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Abstract

The problem of convection in a rotating annulus in the presence of a radial magnetic field is considered in a local Cartesian
approximation. Linear stability analysis known from earlier studies shows the formation of two minima of the dispersion
relation. In this paper, the problem is extended to the weakly nonlinear regime and the system of complex Ginzburg—Landau
(G-L) equations is derived. The asymptotic behaviour and stability properties of solutions are studied in terms of the physical
parameters. © 2002 Elsevier Science B.V. All rights reserved.

PACS:47.20—k; 47.20.Ky; 47.27.Te; 47.6&i
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1. Introduction

Itis known that thermal convection in the Earth-like planet cores and in stars is subjected to the effects of magnetic
field and rotation. Due to the fast rotation of the Earth the dominant motion of the liquid in the Earth core appears
in the azimuthal direction. Upon this idea, ttdindrical annulus modgFig. 1 has been introduced by Busse and
Or [4], to study the convective instabilities. Assuming the radius of the annulus to be large and the convective zone
to be thin, a local Cartesian approximation of the annulus can be made, see e.g. [4]. The underlying model is thus
an infinite horizontal fluid channel bounded by vertical sidewalls rotating about a vertical axis and is commonly
referred to as duct modelFig. 2).

Adding the magnetic field makes the problem more complex. A linear stability problem of rotating magnetocon-
vection has been studied by Busse and Finocchi [3]. The basic magnetic field was chosen to have various direction:
with respect to the equatorial plane, varying from the radial to the azimuthal direction. They have identified the
most unstable solution having the form of traveling wave propagating in the azimuthal direction. The conditions
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Fig. 1. Convection in a rotating annulus [2].

for the onset of convection in terms of the critical Rayleigh number and the critical frequency were found. The
remarkable feature has been observed, that the dispersion curve, i.e. the dependence of the Rayleigh number on th
wave number, possesses two minima which can be identified as the most unstable modes. A similar linear problem
has been considered by Busse et al. [2] with more realistic sidewall boundary conditions.

In this paper, we extend the investigation by Busse and Finocchi [3] to the weakly nonlinear regime. We restrict
ourselves to the case with radial magnetic field. We focus on the case of the two modes emerging simultaneously
at the same Rayleigh number. Assuming the spatial and temporal modulation of the solutions, the interaction of the
two modes can be described by the two coupled Ginzburg—Landau (G—L) equations. Properties and stability of the
modes can be studied in terms of the equations’ coefficients. The asymptotic case of high rotation rate allows for
analytical tractability of the weakly nonlinear problem.

It is remarkable for the underlying model that coefficients of the G—L system are complex. This makes the
mathematical analysis a bit more complicated. Note that a single G—L equation with complex coefficients has been
studied before by e.g. Kapitula and Maier-Paape [8] and Mielke [10]. Systems of G—L equations with complex
coefficients were investigated by e.g. van den Berg and van der Vorst [1] and Riecke and Kramer [11].

Fig. 2. Convection in a rotating duct.
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We also focus on mathematical properties of the G—L system of equations (referreithéoGda. systerin the
following). We derive a priori estimates for various norms of solutions to the G—L system. We furthermore analyze
stability of the so-called phase winding solutions to the G—L system. Within this class of spatially nonhomogeneous
solutions, it is possible to investigate the stability of both convective modes with respect to each other and with
respect to zero solution.

The structure of the paper is as follows. The description of the model and mathematical formulation are outlined
in Section 2. In Section 3, the linear stability analysis is performed and asymptotic results are found as well.
The derivation of the the G—L system is described in Section 4. Section 5 is dedicated to the qualitative analysis,
focusing on the asymptotic behaviour of the solutions. In Section 6, the stability analysis is performed for phase
winding solutions. Finally in Section 7, main results are summarized. The coefficients of the G—L system and their
asymptotics are given in Appendix A.

