m− 1)M3
Lt +

M3(m− 1)

2

∫
Γt

∣∣∣∣kv ∂sv
∣∣∣∣
2

ds

and so

d

dt

∫
Γt

k

v
ds+

M3(m− 1)

2

∫
Γt

∣∣∣∣kv ∂sv
∣∣∣∣
2

ds ≤ m2C4
1

2(m− 1)M3
L0.
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Integrating the above inequality over the interval [0, T ], taking into account the in-
equality ∣∣∣∣kv ∂sv

∣∣∣∣ =
∣∣∣∣
(
m+ (1−m)

εk

v

)
∂sk +

γ′(ν)
γ(ν)

k2

∣∣∣∣ ≥ |∂sk| − C2
1M

2
1

and the initial time inequality
∫
Γ0

k
v ds =

∫
Γ0

k0

βε(k0,ν0) ds ≤ ∫
Γ0

k0

β(k0,ν0) ds < ∞ we

finally obtain the estimate (5.7).
Remark 5.1. The assumption (5.6) seems to be quite restrictive. Note that

it is fulfilled in the case when the initial curve Γ0 is strictly convex or in the case
of a nonconvex smooth curve whose inflection points have at most (2 + 1

m−1 )-order
contact with their tangents. As an example one can consider the Bernoulli lemniscate
(x2 + y2)2 = 4xy having the third-order contact with its tangents at the origin. In
this example the assumption (5.6) is satisfied iff 1 < m < 2.

Remark 5.2. It would be of interest to know whether the power m = 2 is an
optimal value. It follows from recent results due to Andrews [4] that for higher
powers of m the curve Γt need not be sufficiently smooth in the vicinity of a point
where the curvature vanishes.

Lemma 5.3. For any t ∈ (0, T ) we have

d

dt
Xp(t) ≤ −

∫
Γt

βε ′
k |∂s(wp/2)|2 ds+M4p

2(1 +Xp(t)),(5.9)

where Xp(t) =
∫
Γt |w|pds =

∫ 1

0
|w|p|∂uxε| du and w = ∂sβ

ε(kε, νε), p ≥ 1.
Proof. Denote k = kε, ν = νε. Applying the local length equation (3.4) and the

equation for the gradient of velocity (3.12) we obtain

d

dt
Xp(t) =

∫ 1

0

(∂t(|w|p)|∂ux|+ |w|p(−|∂ux|kv + ∂uα
ε)) du

=

∫
Γt

(
p|w|p−2w∂tw + |w|p(−kv + ∂sα

ε)
)
ds

=

∫
Γt

(
p|w|p−2w

[
∂s
(
βε ′
k ∂sw + βε ′

k k2v + βε ′
ν w

)
+ αε∂sw + kvw

]
+ |w|p(−kv + ∂sα

ε)

)
ds

= −p(p− 1)

∫
Γt

|w|p−2
[
βε ′
k |∂sw|2 + βε ′

k k2v∂sw + βε ′
ν w∂sw

]
ds

+ (p− 1)

∫
Γt

|w|pkv ds

because 0 =
∫
Γt ∂s (|w|pαε) =

∫
Γt p|w|p−2w∂swαε + |w|p∂sαε ds. Notice that the

tangential velocity term αε is involved neither in the expression for Xp nor in d
dtXp.

Applying the Cauchy–Schwarz inequality we get

|βε ′
k k2v∂sw + βε ′

ν w∂sw| ≤ βε ′
k k4v2 + βε ′

k

|∂sw|2
4

+
|βε ′

ν |2
βε ′
k

|w|2 + βε ′
k

|∂sw|2
4

and therefore

d

dt
Xp(t) = −p(p− 1)

2

∫
Γt

βε ′
k |w|p−2|∂sw|2 ds
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+ p(p− 1)

∫
Γt

|w|p−2βε ′
k k4v2 + |w|p |β

ε ′
ν |2
βε ′
k

ds+ (p− 1)

∫
Γt

|w|pkv ds

≤ −
∫

Γt

βε ′
k |∂s(wp/2)|2ds

+ C3p(p− 1)(Xp−2(t) +Xp(t)) + (p− 1)M2
1Xp(t)

because |w|p−2|∂sw|2 = 4
p2 |∂s(wp/2)|2 and 2p(p − 1)/p2 ≥ 1 for any p ≥ 2. Since

Xp−2(t) =
∫
Γt |w|p−2 ≤ ∫

Γt(1 + |w|p) ≤ Lt + Xp(t) for any p ≥ 2 and Lt ≤ L0 (see
(3.5)) we finally obtain the inequality (5.9) with a constant M4 > 0 independent of
0 < ε ≤ 1 and p ≥ 2.

Lemma 5.4. Suppose that 0 < m ≤ 2. If 1 < m ≤ 2 we additionally suppose
that the initial curve Γ0 satisfies the condition (5.6). Then there is a constant M7 > 0
such that

if 0 < m ≤ 1 then maxΓt |∂sβε(kε, νε)| ≤ M7t
− 3

4 ;

if 1 < m ≤ 2 then maxΓt |∂sβε(kε, νε)| ≤ M7t
− 1

2

for any 0 < ε ≤ 1 and 0 < t ≤ T .
Proof. The key idea behind the proof of this estimate is a modification of the

well-known Nash–Moser iterative technique adopted to the flow of plane curves. It
is similar, in spirit and technique, to that of [12, Chapter 6], which has been applied
in the case of the affine scaling parameterization, i.e., β(k) = k1/3. By using the

differential inequality (5.9) we will show that ‖w‖p = X
1/p
p (t) is bounded uniformly

with respect to p ≥ 2 and 0 < ε ≤ 1, yielding the desired L∞ estimate on ∂sβ
ε(kε, νε).

