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813 68 Bratislava, Slovak Republic

zInstitute of Applied Mathematics, Faculty of Mathematics, Physics & Informatics,
Comenius University, 842 48 Bratislava, Slovak Republic

Communicated by R.P. Gilbert

(Received 28 October 2003; in final form 19 September 2004)

We study a flow of closed curves on a given graph surface driven by the geodesic curvature and
external force. Using vertical projection of surface curves to the plane we show how the geodesic
curvature-driven flow can be reduced to a solution of a fully nonlinear system of parabolic
differential equations. We show that the flow of surface curves is gradient-like, i.e. there
exists a Lyapunov functional nonincreasing along trajectories. Special attention is placed on
the analysis of closed stationary surface curves. We present sufficient conditions for their
dynamic stability. Several computational examples of evolution of surface curves driven by
the geodesic curvature and external force on various surfaces are presented in this article.
We also discuss a link between the geodesic flow and the edge detection problem arising
from the image segmentation theory.

Keywords: Geodesic curvature; External force; Flow of surface curves; Linearized stability;
Lyapunov functional; Closed geodesic curve

AMS Classifications: 35K65; 35B35; 35K55; 53C44

1. Introduction

In this article we study a flow of curves on a given two-dimensional surfaceM in R
3

represented by a smooth graph. We consider the simplest possible case in which the
normal velocity V of a curve G on M is a linear function of its geodesic curvature
Kg and external force,

V ¼ Kg þ F ð1Þ
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where F is the normal component of a given external force ~GG, i.e. F ¼ ~GG � ~NN and ~NN is
the unit inward normal vector to a curve G belonging to the tangent space TxðMÞ.

The idea how to analyze the flow of curves on a surface M consists in vertical
projection of surface curves onto the plane. It allows for reducing the problem to the
analysis of evolution of planar curves �t: S

1! R
2, t � 0 instead of surface ones.

Although the geometric equation V ¼ Kg þF is simple, the description of the
normal velocity v of the family of projected planar curves is rather involved.
Nevertheless, it can be written in the form of the equation

v ¼ �ðx, k, �Þ � aðx, �Þkþ cðx, �Þ ð2Þ

where the normal velocity v is an affine function of the curvature k, nonlinearly depend-
ing on the tangential angle � and the position vector x2�t. The precise form of the
function � can be found in the next section. Recall that geometric equations of the
form (2) can be often found in a variety of applied problems such as material science,
combustion, robotics, image processing and computer vision. For an overview of
important applications of (2) we refer to recent books by Sethian [26], Sapiro [25]
and Osher and Fedkiw [24].

Our methodology for solving (2) is based on the so-called direct approach investi-
gated by Dziuk, Deckelnick, Gage and Hamilton, Grayson, Mikula and Ševčovič
and other authors (see [5–7,10,11,18–23] and references therein). The main idea is to
represent the flow of planar curves by the position vector x which is a solution
to the geometric equation @tx ¼ � ~NNþ � ~TT where ~NN, ~TT are the unit inward normal
and tangent vectors, respectively. It turns out that one can construct a closed system
of parabolic–ordinary differential equations for relevant geometric quantities: the
curvature, tangential angle, local length and position vector. Other well-known techni-
ques, such as level-set method due to Osher and Sethian (cf [24,26]) or phase-field
approximations (see e.g. Beneš [2]) treat the geometric equation (2) by means of a solu-
tion to a higher-dimensional parabolic problem. In comparison to these methods, in the
direct approach one space dimensional evolutionary problems are only solved. Notice
that the direct approach for solving (2) can be accompanied by a proper choice of
tangential velocity � significantly improving and stabilizing numerical computations
as it was documented by many authors (see [5,12,13,16,20–23]).

The main purpose of this article is to study the qualitative properties of solutions to
the geometric equation (1). We focus our attention to the linearized stability of station-
ary geodesic curves. We give sufficient conditions for their linearized stability. These
conditions are shown to be sharp in the case of a flow of radially symmetric curves on
radially symmetric surface. We, furthermore, prove that the flow of surface curves is
gradient-like, i.e. there exists a Lyapunov functional nonincreasing along trajectories.
Several computational examples of evolution of surface curves driven by the geodesic
curvature and external force on various surfaces are presented in this article.

The outline of the article is as follows. In the next section we show how to project the
flow of surface curves into the plane. We construct a normal velocity for the family
of projected planar curves. In section 2.1 we present the governing system of partial
differential equations (PDEs) describing the evolution of plane curves satisfying (2).
The system consists of coupled parabolic–ordinary differential equations for the curva-
ture, tangential angle, local length and position vector. Qualitative aspects of solutions
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like existence and their limiting behavior are investigated in section 3. Various
Lyapunov-like functionals are derived in this section. Special attention is placed on
the analysis of closed stationary surface curves in section 3.2. Here we present necessary
and sufficient conditions for their stability. Furthermore, we analyze radially symmetric
solutions. We also show that the stability criteria are sharp. Results of numerical
approximation of the flow of curves on various complex surfaces, numerical study of
stability results given in the article as well as a possible application to edge detection
problem in the image segmentation are presented in section 4.

2. Preliminaries

2.1. Projection of a flow of surface curves to the plane

The main idea how to solve the geometric problem (1) is to project the flow of surface
curves into the plane. A surface M¼ fðx, zÞ 2R

3, z ¼ �ðxÞ, x2�g is assumed to be
a graph of a smooth function �: ��R

2
! R defined in some domain ��R

2.
The symbol (x, z) stands for a vector ðx1, x2, zÞ 2R

3 where x ¼ ðx1, x2Þ 2R
2. With this

notation any smooth closed curve G on the surfaceM can then be represented by its
vertical projection to the plane, i.e.

G ¼ fðx, zÞ 2R
3, x2�, z ¼ �ðxÞg

where � is a closed planar curve in ��R
2. Throughout the article we assume that the

driving force F is a projection of a given external vector field ~GG to the inward unit
normal vector ~NN 2TxðMÞ to a surface curve G�M relative to M. Thus F ¼ ~GG � ~NN .
The external vector field ~GG is assumed to be perpendicular to the plane R

2 and it
may depend on the vertical coordinate z ¼ �ðxÞ only, i.e.

