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Abstract In this paper we discuss results of Data Envelopment Analysis for the
assessment of efficiency of a large structured network of bank branches. We focus
on the problem of a suitable choice of efficiency measures and we show how these
measures can influence results. As an underlying model we make use of the so
called normalized weighted additive model corresponding to variable returns to
scale. Practical experiments were performed on large data sets provided by one of
leading banks in Slovakia.

1 Introduction

A field of frequent and successful applications of Data Envelopment Analysis
(DEA) is the evaluation of performance of bank branches. Applications of such
a kind have been reported in many recent papers. An extensive source of informa
tion in this respect is the special issue of European Journal of Operational Research
98 (1997), in particular the paper Schaffnit, Rosen and Paradi (1997) and survey
papers by Berger et at (1993,1997).

The present paper is focused on an application of DEA to an extensive struc
tured network of bank branches. Theoretical as well as computational aspects of
the application are presented. The methods developed for this application enable
to assess the performance of units from different points of view. An important
feature of the methods is that they admit small violation of the assumption of non
negativity of inputs or outputs.

The data were provided by the Slovenska Sporiteliia (SLSP hereafter) - the
largest Slovak bank which operates within the entire territory of Slovakia. Its orga-
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nizational structure consists of 37 regional branch offices located in major Slovak
cities. Each of the branch offices runs various numbers (from 2 to 42) of smaller
local organizational units called subbranch offices or outlets. The total amount of
subbranch offices of SLSP is 591 (end of year 1998). Branch offices carryon wide
range of banking operations. They can grant credits and they are in charge to invest
money by means of various banking operations. Roughly speaking, branch offices
are almost independent organizational subunits of SLSP. On the other hand, sub
branch offices are responsible for basic banking services only. Normally, they can
only carryon personal deposits and accounts and they are neither entitled to grant
credits nor to perform other banking investments. Because of the principal quali
tative differences in the ranges of activities of the two types of offices the analysis
was performed on the set of 37 branches and on the set of 591 subbranches sepa
rately.

The paper is organized as follows. In the next section we discuss the analyzed
data and we identify input and output factors characterizing branch activities sat
isfactorily. In Section 3 we present the DEA model we have chosen for our anal
ysis. The model is described by a unit and translation invariant linear program in
both primal and dual formulations. An important role in measuring performance of
(sub) branches is played by the measure of efficiency. Various appropriate choices
of this measure are discussed in Section 4. In Section 5 we present the results of
the analysis. A special attention is put on comparison of results of different mea
sures of efficiency. A correlation analysis of the results obtained by the methods is
presented. In Section 6 we discuss the issues of model and measures selection as
well as some computational aspects of the application.
Acknowledgments. The authors are thankful to Martin Barto and other members
of the staff of SLSP for enlightening discussions. We also thank Mikulas Luptacik
for his usefull comments and suggestion.

2 Structure and characterization of analyzed data

As it was already mentioned in Section I, the variety of activities of branch of
fices is considerably richer than that of the subbranch offices. From the point of
view of DEA it means that the former can be characterized by a higher number of
inputs/outputs. Unfortunately, because of the low number of analyzed branches it
was necessary to choose the number of significant inputs/outputs as small as pos
sible. In fact, an undue large number of inputs/outputs relative to the number of
DMU's makes most of them effective. Practical experience from extensive com
putations indicates that the total number of inputs and outputs should not be larger
than one third of the number of units analyzed. For the analysis of branch offices
we have considered 7 factors divided into 4 inputs (credits granted, banking ex
penditures, salaries and operational expenditures) and 3 outputs (credit profits, de
posits, profit from banking operations). Their basic statistical properties are shown
in Table I.

The data extracted from the large network of subbranch offices have differ
ent properties. Unlike for branches, DEA analysis could have been performed on
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Table 1 Mean value, standard deviation (J, minimal and maximal value of inputs and out-
puts for 37 major regional branch-offices.

Inputs (SKK) Mean (J Min Max

Credits granted 1.52038 109 1.89381 109 3.40245 108 1.148 1010

Banking expendtrs 3.62196108 2.8084108 9.74204107 1.75 109

Salaries 3.80233107 2.94929 107 1.04213 107 1.77506 108

Oper. expendtrs 4.28462107 3.20938107 1.75849 107 2.07432108

Outputs (SKK)

Credit profits 4.27221 108 7.45724108 5.5309 107 4.64333 109

Deposits 2.55079109 1.41585109 6.90233108 8.76865109

Banking profits 4.95299108 3.71137 108 9.86536107 2.28804109

Table 2 Mean value, standard deviation (T, minimal and maximal value of inputs and out-
puts for 591 local branch-offices.