Let us consider the case 0 < m ≤ 1. First, we will prove an estimate for X2(t).
By (5.2) we have βε ′

k ≥ δ > 0 and βε ≤ M5. Then

X2 =

∫
Γt

|w|2 =

∫
Γt

(∂sv)
2 = −

∫
Γt

v∂2
sv = −

∫
Γt

βε∂sw

≤ M5

δ

∫
Γt

√
βε ′
k |∂sw| ≤ M5(L

t)
1
2

δ

(∫
Γt

βε ′
k |∂sw|2

) 1
2

.

According to (5.9), X2 is a solution of the differential inequality

dX2

dt
≤ − 1

M2
X2

2 + 4M4(1 +X2),

where M = M5(L
0)

1
2 /δ. By solving the above differential inequality we obtain

X2(t) ≤ A2
2t

−1, where A2 is a constant depending only on m, Γ0, and T .
Let p ≥ 2. As w = ∂sv there must be a point at Γt where wp/2 vanishes. From

the interpolation inequality [12, Proposition 6.1, (25)] we infer

Xp =

∫
Γt

|w|p ≤
(∫

Γt

|w| p2
) 4

3
(∫

Γt

|∂s(w
p
2 )|2

) 1
3

≤ X
4
3
p
2

(
1

δ

∫
Γt

βε ′
k |∂s(w

p
2 )|2

) 1
3

.

Let us consider the case 1 < m ≤ 2. Again, we begin with an estimate for X2(t).
For 1 < m the derivative βε ′

k is bounded uniformly with respect to 0 < ε ≤ 1. Since
|k| ≤ M1 we have X2(0) =

∫
Γ0 |∂sβε|2 ≤ M

∫
Γ0(1 + |∂sk0|2) < ∞. Integrating the

differential inequality (5.9) we obtain X2(t) ≤ 1+X2(t) ≤ (1+X2(0)) exp(4M4t) ≤ A2
2

for any 0 ≤ t ≤ T , where A2 > 0 is a constant. By using the Cauchy–Schwarz
inequality we obtain

sup
Γt

|w| p2 ≤
∫

Γt

|∂s(w
p
2 )| ≤

(∫
Γt

1

βε ′
k

) 1
2
(∫

Γt

βε ′
k |∂s(w

p
2 )|2

) 1
2

.
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According to (5.3) and Lemma 5.2 we have (
∫
Γt

1
βε ′
k
)

1
2 ≤ M6 and hence

Xp =

∫
Γt

|w|p ≤ sup
Γt

|w| p2 X p
2
≤ M6X p

2

(∫
Γt

βε ′
k |∂s(w

p
2 )|2

) 1
2

.

In both cases, taking into account (5.9) we end up with a differential inequality

d

dt
Xp(t) ≤ −δ̂

XL
p (t)

XK
p/2(t)

+Mp2(1 +Xp(t))(5.10)

for any t ∈ (0, T ], p ≥ 2, and 0 < ε ≤ 1, where (L,K) = (3, 4) if 0 < m ≤ 1,

(L,K) = (2, 2) if 1 < m ≤ 2, and δ̂,M > 0 are constants independent of 0 < ε ≤ 1
and p ≥ 2. In the case (L,K) = (3, 4) this is exactly the same differential inequality
as that of [12, eq. (2.4)]. Following the iterative method of supersolutions to the
differential inequality (5.10) presented in [12, Chapter 6], given a couple (L,K) such
that K = 2(L − 1), L > 1, one can prove the existence of a bounded sequence (Ak),
0 < Ak ≤ M7, such that

Xpk
(t) ≤ Apk

k t−αkpk

for any pk = 2k+1, k ≥ 0, where α0 = 1
2 for 0 < m ≤ 1, α0 = 0 for 1 < m ≤ 2 and

αk+1 = αk +
1

(L− 1)
2−k−2 = α0 +

1

L− 1

k∑
l=0

2−l−2 → α0 +
1

2(L− 1)

as k → ∞. This yields the estimate

sup
Γt

|∂sβε| = lim
k→∞

X
1
pk
pk (t) ≤ M7t

−
(
α0+

1
2(L−1)

)

for any t ∈ (0, T ] and 0 < ε ≤ 1. Since α0 = 1
2 , L = 3 for 0 < m ≤ 1 and α0 = 0, L = 2

for 1 < m ≤ 2, the proof of the lemma follows.
Summarizing all the previous results we conclude the following a priori estimates.
Lemma 5.5. Assume 0 < m ≤ 2. Let Φε = (kε, νε, gε)

T be a classical solution
of (3.13) existing on the interval I = [0, T ] and satisfying the initial condition Φ0 ∈
O1 ⊂ E1. If 1 < m ≤ 2 we furthermore assume that the initial curve Γ0 satisfies the
condition (5.6). If the tangential velocity αε satisfies the condition (5.4), then

