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Abstract

The problem of convection in a rotating annulus in the presence of a radial magnetic field is considered in a local Cartesian
approximation. Linear stability analysis known from earlier studies shows the formation of two minima of the dispersion
relation. In this paper, the problem is extended to the weakly nonlinear regime and the system of complex Ginzburg–Landau
(G–L) equations is derived. The asymptotic behaviour and stability properties of solutions are studied in terms of the physical
parameters. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is known that thermal convection in the Earth-like planet cores and in stars is subjected to the effects of magnetic
field and rotation. Due to the fast rotation of the Earth the dominant motion of the liquid in the Earth core appears
in the azimuthal direction. Upon this idea, thecylindrical annulus model(Fig. 1 has been introduced by Busse and
Or [4], to study the convective instabilities. Assuming the radius of the annulus to be large and the convective zone
to be thin, a local Cartesian approximation of the annulus can be made, see e.g. [4]. The underlying model is thus
an infinite horizontal fluid channel bounded by vertical sidewalls rotating about a vertical axis and is commonly
referred to as aduct model(Fig. 2).

Adding the magnetic field makes the problem more complex. A linear stability problem of rotating magnetocon-
vection has been studied by Busse and Finocchi [3]. The basic magnetic field was chosen to have various directions
with respect to the equatorial plane, varying from the radial to the azimuthal direction. They have identified the
most unstable solution having the form of traveling wave propagating in the azimuthal direction. The conditions
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Fig. 1. Convection in a rotating annulus [2].

for the onset of convection in terms of the critical Rayleigh number and the critical frequency were found. The
remarkable feature has been observed, that the dispersion curve, i.e. the dependence of the Rayleigh number on the
wave number, possesses two minima which can be identified as the most unstable modes. A similar linear problem
has been considered by Busse et al. [2] with more realistic sidewall boundary conditions.

In this paper, we extend the investigation by Busse and Finocchi [3] to the weakly nonlinear regime. We restrict
ourselves to the case with radial magnetic field. We focus on the case of the two modes emerging simultaneously
at the same Rayleigh number. Assuming the spatial and temporal modulation of the solutions, the interaction of the
two modes can be described by the two coupled Ginzburg–Landau (G–L) equations. Properties and stability of the
modes can be studied in terms of the equations’ coefficients. The asymptotic case of high rotation rate allows for
analytical tractability of the weakly nonlinear problem.

It is remarkable for the underlying model that coefficients of the G–L system are complex. This makes the
mathematical analysis a bit more complicated. Note that a single G–L equation with complex coefficients has been
studied before by e.g. Kapitula and Maier-Paape [8] and Mielke [10]. Systems of G–L equations with complex
coefficients were investigated by e.g. van den Berg and van der Vorst [1] and Riecke and Kramer [11].

Fig. 2. Convection in a rotating duct.
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We also focus on mathematical properties of the G–L system of equations (referred to asthe G–L systemin the
following). We derive a priori estimates for various norms of solutions to the G–L system. We furthermore analyze
stability of the so-called phase winding solutions to the G–L system. Within this class of spatially nonhomogeneous
solutions, it is possible to investigate the stability of both convective modes with respect to each other and with
respect to zero solution.

The structure of the paper is as follows. The description of the model and mathematical formulation are outlined
in Section 2. In Section 3, the linear stability analysis is performed and asymptotic results are found as well.
The derivation of the the G–L system is described in Section 4. Section 5 is dedicated to the qualitative analysis,
focusing on the asymptotic behaviour of the solutions. In Section 6, the stability analysis is performed for phase
winding solutions. Finally in Section 7, main results are summarized. The coefficients of the G–L system and their
asymptotics are given in Appendix A.

2. Description of the model

Upon the local Cartesian aproximation, the model considered is an infinite horizontal duct (Fig. 2), containing an
electrically conducting Boussinesq fluid. The duct rotates about the vertical axis and is permeated by a homogeneous
horizontal magnetic field perpendicular to the sidewalls. The buoyancy is provided by the centrifugal force. The
duct is exposed to the unstable temperature gradient which is directed opposite to the centrifugal force.

The fluid is subjected to a convective instability occurring when heating measured by the Rayleigh number is
strong enough. Convection in the underlying model can be described in terms of two scalar functions, the velocity
potentialψ and temperatureθ . We do not derive the mathematical formulation in this paper, for reference see [3].