Inputs JSKK) ,~ka1I' IT Min Max

Wage expendtrs 633814 1.24914106 0 9.72206 106

Opec. expendtrs 796475 1.50217 106 40 1.40686 107

Except. expendtrs 259211 963460 0 1.75314107

Outputs (SKK)

Current accounts 1.12648107 3.01444 107 -1.432 106 2.92157 108

Number of accounts (#) 797 1660 0 12396
Deposits 8.46326 107 1.44295 108 0 1.17351 109

Number of deposits (#) 3666 5906 0 43739

a larger number of input/output factors for subbranches because of a large num
ber of the latter (591). However, the data of only 3 inputs (salaries, operational
expenditures and exceptional other operational expenditures) and 4 outputs ( cur
rent accounts and deposits and their corresponding numbers) were provided by
all subbranches. Basic statistical properties of inputs/outputs of subbranches are
presented in Table 2.

It is worth to note that the above mentioned choice of input/output quantities
was based on particular requirements of the Slovak Saving Bank SLSP operat
ing under conditions of transitional economy of Slovakia. For example, many of
classified loans were moved into exceptional expenditures of branches.

The size of the subbranch offices differs widely. In such a case the choice of
the type of returns to scale of the model appears to be crucial. Experience of the
bank headquarters staff suggested that the subbranches of widely different sizes
net in incomparable different conditions. This suggestion, confirmed by correlation
analysis, lead us to choose the variable returns to scale model.

Finally, it is worth noting that the data provided by SLSP also contained non
positive numbers for some subbranches. A typical example are short credits as
it can be seen from Table 2. This is why we were forced to choose translation
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invariant DEA models. Furthermore, a natural requirement for the DEA of bank
branches is that the model should be unit (scale) invariant. This feature is of great
importance in our analysis of SLSP because the ranges of inputs/outputs may differ
by several orders of magnitude.

In summary, because of the above mentioned structure and qualitative proper
ties of the given data sets of SLSP we had to choose a DEA variable returns to
scale model which, in addition, is unit and translation invariant.

3 ModeJ description

In this section we describe the DEA model used in our analysis of efficiency. The
model, as a version of an additive weighted model, was first described by C.A.
Knox Lovell and Jesus T. Pastor (1995) and called normalized weighted additive
model. It corresponds to a variable returns to scale. In what follows, we briefly
describe this model.

Consider a set of p decision making units (DMU's) each consuming given
amounts of m inputs to produce n outputs. Let Xj E jRm and Yj E jRn denote the
multidimensional vectors of inputs and outputs of the j-th DMU, j = 1, ...,p. By
o E {I, ... ,p} we denote the index of DMU to be analyzed. In order to evalu
ate DMUo with input/output data vector (xo,Yo) one may solve the normalized
weighted additive DEA model, which is described by a linear program. We now
present this model in both primal and dual formulations. The primal (dual) prob
lem is frequently referred to as the envelopment (multiplier, respectively) form.

3.J Primal normalized weighted additive model (P)

min
'\,8+ ,8-

s.t. 2:::;=1 XjAj + S- = X o,

~p y. \ . - S+ - Y
L..j=l J AJ - 0'

2:::;=1 x, = 1, Aj 2': 0, j = 1, ....v,
s+ 2': 0, «: 2': o.

(1)

(2)

(3)

Here s" and s+ are m and n dimensional vectors of input and output slack
variables. The m and n dimensional vectors ui" and w+ are vectors of weights for
input and output slack variables. They are defined by

wi = (l/(Ji), i=l, ...,mandwt=(l/(J;), i=l, ...,n

where (Ji is the sample standard deviation of the i-th input variable and (Jt the
sample standard deviation of the i-th output variable. Note that DMUo is rated as
efficient if the optimal value to (P) is zero. In the other case it is inefficient.
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3.2 Dual normalized weighted additive model (D)
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max
u,v,z

s.t. vTYj-UTXj+z~O, j=l, ... ,p

u ~ ur: , v ~ w+ , z E IR
(4)

The variables u and v are the m and n dimensional vectors of local prices for
inputs and outputs, respectively. The real variable z corresponds to the variable
returns to scale equality constraint for the A'S in (P). Obviously, ui" and w+ are
the same as in the primal model. DMUo is rated as efficient if and only if the
optimal value of (D) is zero.