(1) kε, βε, t
3
4 ∂uβ

ε ∈ L∞(QT );
(2) gε, g−1

ε ∈ W 1,∞(I, L∞(S1));

(3) ∂uνε, t
3
4 ∂tνε ∈ L∞(QT );

(4) xε ∈ (W 1,∞(QT ))
2;

and if, in addition, αε satisfies the condition (5.5), then
(5) gε, g

−1
ε ∈ W 1,∞(QT ) and ∂uxε ∈ (W 1,∞(QT ))

2

and their corresponding norms are bounded independently of 0 < ε ≤ 1.
Proof. The statement (1) is an immediate consequence of Lemmas 5.1 and 5.4 and

the assumption (ii) made on the regularization βε. Since ∂tgε = −gεkεβ
ε + ∂uα

ε and
∂tg

−1
ε = −g−2

ε ∂tgε the statement (2) follows from (1), Lemma 5.1, and the assumption
(5.4). The bounds for νε follow from the identities ∂uνε = gεkε, ∂tνε = ∂sβ

ε + αεkε
(see (3.8), (3.9)). As ∂txε = βε �Nε + αε �Tε, ∂uxε = gε �Tε, and βε, αε, gε ∈ L∞(S1)
we conclude the statement (4). Let us assume αε satisfies the condition (5.5). By
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integrating the third equation in (3.13) we obtain gε(., t) = g0(.) exp(
∫ t
0
(−kεβ

ε +
g−1
ε ∂uα

ε)dτ). Furthermore,

∂u(kεβ
ε) = kε∂uβ

ε + βε∂ukε =

(
kε +

βε

βε ′
k

)
∂uβ

ε − βεβε ′
ν

βε ′
k

gεkε.

With regard to (1) and the regularization assumption made on βε, we can conclude
‖kεβε‖C1 ≤ M‖βε‖C1 . Taking into account the condition (5.5) and Lemma 5.4 we
obtain the estimate

‖gε(., t)‖C1 ≤ M

(
1 +

∫ t

0

(‖kεβε‖C1 + ‖αε‖C2 + ‖gε(., τ)‖C1)dτ

)

≤ M

(
1 +

∫ t

0

‖βε‖C1dτ +

∫ t

0

‖gε(., τ)‖C1dτ

)

≤ M

(
1 +

∫ t

0

‖gε(., τ)‖C1dτ

)

for t ∈ [0, T ] and 0 < ε ≤ 1. Hence the L∞ bounds for ∂ugε and ∂ug
−1
ε = −g−2

ε ∂ugε
follow from Gronwall’s lemma. The L∞ bounds for ∂2

uxε and ∂t∂uxε now follow

from the identities ∂2
uxε = ∂u (gεTε) = ∂ugε �Tε + g2

εkε �Nε and ∂t∂uxε = ∂t (gεTε) =

∂tgε �Tε + gε∂tνε �Nε and parts (2) and (3).
Now we are in a position to state the main result of this paper.
Theorem 5.6. Suppose that β(k, ν) = γ(ν)|k|m−1k, where 0 < m ≤ 2 and

γ satisfies (5.1). Let Γ0 be a smooth regular plane curve such that (k0, ν0, g0)T ∈
O1 ⊂ E1. If 1 < m ≤ 2, we also suppose that Γ0 satisfies the condition (5.6).
If the tangential velocity αε obeys the conditions (5.4) and (5.5), then there exists
T > 0 and a family of regular plane curves Γt = Image(x(., t)), t ∈ [0, T ], x : QT =
[0, 1]× [0, T ] → R

2 such that
(1) x, ∂ux ∈ (C(QT ))

2, ∂2
ux, ∂tx, ∂u∂tx ∈ (L∞(QT ))

2;

(2) ∂tx. �N = β(k, ν) for any t ∈ [0, T ] and a.e. u ∈ [0, 1], where k, ν, and �N are
the curvatures, the tangent angle, and the unit normal vector of the curve Γt.

Proof. It follows from Lemma 5.5, part (4), and the Ascoli–Arzelà theorem that
there exists a subsequence of (xε) converging uniformly, i.e., xε → x in (C(QT ))

2 as
ε → 0+. By part (5) we also have ∂uxε → ∂ux in (C(QT ))

2 and ∂tx, ∂u∂tx, ∂
2
ux ∈

(L∞(QT ))
2. Again, by (4) and (5) we furthermore have νε ⇒ ν, gε ⇒ g in C(QT ) and

g > 0. Hence �Tε = gε∂uxε ⇒ g∂ux = �T and �Nε ⇒ �N , where �T and �N are the unit
tangent and normal vectors to the curve Γt = Image(x(., t)), t ∈ [0, T ]. Moreover,

arg(�T ) = ν.
Let t ∈ [0, T ] be a fixed time instant. By (1) we have |∂uβε| ≤ M and, as a

consequence, one has βε ⇒ β̃ in C(S1). Denote by bε : R → R the inverse function
to the increasing function k �→ βε(k, ν)/γ(ν), ε ∈ [0, 1], β0 = β. Notice that the term
βε(k, ν)/γ(ν) does not depend on ν. With regard to the regularization assumptions
made on βε we have bε → b0 = b locally uniformly in R. Then for the curvature kε =
bε(βε(kε, νε)/γ(νε)) = bε(βε/γ(νε)) we have the convergence kε ⇒ k = b(β̃)/γ(ν) in
C(S1). Thus β(k, ν) = β̃. As (∂2