The governing equations (those of [3], Eqs. (6a and b)) are as follows:(
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∂y
ψ = 0, (1)

where�2 is the two dimensional Laplacian,�2 = ∂2
x + ∂2

y . The dimensionless parameters in the above equations
are the Rayleigh numberRa, the Prandtl numberPr, the Chandrasekhar numberQ and the rotation parameterη.

The sidewalls of the duct are supposed to be stress-free and perfectly thermally conductive, i.e.

ψ(x, y, t) = ∂2

∂x2
ψ(x, y, t) = θ(x, y, t) = 0 at x = ±1

2
. (2)

3. Solution of the linear problem

Considering infinitesimal perturbations the terms which are quadratic inψ andθ can be neglected. A linearized
solution satisfying boundary conditions (2) can be sought in the form

ψ(x, y, t) = (Priω + m2π2 + α2) sin [mπ(x + 1
2)]exp[iαy + iωt ],

θ(x, y, t) = (−iα) sin [mπ(x + 1
2)]exp[iαy + iωt ], (3)

whereα is the wave number andω is the frequency.
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Fig. 3. Dependences ofRa= Ra(α) andω = ω(α) for Pr = 10,η = 104, for the critical valueQc and two other values ofQ. Two minima of
Ra= Ra(α) correspond to the two most unstable modesA andB.

Linear stability analysis has been performed by Busse and Finocchi [3]. The mode posessingm = 1 was found
to be the most unstable one and will therefore, be, considered in the following.

Inserting the ansatz (3) into the linearized equations (1), the dispersion equation is obtained:

(Priω + π2 + α2)[(iω + π2 + α2)(π2 + α2) + Qπ2 + ηiα] = Raα2. (4)

Solving the real and imaginary parts of the dispersion equation, yields the analytical formulae for the relations
Ra= Ra(α) andω = ω(α).

Note that forQ �= 0 the relationRa = Ra(α) exhibits two minima which correspond to the most preferred
modes (see Fig. 3). It can be observed that varying the rotation rateη, the applied magnetic field measured by
Chandrasekhar’s numberQ can be adjusted in such a way, that both the convective modes emerge simultaneously.
Hereafter the modes will be referred to asA andB. The coexistence of the two most critical modes in terms of the
critical Rayleigh number can be writtenRacA = RacB .

The minimization of the dispersion relationRa = Ra(α) leads to a numerical problem for the critical wave
numberα = αc. All the parameters evaluated atαc will be referred to as critical ones. Taking the geophysically
interesting limit for largeη, analytical progress is possible. We are able to derive the asymptotic results in the limit
η → ∞ for the modesA andB, namely the critical wave numbersαcA andαcB , the critical frequenciesωcA and
ωcB , the critical Rayleigh numberRac and the Chandrasekhar numberQc at which the modes coexist:

αcA =
(

1

3Q̂

)1/4

η1/3, αcB = π(πQ̂)1/2η−1/6, ωcA = − 1

Pr + 1
(3Q̂)1/4η2/3,

ωcB = − π

Pr

(
π

Q̂

)1/2

η1/6, Rac = 1

Q̂
η4/3, Qc = Q̂η2/3, whereQ̂ = 1

3

(√
2(Pr + 1)

Pr

)4/3

. (5)

4. Weakly nonlinear analysis

Considering the nonlinear problem (1) a system of G–L equations for the modesA andB can be derived using
perturbation methods. The same bifurcation parameterRa− Rac = ε2 Ra2 will be used for both the modes, where
0 < ε � 1. To resolve the weakly nonlinear problem, two different slow time scalesT1 = εt andT2 = ε2t must
be introduced andY = εy, see [11].
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The vector of scalar functionsΨ = (ψ, θ)T can be expanded into power series in terms ofε as follows:

Ψ = εΨ1 + ε2Ψ2 + ε3Ψ3 + · · · . (6)

The lowest order term is supposed to be the linear combination of the two modes:

Ψ1 = 1
2(AΨ1A + BΨ1B + c.c.),

Ψ1j =
(
(Priωcj + π2 + α2

cj ) sin [π(x + 1
2)]exp[iαcj y + iωcj t ]

(−iαcj ) sin [π(x + 1
2)]exp[iαcj y + iωcj t ]

)
,

wherej = A, B. Here, the complex modulation amplitudes are the functions of slow time and space coordinates,
i.e.A = A(Y, T1, T2) andB = B(Y, T1, T2).

