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We analyse a model for pricing derivative securities in the presence of both transaction
costs as well as the risk from a volatile portfolio. The model is based on the Black-Scholes
parabolic PDE in which transaction costs are described following the Hoggard, Whalley,
and Wilmott approach. The risk from a volatile portfolio is described by the variance
of the synthesized portfolio. Transaction costs as well as the volatile portfolio risk de-
pend on the time lag between two consecutive transactions. Minimizing their sum yields
the optimal length of the hedge interval. In this model, prices of vanilla options can be
computed from a solution to a fully nonlinear parabolic equation in which a diffusion
coefficient representing volatility nonlinearly depends on the solution itself giving rise to
explaining the volatility smile analytically. We derive a robust numerical scheme for solv-
ing the governing equation and perform extensive numerical testing of the model and
compare the results to real option market data. Implied risk and volatility are introduced
and computed for large option datasets. We discuss how they can be used in qualitative
and quantitative analyses of option market data.

1. Introduction

In the past years, the Black-Scholes equation (see Black and Scholes [5]) and its gen-
eralizations for pricing derivatives have attracted a lot of attention from both theoret-
ical as well as practical point of view. According to the classical Black-Scholes theory
[4, 5, 10, 15, 20, 24], the present cost of an option is equal to the initial value of a solution
to the so-called Black-Scholes equation. This theory is capable of valuing options and
other derivative securities over moderate time intervals in which transaction costs and
the risk from a volatile portfolio are negligible. On the other hand, if transaction costs
like, for example, bid-ask spreads are taken into account, then the classical Black-Scholes
theory is no longer applicable. In order to maintain the delta hedge, one has to make fre-
quent portfolio adjustments yielding thus a substantial increase in transaction costs. On
the other hand, rare portfolio adjustments leads to the increase of the risk from a volatile
(unprotected) portfolio.
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One of the most important problems in the valuation of financial derivatives is a ques-
tion how to incorporate both transaction costs and the risk arising from a volatile port-
folio into the governing Black-Scholes equation. In [14], Kratka derived a mathematical
model for pricing derivative securities in the case when both transaction costs as well as
the risk from a volatile portfolio are taken into account. We modify Kratka’s approach in
order to derive a model which is mathematically well posed and scale invariant. These
two important features were missing in the original model of Kratka. The model is based
on the Black-Scholes parabolic PDE in which transaction costs are described by the Hog-
gard, Whalley, and Wilmott extension of the Leland model (cf. [3, 9, 10, 15, 17]) whereas
the risk from a volatile portfolio is described by the average value of the variance of the
synthesized portfolio. Transaction costs as well as the volatile portfolio risk depend on
the time lag between two consecutive transactions. We define the total risk premium as
the sum of transaction costs and the risk cost from the unprotected volatile portfolio. By
minimizing the total risk premium functional, we obtain the optimal length of the hedge
interval. It also gives us a new strategy for hedging derivative securities. These strategies
are associated with a solution to a Cauchy problem for a fully nonlinear parabolic equa-
tion with a varying diffusion coefficient nonlinearly depending on the solution itself. The
corresponding mathematical model will be henceforth referred to as the risk-adjusted
pricing methodology model (RAPM). The resulting governing equation is scale invariant
and can be mathematically treated. We present qualitative analysis of the governing equa-
tion in the case of a plain vanilla option (Call or Put). It can also be treated as the clas-
sical Black-Scholes equation with a non-constant diffusion coefficient, that is, volatility.
It gives rise to explain analytically a striking phenomenon in option pricing theory—the
volatility smile. Although we present the RAPM model for plain vanilla options only our
approach can be extended to portfolios of Call and Put options by modifying the early
exercise behavior and the so-called switching time (see Sections 2.5 and 2.6).