uxε) is bounded in (L∞(S1))2 we have ∂2
uxε ⇀∗ ∂2

ux
weak star in (L∞(S1))2. On the other hand, kε = g−3

ε (∂uxε ∧ ∂2
uxε) ⇒ k, g−3

ε ⇒
g−3, ∂uxε ⇒ ∂ux. Thus k(u, t) is the curvature of the curve Γ

t at the point x = x(u, t)
for every t ∈ [0, T ] and a.e. u ∈ [0, 1]. Finally, as (∂txε) is bounded in (L∞(S1))2

we have ∂txε ⇀∗ ∂tx weak star in (L∞(S1))2. Therefore, βε = ∂txε. �Nε ⇀∗ ∂tx. �N
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as ε → 0+. Since βε ⇒ β̃ = β(k, ν) in C(S1) we conclude ∂tx. �N = β(k, ν), as
claimed.

6. Tangential velocity preserving the relative local length. As was al-
ready mentioned in section 2, the presence of a nontrivial tangential velocity term α�T
in the governing equation (2.4) can prevent the numerically computed solution of (2.2)
from forming numerical singularities like, e.g., collapsing of grid points or formation
of the so-called swallow tails. The goal of this section is to propose a suitable choice
of the functional α = α(k, ν, g) in such a way that a numerical scheme based on this
choice of α will be capable of uniform redistribution of grid points along the computed
curve. The main idea behind the construction of α is to analyze the relative local

length function defined as the ratio |∂ux(u,t)|
Lt , where Lt is the total length of Γt and

|∂ux(u, t)| represents the local length of Γt. The idea is to keep this ratio constant
with respect to time, i.e., preservation of the relative local length:

d

dt

( |∂ux(u, t)|
Lt

)
= 0(6.1)

for any u ∈ [0, 1] and t ∈ I = (0, T ). Taking into account (3.4) and (3.5) one sees that
(6.1) is fulfilled iff

∂α

∂s
= kβ(k, ν)− 1

L

∫
Γ

kβ(k, ν) ds,(6.2)

where Γ = Γt, L = L(Γ), k is the curvature of Γ, and β is the given normal velocity
function.

In what follows, we will show that there exist geometric quantities θ1, θ2 such
that the tangential velocity function α given by α = 1

θ1
∂
∂s (

1
θ2
) (see (2.5)) obeys (6.2).

We will furthermore prove some a priori estimates for α and θi, i = 1, 2, considered as
nonlocal operators from the Banach space E1/2 (see (4.3)) into C2+σ(S1). First we
need the following simple lemma.

Lemma 6.1. Let βε be a regularization of β satisfying regularization assumptions
(i)–(iv) from section 5. Let Γ = Image(x) be a C2 smooth regular plane curve. Then
there exists a unique weak solution ϑ ∈ C1(S1), ϑ(0) = ϑ(1) = 0, of the equation

− ∂

∂s

(
βε(k, ν)

k

∂ϑ

∂s

)
= kβε(k, ν)− 1

L

∫
Γ

kβε(k, ν) ds.(6.3)

Furthermore, there exists a constant C4 = C4(M1) > 0 such that

max
Γ

|ϑ| ≤ C4

∫
Γ

k

βε(k, ν)
ds and |∂sϑ| ≤ C4L(Γ)

k

βε(k, ν)

for any |k| ≤ M1.
Proof. Denote a = k

βε , g = |∂ux|, and f = 1
L

∫
Γ
kβε(k, ν) ds − kβε(k, ν). Then

0 < a < ∞, g > 0, and a, g, f ∈ C(S1). Hence

∂uϑ(u) = a(u)g(u)

(
A+

∫ u

0

f(v)g(v) dv

)
(6.4)

for some constant A. With regard to the condition ϑ(0) = ϑ(1) = 0 we obtain the
existence of a unique weak solution ϑ ∈ C1(S1) and

ϑ(u) = A

∫ u

0

a(ξ)g(ξ) dξ +

∫ u

0

a(ξ)g(ξ)

∫ ξ

0

f(v)g(v) dv dξ,
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where A = −(
∫ 1

0
a(ξ)g(ξ)

∫ ξ
0
f(v)g(v) dv dξ)(

∫ 1

0
a(ξ)g(ξ) dξ)−1. Since ag ≥ 0 we

have |A| + | ∫ u
0
fg| ≤ 2maxξ

∫ ξ
0
|f |g ≤ 2

∫ 1

0
|f |g = 2

∫
Γ
|f | ds ≤ 4

∫
Γ
kβε(k, ν) ds ≤

4L(Γ)M1C2(1 + Mm
1 ) = C4L(Γ). This, together with (6.4), yields the pointwise es-

timate for |∂sϑ| = |g−1∂uϑ|. The bound for max |ϑ| now easily follows from the
boundary condition ϑ(0) = 0.