Inserting the perturbation expansions (6) into the nonlinear equations (1) we obtain a series of nonhomogeneous
problems at different orders ofε. Note that an assumption is made throughout the derivation that no spatial resonance
is possible, i.e.n1αcA+n2αcB �= 0 forn1, n2 ∈ N. As the wave numberα can be varied continuously this condition
is satisfied generically.

The linear balance occurs at the lowest order O(ε1). At the order O(ε2) the following solvability conditions are
obtained:

AT1 = −vgAAY , BT1 = −vgBBY , (7)

wherevgA = −∂αω|α=αcA and vgB = −∂αω|α=αcB are the group velocities. The subscriptsY andT1 denote
differentiating with respect to the slow spatial coordinates and time, respectively. It results from (7) thatA =
A(YA, T2) andB = B(YB, T2) whereYA = Y − vgAT1 andYB = Y − vgBT1 are the shifted coordinates.

The solution at the orderε2 is

ψ2 = 0, θ2 = Pr

8π
sin [2π(x + 1

2)]((π
2 + α2

cA)α
2
cA|A|2 + (π2 + α2

cB)α
2
cB |B|2). (8)

At O(ε3)nonlinear effects are brought into the problem and the balance between terms yields the following amplitude
equations:

pAAT2 = α2
cARa2A + qAAYAYA − (aAA|A|2 + aAB〈|B|2〉)A,

pBBT2 = α2
cBRa2B + qBBYBYB − (aBA〈|A|2〉 + aBB|B|2)B. (9)

These equations are known as coupled complexG–L equations, referred to asthe G–L system. It is important to
realize that there are two O(1) different group velocities,vgA andvgB , in this problem and therefore two frames
of reference are used. We will be interested in spatially periodic solutions to the G–L system. This enables us to
resolve the nonlinear coupling by applying the spatial average〈 〉 to (9), which gives rise to nonlocal cross-coupling
terms, see [9,11].

Finally, we multiply Eqs. (7) and (9) by the relevant powers ofε and sum them side to side. We return to the
original independent variablesy, t and introduce the rescaled amplitudesÃ = εA andB̃ = εB. The resulting G–L
system will be considered in the following, which gains the form

˙̃
A = −vgAÃ

′ + λAÃ
′′ + 1

pA
(rα2

cA − aAA|Ã|2 − aAB〈|B̃|2〉)Ã,

˙̃
B = −vgBB̃

′ + λBB̃
′′ + 1

pB
(rα2

cB − aBA〈|Ã|2〉 − aBB|B̃|2)B̃. (10)
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Henceforth,φ̇ stands for the time derivative ofφ whereasφ′ andφ′′ denote the derivatives with respect to the spatial
variabley. The coefficients in the G–L system (10) together with their asymptotics are given in Appendix A. The
diffusion coefficients areλA = qA/pA andλB = qB/pB andr = Ra− Rac is the bifurcation parameter. The tilde
denoting the rescaled amplitudes will be dropped hereafter.

5. Asymptotic behaviour of solutions

The goal of this section is to discuss long time behaviour of spatially periodic solutions to the G–L system (10). We
analyze asymptotic properties of the solutions and derive a priori bounds for various norms of solutions implying, in
particular, bounded dissipativity of the corresponding semi-dynamical system. Without loss of generality, we will
suppose that solutions to (10) have the unit spatial period. Moreover, we assume

λj , pj , ajk ∈ C, vgj ∈ R, Re(λj ) > 0, Re(pj ) > 0, Re(ajkp
−1
j ) > 0 (11)

for j, k ∈ {A,B}. The above structural assumptions can be verified for the physical model studied in Section 2.
Details can be found in the Appendix A.

In order to prove local existence, uniqueness and continuation of solutions to the G–L system (10) we rewrite it
as an abstract parabolic equation

Φ̇ + LΦ = F(Φ), Φ(0) = Φ0, (12)

whereΦ = (A,B), L is a linear operator defined asLΦ = (−λAA
′′,−λBB

′′) andF(A,B) = (−vgAA
′ +

&AA,−vgBB
′ + &BB) where

&A = &A(A,B) = 1

pA
(rα2

cA − aAA|A|2 − aAB〈|B|2〉),

&B = &B(A,B) = 1

pB
(rα2

cB − aBA〈|A|2〉 − aBB|B|2). (13)

LetLp = Lp(S1), p ≥ 1, denote the Banach space of all complex Lebesgue square integrable functions defined on
the domainS1 ≈ [0,1], the norm is given by‖f ‖p = (