~GGðxÞ ¼ �ð0, 0, �Þ

where � ¼ �ðzÞ ¼ �ð�ðxÞÞ is a given scalar ‘gravity’ functional. In [23] we have shown
that under the above assumptions made on the surface M and the vector field ~GG,
one can express Kg of the family of surface curves Gt as well as the external force F
in terms k, � and the position vector x of the vertically projected plane curve �t.

Following the so-called direct approach (cf [5–7,12,19–22]) the evolution of planar
curves �t, t � 0, can be described by a solution x ¼ xð:, tÞ 2R

2 to the position vector
equation

@tx ¼ � ~NNþ � ~TT ð3Þ

where � and � are normal and tangential velocities of �t, respectively. Assuming the
family of surface curves Gt satisfies (1) it has been shown in [23] that the geometric
equation v ¼ �ðx, k, �Þ for the normal velocity v of the vertically projected planar
curve �t can be written in the following form:

v ¼ �ðx, k, �Þ � aðx, �Þ k� bðx, �Þ r�ðxÞ � ~NN ð4Þ
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where a ¼ aðx, �Þ > 0 and b ¼ bðx, �Þ are smooth functions given by

aðx, �Þ ¼
1

1þ ðr� � ~TT Þ2
, bðx, �Þ ¼

1

1þ jr�j2
�ð�Þ �

~TTTr2� ~TT

1þ ðr� � ~TT Þ2

 !
, ð5Þ

� ¼ �ðxÞ and k, ~NN ¼ ð�sin �, cos �Þ, ~TT ¼ ðcos �, sin �Þ are the curvature, unit inward
normal and tangent vectors to a curve �t. Thus � is a tangent angle. Notice that the
function � is a 2�-periodic function in the variable � and is Ck�2 smooth provided
that �2Ck. Moreover, the function b is positive provided that � > sup jr2�j.

2.2. Local existence, uniqueness and continuation of classical solutions

In this section we present a closed system of PDEs governing the evolution of a flow of
plane curves satisfying geometric equation (2). An embedded regular plane curve � will
be parameterized by a smooth function x: S1! R

2. It means that � ¼ ImageðxÞ :¼
fxðuÞ, u2S1g and g ¼ j@uxj > 0. Taking into account the periodic boundary conditions
at u¼ 0, 1, we can hereafter identify S1 with the interval ½0, 1�. The unit arc-length
parameterization of a curve � ¼ ImageðxÞ is denoted by s, ds ¼ g du. The tangent
vector ~TT and the signed curvature k of � satisfy ~TT ¼ @sx ¼ g�1@ux, k ¼ @sx ^ @

2
s x ¼

g�3@ux ^ @
2
ux. We choose orientation of the unit inward normal vector ~NN in such

a way that ~TT ^ ~NN ¼ 1 where ~aa ^ ~bb is the determinant of the 2� 2 matrix with
column vectors ~aa, ~bb. By � we denote the tangent angle to �, i.e. � ¼ argð ~TTÞ.

Then ~TT ¼ ðcos �, sin �Þ and, by Frenét’s formulas, @s ~TT ¼ k ~NN, @s ~NN ¼ �k ~TT and @s� ¼ k.

Let a regular smooth initial curve �0 ¼ Imageðx0Þ be given. A family of planar
curves �t ¼ Imageðxð:, tÞÞ, t2 ½0,T Þ, satisfying (2) can be represented by a solution
x ¼ xðu, tÞ to the position vector equation (3). Notice that � ¼ �ðx, k, �Þ depends on
x, k, � and this is why we have to provide equation for the variables k, � as well as
local length g ¼ j@uxj, also. The governing system of equations for a general position
vector equation (3) has been derived and analyzed by the authors in [21–23] for a
wide class of normal velocities �. They are straightforward modifications of well-
known geometric equations derived for the case of a zero tangential velocity �
(see e.g. [10]). In the case of a nontrivial tangential velocity functional �, the system
of parabolic–ordinary governing equations has the following form:

@tk ¼ @
2
s�þ �@skþ k2�, ð6Þ

@t� ¼ �
0
k@

2
s�þ ð�þ �

0
�Þ@s�þ rx� �

~TT, ð7Þ

@tg ¼ �gk�þ @u�, ð8Þ

@tx ¼ � ~NNþ � ~TT ð9Þ

where ðu, tÞ 2 ½0, 1� � ð0,T Þ, ds ¼ g du, ~TT ¼ @sx ¼ ðcos �, sin �Þ, ~NN ¼ ~TT? ¼ ð�sin �, cos �Þ,
� ¼ �ðx, k, �Þ. A solution ðk, �, g, xÞ to (6)–(9) is subject to initial conditions

kð:, 0Þ ¼ k0, �ð:, 0Þ ¼ �0, gð:, 0Þ ¼ g0, xð:, 0Þ ¼ x0ð�Þ
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and periodic boundary conditions at u¼ 0, 1 except of � for which we require the
boundary condition �ð1, tÞ � �ð0, tÞ modð2�Þ. The initial conditions for k0, �0, g0 and x0
must satisfy natural compatibility constraints: g0 ¼ j@ux0j > 0, k0 ¼ g�30 @ux0 ^ @

2
ux0,

@u�0 ¼ g0k0 following from the equation k ¼ @sx ^ @
2
s x and Frenét’s formulas applied

to the initial curve �0 ¼ Imageðx0Þ. Notice that the system of governing equations
consists of coupled parabolic–ordinary differential equations.

Since � enters the governing equations, a solution k, �, g, x to (6)–(9) does depend
on �. On the other hand, the family of planar curves �t ¼ Imageðxð:, tÞÞ, t2 ½0,T Þ,
is independent of a particular choice of the tangential velocity � as it does not
change the shape of a curve. The tangential velocity � can therefore be considered
as a free parameter to be determined in a suitable way. For example, in the plain vanilla
curve shortening equation v¼ k, we can write equation (3) in the form @tx ¼ @

2
s x ¼

g�1@uðg
�1@uxÞ þ �g

�1@ux, where g ¼ j@uxj. Epstein and Gage [9] showed how this
degenerate parabolic equation (g need not be smooth enough) can be turned into the
strictly parabolic equation @tx ¼ @

2
s x ¼ g�2@2uxÞ by choosing the tangential term � in

the form � ¼ g�1@uðg
�1Þ@ux. This trick is known as ‘De Turck’s trick’ named after

De Turck [8] who used this approach to prove short time existence for the Ricci flow.
Numerical aspects of this ‘trick’ have been discussed by Deckelnick in [5]. In general,
we allow the tangential velocity functional � appearing in (6)–(9) to be dependent on
k, �, g, x in various ways including nonlocal dependence, in particular (see section 4
for details).