Lemma 6.2. Let Γ = Image(x) be a smooth regular plane curve such that Φ =
(k, ν, g)T ∈ O1/2 ⊂ E1/2, |k| ≤ M1. Let βε be any regularization of β satisfying
the regularization assumptions (i)–(iv) from section 5. Then there exist geometric
quantities θεi > 0, θεi : O1/2 → C1(S1), i = 1, 2, such that

θε1θ
ε
2 =

k

βε(k, ν)
and αε =

1

θε1

∂

∂s

(
1

θε2

)
, θε2(0) = θε2(1) = 1,

where αε ∈ C1(O1/2, C
2+σ(S1)) is the tangential velocity preserving the relative local

length satisfying (6.2). Moreover,

max
Γ

|θε2(Φ)|+max
Γ

|θε2(Φ)−1| ≤ exp

(
M6

∫
Γ

k

βε
ds

)
,

|∂sαε(Φ)| ≤ M7, ‖αε(Φ)‖C2 ≤ M7(1 + ‖βε(k, ν)‖C1 + ‖g‖C1);

i.e., αε satisfies the hypotheses (5.4) and (5.5).
Proof. Let ϑ be a solution of (6.3). Define θε2 = exp(ϑ) and θε1 = k/(βεθε2). The

maximum bounds for θε2 and (θε2)
−1 follow from Lemma 6.1. With regard to Lemma

6.1 we obtain that

αε =
1

θε1

∂

∂s

(
1

θε2

)
= −βε

k

∂

∂s
ln θε2 = −βε

k

∂ϑ

∂s

is a solution of (6.2). Since βε satisfies the regularization assumption we have αε ∈
C1(O1/2, C

2+σ(S1)). Notice that the estimate for the C2+σ norm of αε may depend
on 0 < ε ≤ 1. It furthermore follows from Lemma 6.1 that ‖αε(Φ)‖C0 ≤ M6L(Γ).
With regard to (6.2) we have ∂uα

ε = (kβε − const)g, where const = 1
L

∫
Γ
kβεds is

a constant. Hence |∂sαε| = g−1|∂uαε| ≤ 2maxΓ |kβε(k, ν)| ≤ M7. Furthermore, as
‖kβε(k, ν)‖C1 ≤ M‖βε(k, ν)‖C1 and |const| ≤ maxΓ |kβε(k, ν)|, we have |∂2

uα
ε| ≤

|const||∂ug| + |∂u(gkβε(k, ν))| ≤ M7(1 + ‖βε(k, ν)‖C1 + ‖g‖C1), and the bound for
‖αε‖C2 follows. This is why αε satisfies the assumptions (5.4) and (5.5).

Theorem 6.3. Suppose that β(k, ν) = γ(ν)|k|m−1k, where 0 < m ≤ 2 and γ
satisfies (5.1). Let Γ0 = Image(x0) be a smooth regular plane curve as in Theorem 5.6.
Then there exists T > 0 and a family of regular plane curves Γt = Image(x(., t)), t ∈
[0, T ] such that

(1) x, ∂ux ∈ (C(QT ))
2, ∂2

ux, ∂tx, ∂u∂tx ∈ (L∞(QT ))
2;

(2) the flow Γt = Image(x(., t)), t ∈ [0, T ] of regular plane curves satisfies the
geometric equation

∂tx = β �N + α�T ,

where β = β(k, ν) and α is the tangential velocity preserving the relative local
length, i.e., α satisfies (6.2) and

|∂ux(u, t)|
Lt

=
|∂ux0(u)|

L0

for any t ∈ [0, T ] and u ∈ [0, 1].
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Proof. Let us consider the tangential velocity function αε, 0 < ε ≤ 1, satisfying
∂sα

ε = kεβ
ε(kε, νε)− 1

Lε

∫
Γε

kεβ
εds whose existence has been verified in Lemma 6.2.

Moreover, αε is a C1 mapping from O1/2 ⊂ E1/2 into c2+σ(S1) and αε satisfies the
structural conditions (5.4) and (5.5). By Theorem 5.6 there exists a family of regular
plane curves Γt = Image(x(., t)) with the properties as in part (1). To prove (2), we

put α = ∂tx.�T and recall that gε = |∂uxε| ⇒ g = |∂ux| as ε → 0+. Therefore, Lt
ε =∫ 1

0
|∂uxε(u, t)| du → Lt =

∫ 1

0
|∂ux(u, t)| du as ε → 0+. Thus |∂uxε(u,t)|

Lt
ε

→ |∂ux(u,t)|
Lt as

ε → 0+. On the other hand, since αε is the tangential velocity preserving the relative

local length we have d
dt

|∂uxε(u,t)|
Lt

ε
= 0. Hence |∂ux

0(u)|
L0 = |∂ux(u,t)|

Lt . Therefore, α is

the tangential velocity preserving the relative local length and from (6.1), (3.4), and
(3.6), we may conclude that α satisfies (6.2).