Let us remark that both (P) and (D) have an optimal solution. This follows
from the fact that (P) as well as its dual (D) are feasible linear programs. More
over, the objective functions (P) and (D) have a common optimal value to be de
noted by F·. Thus, it could seem that it does not matter whether (P) or (D) is
being solved to evaluate the efficiency of a chosen DMUo ' However, not only the
optimal value but also the optimal solution (A·, s*+, s*-) of (P) and the optimal
solution (u*, v*, z") of (D) are important. Indeed, the primal optimal solution vec
tor A* indicates a virtual unit belonging to the efficiency frontier with which the
DMUo is compared to. This virtual unit is described by the input vector XI and
the output vector YI where

p

xI:= LAjXj
j=l

and by (I) and (2) one has

p

YI:= LAjYj
j=l

YI = Yo + s*+. (5)

The slack vectors s*+ and s"" give measures of possible reserves in input and
outputs, resp. when compared the actual unit (x o, Yo) to the efficient virtual unit
(x I, YI)· On the other hand, the solution vectors u* and v* of the dual problem en
able us to identify local prices of inputs and outputs for DMUo' For example, they
enter the formulas u*Tx; and v*TYo for the virtual (one dimensional) input and
output respectively, which are important in the concept of the so-called technical
efficiency. Another interpretation of u", u", z" and the objective function for the
additive model is described e. g. in Chapter 2 of the book by Charnes at al. (1969).
Finally, we recall that D MUo is rated (by this model) as efficient if the optimal
value F* is zero. For inefficient DMUo one has F* < 0 and F* can be interpreted
as an inefficiency score. All this information gives a more complete and qualitative
picture about every DMUo and can be important for decision makers.

This model possesses the properties we are seeking for. It is well known that
it is translation and unit invariant. Moreover, the results (the optimal value and the
optimal solution) are not very sensitive on the data of the worst performing units.
It is also easy to see that the efficiency score (given by the optimal value F*) is
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monotone decreasing in each input and output slack. A disadvantage of this model
is that the score is not a-priori bounded from below. This leads to difficulties when
trying to transform this score into the bounded interval [0,1].

4 Definitions of three measures of efficiency

In this section we define three measures of efficiency which reflect the information
obtained by solving the above described model in three different ways. The mea
sures are normalized in such a way that their values for efficient units are equal to
1 and belong to the interval [0, 1) for inefficient units.

4. J Measure ofefficiency based on optimal value

The first measure is obtained by a linear transformation of the optimal value P* to
the interval [0, 1]. Hence, we define the measure of efficiency Eo by

Eo := 1 + c:P*

where e > 0 is a scaling parameter to be chosen in such a way that Eo E (0,1] for
all analyzed units. Notice that one can choose e > 0 in such a way that the lowest
value Eo among all analyzed units is zero.

It turned out that by using this efficiency measure more than 95% of all sub
branches of SLSP had their efficiencies between 0.9 and I (cf. Table 3, line Eo).
Clearly, such a non-uniform distribution of efficiency is is not convenient from the
point of view of decision making, since the accumulation of the 448 efficiency val
ues into a very small interval makes the results badly readable and blind. Another
objectionable property of this measure is that it is very sensitive on the choice of
the parameter c: and hence on the efficiency score of the worst performing unit.
Omitting of the three worst performing units from the set of subbranches of SLSP
would dramatically change the efficiencies of all other subbranches. This is caused
(in our case) by the great differences between the three worst performing units and
the others units, and by the linear transformation used in definition of this measure.