Let us denote � ¼ ðk, �, g, xÞ. Let 0 < % < 1 be fixed. By Ek we denote the following
scale of Banach spaces (manifolds)

Ek ¼ c2kþ% � c2kþ%� � c1þ% � ðc2kþ%Þ2 ð10Þ

where k¼ 0, 1, and c2kþ% ¼ c2kþ%ðS1Þ is the ‘little’ Hölder space, i.e. the closure of
C1ðS1Þ in the topology of the Hölder space C2kþ%ðS1Þ (see [1]). By c2kþ%� ðS1Þ we have
denoted the Banach manifold c2kþ%� ðS1Þ ¼ f�: R! R, ~TT ¼ ðcos �, sin �Þ 2 ðc2kþ%ðS1ÞÞ

2
g.

Concerning the tangential velocity � we will assume

�2C1ðO1
2
, c2þ%ðS1ÞÞ ð11Þ

for any bounded open subset O1
2
�E1

2
such that g>0 for any ðk, �, g, xÞ 2O1

2
.

In the rest of this section we recall a general result on local existence and uniqueness
a classical solution of the governing system of equations (6)–(9). The normal velocity �
defined as in (4) belongs to a wide class of normal velocities for which local existence of
classical solutions has been shown in [22,23]. This result is based on the abstract theory
of nonlinear analytic semigroups developed by Angenent in [1] and it utilizes the
so-called maximal regularity theory for abstract parabolic equations.

THEOREM 2.1 ([22, Theorem 3.1]) Assume �0 ¼ ðk0, �0, g0, x0Þ 2E1 where k0 is the
curvature, �0 is the tangential vector, g0 ¼ j@ux0j > 0 is the local length element of an
initial regular closed curve �0 ¼ Imageðx0Þ and the Banach space Ek is defined as
in (10). Assume � ¼ �ðx, k, �Þ is a C 4 smooth and 2�-periodic function in the � variable
such that min�0

�0kðx0, k0, �0Þ > 0 and � satisfies (11). Then there exists a unique solution
� ¼ ðk, �, g, xÞ 2Cð½0,T �,E1Þ \ C

1ð½0,T �,E0Þ of the governing system of equations (6)–(9)
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defined on some small time interval ½0,T �, T > 0. Moreover, if � is a maximal solution
defined on ½0,TmaxÞ then we have either Tmax ¼ þ1 or lim inft!T�max

min�t
�0kðx, k, �Þ ¼ 0

or Tmax < þ1 and max�t
jkj ! 1 as t! Tmax.

3. Qualitative behavior of solutions

3.1. First integrals and conserved quantities

The aim of this section is to show that the flow of surface curves driven by geometric
equation (1) is gradient-like, i.e. there exists a Lyapunov functional nonincreasing along
the trajectories. In the case there is no external force F in (1), the length functional
Lt ¼ Length ðGtÞ is a Lyapunov functional because its time derivative ðd=dtÞLt satisfies
the well-known geometric identity

d

dt
Lt ¼ �

Z
Gt

KgV dS ð12Þ

and the right-hand side of (12) is nonpositive in the case V ¼ Kg. The main purpose of
the next proposition is to generalize (12) for the case of a nontrivial external force F .

PROPOSITION 3.1 Let H: R! R be a solution to the ODE: H0ðzÞ ¼ �ðzÞHðzÞ, z2R.
If the family Gt, t2 ½0,T Þ, of surface curves evolves according to the normal
velocity V ¼ Kg þ F where F ¼ ~GG � ~NN and ~GG ¼ �ð0, 0, �ðzÞÞ, then

d

dt

Z
Gt

HðzÞ dS ¼ �

Z
Gt

V2HðzÞ dS:

Proof For the sake of simplicity we take �¼ 0 in the proof of this statement. Other
choices of �, however, do not change the result as the curve �t ¼ Imageðxð:, tÞÞ is
independent of a particular choice of tangential redistribution and so does any
other geometric quantity evaluated over the curve �t. To simplify notation, we write
H instead of Hð�ðxÞÞ and use identity @s� ¼ r� � ~TT. Clearly,

Z
G

H dS ¼

Z
�

H 1þ ð@s�Þ
2

� �1=2
ds ¼

Z
S1

H 1þ ð@s�Þ
2

� �1=2
g du:

Moreover, as @t ~TT ¼ @tðcos �, sin �Þ ¼ @t� ~NN ¼ @s� ~NN (see (7)) we have

@t 1þ ð@s�Þ
2

� �1=2
¼

@s�

1þ ð@s�Þ
2

� �1=2 @sð�r� � ~NNÞ þ k�@s�
� �

and

@s
@s�

ð1þ ð@s�Þ
2
Þ
1=2
¼
~TTTr2� ~TTþ kr� � ~NN

1þ ð@s�Þ
2

� �3=2 : ð13Þ
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By the assumption made on H, due to (8), and using integration by parts we obtain

d

dt

Z
Gt

H dS ¼

Z
�t

@t 1þ ð@s�Þ
2

� �1=2
H

� �
� 1þ ð@s�Þ

2
� �1=2

Hk� ds

¼

Z
�t

ð1þ ð@s�Þ
2
Þ
1=2� H0r� � ~NNþ

Hkð@s�Þ
2

1þ ð@s�Þ
2
�Hk

� �
ds

þ

Z
�t

H@s�

1þ ðr� � ~TTÞ2
� �1=2 @sð�r� � ~NNÞ ds

¼

Z
�t

1þ ð@s�Þ
2

� �1=2
�H �r� � ~NN�

k

1þ ð@s�Þ
2

� �
ds

�

Z
�t

�Hr� � ~NN @s
@s�

1þ ð@s�Þ
2

� �1=2 þ �ð@s�Þ
2

1þ ð@s�Þ
2

� �1=2
 !

ds

¼

Z
�t

�H

1þ ð@s�Þ
2

� �1=2 � �
~TTTr2� ~TT

1þ ð@s�Þ
2

 !
r� � ~NN� k

1þ jr�j2

1þ ð@s�Þ
2

 !