7. Numerical scheme. In this section we describe a numerical procedure that
can be used for computing the curve evolution satisfying the geometric equation (1.1).
To this end, we will propose a scheme solving the coupled system of intrinsic heat
equation (2.2) for the position vector x and (6.2) for the tangential velocity α. A
smooth solution x is approximated by discrete plane points xji , i = 1, . . . , n, j =
0, . . . ,m, where index i represents space discretization and index j a discrete time
stepping. The approximation of a curve in time jτ (with uniform time step τ = T

m )

is given by a polygon with vertices xji , i = 1, . . . , n. In order to obtain such an
approximation of an evolving curve in the jth time step, we use the following fully
discrete semi-implicit scheme:

1

2
(gj−1

i + gj−1
i+1 )

xji − xj−1
i

τ
=

xji+1 − xji

hj−1
i+1

− xji − xji−1

hj−1
i

,(7.1)

i = 1, . . . , n, for every j = 1, . . . ,m. The coefficients in (7.1) (for simplicity we omit
upper index j − 1) are given by the following expressions:

gi = |ri|θ1,i, hi = |ri|θ2,i, ri = xi − xi−1, θ1,i =
ki

βiθ2,i
,

ki =
1

2|ri| sgn(ri−1 ∧ ri+1) arccos

(
ri+1.ri−1

|ri+1||ri−1|
)
,(7.2)

νi = arccos(ri1/|ri|) if ri2 ≥ 0, νi = 2π − arccos(ri1/|ri|) if ri2 < 0,

βi = βε(ki, νi), θ2,i = exp(ϑi),

and the system (7.1) is subject to the periodic boundary conditions xji+n = xji (i =
0, 1). In order to compute ϑi, i = 1, . . . , n, governing tangential redistribution of
flowing points, we solve

−
βi

ki
+ βi+1

ki+1

|ri|+ |ri+1| (ϑi+1 − ϑi) +

βi

ki
+ βi−1

ki−1

|ri|+ |ri−1| (ϑi − ϑi−1)

= |ri|

kiβi −

(
n∑

l=1

|rl|klβl
)(

n∑
l=1

|rl|
)−1


(7.3)

for i = 1, . . . , n, accompanied by the periodic boundary conditions ϑi+n = ϑi (i =
0, 1).
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The system (7.3) can be represented by a symmetric positive semidefinite tridi-
agonal matrix with kernel containing n-dimensional vector each component of which
is equal 1. Since

∑n
i=1 bi = 0, where bi are the components of the right-hand side of

(7.3), we have assured the existence of a solution that is also unique up to an addi-
tive constant. We choose the unique solution by imposing the constraint condition
ϑ0 = ϑn = 0.

Then, the linear systems (7.1) can be represented by two symmetric positive
definite tridiagonal matrices for which we have the existence and uniqueness of a
solution. In each discrete computational time step jτ the scheme (7.1)–(7.3) leads to
solving three tridiagonal systems, namely, one for the redistribution of points along
the curve and two for finding the new curve position.

Remark 7.1. The approximation (7.1) can be considered as a full time-space
discretization analogy to the backward Euler time semidiscretization scheme

xj − xj−1

τ
=

1

θj−1
1

∂

∂sj−1

(
1

θj−1
2

xj

∂sj−1

)
, j = 1, 2, . . . ,m,(7.4)

of (2.2), where the terms θ1, θ2 as well as arclength parameterization s are taken
from the previous time step xj−1, and Γj = Image(xj) is considered as a smooth
approximation of the evolution in discrete time jτ . Denoting δτ (x

j) = (xj − xj−1)/τ
and dsj−1 = |∂uxj−1|du, θj−1

1 θj−1
2 = kj−1/βε(kj−1, νj−1), we easily obtain

δτ (x
j) = β̃ �N j + α̃�T j ,(7.5)

where

β̃ =
|∂uxj |2kj

|∂uxj−1|2kj−1
βε(kj−1, νj−1), α̃ =

1

θj−1
1

∂

∂sj−1

(
1

θj−1
2

|∂uxj |
|∂uxj−1|

)
.

In the next proposition we show that the backward Euler time discretization
scheme generates a discrete curve shortening sequence of plane curves. This result
can be considered just as an indication and not a rigorous proof that the sequence
of numerically computed discrete polygonal curves is stable in the sense that their
length decreases during evolution. The detailed analysis of the stability of the scheme
(7.1)–(7.3) is a work in progress and we hope it will be discussed in the forthcoming
paper.

Proposition 7.1. Assume xj−1 ∈ C1(S1;R2), θj−1
1 , θj−1

2 ∈ C1(S1;R2) are

such that |∂uxj−1| > 0, θj−1
1 > 0, θj−1

2 > 0. Then there exists a unique solution
xj ∈ C2(S1;R2) of (7.4). Moreover,

Lj + τ

∫
Γj

β̃kjdsj ≤ Lj−1,(7.6)

where Lj =
∫ 1

0
|∂uxj |du represents the length of the curve Γj. The sequence Γj =

Image(xj) represents a curve shortening discrete flow.
Proof. The existence and uniqueness of a solution xj can be achieved in the same

way as was done in [33, Lemma 4.1] in the case θ1 = θ2 = k/β. To prove the estimate
(7.6) we proceed in a similar way as in the continuous case (see (3.5)). Indeed, the
time-discrete analogy of the first equation in (3.1) is given by

δτ (∂ux
j) = |∂uxj |

(
(∂sj β̃ + α̃kj) �N j + (−β̃kj + ∂sj α̃)�T

j
)
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and therefore

|∂uxj | = τδτ (∂ux
j). �T j + ∂ux

j−1. �T j = τδτ (∂ux
j). �T j + |∂uxj−1|�T j−1. �T j

≤ |∂uxj−1|+ τ(−β̃kj + ∂sj α̃)|∂uxj | = |∂uxj−1| − τ β̃kj |∂uxj |+ τ∂uα̃.