2. Description of the model

Upon the local Cartesian aproximation, the model considered is an infinite horizontal duct (Fig. 2), containing an
electrically conducting Boussinesq fluid. The duct rotates about the vertical axis and is permeated by a homogeneou
horizontal magnetic field perpendicular to the sidewalls. The buoyancy is provided by the centrifugal force. The
duct is exposed to the unstable temperature gradient which is directed opposite to the centrifugal force.

The fluid is subjected to a convective instability occurring when heating measured by the Rayleigh number is
strong enough. Convection in the underlying model can be described in terms of two scalar functions, the velocity
potentialyr and temperatureé. We do not derive the mathematical formulation in this paper, for reference see [3].

The governing equations (those of [3], Egs. (6a and b)) are as follows:

9 9 9 92
L — ——A Ay —n— +Ra—0 + Q——=1 =0
<8t aywax w 2) 20 =g FRAT0+ 05 v
pr( 2 + w Ip Asf + azp—o 1)
ar oy ax TR T

whereAs is the two dimensional Laplacian, = 83 + 83 The dimensionless parameters in the above equations
are the Rayleigh numbé&ta the Prandtl numbe?r, the Chandrasekhar numb@rand the rotation parameter
The sidewalls of the duct are supposed to be stress-free and perfectly thermally conductive, i.e.

2
vx,y,t) = 3—21//(x,y,t) =0(x,y,t)=0 at x ::l:}. (2)
ox 2

3. Solution of thelinear problem

Considering infinitesimal perturbations the terms which are quadraticand6 can be neglected. A linearized
solution satisfying boundary conditions (2) can be sought in the form

V(x, v, 1) = (Prio + m?7? + «?) sin[mm(x + %)]exp[iay +iwt],
O(x,y, 1) = (—ia) sinmr (x + 3)lexpliay + iwt], (3)

wherea is the wave number and is the frequency.
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Fig. 3. Dependences &a= Ra(a) andw = w(«) for Pr = 10,7 = 10%, for the critical valueQ. and two other values a. Two minima of
Ra= Ra(«) correspond to the two most unstable modeasnd B.

Linear stability analysis has been performed by Busse and Finocchi [3]. The mode posessihgvas found
to be the most unstable one and will therefore, be, considered in the following.
Inserting the ansatz (3) into the linearized equations (1), the dispersion equation is obtained:

(Priw + 72 + ad)[(iw + 72 4+ &) (7? + o?) + On? + nia] = Rav?. (4)

Solving the real and imaginary parts of the dispersion equation, yields the analytical formulae for the relations
Ra= Ralax) andw = w(a).

Note that forQ # 0 the relationRa = Ra(«x) exhibits two minima which correspond to the most preferred
modes (see Fig. 3). It can be observed that varying the rotatiomrdtee applied magnetic field measured by
Chandrasekhar’'s numbér can be adjusted in such a way, that both the convective modes emerge simultaneously.
Hereafter the modes will be referred toAasnd B. The coexistence of the two most critical modes in terms of the
critical Rayleigh number can be writtdte.4 = Ra:p.

The minimization of the dispersion relatidda = Ra(«) leads to a numerical problem for the critical wave
numbera = a¢. All the parameters evaluated @& will be referred to as critical ones. Taking the geophysically
interesting limit for large;, analytical progress is possible. We are able to derive the asymptotic results in the limit
n — oo for the modesA and B, namely the critical wave numbesg, andacg, the critical frequenciescs and
wcp, the critical Rayleigh numbeRa; and the Chandrasekhar numlggg at which the modes coexist:

1\ 4 ) 1 .
12 4/3
T (n 16 1 43 A 23 ~ 1 (V2(Pr+1
——— (= ., Ra = —=n%8, = , whereQ = —— . S)
weB br (Q) n & Qn Oc= 0On Q=3 Br ©)