¼ �

Z
�t

1þ jr�j2

1þ ð@s�Þ
2

� �1=2 �2H ds ¼ �

Z
Gt

V2HdS,

as claimed. Note that we have used the identities 1þ ð@s�Þ
2
þ ðr� � ~NNÞ2 ¼ 1þ jr�j2 and

V2 ¼ �2ð1þ jr�j2Þ=ð1þ ð@s�Þ
2
Þ throughout the derivation of the above identities. g

Clearly, if V ¼ Kg then �¼ 0 and H � 1 is a solution to H0 ¼ �H. As Lt ¼
R
Gt
dS,

we can conclude from Proposition 3.1 that d=dtLt ¼ �
R
Gt
V2 dS which is exactly

equation (12). Furthermore, it follows from Proposition 3.1 that the functionalR
G
HðzÞ dS is a Lyapunov-like functional nonincreasing along trajectories of solutions

to (1). The next result is, therefore, a consequence of Proposition 3.1.

COROLLARY 3.1 There exists no nontrivial time periodic family of surface curves
fGt, t � 0g, with the normal velocity V satisfying the geometric equation V ¼ Kg þ F

where F ¼ ~GG � ~NN and ~GG ¼ �ð0, 0, �ðzÞÞ.

3.2. Closed stationary curves and their stability

In this section we analyze the stationary surface curves with respect to the normal
velocity V ¼ Kg þ F , i.e. the surface curves satisfying Kg þ F ¼ 0. Since there is
one-to-one correspondence between the flow of curves on a given surface and the
flow of vertically projected planar curves, we are only concerned with stationary
planar curves satisfying �ðx, k, �Þ ¼ 0 where � is given by (4). We will also analyze
the stability of such curves with respect to small perturbations in the normal velocity.

Definition 3.1 A closed smooth planar curve ��� ¼ Imageð �xxÞ is called a stationary curve
with respect to the normal velocity � iff �ð �xx, �kk, ���Þ ¼ 0 on ��� where �xx, �kk and ��� are the
position vector, curvature and tangential angle of the curve ���.
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3.3. Principle of linearized stability

Since the presence of arbitrary tangential velocity functional in the system of governing
equations has no impact on the shape of evolving curves �t ¼ Imageðxð:, tÞÞ, we take
�¼ 0 in the analysis of stability of stationary curves. The governing system of equations
(6)–(9) reduces to:

@tk ¼ g�1@uðg
�1@u�Þ þ k2�, @t� ¼ g�1@u�,

@tg ¼ �gk�, @tx ¼ � ~NN,
ð14Þ

u2S1, t2 ð0,T Þ. Let ��� ¼ Imageð �xxÞ be a stationary curve having the curvature �kk,

tangential angle ���, the local length �gg, position vector �xx and the unit normal vector ~�NN�NN.
In order to analyze stability of ��� we have to investigate the behavior of infinitesimal
variations of k, �, g and x. Variations from a steady state ð �kk, ���, �gg, �xxÞ will be denoted
by ð�k, ��, �g, �xÞ. Since ��� ¼ �ð �xx, �kk, ���Þ ¼ 0 on ��� we have @u ��� ¼ @2u

��� ¼ 0 on ���. Hence
infinitesimally small variations �k, ��, �g and �x satisfy the linearized system

@t�
k ¼ �gg�1@uð �gg

�1@u�
�Þ þ �kk2��, @t�

� ¼ �gg�1@u�
�,

@t�
g ¼ � �gg �kk��, @t�

x ¼ �� ~�NN�NN
ð15Þ

for u2S1, t > 0. Here �� ¼ �ð �xxþ �x, �kkþ �k, ���þ ��Þ � �ð �xx, �kk, ���Þ ¼ rx ��� � �x þ ���0k�
kþ

���0��
�þ higher order terms. Clearly, all variations �k, ��, �g, �x, �� are subject to peri-

odic boundary conditions at u¼ 0, 1. As rx ��� ¼ rx�ð �xx, �kk, ���Þ, ���0k ¼ �
0
kð �xx,

�kk, ���Þ, and
���0� ¼ �

0
�ð �xx,

�kk, ���Þ do not depend on time the total variation �� satisfies the scalar parabolic
equation

@t�
� ¼ rx ��� � @t�

x þ ���0k@t�
k þ ���0�@t�

�

¼ ���0k �gg�1@uð �gg
�1@u�

�Þ þ ���0� �gg�1@u�
� þ ð ���0k

�kk2 þ rx ��� ~�NN�NNÞ��, ð16Þ

i.e. @t�
� ¼ P@2u�

� þ R@u�
� þQ��,

where

P ¼ �gg�2 ���0k, R ¼ �gg�1 ���0� þ �gg�1 ���0k@u �gg�1, Q ¼ ���0k
�kk2 þ rx ��� � ~�NN�NN: ð17Þ

Functions P,Q and R are 1-periodic in u variable and depend on the stationary curve
��� only. A solution �� to (16) is subject to periodic boundary conditions at u¼ 0, 1.
Our concept of stability of stationary curves is based on the analysis of an infinite-

simally small variation �� in the normal velocity. Roughly speaking, if the variation
��ð:, tÞ decays to zero as t!1, we say that ��� is stable. Otherwise ��� is unstable.
More precisely,

Definition 3.2 A stationary curve ��� ¼ Imageð �xxÞ is called linearly stable if the trivial
solution to (15) is exponentially asymptotically stable in the space L2ðS1Þ, i.e. there
exist constants M,! > 0 such that k��ð:, tÞkL2ðS1Þ 	Me�!tk��ð:, 0ÞkL2ðS1Þ for any initial
condition ��ð:, 0Þ 2L2ðS1Þ. A stationary curve ��� is called linearly unstable if the trivial
solution to (15) is unstable in L2ðS1Þ norm.
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In the next lemma we show that, under additional assumptions made on
coefficients P,R,Q, the right-hand side of (16), i.e.