Integrating the above inequality over the interval [0, 1] yields the bound (7.6). Since
βεk ≥ 0 we have β̃kj ≥ 0 and therefore Lj ≤ Lj−1; i.e., Γj represents a curve-
shortening discrete flow.

Remark 7.2. The scheme (7.1)–(7.3) can be derived by using the flowing control
volume method (cf. [37]). Let us consider points xi, i = 1, . . . , n, belonging to a
smooth curve Γt = Image(x(., t)), where x is a solution of (2.2) at time t. By [xi−1, xi]
we denote the arc of the curve between the points xi−1 and xi. Let us consider a
control volume Vi around xi consisting of part of the arc connecting centers ci, ci+1

of arcs [xi−1, xi], [xi, xi+1], respectively. Such a centered control volume is flowing
and changing a length during the evolution respecting the new positions of the points
xi along the curve. Let us integrate intrinsic diffusion equation (2.2) along the finite
volume Vi. We obtain ∫

Vi

θ1
∂x

∂t
ds =

[
1

θ2

∂x

∂s

]ci+1

ci

.(7.7)

Let us consider piecewise linear approximation of x, i.e., a polygon connecting points
xi, i = 1, . . . , n. From (7.2) we can compute constant geometrical quantities ki, νi, βi
for each line segment [xi−1, xi]. The quantity ϑi can be computed numerically by
solving control volume approximation of the intrinsic equation (6.2). Integrating
(6.2) along [xi−1, xi] (a dual volume to Vi) yields

−
[
β

k

∂ϑ

∂s

]xi

xi−1

= |ri|

kiβi −

(
n∑

l=1

|rl|klβl
)(

n∑
l=1

|rl|
)−1


 .(7.8)

Approximating ∂ϑ
∂s (xi) by 2 ϑi+1−ϑi

(|ri|+|ri+1|) and β
k (xi) by

1
2 (

βi

ki
+ βi+1

ki+1
) we end up with the

system (7.3). Now, approximating ∂x
∂t by ẋi inside Vi we obtain from (7.7) the system

of ordinary differential equations

1

2
(|ri|θ1,i + |ri+1|θ1,i+1)ẋi =

1

θ2,i+1

xji+1 − xji
|ri+1| − 1

θ2,i

xji − xji−1

|ri| .(7.9)

There is a range of possibilities of how to solve this system. In order to obtain the
scheme (7.1) we approximate the time derivative by the time difference of the new
and previous discrete curve position where all nonlinear terms are taken from the
previous time step and linear terms are considered at a new time level. The numerical
simulations of section 8 show that such an approximation is sufficient in very general
cases regarding accuracy and efficiency of computations. Moreover, using Proposi-
tion 7.1 we have guaranteed a kind of stability for numerical computations.

8. Discussion on numerical experiments. In this section we describe numer-
ical results obtained by the algorithm (7.1)–(7.3) for solving the geometric equation
(1.1). We test properties of the model and the numerical scheme in evolution of convex
as well as nonconvex (and nonrectifiable) initial curves in the presence of nonlinear-
ity and anisotropy in the shape of function β. The effect of redistribution of discrete
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(a) (b)

Fig. 1. β(k) = k. (a) Discrete evolution using tangential redistribution of points. (b) Without
redistribution, only normal component of velocity is used.

points representing an evolving curve is documented in the same time. We have found
several examples where the uniform grid redistribution based on relative local length
conservation of flowing curve segments is an important tool in correct handling of the
curve evolution without other artificial operations like points removing or artificial
cutting of the so-called swallow tails. The redistribution of grid points based on (6.2)
preserves the initial discretization of a curve and thus makes its discrete representa-
tion smooth enough during evolution. First such examples are given in Figures 1(a)
and 1(b). In those experiments β(k) = k; i.e., we have classical curve shortening, and
we start with initial curve with large variations in the curvature, namely,

x1(u) = cos(2πu),

x2(u) =
1

2
sin(2πu) + sin(x1(u)) + sin(2πu)(0.2 + sin(2πu) sin(6πu) sin(6πu)),

u ∈ [0, 1], and initial discretization is given by uniform division of the range of pa-
rameter u. The curve is represented by 100 discrete points. Addition of a nontrivial
tangential velocity obeying (6.2) leads to the evolution plotted in Figure 1(a). In Fig-
ure 1(b) the points move only in the normal direction and one can see their fast
merging in several regions and very poor discrete representation in other pieces of the
curve. In all experiments we have used the uniform time step τ = 0.001. The blowup
time for the curvature was Tmax = 0.363. Isoperimetric ratio starting with 3.02 tends
to 1.0, which is consistent with Grayson’s theorem [24]. In both figures, we plot each
20th discrete time step using discrete points representing the evolving curve, and in
each 60th time step we plot also by piecewise linear curve connecting those points.
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(a) (b)

Fig. 2. β(k) = k1/3. (a) Discrete evolution using tangential redistribution of grids preserving
the relative local length. (b) Without redistribution, computation collapses due to vanishing of the
local length element |∂ux|.