Let us mention that one can overcome this difficulty by using of non-linear
transformation. For example, Nernethova (2001) proposed the choice: Eo := eF" .
This non-linear approach can be generalized via the so-called contrast function
¢ : R+ -+ R satisfying

¢(O) = 1, ¢(r) > 0, ¢'(r) < 0,

Then, the efficiency measure can be defined as

Eo := ¢( -P*).

lim¢(r)=O.
r->oo

As an example one can choose either ¢(r) = e~lr or ¢(r) = 1/(1 + ')'r2) where
')' > 0 is a contrast parameter. However, in our simulation to follow we have chosen
the first simplest form of the efficiency measure, i.e. Eo = 1 + eb":
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4.2 Efficiencymeasure based all the primal model solution
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As it was mentioned in Section 3, solving the primal problem one obtains the
virtual efficient unit DMUI with input/output vector (x I, Y!) (see (5)). Using this
information an efficient measure can be defined comparing DMUo with DMUJ
by means of the fractions of their particular inputs/outputs values. To derive such
a measure we first introduce the following assumption

Xj > 0 and Yj > 0 for j = 1, ... .p. (6)

Now, it is easy to see that (6) together with (3) gives Xli S; Xoi, i = 1, ... , m and
Yli ;:: Yoi, i = 1, ... 1 n. Therefore, the ratios

*-
E

x ._ XJi _ Xoi - Si
i·- - ,

Xoi Xoi

EY .= Yoi = Yoi
, . *+'

Yli Yoi + Si
(7)

can be understood as partial fractional efficiencies of the corresponding inputs and
outputs for DMUo . Let us note that due to assumption (6) they are well defined,
so that Ef, EY E (0,1]. The aggregate efficiency measure can now be defined
by several ways as weighted value of all partial efficiencies. In our case we have
defined it as the mean value, i.e.

m n

Ep:= LJ-tiEf + LJ-t{EY
i=1 i=1

(8)

where J-tt are positive weights such that I:~1 J-ti + I:~1 J-t{ = 1. In our simu
lations we chose the uniform weight distribution, i.e.

_ 1
J-t. =J-t+ =--, , m+n

Another possible choice is based on weights attached to the slacks in the objective
function in the primal model (P), i.e.

±
± w·

J-ti = m -' n + .
I: j=1 w j + I: j=1 w j

Substituting (7) and (5) into (8) one obtains

m *_ n

E - "\;"" - Xoi - si + "\;"" + Yoi
P - ~J-ti ~J-t, *+ .

i=l Xoi i=l Yoi + si

It is easy to see that Ep is unit invariant but it is not translation invariant. In
fact, multiplication of the i-th input or output of all DMUs by a positive constant
does not change the value of E». However, adding some constant a to the i-th
input (output) of all DMUs we change E», Indeed, the corresponding Ei ( Ey)
will increase or decrease depending on the plus or minus sign of a, respectively.
Let us also remark that our data do not fulfill assumption (6). However, solving the
primal problem for our data we observed that x Ii ;:: 0 and YJi ;:: O. In this case
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the definitions of partial efficiencies (7) entering (8) can be modified as follows: If
Xoi = 0, then Ef := 1 and, if Yo; :5 0, then Ey := 0. We will refer to this method
as the primal method.

Recently, Cooper, Seiford and Tone (2000) investigated the so-called Slack-
Based measure efficiency model (SBM). The measure of efficiency is defined as

E .- ;k 2:;:1 Ei
S .- 1 ",n / v :

n L.J;=1 1 E;

Similarly as in our choice of measure Ep, the SBM model rates efficiencies Ei
(En of particular inputs (outputs) uniformly, i.e. their weights I-li, I-lt are equal.
However, SBM model takes the measure Es as an objective function and hence
the results of optimization depend on the definition of this measure. It would be
of interest to compare and test results obtained by our normalized weighted model
with the efficiency measure Ep to those of SBM model.

4.3 Efficiency measure based on the dual model solution

Finally, we introduce an efficiency measure based on the virtual input and output
mentioned in Section 3. Let us notice that, in the simpler case of constant returns
to scale, when the variable z appears in the formulation of (D), (i.e. z = 0) it is
possible to define an efficiency measure by ED = vT yo/uT X o. In the context of
input or output oriented DEA methods, this method of measuring efficiency is well
known as technical efficiency. However, in the case of variable returns to scale,
when the variable z E IR does not appear in the inequality (4) of the dual model, it
is not clear how to partition z into the virtual input and virtual output. Let us remark
that in the case of input oriented models, where uT X o== I, the technical efficiency

T

is given by Ex = ~. In the case of output oriented models, where vT Yo = 1,
u x o

T

technical efficiency is given by E y = 3x~:'z' Of course, here the values u,v,z
may depend on the model under consideration. Since the additive model is non
oriented, it would be appropriate to use its solution (u, v, z) to define a measure
which would compromise between the two extreme points of view represented by
Ex and E y . This could be made by several ways. Our intention to obtain a measure
ED with values from [0, 1] led us to the following definition