∫ 1
0 |f |p)1/p. By Wk,2(S1) we denote the Sobolev space of

all complex valued functions defined on the one-periodic domainS1 whose distributional derivatives up to the order
k belong to the spaceL2. The norm onWk,2(S1) is defined as‖f ‖2

k,2 = ‖f (k)‖2
2 + ‖f ‖2

2. Next we define the scale

of complex Hilbert spaces asXk = (W2k,2(S1))2 for k = 0, 1/2, 1. It follows from compactness of the Sobolev
embeddingW1,2(S1) ↪→↪→ C(S1) that embeddingsX1 ↪→↪→ X1/2 ↪→↪→ X0 are also compact. Furthermore, the
nonlinearityF is well defined as a mapping from the phase spaceX = X1/2 into the spaceX0, F is C∞ smooth
and locally Lipschitz continuous. SinceRe(λj ) > 0, j ∈ {A,B}, it is easy to verify that the linear operator−L
generates an analytic semigroup of operators{e−Lt , t ≥ 0} in the spaceX0. Recall that the spaceXγ , γ ≥ 0,
is a fractional power space with respect to the sectorial operatorL. According to the general theory of parabolic
equations due to Henry [6] (Chapter 1) the abstract parabolic Eq. (12) and, consequently, the G–L system (10) has a
unique solutionΦ ∈ C([0, T ) : X )∩ C1((0, T ) : X0), Φ(t) ∈ X1 for t ∈ (0, T ), provided that the initial condition
Φ0 ∈ X = (W1,2(S1))2. If Tmax > 0 is a maximum time of existence of a solution then eitherTmax = ∞ or
Tmax < ∞ and then lim supt→T −

max
‖Φ(t)‖X = ∞.

In the next two auxiliary lemmas, we will prove a priori estimates for various norms of solutions to the
G–L system (10).
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Lemma 5.1. Suppose thatA = A(y, t) is a solution toȦ = λA′′ + ω̃A′ + &A subject to periodic boundary
conditions aty = 0, 1where& = &(y, t) is a complex valued function andλ ∈ C, ω̃ ∈ R, are constants such that
Re(λ) > 0. If κ ≥ 2 satisfies the inequality

(κ − 2)|Im(λ)| ≤ √
2κ − 3Re(λ) (14)

then

1

κ

d

dt

∫ 1

0
|A|κ dy + Re(λ)

2

∫ 1

0
|A′|2|A|κ−2 dy ≤

∫ 1

0
Re(&)|A|κ dy.

Proof. Let us multiply the equatioṅA = λA′′+ω̃A′+&A by the term|A|κ−2Ā. If λ ∈ C satisfies the condition (14)
then it easy to verify thatRe(λ(|z|2+(κ−2)zRe(z))) ≥ (1/2)Re(λ)|z|2, for anyz ∈ C. Clearly,Re(

∫ 1
0 A′|A|κ−2Ā) =

(1/κ)
∫ 1

0 (|A|κ)′ = 0. Since(1/κ)(d/dt)
∫ 1

0 |A|κ = ∫ 1
0 Re(Ȧ|A|κ−2Ā)and− ∫ 1

0 A′′|A|κ−2Ā = ∫ 1
0 |A|κ−4(|A′Ā|2+

(κ − 2)A′ĀRe(A′Ā)) the proof of the inequality (14) follows. �

Lemma 5.2. Suppose thatΦ = (A,B) is a solution to the G–L system(10). DenoteGκ(t) = ∫ 1
0 (|A(y, t)|κ +

|B(y, t)|κ)dy. If κ ≥ 2 is such that the inequality(14) is fulfilled for bothλ = λA andλ = λB then

Gκ(t) ≤ 2(κ+2)/κ
(
c1

c2

)κ/2
for anyt ≥ T0 = ln (2)

2c1
,

where

c1 = max
j=A,B

rα2
cjRe(p−1

j ) > 0 and c2 = min
j=A,B

Re(ajjp
−1
j ) > 0.

Proof. Applying Lemma 5.1, Hölder’s inequality, assumptions (11) and the fact that termsRe(−aAB/pA)〈|B|2〉
× ∫ 1

0 |A|κ dy ≤ 0 andRe(−aBA/pB)〈|A|2〉 ∫ 1
0 |B|κ dy ≤ 0 are nonpositive we obtain

1

κ
Ġκ ≤

∫ 1

0
(Re(&A)|A|κ + Re(&B)|B|κ) ≤ c1Gκ − c2

∫ 1

0
(|A|κ+2 + |B|κ+2) ≤ c1Gκ − 2−2/κc2G

(κ+2)/κ
κ .