In Figures 2(a) and 2(b) we computed affine evolution of the same initial curve for
the affine scale β(k) = k1/3. The initial curve has been discretized almost uniformly.
In Figure 2(a) we show how this discretization is then preserved in evolution when
using the scheme (6.2). The blowup time Tmax = 0.694, a solution converges to an
ellipse with the isoperimetric ratio stabilized on 1.33. This is in good agreement with
analytical results of Sapiro and Tannenbaum [38]. On the other hand, without any
grid redistribution we can see rapid merging of several points leading to degeneracy
in the distance |ri| corresponding to discretization of the term |∂ux| and subsequent
collapse of computation. In Figure 2(b) one can see evolution until t = 0.38 just
before numerical collapse of a solution.

In the figures below we have shown evolutions of the initial “∞-like” curve. In
Figures 3(a) and 3(c) the tangential velocity preserving relative local length has been
used, whereas in Figure 3(b) one sees that the computation without tangential re-
distribution cannot prevent vanishing of the term |∂ux|. In Figures 4(a) and 4(b)
evolutions of general nonconvex curves are plotted.

In Figures 5(a) and 5(b) the affine invariant evolution of initial ellipse with half-
axes ratio 3:1 is shown. In Figure 5(a) the exact blowup time Tmax = 1.560, while
the numerically computed one is equal to 1.570 using time step τ = 0.001 and 100
grid points for curve representation. The half-axes ratio as well as isoperimetric ratio
were perfectly conserved during numerical evolution. Without any tangential velocity
(i.e., α = 0 and θ2 = 1), the numerical solution collapses, as should be obvious from
Figure 5(b).
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(a) (b)

(c)

Fig. 3. β(k) = k1/4. (a) Evolution of “∞-like” curve using redistribution. (b) Evolution of
“∞-like” curve without redistribution leading to merging of points. (c) Evolution of “∞-like” curve
using tangential redistribution of points.

In Figures 6 and 7 we present various computations including anisotropy in the
model. For Figures 6(a)–6(d) we have chosen threefold anisotropy, while for Fig-
ures 7(a) and 7(b), a fourfold one. In Figure 6(a) we have computed linear anisotropic
evolution of a unit circle by means of (7.1)–(7.3). In Figures 6(b) and 6(c) we have
combined anisotropy with a nonlinear function of the curvature. In Figure 6(d) we
have chosen the same initial curve and the velocity function as in Figure 6(c), but
curves were computed without uniform grid redistribution. Curves are represented by
100 grid points and τ = 0.001. In the first numerical experiment shown in Figure 6(a)
the numerical blowup time Tmax = 0.509 (the exact one is 0.5). In this case the
isoperimetric ratio tends to 1.048 and the curve approaches the Wulf shape for such
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(a) (b)

Fig. 4. β(k) = k1/2. Evolution of general nonconvex curve using tangential redistribution of
points.

(a)

(b)

Fig. 5. (a) Affine invariant motion of ellipse using tangential redistribution of points. (b) Com-
putation using only normal component of velocity.

an anisotropy function. In Figure 6(b) we chose β(k) = km, m > 1. The evolution
is faster, numerical Tmax = 0.373 (m = 2), and the asymptotic isoperimetric ratio is
1.014. Taking β(k) = km, m < 1, the anisotropic evolution is slowed down, numerical
Tmax = 0.601, m = 1

2 , the isoperimetric ratio tends to 1.13, and the asymptotical
shape is more “sharp.” In this example one sees that the initial uniform redistribu-
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(a) (b)

(c) (d)

Fig. 6. β(k, ν) = (1 − 7/9 cos(3ν))k. (a)–(c) Using redistribution. (d) Without redistribution.

tion of grid points is not kept perfectly (in spite of results in Figure 6(b)). It very
likely is caused by lack of well-conditioning of linear systems. This phenomenon is
an objective of our future study. Further anisotropic experiments are presented in
Figures 7(a)–7(c), where convergence to “oval square” is observed in both convex and
nonconvex cases. The evolution of a nonconvex curve from Figure 7(c) is computed
also for the case of the threefold anisotropy. Results are plotted in Figure 7(d). The
last numerical experiment represents affine invariant evolution of a spiral. In Figure 8
we present several time moments of the motion until it is shrinking to a point.

9. Concluding remarks. In this paper we have studied the generalized mean
curvature flow of planar curves. The normal velocity v of the flow is assumed to be a
power-like function of the curvature k, and it may also depend on a spatial anisotropy
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(a) (b)

(c) (d)

Fig. 7. β = (1 − 0.8 cos(4(ν − π/4)))k. (a), (c), (d) Using redistribution. (b) Without redistri-
bution.

γ, i.e., v = γkm, where m > 0. Our analysis covers both singular (0 < m < 1)
and degenerate (1 < m ≤ 2) cases. We followed the so-called direct approach. We
have proposed and analyzed a governing intrinsic heat equation which is a parabolic
equation for the position vector. This model is capable of describing both normal and
tangential velocities of an evolving family of plane curves. We have also found that
respect to choices of the tangential velocity numerical simulations may exhibit various
instabilities. We overcome this difficulty by constructing a suitable tangential velocity
functional yielding uniform redistribution of numerically computed grid points.

Acknowledgments. The authors are thankful to the anonymous referees for
their valuable comments and for bringing to our attention the recent paper by An-
drews.
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Fig. 8. The sequence of evolving spirals for β(k, ν) = k1/3 using redistribution. The limiting
curve is an ellipse rounded point.
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