We furthermore derive a robust numerical scheme and we perform extensive numer-
ical testing of the model. We compare the results to real option market datasets. We also
introduce a concept of the so-called implied RAPM volatility and implied risk premium
coefficient. Implied quantities are computed for large option datasets. We discuss how
they can be used in qualitative analysis of option market datasets. The paper is orga-
nized as follows. In Section 2 we derive a scale-invariant risk-adjusted model for pric-
ing plain vanilla options. We follow extended Leland’s and modified Kratka’s approaches
in order to incorporate both transaction costs as well as the risk value arising from a
volatile portfolio. Based on this model, it turns out that prices of options are solutions
to a fully nonlinear parabolic partial differential equation. We discuss the choice of an
optimal time interval between two consecutive portfolio adjustments. We also show scale
invariance of the model. In Section 3 we analyze the resulting nonlinear partial differen-
tial equation. An important step is to transform a fully nonlinear parabolic equation for
the option price into a quasilinear parabolic equation for the second derivative Γ= ∂2

SV
of the option price V . We focus our attention on qualitative aspects of a solution like,
for example, a priori bounds of a solution guaranteeing existence of a classical smooth
solution in the case of a plain vanilla option. For such a quasilinear equation we can
furthermore construct an effective numerical discretization scheme enabling us to find an



M. Jandačka and D. Ševčovič 237

approximate solution. A full space-time discretization scheme is discussed and analyzed
in Section 4. Next, Section 5 contains results of numerical simulations and comparison
of results based on the RAPM model to real market datasets. We also discuss how to cali-
brate the model. The implied RAPM volatility and implied risk premium are introduced.
Finally, we present several numerical experiments comparing computational results to
market quotes datasets.

2. Derivation of a scale-invariant RAPM model

Before describing the derivation of the RAPM model, we discuss the basic assumptions
we will be making. Throughout the paper we assume that the asset price S = S(t), t ≥ 0
follows a geometric Brownian motion with a drift ρ and standard deviation σ > 0, and it
pays no dividends, that is,

dS= ρSdt+ σSdW , (2.1)

where dW denotes the differential of the standard Wiener process. This assumption is
usually made when deriving the classical Black-Scholes equation (see, e.g., [10, 15]). No-
tice that one of the greatest deficiencies of such an assumption is that the volatility σ is
constant. Moreover, it is not even possible to estimate this volatility in a reasonable way
from historical data. Nevertheless, we will consider this assumption throughout the pa-
per. The next step in the RAPM modeling should be therefore incorporation of a more
realistic nonconstant volatility σ into (2.1) by means of, for example, time depending
volatility σ(t) or a volatility satisfying a stochastic differential equation of the mean re-
version type (two or more factor models).

Similarly as in the derivation of the classical Black-Scholes equation, we construct a
synthesized portfolio Π consisting of one option with a price V and δ assets with a price
S per one asset:

Π=V + δS. (2.2)

We recall that the key idea in the Black-Scholes theory is to examine the differential of
(2.2). The right-hand side of (2.2) can be differentiated by using Itô’s formula whereas
the differential ∆Π(t)=Π(t+∆t)−Π(t) of the left-hand side can be expressed as follows:

∆Π= rΠ∆t, (2.3)

where r > 0 is a risk-free interest rate of a zero-coupon bond. In the real world, such a
simplified assumption is not satisfied and a new term measuring the total risk should be
added to (2.3). More precisely, the change of the portfolio Π is composed of two parts:
the risk-free interest rate part rΠ∆t and the total risk premium rRS∆t, where rR is a risk
premium per unit asset price. It means that ∆Π= rΠ∆t + rRS∆t. The total risk premium
rR consists of the transaction risk premium rTC and the portfolio volatility risk premium
rVP, that is, rR = rTC + rVP. Hence

∆Π= rΠ∆t+
(
rTC + rVP

)
S∆t. (2.4)
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Our next goal is to show how these risk premium measures rTC, rVP depend on other
quantities, like, for example, σ , S, V , and derivatives of V . The problem can be de-
composed in two parts: modeling transaction costs and modeling risk from a volatile
portfolio.