Solving the above differential inequality we obtain

G−2/κ
κ (t) ≥ G−2/κ

κ (0)e−2c1t + c22−2/κ

c1
(1 − e−2c1t ) ≥ c22−(2/κ)

2c1
(15)

for anyt ≥ T0. The proof of Lemma 5.2 now follows. �

Theorem 1. Any solutionΦ = (A,B) to the G–L system(10)with an initial conditionΦ(0) = (A(·,0), B(·,0)) ∈
X is global in time. Moreover, there exists a constantc∞ > 0 independent of initial conditions and such
that

lim sup
t→∞

‖A(·, t)‖2
1,2 + ‖B(·, t)‖2

1,2 ≤ c2
∞

uniformly for initial conditions belonging to a bounded set inX .

Proof. Let us multiply the first equation in (10) by−Ā′′. By taking the real part, integrating over the interval [0,1],
using the Cauchy–Schwartz inequality, the inequalities

∫ 1
0 |φ|2 ≤ 1 + ∫ 1

0 |φ|6 and〈|φ|2〉 = ∫ 1
0 |φ|2 ≤ (

∫ 1
0 |φ|6)1/3
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we obtain

1

2

d

dt

∫ 1

0
|A′|2 dy + Re(λA)

∫ 1

0
|A′′|2 dy

= −Re
∫ 1

0
&AAĀ

′′ ≤ Re(λA)

2

∫ 1

0
|A′′|2 dy + 3

r2α4
cA + (r2α4

cA + |aAA|2 + |aAB|2)G6

2|pA|2Re(λA)

Repeating the same argument for the functionB yields the inequality

J̇2 + 2c3I2 ≤ c4 + c5G6, (16)

whereJ2 = ∫ 1
0 (|A′|2 + |B ′|2)dy, I2 = ∫ 1

0 (|A′′|2 + |B ′′|2)dy and

c3 = 1

2
min
j=A,B

Re(λj ), c4 = 3r2

(
α4

cA

|pA|2Re(λA)
+ α4

cB

|pB |2Re(λB)

)
,

c5 = c4 + 3

( |aAA|2 + |aAB|2
|pA|2Re(λA)

+ |aBA|2 + |aBB|2
|pB |2Re(λB)

)
. (17)

According to the Gagliarda–Nirenberg interpolation inequality there exists a constantcgn > 0 such that‖φ‖6 ≤
cgn‖φ′′‖1/6

2 ‖φ‖5/6
2 for anyφ ∈ W2,2(S1) [5]. Thus,G6 ≤ cgnI

1/2
2 G

5/2
2 . Now, it follows from (16), Lemma 5.2 and

the Young inequalityJ 1/2G ≤ δJ + (1/4)δ−1G2 which is valid for anyJ,G ≥ 0, δ > 0, that

J̇2 + 2c3I2 ≤ c4 + c3I2 + 1

4
c−1

3 (cgnc5G
5/2
2 )2 ≤ c6 + c3I2,

where

c6 = c4 + 28c2
gnc

−2
3 c2

5c
5
1c

−5
2 . (18)

By applying the inequality
∫ 1

0 |φ′|2 ≤ ∫ 1
0 |φ′′|2, i.e.J2 ≤ I2, we finally obtainJ̇2 + c3J2 ≤ c6, and hence,

J2(t) ≤ J2(0)e
−c3t + c6

c3
(1 − e−c3t ) (19)

for anyt ≥ 0. Now, inequalities (15) (withκ = 2) and (19) enable us to conclude that the norm‖(A(·, t), B(·, t))‖1,2

remains bounded within the maximum time intervalt ∈ [0, Tmax). Thus,Tmax = ∞ and solutions to the G–L system
(10) are global in time. Since‖A(·, t)‖2

1,2+‖B(·, t)‖2
1,2 = G2+J2 the asymptotic estimate lim supt→∞‖A(·, t)‖2

1,2+
‖B(·, t)‖2

1,2 ≤ c2∞ follows from (15) and (19) where

c2
∞ = 4c1c

−1
2 + c6c

−1
3 . �

Remark 5.1. By inserting the asymptotic formulae for coefficientspj , qj , αcj, ajk (see (5) and (A.2) in Appendix
A), it can be shown that for a fixedr the constantc∞ = O(η19/6) for η → ∞. However, this estimate is not
optimal and it can be easily improved by introducing a suitable scaling of amplitudesA ↔ Ã, B ↔ η7/6B̃. Taking
into account the scaling property of the G–L system (10) the corresponding coefficientsãjk have the following
asymptotics:|ãAA| = O(η10/3), |ãAB| = O(η13/3), |ãBA| = O(η5/2) and|ãBB| = O(η3) for η → ∞. Hence, for
tilded amplitudesÃ, B̃ we obtain the estimate lim supt→∞‖Ã(·, t)‖2