4, Weakly nonlinear analysis

Considering the nonlinear problem (1) a system of G—L equations for the noded B can be derived using
perturbation methods. The same bifurcation paraniRter Ra. = £2 Ra will be used for both the modes, where
0 < ¢ < 1. To resolve the weakly nonlinear problem, two different slow time sc&les ¢ andT> = &2 must
be introduced and = ¢y, see [11].
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The vector of scalar functions = (v, )7 can be expanded into power series in terms a$ follows:
W= eWy 4 Wy + W34 - - - . (6)
The lowest order term is supposed to be the linear combination of the two modes:

W1 = 1(A¥14 + BW1p +C.C),

v (Priw; + 7% + ag;) sin [ (x + Dlexplicc;y + iog;t]
1= . . ) .
! (—lagj) sin[m(x + %)]exp[lacjy + iwg;t]

wherej = A, B. Here, the complex modulation amplitudes are the functions of slow time and space coordinates,
i.e.A=A(Y, Ty, T») andB = B(Y, Ty, T>).

Inserting the perturbation expansions (6) into the nonlinear equations (1) we obtain a series of nonhomogeneou:s
problems at different orders ef Note that an assumption is made throughout the derivation that no spatial resonance
is possible, i.eniaca +no2acp # 0forng, no € N. As the wave number can be varied continuously this condition
is satisfied generically.

The linear balance occurs at the lowest ordés’@ At the order @s2) the following solvability conditions are
obtained:

A1, = —vgaAy, Br, = —vgp By, )]

wherevgy = —0y®la=q,, aNdugp = —daw|a—a, are the group velocities. The subscriptsand 71 denote
differentiating with respect to the slow spatial coordinates and time, respectively. It results from (A) that
A(Ys, T2) andB = B(Yp, To) whereYy =Y —vgaTh andYp = Y — vgp T are the shifted coordinates.
The solution at the order is
Pr .
Ya=0, o= —sin[2r(x+ DI +ag)ags A + (7° + agp)agy | BIY). ®)

AtO(e2) nonlinear effects are broughtinto the problem and the balance between terms yields the following amplitude
equations:

paAr, = a2,RaA + qaAy,v, — (aaalAl? + ans(|BI?)A,
pBBr, = a?3R&B + q By, v, — (apa(|A|?) + asg|B|?) B. ©)

These equations are known as coupled com@ek equationsreferred to ashe G-L systerrit is important to
realize that there are two(®@) different group velocitiesyga anduvgg, in this problem and therefore two frames
of reference are used. We will be interested in spatially periodic solutions to the G—L system. This enables us to
resolve the nonlinear coupling by applying the spatial avetage (9), which gives rise to nonlocal cross-coupling
terms, see [9,11].

Finally, we multiply Egs. (7) and (9) by the relevant powers @&nd sum them side to side. We return to the
original independent variablas r and introduce the rescaled amplitudes= ¢A andB = ¢B. The resulting G-L
system will be considered in the following, which gains the form

~ - - 1 - - -
A= —vgad +raA" + p—A<ra§A — apalA|” — ans(|BI?)A,

~ 7 7 1 e 5 5
B=—vgpB 4+ 1pB" + p_B(mgB — aga(|AI?) — agg|B|?)B. (10)
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Henceforthg stands for the time derivative gfwhereas)’ andg” denote the derivatives with respect to the spatial
variabley. The coefficients in the G—L system (10) together with their asymptotics are given in Appendix A. The
diffusion coefficients aré 4 = g4/pa andip = gp/pp andr = Ra— Rg: is the bifurcation parameter. The tilde
denoting the rescaled amplitudes will be dropped hereafter.

5. Asymptotic behaviour of solutions

The goal of this section is to discuss long time behaviour of spatially periodic solutions to the G—L system (10). We
analyze asymptotic properties of the solutions and derive a priori bounds for various horms of solutions implying, in
particular, bounded dissipativity of the corresponding semi-dynamical system. Without loss of generality, we will
suppose that solutions to (10) have the unit spatial period. Moreover, we assume

Aj,pj,ak € C,ug; e R, Rekr;) >0, Rep;) >0, Re(ajkp;l) >0 (11)

for j, k € {A, B}. The above structural assumptions can be verified for the physical model studied in Section 2.
Details can be found in the Appendix A.