2.1. Modeling transaction costs. In practice, we have to adjust our portfolio by frequent
buying and selling of assets. In the presence of nontrivial transaction costs, continuous
portfolio adjustments may lead to infinite total transaction costs. A natural way how to
consider transaction costs within the frame of the Black-Scholes theory is to follow the
well-known Leland approach [17] extended by Hoggard et al. (cf. [9, 15, 17]). In what
follows, we recall crucial lines of the Hoggard, Whalley, and Wilmott derivation of Le-
land’s model in order to show how to incorporate the effect of transaction costs into the
governing equation. More precisely, we will derive the coefficient of transaction costs rTC

occurring in (2.4).
We denote by C the round trip transaction cost per unit dollar of transaction. Then

C = Sask− Sbid

S
, (2.5)

where Sask and Sbid are the so-called Ask and Bid prices of the asset, that is, the market
price offers for selling and buying assets, respectively. Here S= (Sask + Sbid)/2 denotes the
mid value. It means that the transaction cost is given by the value C|k|S/2 where k is the
number of sold assets (k < 0) or bought assets (k > 0). The change of the portfolio Π =
V + δS after a one-time step ∆t is ∆Π = ∆V + δ∆S−C|k|S/2. Clearly, the number k of
bought or sold assets depends on the one-time step change of δ, that is, k = ∆δ. Therefore
∆Π= ∆V + δ∆S−C|∆δ|S/2. We suppose that portfolio adjustments follow the so-called
δ-hedging strategy, that is, δ =−∂SV . In the lowest order approximation in ∆t, we obtain
∆δ = −σS∂2

SV∆W . Since W is the Wiener process, we have E(|∆W|) = √2/π
√
∆t. If ∆t

is small compared to T − t, Leland in [17] suggested to take the approximation |∆W| ≈
E(|∆W|) (see also [9, page 25]) and thus

∆Π= ∆V + δ∆S− rTCS∆t, (2.6)

where the coefficient rTC of transaction costs is given by the formula

rTC = CσS√
2π

∣∣∂2
SV
∣∣ 1√

∆t
(2.7)

(cf. [9, equation (3)]). Clearly, by increasing the time-lag ∆t between portfolio adjust-
ments, we can decrease transaction costs. Therefore, in order to minimize transaction
costs, we have to take a larger time lag ∆t. On the other hand, as it will be shown in the
next section, choosing a larger time lag ∆t could lead to a higher investor’s exposure to
the risk from an unprotected portfolio.
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2.2. Modeling risk from a volatile portfolio. In this section we focus our attention on
the question how to include the risk from a volatile portfolio into the model. In the case
when a portfolio consisting of options and assets is highly volatile, an investor usually
asks for a price compensation.

Volatility of a fluctuating portfolio can be measured by the variance of relative incre-
ments of the replicating portfolio Π̄= V + δS, that is, by the term var((∆Π̄)/S). Hence it
is reasonable to introduce the measure rVP of the portfolio volatility risk as follows:

rVP = R
var(∆Π̄/S)

∆t
. (2.8)

In other words, rVP is proportional to the variance of the relative change of a portfolio
per time interval ∆t. A constant R is the so-called risk premium coefficient. It represents
the marginal value of investor’s exposure to a risk. Now applying Itô’s formula to the
differential ∆Π̄= ∆V + δ∆S, we obtain

∆Π̄= (∂SV + δ
)
σS∆W +

1
2
σ2S2Γ(∆W)2 + �, (2.9)

where Γ= ∂2
SV and � = (∂SV + δ)ρS∆t+ ∂tV∆t is a deterministic term, that is, E(�)=�

in the lowest order ∆t-term approximation. Thus

∆Π̄−E(∆Π̄)= (∂SV + δ
)
σSφ

√
∆t+

1
2
σ2S2(φ2− 1

)
Γ∆t, (2.10)

where φ is a random variable with the standard normal distribution such that ∆W =
φ
√
∆t. Hence the variance of ∆Π̄ can be computed as follows:

var(∆Π̄)= E
[(
∆Π̄−E(∆Π̄)

)2
]

= E

[((
∂SV + δ

)
σSφ

√
∆t+

1
2
σ2S2Γ

(
φ2− 1

)
∆t
)2
]
.