1,2 + ‖B̃(·, t)‖2
1,2 ≤ c̃2∞ wherec̃∞ = O(η−2/3)

for η → ∞. Hence,

lim sup
t→∞

‖A(·, t)‖1,2 ≤ O(η−2/3), lim sup
t→∞

‖B(·, t)‖1,2 ≤ O(η1/2)
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for η → ∞ uniformly with respect to initial conditions belonging to a bounded set in(W1,2(S1))2. As for the
L2-norm of a solution(A,B), it follows from Lemma 5.2 that

lim sup
t→∞

‖A(·, t)‖2 ≤ O(η−4/3), lim sup
t→∞

‖B(·, t)‖2 ≤ O(η−1/6).

Finally, according to the Gagliarda–Nirenberg inequality‖φ‖2∞ ≤ cgn‖φ‖1,2‖φ‖2 where‖φ‖∞ = supy∈[0,1]|φ(y)|
we obtainL∞ bounds for solutions to the G–L system (10)

lim sup
t→∞

‖A(·, t)‖∞ ≤ O(η−1), lim sup
t→∞

‖B(·, t)‖∞ ≤ O(η1/6)

uniformly for initial conditions belonging to a bounded set inX .

Remark 5.2. From the dynamical system theory point of view, it results from Theorem 5.1 that the semi-dynamical
system generated by solutions to (10) is bounded dissipative (cf. [6]). Then, following rather standard arguments,
one can easily prove the existence of a compact global attractor having a finite fractal dimension as well as the
existence of an inertial manifold for the corresponding semi-dynamical system.

6. Amplitude dynamics of phase winding solutions

Having computed the analytical expressions for coefficients of the G–L system (10) (see (A.2)), we are yet able
to study the stability properties. We will analyze the so-called phase winding solutions which posses periodic spatial
structure. A phase winding solution to the G–L system (10) is a pair of functions (A, B) having the form

A(y, t) = A(t)ei(kAy+ΓA(t)), B(y, t) = B(t)ei(kBy+ΓB(t)) (20)

for (y, t) ∈ R × R
+ whereA, B, ΓA, ΓB are real valued amplitudes and phases, respectively, depending on the

time t ∈ R
+ only, andkA, kB ∈ R are phase winding numbers. Note that under assumption (20) only amplitude

instabilities can be analysed. The phase functions do not affect the stability properties in this case. Moreover,
amplitude instabilities are insensitive to the averaging of the G–L system (10).

Inserting the ansatz (20) into the G–L system (10) and denoting

βjk = Re(ajkp
−1
j ), dj = α2

cjRe(p−1
j ), j, k ∈ {A,B},

we obtain the planar system of ODEs for real amplitudesA, B:

Ȧ = −k2
Aλ

R
AA+ (rdA − βAAA

2 − βABB
2)A, Ḃ = −k2

Bλ
R
BB + (rdB − βBAA

2 − βBBB
2)B. (21)

The phase functionsΓj , j ∈ {A,B}, are given by

Γj (t) = Γ 0
j − (k2

j λ
I
j + kj vgj )t + Im

∫ t

0
p−1
j (rαcj2 − ajAA

2(τ ) − ajBB
2(τ ))dτ,

whereΓ 0
j ∈ R, j ∈ {A,B}, are initial phases. Hereafter, the superscripts R and I will denote the real and imaginary

parts, respectively.
Let (A,B) be a solution to the planar system of ODEs (21) corresponding to the phase winding numberskA, kB ∈

R. A straightforward phase–plane analysis enables us to conclude that the first quadrantR
+
0 × R

+
0 is invariant with

respect to solutions to (21). Furthermore, by introducing the logarithmic transformation of variables&A = log(A),
&B = log(B) and taking into account the Poincaré–Bendixon criterion applied to the transformed planar system of
ODEs we are able to conclude that there are neither periodic orbits nor heteroclinic cycles in the planar system (21).
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Next we examine stationary, i.e. time independent solutions to (21). Let us introduce the auxiliary function playing
a crucial role in the stability analysis of (21):

G(r, kA, kB; Pr, η) = rdA − k2
Aλ

R
A

rdB − k2
Bλ

R
B

. (22)

Here, and after we will assume that the bifurcation parameterr = Ra− Rac and the wave numberskA, kB satisfy
the so-calledsupercritical band conditions

r >
k2
j λ

R
j

dj
for j = A,B (23)

which implies thatG > 0. Moreover, we will restrict ourselves to the case of

dj > 0, βjk > 0, D = βABβBA − βAAβBB > 0. (24)

This setting is due to physically interesting small Prandtl numbersPr and high rotation ratesη, as it is shown below.
In this case the asymptotic results can be directly used. The cases with negativeβjk andD will not be considered
here.