In order to prove local existence, uniqueness and continuation of solutions to the G—L system (10) we rewrite it
as an abstract parabolic equation

&+ LD = F(®), &)= by, (12)

where® = (A, B), L is a linear operator defined a8 = (—14A”, —ApB”) and F(A, B) = (—vgaA’ +
04A, —vgp B’ + o B) where

1 2 2 2
04 =04(A,B) = p—(racA —apalA|” — aps(|B|%)),
A

1
o5 =0p(A, B) = p—B<m§B — aga(|A|%) — agg| BJ?). (13)

Let L? = LP(SY), p > 1, denote the Banach space of all complex Lebesgue square integrable functions defined on
the domains® ~ [0, 1], the norm is given byl f ||, = (fol | £17)YP. By wk2(s1) we denote the Sobolev space of
all complex valued functions defined on the one-periodic dorsihimhose distributional derivatives up to the order
k belong to the spack?. The norm onw*-2(s%) is defined ag £ 112 , = || (13 + || |- Next we define the scale
of complex Hilbert spaces ast = (W22(s1))2 for k = 0, 1/2, 1. It follows from compactness of the Sobolev
embeddingv1-2(§1) << C(S1) that embedding&! << X1/2 << X0 are also compact. Furthermore, the
nonlinearityF is well defined as a mapping from the phase sptice X'/2 into the spacex®, F is C> smooth
and locally Lipschitz continuous. Singg(1;) > 0, j € {A, B}, it is easy to verify that the linear operatet’
generates an analytic semigroup of operaters’, > 0} in the spacex®. Recall that the spack”,y > 0,
is a fractional power space with respect to the sectorial operfatéiccording to the general theory of parabolic
equations due to Henry [6] (Chapter 1) the abstract parabolic Eq. (12) and, consequently, the G—L system (10) has a
unique solutiond € C([0, T) : X) NCL((0, T) : X°), ®(r) € X fort € (0, T'), provided that the initial condition
P € X = (WE2(S1)2, If Tihax > 0 is @ maximum time of existence of a solution then eithigsx = oo or
Tmax < oo and then lim sup, 7. 12 (1) llx = oc.

In the next two auxiliary lemmas, we will prove a priori estimates for various norms of solutions to the
G-L system (10).
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Lemma 5.1. Suppose tha#t = A(y, ) is a solution toA = 1A” + @A’ + oA subject to periodic boundary
conditions aty = 0, 1wherep = o(y, t) is a complex valued function ande C, @ € R, are constants such that
ReL) > 0.If k > 2 satisfies the inequality

(k —2)|[Im)| < v/2¢ — 3Re) (14)
then

1d (g REW (o ! ;

o ey TS [Cadiar2ay < [ Reolal d.

K dt Jg 2 Jo 0

Proof. Letus multiply the equatioA = 1A”+®A’+0A by thetermA|“—2A. If A e C satisfies the condition (14)
theniteasy to verify thae(A(|z|2+ (k —2)zR€z))) > (1/2)ReA)|z|?, foranyz € C. CIearIy,Re(fol A'|AF24) =
(1/;<)f01(|{1|K)/ =_O.Since(1//c)(d/dt)f01 |A[< = [} Re(A|A[“"2A) and— [ A”|A[*72A = [ |A[*4(A’A|2+
(k — 2)A’ ARg A’ A)) the proof of the inequality (14) follows. a

Lemma 5.2. Suppose that® = (A, B) is a solution to the G-L syste(t0). DenoteG, (r) = f01(|A(y, ni« +
|B(y, 1)|*) dy. If « > 2is such that the inequalit{d4) is fulfilled for bothi = 14 andA = A then

In(2)
2c1

K/2
G (1) < 2WH2/k (%) foranyr > To =

where

2 -1 : -1
c1= maxrasRep:") >0 and ¢ = min Reajjp:~) > 0.
j:A,B cj QP] ) j=A,B q ijj )