A :¼ P 00 þ R 0 þQ ð18Þ

defines a selfadjoint second-order differential operator in a suitable weighted
Lebesgue space.

LEMMA 3.1 Suppose P,R,Q2C1ðS1Þ,P > 0: If
R 1
0 ðRðuÞ=PðuÞÞdu ¼ 0 then the linear

operator A: DðAÞ �L2ðS1,wÞ ! L2ðS1,wÞ, DðAÞ ¼W 2,2ðS1Þ, is selfadjoint operator
in the weighted Lebesgue space L2ðS1,wÞ with the weight defined as: wðuÞ ¼
PðuÞ�1 expð

R u
0 ðRðvÞ=PðvÞÞdvÞ.

Proof Denote ½ f, g� ¼
R 1
0 f ðuÞgðuÞwðuÞ du the inner product in L2ðS1,wÞ. Due to the

assumptions made on P,R we have w2C1ðS1Þ. Therefore ½Af, g� � ½ f,Ag� ¼
R 1
0 ð f

00g�
fg00ÞPwþ ð f 0g� fg0ÞRw du ¼

R 1
0 ð f

0g� fg0ÞðRw� ðPwÞ0Þ du ¼ 0 because Rw ¼ ðPwÞ0.
Hence A: DðAÞ �L2ðS1,wÞ ! L2ðS1,wÞ is selfadjoint. Moreover,

½A , � ¼

Z 1

0

ð 2Q�  0
2
PÞw du: ð19Þ

Notice that the weight w associated with coefficients P,R from (16) is given by

wðuÞ ¼
�gg

���0k
exp

Z u

0

���0�
���0k

�gg du

 !
ð20Þ

up to a multiplicative constant depending on �ggð0Þ. It is worth noting that the proof of
the previous lemma strongly relies on 1-periodicity of the weight function w. Therefore,
in order to apply this result in the stability analysis, we have to assume the conditionR 1
0 ð

���0�=
���0kÞ �gg du ¼

R
���ð

���0�=
���0kÞ ds ¼ 0. In the next definition and lemma, we introduce the

concept of the so-called admissible normal velocity and prove admissibility of a wide
class of normal velocities including, in particular, the normal velocity � of vertically
projected surface curves satisfying the geometric equation (1).

Definition 3.3 A C1 smooth function � ¼ �ðx, k, �Þ is called an admissible normal
velocity if

Z
���

���0�
���0k
ds ¼ 0 ð21Þ

for any closed stationary curve ��� ¼ Imageð �xxÞ where ��� ¼ �ð �xx, �kk, ���Þ.
The aim of the next proposition is to prove admissibility of the normal velocity �

defined as in (4) for vertically projected surface curves. Although we will prove admis-
sibility for a slightly larger class of normal velocities the most important part of this
proposition is contained in part (c) of Proposition 3.2.

PROPOSITION 3.2 The following functions are admissible normal velocities:

(a) �ðx, kÞ ¼ aðxÞkþ cðxÞ where aðxÞ > 0, cðxÞ are C1 smooth functions;
(b) �ðx, k, �Þ ¼ að�ðxÞÞk� bð�ðxÞÞr� � ~NN where að�Þ > 0, bð�Þ are C1 smooth functions

and �(x) is C 2 smooth;
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(c) �ðx, k, �Þ ¼ aðx, �Þk� bðx, �Þr� � ~NN where a, b are defined as in (5) and �(x) is a
C 2 smooth function.

Proof The proof of the statement (a) is trivial because �0� ¼ 0. To prove (b) we note that
~NN ¼ ð�sin �, cos �Þ, @� ~NN ¼ � ~TT and @s� ¼ r� � ~TT. For any stationary curve ��� we have

Z
���

�0�
�0k

ds ¼

Z
���

bð�ðxÞÞ@s�ðxÞ

að�ðxÞÞ
ds ¼

Z
���

@s� ds ¼ 0

where � is a primitive function to b/a. In order to simplify the proof of (c) let us denote

d :¼
~TTTr2� ~TT

1þ jr�j2
r� � ~NN and h :¼ @s� ¼ r� � ~TT: ð22Þ

Let ��� be a stationary curve with respect to �. Then �ðx, k, �Þ ¼ aðkþ d Þ �
ð�ð�Þ=ð1þ jr�j2ÞÞr� � ~NN and thus

kþ d ¼
�ð�Þ

1þ jr�j2
r� � ~NN

a
ð23Þ

on ���. Moreover,

�0�
�0k
¼

a 0�
a
ðkþ d Þ þ d 0� þ

�ð�Þ

1þ jr�j2
r�: ~TT

a

¼
�ð�Þ

1þ jr�j2
a0�
a2
r�: ~NNþ

h

a

� �
þ d 0�

¼
�ð�Þ

1þ jr�j2
h 1þ h2 � 2ðr�: ~NNÞ2
� �

þ d 0� ð24Þ

because a 0� ¼ �2a
2ðr� � ~TT Þðr� � ~NNÞ ¼ �2a2hðr� � ~NNÞ and 1=a ¼ 1þ h2. It follows from

(22) and (23) and the identity 1þ jr�j2 ¼ 1þ ðr� � ~TT Þ2 þ ðr� � ~NNÞ2 ¼ 1þ h2þ
ðr� � ~NNÞ2 that

ð1þ h2Þ3=2@s
h

ð1þ h2Þ1=2

� �
¼ ~TTTr2� ~TTþ kr� � ~NN

¼ ~TTTr2� ~TT 1�
ðr� � ~NNÞ2

1þ jr�j2

 !
þ
�ð�Þð1þ h2Þ

1þ jr�j2
ðr� � ~NNÞ2

¼
1þ h2

1þ jr�j2
TTr2� ~TTþ �ð�Þðr� � ~NNÞ2
� �

ð25Þ

on ���. Since

d 0� ¼
1

1þ jr�j2
2TTr2� ~NNðr� � ~NNÞ � TTr2� ~TTðr� � ~TT Þ
� �
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and

@s lnð1þ jr�j
2Þ ¼

2r�r2� ~TT

1þ jr�j2
¼

2

1þ jr�j2
TTr2� ~TTðr� � ~TT Þ þ TTr2� ~NNðr� � ~NN Þ
� �

we obtain from (24) and (25) that the following identity is satisfied on any stationary
curve ���:

�0�
�0k
¼ @s lnð1þ jr�j

2Þ � 3h
TTr2� ~TT

1þ jr�j2
þ

�ð�Þ

1þ jr�j2
h 1þ h2 � 2ðr� � ~NNÞ2
� �

¼ @s lnð1þ jr�j
2Þ � 3hð1þ h2Þ1=2@s

h

ð1þ h2Þ1=2

� �

þ
�ð�Þ

1þ jr�j2
h 1þ h2 þ ðr� � ~NNÞ2
� �

¼ @s lnð1þ jr�j
2Þ � 3@s ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p
þ �ð�Þh ¼ @s ln

1þ jr�j2

ð1þ h2Þ3=2
þ�ð�Þ

� �

where �ð�Þ is the primitive function to �ð�Þ, i.e. �0ð�Þ ¼ �ð�Þ. Hence
R

���ð�
0
�=�
0
kÞds ¼ 0,

as claimed. g

As a consequence of the previous proposition and Lemma 3.1 we conclude:

THEOREM 3.1 Suppose that ��� is a stationary curve with respect to the normal velocity �
given by (4), i.e. ��� is the vertical projection of a stationary surface curve G. Let �1 be the
largest eigenvalue of the periodic Sturm-Liouville problem

ð p 0Þ0 þ q ¼ � ,  ð0Þ ¼  ð1Þ,  0ð0Þ ¼  0ð1Þ ð26Þ

where p :¼ Pw, q :¼ Qw and P,Q,w were defined as in (17) and (20). Then

(1) ��� is linearly stable if �1 < 0;
(2) ��� is linearly unstable if �1 > 0.

Proof To prove stability of a trivial steady state of equation (16) for the variation ��

we have to investigate the spectral properties of the linear operator A defined as in (18).
According to Lemma 3.1 and Proposition 2.1 the operator A is selfadjoint in the
weighted Lebesgue space L2ðS1,wÞ. By (19) we have ½A , � ¼

R 1
0 ð 

2Q�  02PÞwdu
and the spectrum 	ðAÞ ¼ 	PðAÞ consists of eigenvalues to the Sturm-Liouville periodic
boundary value problem (26). Now if we assume �1 < 0 then the trivial solution to (16)
is exponentially asymptotically stable in L2ðS1Þ phase space. Hence ��� is linearly stable.
On the other hand, if �1 > 0 the trivial solution to (16) is linearly unstable and so is
the curve ���. g

In order to determine the sign of the first eigenvalue �1 to the Sturm-Liouville
problem (26) it might be useful to note that �1 is given by Rayleigh quotient
�1 ¼ sup 2DðAÞ½A , �=½ , �.
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COROLLARY 3.2 A stationary curve ��� is linearly stable if sup ��� Q < 0 and it is linearly

unstable if
R 1
0 Qw du > 0 where Q ¼ ���0k

�kk2 þ rx ��� � ~�NN�NN and w is the weight defined as in (20).

Proof Since ½A , � ¼
R 1
0 ð 

2Q�  02PÞwdu we have �1 < 0 in the case (1). On the
other hand, in the case (2), we can choose a constant test function  � 1 to show
that �1 > 0. The statement now follows from Theorem 3.1. g

3.4. Radially symmetric solutions and their stability

In this section we restrict our attention to the special solutions to the geometric
equation (1). Throughout this section, we assume that the surface M is radially
symmetric with respect to the origin, i.e. there exists a smooth function f: R

þ
0 ! R,

f 0ð0Þ ¼ 0, such that

�ðxÞ ¼ f ðjxjÞ, M¼ fðx,�ðxÞÞ, x2R
2
g:

As already pointed out in the previous section, we can project surface curves into the
plane and study evolution of planar curves satisfying (4) instead of the evolution
of surface curves. Furthermore, if we assume that the initial curve is also radially
symmetric, i.e. �0 ¼ fx, jxj ¼ r0g then it follows from uniqueness of a solution that
the evolving family of surface curve on a radially symmetric surface M consists of
radially symmetric curves,

�t ¼ fx, jxj ¼ rðtÞg: ð27Þ

On any radially symmetric curve � ¼ fx, jxj ¼ rg the following identities are satisfied:

rr ¼
x

r
, ~�NN�NN ¼ �

x

r
, r� ¼

f 0ðrÞ

r
x, jr�j2 ¼ f 0ðrÞ2, k ¼

1

r
,

r2� ¼
f 0ðrÞ

r
Iþ

1

r

f 0ðrÞ

r

� �0
x
 x, ~TTTr2� ~TT ¼

f 0ðrÞ

r
:

r� � ~TT ¼ 0, r� � ~NN ¼ �f 0ðrÞ, x � ~TT ¼ 0,

ð28Þ

Using the above identities it easy easy to verify that the normal velocity � given by (4)
on � ¼ fx, jxj ¼ rg can be expressed as follows:

�ðx, k, �Þ ¼ F ðrÞ �
1

r
þ �ð f ðrÞÞ �

f 0ðrÞ

r

� �
f 0ðrÞ

1þ f 0ðrÞ2
: ð29Þ

Since @tx � ~NN ¼ �dr=dt the radius r ¼ rðtÞ, t > 0, of the evolving family of planar
curves (27) satisfying (4), is a solution to the ordinary differential equation

�
dr

dt
¼ F ðrÞ, rð0Þ ¼ r0: ð30Þ
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PROPOSITION 3.3 A radially symmetric curve ��� ¼ fx, jxj ¼ �rrg is a stationary curve iff
�rr2R

þ is a solution to the equation �ð f ðrÞÞ f 0ðrÞr ¼ �1.

Example 3.1 If �ðxÞ ¼ 1� ð1=2Þjxj2 and � ¼ const > 0 then there exists a unique
radially symmetric stationary curve ��� with the radius �rr ¼ 1=

ffiffiffi
�
p

.

Example 3.2 If �ðxÞ ¼ ð1� jxj2Þ2 and � ¼ const > 1 then there are exactly two
radially symmetric stationary curves ���� with radii �rr� given by �rr� ¼ ðð1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=�
p

Þ=2Þ1=2. Moreover, �rrþ ! 1� and �rr� ! 0þ as � !1.