(2.11)

Similarly, as in the derivation of the transaction costs measure rTC, we assume the δ-
hedging of portfolio adjustments, that is, we choose δ = −∂SV . Since E((φ2 − 1)2) = 2,
we obtain an expression for the risk premium rVP in the form

rVP = 1
2
Rσ4S2Γ2∆t. (2.12)

It means that the increase in the time lag ∆t between consecutive transactions leads to a
linear increase of the risk from a volatile portfolio. In other words, larger time interval ∆t
means higher risk exposure for an investor.
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rR

∆topt
∆t

Figure 2.1. The total risk premium rR = rTC + rVP as a function of the time-lag ∆t between two con-
secutive portfolio adjustments.

2.3. Gamma hedging strategy based on the RAPM model. The total risk premium rR =
rTC + rVP consists of two parts: transaction costs premium rTC and the risk from a volatile
portfolio rVP premium defined as in (2.7) and (2.12), respectively. We assume that an
investor is risk aversive and wants to minimize the value of the total risk premium rR. For
this purpose one has to choose the optimal time-lag ∆t between two consecutive portfolio
adjustments. As both rTC as well as rVP depend on the time lag ∆t, so does the total risk
premium rR. In order to find the optimal value of ∆t, we have to minimize the following
function:

∆t �−→ rR = rTC + rVP = C|Γ|σS√
2π

1√
∆t

+
1
2
Rσ4S2Γ2∆t. (2.13)

A graph of the function ∆t �→ rR is depicted in Figure 2.1. The unique minimum of the
function ∆t �→ rR is attained at the time lag

∆topt = K2

σ2|SΓ|2/3 , where K =
(
C

R

1√
2π

)1/3

. (2.14)

For the minimal value of the function ∆t �→ rR(∆t), we have

rR
(
∆topt

)= 3
2

(
C2R

2π

)1/3

σ2|SΓ|4/3. (2.15)

Remark 2.1. Since S follows the geometric Brownian motion, in the lowest order approx-
imation with respect to ∆t, we have E(|∆S|/S) = σE(|∆W|) = √(2/π)σ

√
∆t. As a con-

sequence from minimizing the total risk premium rR, we can conclude that if |∆S|/S ≈
K
√

(2/π)(S|Γ|)−1/3 (in the sense of expected values) then adjustment of the portfolio is
needed. The portfolio is adjusted according to the δ-hedging.

Remark 2.2. The approximation |∆W| ≈ E(|∆W|) = √2/π
√
∆t used in Section 2.1 has

been proposed by Leland and it holds for 0 < ∆t� 1. For a larger ∆t, one can however
consider other approximations of |∆W| like, for example, |∆W| ≈ √E(|∆W|2) = √∆t
which would lead to a different coefficient rTC in (2.7). We consider an approximation
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of |∆W| in the form φ(|∆W|) ≈ E(φ(|∆W|)) where φ is a smooth increasing convex
function, φ(0) = 0, that is, |∆W| ≈ φ−1(E(φ(|∆W|))). If we insert such an approxima-
tion into the formula for rTC (see (2.7)), we obtain rTC = bφ−1(E(φ(|∆W|)))/∆t, where
b = CσS|Γ|/2. We denote by r̃R(∆t,φ) the total risk premium in order to indicate that it
depends on both the time lag ∆t as well as the way how we approximate |∆W|. Then
r̃R(∆t,φ)= a∆t + bφ−1(E(φ(|∆W|)))/∆t where a= Rσ4S2Γ2/2. By Jensen’s inequality ap-
plied to a convex increasing function φ, we have E(φ(|∆W|))≥ φ(E(|∆W|)) and thus

r̃R(∆t,φ)≥ a∆t+ b
E
(|∆W|)
∆t

= r̃R(∆t, Id)≡ rR(∆t), (2.16)

where Id is the identity function. Now, as rR(∆t)≥rR(∆topt), we have r̃R(∆t
φ
opt,φ)≥rR(∆topt)

where ∆t
φ
opt = argmin∆t>0 r̃R(∆t,φ). If we assume the approximation |∆W| ≈ E(|∆W|)=√