Proof. Applying Lemma 5.1, Hélder's inequality, assumptions (11) and the fact that tRanszag/pa)(|B|%)
X fol |A|€ dy < 0 andRe—aga/pg){|A|?) fol |B|“ dy < 0 are nonpositive we obtain

1. 1 1 B
Gy < / (Re(o)|A[* + Relog)|B[) < c1Gy — 2 / (AP + |BI*?) < 016Gy — 225 oG U2,
0 0

Solving the above differential inequality we obtain

—2/k 2—(2/K)
2 Q-e?any> 2 (15)

G (1) = G (02 +
2c1

for anyt > Tp. The proof of Lemma 5.2 now follows. a

Theorem 1. Any solution® = (A, B) to the G—L systerfl0)with an initial condition® (0) = (A(:, 0), B(-, 0)) €
X is global in time. Moreover, there exists a constapt > 0 independent of initial conditions and such
that

2
00

limsuplAG, OI15, + I1BC. DI, < ¢

—>0o0

uniformly for initial conditions belonging to a bounded settn

Proof. Let us multiply the first equation in (10) byA”. By taking the real part, integrating over the intervalIf)
using the Cauchy—Schwartz inequality, the inequalifiesp|2 < 1+ [ |41° and([[?) = [ 612 < (fy [¢]9)3
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we obtain

A’ Ra A A"
2dt/| 2dy + e(A)/| 2dy

1 3 2 2 G
_ —Re/ oaAA" < Re%a) / A7 12 dy ~|—° L+ (rPad, —|—2|aAA| + laps|)Ge
0 2 Jo 2|pal*Re(ra)

Repeating the same argument for the functboyields the inequality

jz + 2c3> < ¢4+ ¢5Gg, (16)

whereJs = [ (IA'12 + B2 dy, I = [3(|A"]2 + |B"[?)dy and

L in R ) 32 %, %
3= = i)s Cq = Oor )
2j=AB / |pal?Re(la)  |ppl°Rekp)

laaal? + laagl?>  lagal® + |aBB|2> a7

|pal?Rera) |pB|?Re(Ap)
According to the Gagliarda—Nirenberg interpolation inequality there exists a congtant 0 such that|¢|ls <

gn||¢>”||1/6||¢>||5/6 for anyg € W22(sY) [5]. Thus,Ge < cgul, /2G5/2 Now, it follows from (16), Lemma 5.2 and
the Young inequality¥/?G < §J + (1/4)8~1G? which is valid for anyJ, G = 0,§ > 0, that

65=C4+3<

Jo+2c3lp < cq + c3la + %cgl(cgn%Gg/z)z < c¢e + c3l2,
where
ce = c4+ 28¢2 CgnC3 zcécfcz 5 (18)
By applying the inequalit;,fo1 |¢'|2 < fol 19”12, i.e.J> < I, we finally obtainJ, + c3J2 < g, and hence,
Jo(0) = (0 4 P (1~ e (19)

foranyr > 0. Now, inequalities (15) (witk = 2) and (19) enable us to conclude that the nip¢e(-, 1), B(-, t))||1.2
remains bounded within the maximum time intemval [0, Tmax). Thus,Timax = oo and solutions to the G—L system
(10)areglobalintime. SindeA (-, 1) |12 ,+I| B(-, 1) | , = G2+ J2 the asymptotic estimate lim spp.. | A, 1) |12 ,+
IB(, t)||1 5 < 2 follows from (15) and (19) where

cgo = 4c102_1 + cecgl. ]