Equation (30) is an ODE with C1 smooth right-hand side F. Hence stability of a
stationary solution �rr can be deduced from the linearization F 0ð�rrÞ. Clearly, �rr is an expo-
nentially asymptotically stable stationary solution if F 0ð�rrÞ > 0, and, �rr is linearly
unstable if F 0ð�rrÞ < 0. It is worth to note that the sign condition for F 0ð�rrÞ enables us
to determine stability of a stationary curve ��� ¼ fx, jxj ¼ �rrg only in the phase-space
consisting of all radially symmetric curves. In order to extend this result we need the
following lemma.

LEMMA 3.2 If ��� ¼ fx, jxj ¼ �rrg is a radially symmetric stationary curve then

���k �kk2 þ rx ��� � ~�NN�NN ¼ �F 0ð�rrÞ:

Proof The normal velocity � is given by � ¼ ak� br� � ~NN with coefficients
a ¼ aðx, �Þ, b ¼ bðx, �Þ defined as in (5). Long but straightforward calculations based
on formulas (28) yield the following identities:

rxa � ~NN ¼ 0, rxð ~TT
Tr2� ~TT Þ � ~NN ¼ �

f 0ðrÞ

r

� �0
,

~NNTr2� ~NN ¼ f 00ðrÞ, rx
1

1þ jr�j2
� ~NN ¼

2f 0ðrÞf 00ðrÞ

ð1þ f 0ðrÞ2Þ20
,

which are valid on any radially symmetric curve ��� ¼ fx, jxj ¼ rg. Using the above
identities we conclude, after some calculations, that

rx� � ~NN ¼
1

1þ f 0ðrÞ2
f 00ðrÞ

rf 0ðrÞ
�

f 0ðrÞ2

r2
� � 0ð f ðrÞÞ f 0ðrÞ2

� �

and thus ���k �kk2 þ rx ��� � ~�NN�NN ¼ �F 0ð�rrÞ, as claimed. g

Combining Lemma 3.2 and Theorem 3.1 we obtain

THEOREM 3.2 Let �ðxÞ ¼ f ðjxjÞ where f: R
þ
0 ! R, f 0ð0Þ ¼ 0, be a C 2 smooth function.

A radially symmetric stationary curve ��� ¼ fx, jxj ¼ �rrg is linearly stable if F 0ð�rrÞ > 0 and
is linearly unstable if F 0ð�rrÞ < 0 where F(r) is defined as in (29).

In Example 3.1 the unique stationary curve ��� ¼ fx, jxj ¼ 1=
ffiffiffi
�
p
g is always unstable.

In Example 3.2 the stationary curve ���þ ¼ fx, jxj ¼ �rrþg is linearly stable whereas
���� ¼ fx, jxj ¼ �rr�g is linearly unstable.

Example 3.3 If �ðxÞ ¼ f ðjxjÞ where f ðrÞ ¼ sinðrÞ=r and � ¼ const > 1 then there
exist countably many stationary curves ���ðiÞ ¼ fx, jxj ¼ �rrðiÞg, i2N, where
�rr ð1Þ < �rr ð2Þ < � � � < �rr ðnÞ <1 are roots of the equation: �f 0ðrÞr ¼ �1. Moreover,
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sgn F 0ð�rr ðiÞÞ ¼ ð�1Þi and therefore �rr ð2kÞ, k2N, are stable and �rr ð2k�1Þ, k2N, are unstable
solutions to (30). With regard to Theorem 3.2, stationary curves ���ð2kÞ, k2N, are
linearly stable whereas ���ð2k�1Þ, k2N, are linearly unstable.

4. Examples

In this section we present various numerical experiments describing the flow of surface
curves. We consider a flow of curves on a given surfaceM¼ Graphð�Þ driven by (1).
The flow of vertically projected planar curves is therefore driven by the geometric
equation (4) with coefficients aðx, �Þ, bðx, �Þ defined as in (5). In all numerical experi-
ments to follow, we make use of the numerical scheme for computing the evolution
of plane curves satisfying (3) with the normal velocity having the form: v ¼ aðx, �Þkþ
cðx, �Þ where cðx, �Þ ¼ �bðx, �Þr�ðxÞ � ~NN. We refer to [22,23] for detailed derivation
and discussion of the numerical scheme based on the so-called flowing finite volume
method. It was also shown in [23] that the experimental order of convergence of this
scheme is at least one which is often the case for finite volume approximations.
Moreover, in [21–23] we have shown the importance of a suitable choice of a tangential
velocity functional � entering the governing system of equations (6)–(9). Recall that
if � is a solution to the equation:

@s� ¼ k�� hk�i� þ L=g� 1ð Þ!, �ð0, :Þ ¼ 0, ð31Þ

where L is the length of the plane curve � and hk�i� is the average of k� over the curve �,
i.e. hk�i� ¼

1
L

R
� k� ds, then we obtain asymptotically uniform parameterization:

gðu, tÞ=Lt ! 1 as t! Tmax uniformly with respect to u2S1 provided that ! ¼ 
1þ

2hk�i� and 
1, 
2 > 0 are given constants. Here Tmax denotes the maximal time of
existence of a solution. It might be either finite or infinite. On the other hand, if !¼ 0
then tangential velocity preserves relative local length: gðu, tÞ=Lt ¼ gðu, 0Þ=L0 for any
u2S1, t2 ð0,TmaxÞ. Construction of a suitable tangential velocity functional � leading
to redistribution preserving relative local length has been discussed by Hou et al.
[12,13]. It has been generalized to the case of asymptotically uniform parameterization
by the authors in [21–23]. Notice that the tangential velocity functional � can be uniquely
determined from (31) and satisfies the regularity condition (11).