T

ED '.= V Yo + Z if > °T ,1 Z _ ,
u X o

vTyo .
ED := T ' If Z < 0.

u X o - Z

Note that if both vT Yo and uT X o are positive (which was fulfilled in the case of our
data) then, by (4), ED E (0,1]. (Let us note that the assumption just formulated
follows from the stronger requirement Xj 2: 0, Xj :j:. 0, Yj 2: 0, Yj :j:. 0, j =
1, ...,p which is often used as the standard assumption in DEA.)

It can be easily seen that

{
vTYo + Z v

TYo }
ED = max T ' T .

U X o U X o - Z
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which gives a simple interpretation of this measure as the maximum of Ex and Ey .

Let us note that ED is unit invariant but not translation invariant. We will refer to
this method as the dual method.

5 Results of the DEA

In this section we discuss results of DEA obtained by the primal and dual methods
for data on branch as well as subbranch offices. We compare results of different
measures of efficiency defined in Section 4. A correlation analysis of the results
obtained by primal and dual methods «4.2) and (4.3)) is also presented.

5.1 'Branchoffices
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Fig. 1. Comparison of the efficiency
measures Ep (dark) and ED (light
grey) for branch offices.

Fig. 2. Optimal value of the objec
tive function for branch offices.

As it was already mentioned in Section 2, a key requirement of any DEA
method is that the number of analyzed units should be sufficiently large compared
to the number of inputs/outputs (otherwise, most units are classified as efficient).
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Recall that the number of branch offices was just 37 and this is why many of
branches were rated as efficient. More precisely, 21 branches were classified as
efficient whereas only 16 units were inefficient (see Figures 1,2).

In Figures 3,4 below we show inputs and outputs of an inefficient unit # 28.
Light grey colored bars represent reserves (slacks) in inputs/outputs computed by
using the primal model. The values of inputs/outputs are scaled (0-100%) with
respect to the largest values of each particular input/output. The>' vector for this
unit has dominant index >'12 = 0.92. It means that this unit was mostly compared
to the efficient unit # 12 belonging to the efficient frontier.
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Fig. 5. Inputs for the unit #12 Fig. 6. Outputs for the unit #12

It is clear (Fig. 4 and 6) that the efficient unit # 12 has approximately the same
outputs as unit # 28 while the inputs for # 28 are much higher compared to those
of # 12. This information is of practical importance from the point of view of
decision making.

5.2 Subbranch offices

By contrast to the network of branch offices, the total number of subbranches was
very high (591) compared to the number of inputs and outputs. As it is shown
in the table below this feature results in a wider range of values of efficiency for
subbranches.
In Tab. 3 we present the distribution of the measures of efficiency Ep and ED for
the 591 subbranch offices. It turned out that the measure of efficiency ED is more
uniformly distributed than the measure E», We also present a distribution of the
efficiency measure Eo based on optimal values of the objective function.
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Table 3 Distribution of efficiencies Ep, ED, Eo of subbranches.

Efficiency interval (%) 0-20 21-35 36-50 51-65 66-80 81-90 91-100 100

# of subbrns for Eo 1 a 2 8 41 41 448 50
# of subbrns for E» 1 I 132 238 132 28 9 50
# of subbrns for ED 59 137 149 104 65 22 5 50

The next figures show the results of primal and dual method for the set of
591 subbranch offices. The results are presented only for a subset of 20 subbranch
offices.
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Fig. 7. Comparison of the measures
of efficiency Ep (dark) and ED (light
grey) for 20 selected subbranches.

Fig. 8. Optimal value of the ob
jective function for 20 selected sub
branches.
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Fig. 9. The correlation between
the measures of efficiency Ep and
ED·

It i~ obvious from Fig. 7 that, in general, the efficiency measures Ep and ED need
not have the same values. The correlation between the measures of efficiency Ep
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and ED is 84% and the relationship between them is depicted in the correlation
diagram Fig. 9.