Remark 5.1. By inserting the asymptotic formulae for coefficiepts g;, acj, ajk (see (5) and (A.2) in Appendix
A), it can be shown that for a fixed the constant., = O(n'%%) for  — oco. However, this estimate is not
optimal and it can be easily improved by introducing a suitable scaling of amplitudesA, B <> n”/6B. Taking
into account the scaling property of the G-L system (10) the corresponding coeffigiehtsve the following
asymptoticsjaaal = Ot%3), |aasl = O*¥3), |agal = O(n*?) and|agg| = O(;®) for n — oo. Hence, for
tilded amplitudest, B we obtain the estimate lim spp . [IAC, 1)[12 ,+ [ B, )12 , < &2, whereéo, = O(n~%/3)
for n — oco. Hence,

limsup|ACG, Dllz2 < O(m~%3),  limsup|B(,)ll12 < OnY?)
t— 00 t—00
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for n — oo uniformly with respect to initial conditions belonging to a bounded seatit2(51))2. As for the
L?-norm of a solution A, B), it follows from Lemma 5.2 that

limsup|A(, )2 <O~ *3),  limsup|B(., 1)z < O~ °).
t—00 t—00

Finally, according to the Gagliarda—Nirenberg inequamtryngO <cglgli2lgllz where[lglloo = sUp,cjo 171 (¥)]
we obtainL>° bounds for solutions to the G—-L system (10)

limsupllA(-, llee <O, limsupl|B(, )lle < O"/®)
11— 00 11— 00
uniformly for initial conditions belonging to a bounded settn

Remark 5.2. From the dynamical system theory point of view, it results from Theorem 5.1 that the semi-dynamical
system generated by solutions to (10) is bounded dissipative (cf. [6]). Then, following rather standard arguments,
one can easily prove the existence of a compact global attractor having a finite fractal dimension as well as the
existence of an inertial manifold for the corresponding semi-dynamical system.

6. Amplitude dynamics of phase winding solutions

Having computed the analytical expressions for coefficients of the G-L system (10) (see (A.2)), we are yet able
to study the stability properties. We will analyze the so-called phase winding solutions which posses periodic spatial
structure. A phase winding solution to the G—L system (10) is a pair of functibnB) having the form

Ay, 1) = A1) ei(kAy+FA(f))’ B(y,1) = B() ei(kBy+FB(f)) (20)

for (y,1) € R x RT where A, B, 'y, I'p are real valued amplitudes and phases, respectively, depending on the
timetr € RT only, andk,, kg € R are phase winding numbers. Note that under assumption (20) only amplitude
instabilities can be analysed. The phase functions do not affect the stability properties in this case. Moreover,
amplitude instabilities are insensitive to the averaging of the G-L system (10).

Inserting the ansatz (20) into the G—L system (10) and denoting

Bk = Relaxp; D, dj=ofRep;), j.ke(A, B),
we obtain the planar system of ODEs for real amplitude:

A= —iZ)RA+ (dy — BaaA? — BasBHA, B = —k3ARB + (1dp — BeaA? — BeeB%)B. (21)
The phase functiong;, j € {A, B}, are given by

t
ri() = IP — (k32 + kjvg)t + Jm/o pj_l(rotcjz — aipn A?(v) — agB3(1)) dr,

wherel“j0 e R, j € {A, B}, areinitial phases. Hereafter, the superscripts R and | will denote the real and imaginary
parts, respectively.

Let (A4, B) be a solution to the planar system of ODEs (21) corresponding to the phase winding numbegrs
R. A straightforward phase—plane analysis enables us to conclude that the first qﬂﬁ*dsa@{; is invariant with
respect to solutions to (21). Furthermore, by introducing the logarithmic transformation of vatiabtetog(A),
op = log(B) and taking into account the Poincaré—Bendixon criterion applied to the transformed planar system of
ODEs we are able to conclude that there are neither periodic orbits nor heteroclinic cycles in the planar system (21).
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Next we examine stationary, i.e. time independent solutions to (21). Let us introduce the auxiliary function playing
a crucial role in the stability analysis of (21):
rdy — kiki

G(r,ka, kg; Pr,n) = ———~——=2..
(r,ka, kp n) dp — k23R

(22)

Here, and after we will assume that the bifurcation parameteiRa— Ra. and the wave numberks, kg satisfy
the so-calledupercritical band conditions

k2\R
r>-L1 forj=A,B (23)
dj
which implies thaiG > 0. Moreover, we will restrict ourselves to the case of
dj >0, Bik > 0, D = Bapfea — BanBes > 0. (24)

This setting is due to physically interesting small Prandtl numBeend high rotation rates, as it is shown below.
In this case the asymptotic results can be directly used. The cases with nggasime D will not be considered
here.