In the example shown in figures 1 and 2 we present numerical results of simulations
of a surface flow driven by the geodesic curvature and gravitational-like external force,
V ¼ Kg þ F , on a wavelet surface given by the graph of the function �ðxÞ ¼ f ðjxjÞ
where f ðrÞ ¼ sinðrÞ=r and �¼ 2 (see Example 3.3). In the first example shown
in figure 1 (left) we started with an initial surface curve having large variations in
the geodesic curvature. The evolving family converges to the stable stationary curve
���ð4Þ ¼ fx, jxj ¼ �rr ð4Þg with the second smallest stable radius rð4Þ. Vertical projection of
the evolving family to the plane driven by the normal velocity v ¼ �ðx, k, �Þ is shown
in figure 1 (right). In figure 2 we study a surface flow on the same surface as in
figure 1 with the same external force. The initial curve is, however, smaller compared
to that of figure 1. In this case the evolving family converges to the stable stationary
curve ���ð2Þ ¼ fx, jxj ¼ �rr ð2Þg with the smallest stable radius rð2Þ. In both examples we
chose 100 spatial grid points, the time step �¼ 0.01 and the time interval t2 ð0, 12Þ in
the experiment depicted in figure 1 and t2 ð0, 5:4Þ for that of figure 2.
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The next set of examples illustrates a geodesic flow V ¼ Kg on a surface with two
humps. In figure 3 (left) we considered a surfaceM defined as a graph of the function
�ðxÞ ¼ f ðx1 � 1, x2Þ þ 3f ðx1 þ 1, x2Þ where f ðxÞ ¼ 2�1=ð1�jxj

2Þ for jxj < 1 and f ðxÞ ¼ 0
for jxj � 1 is a smooth bump function. In this example, the evolving family of surface
curves shrinks to a point in finite time. On the other hand, in figure 3 (right) we
considered the function �ðxÞ ¼ 3ð f ðx1 � 1, x2Þ þ f ðx1 þ 1, x2ÞÞ. We took the time step
�¼ 0.0002. As an initial curve we chose an ellipse centered at the origin with axes
2 and

ffiffiffi
2
p

. The spatial mesh contained 400 grid points. The initial curve was evolved
until the time T¼ 13. As it can be seen from figure 3 the evolving family of surface

Figure 2. A surface flow on a wavelet like surface (left) and its vertical projection to the plane (right).

Surface curves converge to the stable stationary circular curve ���ð2Þ ¼ fx, jxj ¼ �rr ð2Þg with the smallest radius �rr ð2Þ.

Figure 1. A surface flow on a wavelet like surface (left) and its vertical projection to the plane (right).

Surface curves converge to the stable stationary circular curve ���ð4Þ ¼ fx, jxj ¼ �rr ð4Þg with the second smallest
radius �rr ð4Þ.
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curves approaches a closed geodesic curve ��� as t!1. It is worth noting that
sup ��� Q ¼ 0:000275 > 0 and, therefore, the simple stability criterion contained
in Corollary 3.2 cannot be used and we had to compute the first (largest) eigenvalue
of the Sturm-Liouville problem (26). It turns out that �1 � �0:095, and, by
Theorem 3.1, the stationary curve ��� is linearly stable.

Finally, we recall that a similar equation to (4) can also be found in the theory of
image segmentation in which the goal is to to find object boundaries in the analyzed
image. A given image can be represented by its intensity function I: R2! ½0, 1�.
Let us introduce an auxiliary function �ðxÞ ¼ hðjrIðxÞjÞ where h is a smooth edge
detector function like e.g. hðsÞ ¼ 1=ð1þ s2Þ or hðsÞ ¼ e�s. Then the gradient �r�ðxÞ
has the important geometric property because it points towards the edge where the
norm of the gradient rI is large. In the so-called active contour models one picks
up an initial approximation of the closed edge and then constructs an evolving
family of plane curves satisfying the geometric equation v ¼ �ðxÞk� r�ðxÞ � ~NN and
thus converging to the edge [14]. In the framework of level set methods, edge detection
techniques based on this idea were first discussed by Caselles et al. and Malladi et al.
in [3,17]. Later on, they have been revisited and improved in [4,15]. Our next aim is
to show that the geodesic curvature driven flow of surface curves with an external
force can be adopted to the edge detection problem. We will consider flow of surface
curves with the normal velocity V ¼ Kg þ F on surface given by the function � con-
structed as above. The surfaceM¼ Graphð�Þ has a sharp narrow valley corresponding
to points of the image in which the gradient jrIðxÞj is very large representing thus an
edge in the image. Choosing the gravitational force ~GG ¼ �ð0, 0, �Þ sufficiently large,
one may expect that the evolving family of surface curves ‘falls’ downward of the
sharp narrow valley and hence its vertical projection to the plane converges to an
edge of the image. We considered an artificial image with intensity function

IðxÞ ¼
1

2
þ

1

�
arctg 12:5� 100 jxj

2x21 þ jxj
2

4x21 þ jxj
2

 !2
0
@

1
A:

Figure 3. A geodesic flow V ¼ Kg on a surface with two humps having different heights (left). The flow
approaching a stable closed geodesic curve on a surface with two sufficiently high humps (right).
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If we take �ðxÞ ¼ hðjrIðxÞjÞ where hð�Þ ¼ 1=ð1þ �2Þ then the surface M defined as a
graph of �. Results of computation are presented in figure 4. The initial curve with
large variations in the curvature is evolved according to the normal velocity
V ¼ Kg þ F where the external force F ¼ ~GG � ~NN is the normal projection of
~GG ¼ �ð0, 0, �Þ. In the numerical experiment we considered a strong external force
coefficient �¼ 30. The evolving family of surface curves approaches a stationary
curve ��� lying in the bottom of the sharp narrow valley defining thus a closed edge
in the image. We also computed the largest eigenvalue of the Sturm-Liouville
problem (26). It turns out that �1 � �6:92943. According to Theorem 3.1 the stationary
curve ��� is linearly stable.

5. Discussion

We have analyzed a flow of closed surface curves driven by the geodesic curvature and
external force. Its vertical projection to the plane represents a flow of planar curves
driven by the normal velocity depending on the curvature, tangential angle as well as
the position of the curve. Following the direct approach local and global existence of
a classical solution to the governing system of parabolic–ordinary differential equations
were shown. An important part of this article is devoted to the study of stability of
stationary surface curves. We gave sufficient conditions for a stationary closed curve
to be linearly stable with respect to small perturbations in the normal velocity.
We presented various numerical examples of a flow of surface curves. We also
presented an example how to implement a geodesic flow with external force in the
context of the edge detection problem arising from the image segmentation theory.
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