Let us denote the stationary amplitudes as

Âp =
(

rdA − k2
Aλ

R
A

βAA

)1/2

, B̂p =
(

rdB − k2
Bλ

R
B

βBB

)1/2

,

Âm = β
1/2
AA Âp

(
βABG

−1 − βBB

D

)1/2

, B̂m = β
1/2
BB B̂p

(
βBAG − βAA

D

)1/2

.

Depending on the value of functionG generically three cases can occur:

(A) G > βAB/βBB: in this case, there are three nonnegative stationary solutions: the zero solution(0,0) and the
pure modes(Âp,0), (0, B̂p). The solution(0,0) is an unstable node,(Âp,0) is a stable node,(0, B̂p) is a saddle
point and there exists a heteroclinic connection from(0, B̂p) to (Âp,0).

(AB) βAA/βBA < G < βAB/βBB: in this case, there are four nonnegative stationary solutions: the zero solution
(0,0), the pure modes(Âp,0), (0, B̂p) and the mixed mode(Âm, B̂m). The solution(0,0) is an unstable node,
(Âp,0) and(0, B̂p) are stable nodes and(Âm, B̂m) is a saddle point. There exist heteroclinic connections from
(Âm, B̂m) to (Âp,0) and from(Âm, B̂m) to (0, B̂p).

(B) G < βAA/βBA: in this case, there are three nonnegative stationary solutions: the zero solution(0,0) and the
pure modes(Âp,0), (0, B̂p). The solution(0,0) is an unstable node,(Âp,0) is a saddle point,(0, B̂p) is a stable
node and there exists a heteroclinic connection from(Âp,0) to (0, B̂p).

Passing below the critical valueGc1 = βAB/βBB a saddle-node bifurcation occurs, the saddle point(0, B̂p)

becomes a stable node and a new saddle point(Âm, B̂m) bifurcates from(0, B̂p). Passing through the second critical
valueGc2 = βAA/βBA a saddle point (̂Am, B̂m) merges with a stable node(Âp,0) again via a saddle-node bifurcation
(see Fig. 4).

We are yet able to apply the previous stability results to the underlying physical model in the limiting caseη → ∞.
With the asymptotic expressions for the coefficientsβjk (see Appendix A) the conditions (24) must be satisfied so that
the stability results could be applied. It can be computed that the coefficientβAB > 0 for 0< Pr < Prmax = 0.265
andβAA > 0, βBA > 0, βBB > 0 for all values ofPr > 0.

Moreover, with help of the asymptotics (A.4) available forη → ∞ it can be computed thatβAA/βBA =
O(η1/3) andβAB/βBB = O(η). Assuming the simplest case ofkA = 0 andkB = 0 corresponding tospatially
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Fig. 4. Phase portraits for the planar system of ODEs (21) for different values of the functionG corresponding to the cases (A), (B) and (AB).

homogeneous solutionsand using (A.3), it results from (22) thatG(r, kA, kB; Pr, η) = O(η2/3) and thusβAA/βBA <

G(r, kA, kB; Pr, η) < βAB/βBB for η → ∞. The same result applies also forspatially nonhomogeneous solutions
with the wave numberskA = r1/2O(η−1/3) andkB = r1/2O(η−2/3) such that supercritical band conditions (23)
are satisfied.

As a result, the cases (A) and (B) do not apply for high rotation rates which excludes the single mode instabilities.
The case (AB) only occurs corresponding to the two locally asymptotically stable modesA andB (see Fig. 4).

7. Conclusions

The nonlinear equations governing the specified model of rotating magnetoconvection by [3] were analyzed and
solved in this paper. Special parameter setting corresponding to the case of two mode convection was established in
the linearized case. Adopting the limit of high rotation rateη → ∞, analytical expressions for the parameters were
computed. An interesting feature is that the critical Chandrasekhar number for the two mode convection is scaled
asQc ∼ η2/3.