Let us denote the stationary amplitudes as

1/2 1/2
o (= KRR / 4 _ (e — K325 /
P Baa ' P PBB '

. . G1l_ vz . G — 1/2
A — ﬁ/i{AZAp (,BAB ﬁBB) B — ﬁéngp (,BBA ﬂAA) _

D D
Depending on the value of functiai generically three cases can occur:

(A) G > Bag/Bee: in this case, there are three nonnegative stationary solutions: the zero s@mand the
pure modes.Ap, 0), (0, Bp). The solution(0, 0) is an unstable nodeAy, 0) is a stable nodep, 5p) is a saddle
point and there exists a heteroclinic connection fi@mBp) to (Ap, 0).

(AB) Baa/Bea < G < ﬂAB/,?BB: in thi§ case, there are four npnnggative stationary solutions: the zero solution

(0, 0), the pure modegAp, 0), (0, Bp) and the mixed modéAm, Bm). The solution(0, 0) is an unstable node,
(ftp, 0) and(O, B‘p) are stable nodes artdim, Bm) is a saddle point. There exist heteroclinic connections from
(Am, Bm) to (Ap, 0) and from(Am, Bm) to (0, Bp).

(B) G < Baa/Bpa: in this case, there are three nonnegative stationary solutions: the zero sgyrand the
pure modesﬁp, 0), (O, Bp). The solution0, 0) is an unstable nodeﬁp, 0) is a saddle poin{0, Bp) is a stable
node and there exists a heteroclinic connection f(aﬁa 0) to (O, Bp).

Passing below the critical valu6.1 = Bas/Bes a saddle-node bifurcation occurs, the saddle p(ﬁnt’;’p)
becomes a stable node and a new saddle pdi,mt Bm) bifurcates from(, B’p). Passing through the second critical
valueG¢2 = Baa/Beaasaddle poinL(lm, Bm) merges with a stable nocddp, 0) again via a saddle-node bifurcation
(see Fig. 4).

We are yet able to apply the previous stability results to the underlying physical model in the limiting-ease.

With the asymptotic expressions for the coefficigfitgsee Appendix A) the conditions (24) must be satisfied so that
the stability results could be applied. It can be computed that the coeffigignt O for 0 < Pr < Prpax = 0.265
andpBaa > 0, Bea > 0, Bgs > O for all values ofPr > 0.

Moreover, with help of the asymptotics (A.4) available fpr— oo it can be computed thataa/Bea =

O(n/3) and Bag/Bee = O(n). Assuming the simplest case bf = 0 andkz = O corresponding tepatially
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Fig. 4. Phase portraits for the planar system of ODEs (21) for different values of the fugctiorresponding to the cases (A), (B) and (AB).

homogeneous solutioasd using (A.3), it results from (22) that(r, k4, k; Pr, n) = O(n%3) and thusBaa/Bea <
G(r,ka, kp; Pr,n) < Bas/Bps for n — oco. The same result applies also &patially nonhomogeneous solutions
with the wave numberg, = r1/20(n=Y/3) andkz = r/?20(n~2/3) such that supercritical band conditions (23)
are satisfied.
As aresult, the cases (A) and (B) do not apply for high rotation rates which excludes the single mode instabilities.
The case (AB) only occurs corresponding to the two locally asymptotically stable moailed B (see Fig. 4).

7. Conclusions

The nonlinear equations governing the specified model of rotating magnetoconvection by [3] were analyzed and
solved in this paper. Special parameter setting corresponding to the case of two mode convection was established i
the linearized case. Adopting the limit of high rotation rate> oo, analytical expressions for the parameters were
computed. An interesting feature is that the critical Chandrasekhar number for the two mode convection is scaled
asQc ~ n?/3.