2/π
√
∆t for all ∆t and we take the optimal time lag ∆topt as in (2.14), then we can

achieve the lowest possible total risk premium among all convex increasing approxima-
tions φ of the stochastic term |∆W|. As we are minimizing the total risk premium in the
RAPM model, the previous argument can justify such an approximation of |∆W|made in
Section 2.1.

2.4. Risk-adjusted Black-Scholes equation. Taking into account both transaction costs
as well as risk from a volatile portfolio effects, we have shown that the equation for the
change ∆Π of a portfolio Π read as

∆Π= ∆V + δ∆S− rRS∆t, (2.17)

where rR represents the total risk premium, rR = rTC + rVP. On the other hand, by the
no-arbitrage principle, the change ∆Π in the portfolio ∆Π equals the change rΠ∆t of
secure bonds with the interest rate r > 0. Applying Itô’s lemma to the smooth function
V =V(S, t) and assuming the δ-hedging strategy for the portfolio adjustments, we finally
obtain the following generalization of the Black-Scholes equation for valuing options:

∂tV +
σ2

2
S2∂2

SV − rRS= r
(
V − S∂SV

)
. (2.18)

By taking the optimal value of the total risk coefficient rR derived as in (2.15), the option
price V is a solution to the following nonlinear parabolic equation.

Risk-adjusted Black-Scholes equation.

∂tV +
σ2

2
S2(1−µ(SΓ)1/3)Γ= r

(
V − S∂SV

)
, (2.19)

where

Γ= ∂2
SV , µ= 3

(
C2R

2π

)1/3

. (2.20)

Here and after we will denote by x1/3 the signed power function, that is, xp = |x|p−1x =
|x|psign(x) for all x ∈ R, p > 0. In the case where there are neither transaction costs
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β(H)

κ
H

Figure 2.2. The function β(H)= (σ2/2)(1− µH1/3)H . Equation (2.19) is parabolic for H = SΓ < κ=
(3/(4µ))3.

(C = 0) nor the risk from a volatile portfolio (R= 0), we have µ= 0. Then (2.19) reduces
to the original Black-Scholes linear parabolic equation

∂tV +
σ2

2
S2Γ= r

(
V − S∂SV

)
. (2.21)

We note that (2.19) is a backward parabolic PDE if and only if the function

β(H)= σ2

2

(
1−µH1/3)H (2.22)

(see Figure 2.2) is an increasing function in the variable H := SΓ= S∂2
SV . Hence, in order

to verify parabolicity of (2.19), we have to assume the following condition:

SΓ < κ :=
(

3
4µ

)3

. (2.23)

We remind ourselves that the terminal payoff for a Call option at t = T is given by
V(S,T) = max(S− E,0). For a Put option one has V(S,T) = max(E − S,0). Here and
after, E denotes the exercise price and T stands for the exercise time. Furthermore, a Call
option price V(S, t) is subject to boundary conditions V(0, t)= 0, V(S, t)/S→ 1 as S→∞,
t ∈ (0,T). Similarly, the Put option price satisfies V(0, t)= Ee−r(T−t), V(S, t)→ 0 as S→∞
(cf. [10, 15]).

If we consider prices of either Call or Put options on assets paying no dividends satis-
fying the classical Black-Scholes equation (2.21), then the term SΓ= S∂2

SV(S, t) becomes
infinite at S = E for t→ T− and the above condition is violated. This is why we have to
examine the early exercise behavior of a solution in a more detail.