For the weakly nonlinear regime the G–L system of complex modulation equations was derived (see Section 4). In
the limit of η → ∞ analytical expressions for the G–L system coefficients were computed. The qualitative analysis
of the G–L system proves bounded dissipativity of the corresponding semi-dynamical system.L∞ estimates for a
compact global attractor were found in terms of the powers ofη.
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Stability properties of the G–L system were studied for a class of phase winding solutions. It turns out that the
existence of convective modes is determined by the amplitude instabilities of phase winding solutions and depends
on choice of the physical parametersη andPr. The modes were found to be supercritical for the Prandtl numbers
of 0 < Pr < 0.265 and rotation rateη → ∞. For this parameter setting both the modesA andB are locally
asymptotically stable.
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Appendix A

The coefficients of the linear part of the G–L system (9) are

pj = (Pr + 1)(π2 + α2
cj )

2 + Prπ2Qc + i[2Pr(π2 + α2
cj )ωcj + Prηαcj ],

qj = 3(π2 + α2
cj )(π

2 + 5α2
cj ) − Rac + π2Qc − Pr[(π2 + α2

cj )v
2
gj − 4αcjωcj vgj + ω2

cj − ηvgj ]

+ i[(Pr + 1)(−4(π2 + α2
cj )αcj vgj + 4α2

cjωcj + 2(π2 + α2
cj )ωcj ) + 3ηαcj ] (A.1)

wherej = A,B. Note that a single mode case with the formal settingQc = 0 in the expressions for coefficients
corresponds to the nonmagnetic case which was studied by [7].

Using the asymptotics (5) forη → ∞, the coefficients of the linear part of the G–L system (10) can be expressed
as follows (forPr �= 1):

pA = (Pr + 1)
1

3Q̂
η4/3 + iPr

Pr − 1

Pr + 1

(
1

3Q̂

)1/4

η4/3, pB = π2PrQ̂η2/3 + iPrπ(πQ̂)1/2η5/6,

qA =
[

4

Q̂
− Pr

Pr − 1

(Pr + 1)2
(3Q̂)1/2

]
η4/3 + i

(
1

3Q̂

)1/4

η4/3, qB = πη + i3π(πQ̂)1/2 η5/6,

vgA = − 1

Pr + 1
(3Q̂)1/2η1/3, vgB = 1

PrQ̂
η1/3, (A.2)

whereQ̂ is given by (5).
The asymptotic orders for the diffusion coefficientsλj = qj /pj and the coefficientsdj = α2

cjRe(p−1
j ) defined

in Section 6 are

λA = O(1) + iO(1), λB = O(1) + iO(η1/6), dA = O(η−2/3), dB = O(η−4/3), (A.3)

for η → ∞.
The expressions for coefficients entering the nonlinear part of the G–L system (10) are rather complicated. We

only refer to their asymptotic behaviour in the limitη → ∞ which is sufficient for the stability analysis in this
paper:
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aAA = Pr2

8Q̂

(
1

3Q̂

)3/2

η10/3,

aAB

pA
= −3Pr8/3π4PrRAB

21/316(1 + Pr)2/3(2 + 5Pr)2(3 − 2Pr + 3Pr2)3
η2/3

+ i
3Pr8/3π4PrIAB

(25/68(1 + Pr)2/3(2 + 5Pr)2(3 − 2Pr + 3Pr2)3
η2/3,

aBA

pB
= 3Pr11/3(4 + 43Pr − 4Pr2 + 55Pr3 − 14Pr4 + 8Pr5)π

21/32(1 + Pr)5/3(2 + 5Pr)2(3 − 2Pr + 3Pr2)2
η5/3

+ i
3Pr13/3(3π)1/2

22/316(1 + Pr)1/3(2 + 5Pr)(3 − 2Pr + 3Pr2)
η11/6, aBB = π6(πQ̂)2

Pr2

8Q̂
η2/3

with

PrRAB = −233+ 489Pr + 1105Pr2 + 1011Pr3 + 1201Pr4 + 455Pr5 + 7Pr6 + 125Pr7,

PrIAB = −133− 939Pr + 437Pr2 − 1029Pr3 + 1133Pr4 − 109Pr5 + 355Pr6 + 29Pr7.

The asymptotic orders for the coefficientsβjk = Re(ajk/pj ) defined in Section 6 are

βAA = O(η2), βAB = O(η2/3), βBA = O(η5/3), βBB = O(η−1/3) (A.4)

for η → ∞.
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