For the weakly nonlinear regime the G-L system of complex modulation equations was derived (see Section 4). In
the limit of n — oo analytical expressions for the G-L system coefficients were computed. The qualitative analysis
of the G-L system proves bounded dissipativity of the corresponding semi-dynamical sistesatimates for a
compact global attractor were found in terms of the powers of



M. Revallo, D. Sesovit / Physica D 161 (2002) 116-128 127

Stability properties of the G—L system were studied for a class of phase winding solutions. It turns out that the
existence of convective modes is determined by the amplitude instabilities of phase winding solutions and depends
on choice of the physical parameterandPr. The modes were found to be supercritical for the Prandtl numbers
of 0 < Pr < 0.265 and rotation ratg — oo. For this parameter setting both the modesnd B are locally
asymptotically stable.
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Appendix A
The coefficients of the linear part of the G—L system (9) are
pj=Pr+D(® +aZ)® + Prr?Qc + i[2Pr(w® + o )wcj + Prnac;].
qj =3(m® + b)) (w? + 5f;) — Ra + w2 Q¢ — Pr{(? + af))vg; — dacjoc;vg + wf; — nvg)]
Hil(Pr + D(—4(w® + af))acjvg; + daf;oc; + 2(m? + o)) + 3nac)] (A.1)

wherej = A, B. Note that a single mode case with the formal settihg= 0 in the expressions for coefficients
corresponds to the nonmagnetic case which was studied by [7].

Using the asymptotics (5) far — oo, the coefficients of the linear part of the G—L system (10) can be expressed
as follows (forPr # 1):

1 43, o Pr=1/1 v 4/3 2brA2/3 | A\1/2 5/6
pA=(Pr+1)£n +|PrPr+1 @ ne, pp =n°Pron“? +iPra(mw Q)" “n>>,

4 Pr—1 _sun] am . ( 1\Y* 43 i 5)1/2 ,5/6
ga= 5_|:>rm(3Q) n*° 4 i 35 ne, gp =7n +i3n(@Q)7 0>,

1
Pr+1

o 1
BOY3, vgp = 173, (A.2)

UgA = — ~1
9 PrQ

where is given by (5).
The asymptotic orders for the diffusion coefficients= ¢;/p; and the coefficientd; = agj Re(pj‘l) defined
in Section 6 are

aa =01 +i0(1),  rp=01) +i0@Y8),  da=00"%%,  dg=0mn"*3), (A.3)

for n — oo.

The expressions for coefficients entering the nonlinear part of the G-L system (10) are rather complicated. We
only refer to their asymptotic behaviour in the limit— oo which is sufficient for the stability analysis in this
paper:
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Pr2 /1 \%?
ApA = —% (—A> 7710/3,

80 \30
aaB —3Pr8/37 4PI’R 2/3
A 23161+ PN2R2 + 5Pr)2(3 2Pr + 3Pr2)3"
3Pré3r4Prh s 23

TR+ Pr?Ra 4 5P — 2Pr - AP
aga _ 3Pr3(4 + 43Pr — 4Pr? 4 55Pr° — 14Pr* 4+ 8PI)1 ¢
pg 2Y32(1+ Pr)5/3(2 4 5Pr)2(3 — 2Pr + 3Pr2)2
3Pri333m)l/2 D6 ap = 78z 0)
22/316(1 +Pn13(24+5Pr)(3—2Pr+3Pr2)"  ’

2 § 2/3
LS/

with

Prig = —233+ 48%Pr + 1109Pr? + 1011Pr + 1201Pr* + 455Pr° + 7Pr® + 125Pr”,
Prig = —133— 93%Pr + 437Pr? — 102%Pr3 + 113Pr* — 109Pr° + 355Pr° + 29Pr”.

The asymptotic orders for the coefficiemfig = Re(ajk/p;) defined in Section 6 are
Ban= 0%, Bas=01n?3), Bea=00"3, Pss=0n"13 (A.4)

for n — oo.
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