2.5. Early exercise behavior. Our next goal is to analyze the behavior of the option price
V = V(S, t) near the exercise time T , that is, when T − t is small. Recall that we have
applied Leland’s methodology in modeling transaction costs. In this approach one has to
assume that the time-lag∆t between consecutive portfolio adjustments is small compared
to T − t (see [10, 15, 17]). A natural way to satisfy the condition ∆topt � T − t is to
disallow portfolio adjustments when the time t is close to the exercise time T . The idea
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is to divide the time interval (0,T) into two parts: (1) the interval (0, t∗) where the risk-
adjusted Black-Scholes equation takes place; (2) the interval (t∗,T) where no portfolio
adjustments are allowed. Here and after we denote by t∗ the so-called switching time to
be determined later. It should be close to the exercise time T . Within the time interval
(t∗,T), we assume that the asset price St, t ∈ (t∗,T), follows the geometric Brownian
motion of the form (2.1). Since t∗ ≈ T , the drift ρ is assumed to be known and it coincides
with the risk-free zero coupon bond rate r, that is, dS= rSdt + σSdw. Since the portfolio
adjustments are disallowed within the interval (t∗,T), it is natural to assume that the
option price V(S, t∗) at the time t∗ is simply an expected value of V(ST ,T) subject to the
condition St∗ = S discounted by the risk-free interest rate r, that is,

V
(
S, t∗

)= e−r(T−t∗)E
(
V
(
ST ,T

)|St∗ = S
)
. (2.24)

Since St follows the geometric Brownian motion (2.1) with ρ = r and St∗ = S, it follows
from Itô’s formula that St = SeXt where dX = (r − σ2/2)dt + σdw and Xt∗ = 0. Hence the
cummulative distribution function FT(s)= P(ST < s) is given by

FT(s)= 1√
2π
(
T − t∗

) ∫ (ln(s/S)−(r−σ2/2)(T−t∗))/σ

−∞
e−ξ

2/2(T−t∗)dξ. (2.25)

In the case of a Call option, we have V(ST ,T)=max(ST −E,0). After some calculations
we obtain

E
(
V
(
ST ,T

)|St∗ = S
)= ∫∞

−∞
max(s−E,0)F′T(s)ds= Ser(T−t∗)N

(
d1
)−EN

(
d2
)
, (2.26)

where d1, d2 are defined as follows:

d1 = ln(S/E) +
(
r + σ2/2

)(
T − t∗

)
σ
√
T − t∗

, d2 = d1− σ
√
T − t∗, (2.27)

and N ′(d) = (1/
√

2π)e−d2/2 is the density function of the standard normal distribution.
Hence

V
(
S, t∗

)= SN
(
d1
)−Ee−r(T−t∗)N

(
d2
)
. (2.28)

Notice that expression (2.28) is nothing else but the valuation formula for pricing a Euro-
pean Call option obtained from a solution to the classical Black-Scholes equation (2.21).
Furthermore, we have ∂SV(S, t∗)=N(d1) and

SΓ
(
S, t∗

)= N ′(d1)
σ
√
T − t∗

, max
S>0

SΓ
(
S, t∗

)= 1√
2πσ2

(
T − t∗

) . (2.29)

Exactly the same expression for SΓ(S, t∗) is true for a Put option. It it worth to emphasize
that the maximal value maxS>0 SΓ(S, t∗) does not depend on the interest rate r. Hence,
if we take an arbitrary interest rate ρ in the stochastic equation dS= ρSdt + σSdW , then
the maximum value maxS>0 SΓ(S, t∗) depends on the volatility σ and the time to expiry
T − t∗.
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2.6. Switching time. It remains to determine the switching time t∗. It divides the interval
(0,T) into two subintervals: (0, t∗) and (t∗,T). The idea is rather simple and consists in
finding the very last portfolio adjustment moment 0 < t∗ < T before the expiry T . It can
be done by assuming our hedging strategy follows the optimal time lag stepping ∆topt

derived as in (2.14). More precisely, the switching time t∗ can be determined from the
implicit equation

T − t∗ =min
S>0

∆topt
(
S, t∗

)
. (2.30)

Combining (2.14) and (2.29), we obtain

T − t∗ =min
S>0

∆topt
(
S, t∗

)
= K2σ−2

(
max
S>0

SΓ
(
S, t∗

))−2/3

= K2σ−2(2πσ2(T − t∗
))1/3

.