6 Discussion

6.1 Comments on the model selection

The normalized weighted additive model we have used is not the only model satis
fying our requirements formulated at the end of Section 2. In this context we have
to emphasize that the requirement of translation invariance of Section 2 could be
weakened. In fact, in the data set of SLSP, the only negative values appeared in
the output variables and, therefore, it would be sufficient to require translation in
variance with respect to outputs. From the variety of the basic DEA models three
models have conformed our weakened requirement. Those were the BCC input
oriented model and two versions of the weighted additive model.

We first discuss the BCC input oriented model. It is well known that it is unit
invariant and corresponds to variable returns to scale. Moreover, it is invariant with
respect to the translations in outputs as was proved by Pastor (1996). The advan
tage of the model is its input orientation, a feature commonly being considered and
welcomed for bank branch analysis (Schaffnit, Rosen and Paradi (1997». Having
experimented with this model we have finally not employed it in our final analy
sis. In addition to well known numerical problems which make its use cumbersome
there was a principal reason for our decision: it is wel1 known that the measure of
efficiency defined by this model does not capture all non-zero inputs and outputs
slacks. Practical experience with SLSP data showed that most of those slacks were
very large and thus represented a major contribution to inefficiency.

Another option was to employ weighted additive models which, under suit
ably chosen weights, may be not only translation but also unit invariant. Such a
model is the normalized weighted additive one presented in Section 3. In this case
the weights in the objective function are reciprocal values of the sample standard
deviation of the corresponding input or output variable. Another weighted addi
tive model has been studied by Cooper, Thompson and Thrall (1996). It differs
from our model by the choice of the weights: the sample standard deviation is re
placed by the difference of the greatest and the smallest value of the corresponding
input/output variable (of course, in order to normalize the measure the objective
function has to be divided by the total number of all inputs and outputs). As proved
by Cooper et at (1996) also this model is unit and translation invariant. An advan
tage of this model is that the optimal value for this model is a-priori bounded by
-1. This model was applied to SLSP data set by Nemethova (200 I) and it was
shown that the corresponding optimal values exhibit the same accumulation effect
as the efficiency measure Eo for our model.

However, in contrary to Cooper's weighted model our normalized weighted
model is less sensitive with respect to the extremal (minimal, maximal) values
in particular input/output data sets. Hence omitting worst performing units would
change our weights less significantly compared to Cooper's ones. Therefore we
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chose this model as a basis for development of measures Ep, ED of efficiency
studied in Section 4.

6.2 Comments on the efficiency measures

DEA not only rates efficiency but also locates the sources of inefficiency and esti
mates the amounts of inefficiency. However, while the concept of efficiency is (for
specified returns to scale) well defined by the DEA theory and most of the models
are able to decide the question of efficiency or inefficiency, the question how to
measure the amount of inefficiency remains to be a subject of permanent intensive
research in DEA.

In Section 4, we have proposed and analyzed three measures of efficiency
which are functions of the optimal solutions to the additive model. The first mea
sure Eo is computed from the optimal value of the model. It compares the rated
unit to the efficient virtual unit by means of weighted differences of the virtual and
real input/output values. This measure is unit and translation invariant. A major
disadvantage is that the values of this measures are not distributed uniformly and
most of units have their scores close to 100% (see Table 3). This measure paradox
ically depends, through a choice of the scaling parameter e « 1, on the optimal
value of the worst performing unit.

On the other hand, the measures of efficiency Ep and ED introduced in Sec
tions 4.2 and 4.3. are computed from the optimal solutions to (P) and (D) and
measure efficiency by means of weighted ratios. An unavoidable consequence is
that they are not translation invariant and may depend on the choice of the opti
mal solution to (P) or (D). An advantage, at least in the case of the SLSP data,
is that their resulting values are more uniformly distributed in (0,1) and are not
so dramatically sensitive to the input/outputs values of the worst performing units.
Furthermore, these measures can be applied to solution vectors in various other
DEAmodels.

6.3 Conclusion

Because of the structure of the branch network of SLSP, in particular the large
number of its subbranches, the analysis of latter turned out to be a very good test
example for various DEA models and their efficiency measures. Moreover, the rat
ings of the branches and subbranches of SLSP based on our analysis were largely
in accord with the semi-intuitive image of the management of SLSP. Except of
giving a much more objective performance evaluation tool, DEA was appreciated
by the management because of its transparency. In particular, for each rated unit
DEA singled out a few efficient units to which the former was compared. This was
found extremely valuable in our case with such a large number of DMUs in which
evaluation by other, in banking practice used methods, lacks transparency.
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