(2.31)

Taking into account expression (2.14) for the constant K , we can determine the switching
time t∗ from the equation

T − t∗ = C

Rσ2
. (2.32)

As t∗ must be positive, we have T − t∗ < T . Hence we have to require the following con-
dition:

C < σ2RT. (2.33)

This way we have determined the switching time t∗ and the time interval (0, t∗) on which
the option price V(S, t) satisfies the risk-adjusted Black-Scholes equation (2.19) subject
to the terminal condition V(S, t∗) (see (2.28)). In order to guarantee the existence of a
solution to (2.19), we have to verify condition (2.23) ensuring its backward parabolicity. A
maximum principle argument (cf. [19]) applied to an equation for the new variable H =
SΓ derived in Section 3.2 enables us to conclude that (2.23) is satisfied for H = SΓ(S, t),
S > 0, 0 < t < t∗, if and only if (2.23) is fulfilled at the terminal time t∗, that is,

max
S>0

SΓ
(
S, t∗

)
< κ :=

(
3

4µ

)3

. (2.34)

With regard to (2.32), (2.29), and expression (2.20), we can conclude that the risk-
adjusted Black-Scholes equation (2.19) is backward parabolic provided that

CR <
π

8
. (2.35)

Throughout the rest of the paper, we will assume that condition (2.35) for the product of
the risk measure R and transaction cost measure C as well as condition (2.33) are satisfied.

Now we are in a position to introduce a notion of a solution to the risk-adjusted Black-
Scholes equation.
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Definition 2.3. By a solution to the risk-adjusted Black-Scholes equation we mean a
continuous function V = V(S, t), S ∈ (0,∞), t ∈ [0,T], satisfying boundary conditions,
the terminal payoff condition at t = T , and such that

(a) V(S, t) is a classical (smooth) solution to the Black-Scholes equation

∂tV +
σ2

2
S2Γ= r

(
V − S∂SV

)
, S > 0, (2.36)

on the time interval (t∗,T) and it satisfies the prescribed terminal payoff condition
at t = T ,

(b) V(S, t) is a classical (smooth) solution to the equation

∂tV + Sβ(SΓ)= r
(
V − S∂SV

)
, S > 0, (2.37)

on the time interval t ∈ (0, t∗) satisfyingV(S, t∗)=V∗(S), where t∗ = T −C/(Rσ2)
is a switching time and V∗(S)= limt→t+∗V(S, t).

Remark 2.4. Leland in [17] claimed that in the presence of transaction costs a Call option
can be perfectly hedged using the Black-Scholes delta hedging with a modified volatil-
ity. Kabanov and Safarian [12] have shown failure of Leland’s statement and they proved
that the limiting hedging error in Leland’s strategy is equal to zero only in the case where
the level of transaction costs tends to zero (sufficiently fast) in the limit when the time
lag between two consecutive portfolio adjustments goes to zero. On the other hand, they
have shown that the plain vanilla option is always underpriced (i.e., the hedging error is
negative) in such a limit (see also Grandits and Schachinger [8]). In the RAPM model,
we do not use the wrong statement made by Leland. We only use Leland’s approximation
|∆W| ≈ E(|∆W|) = √2/π

√
∆t which can be justified, at least partially, by Remark 2.2.

Moreover, in the RAPM model we are not involved with the limiting case when the
time lag goes to zero because ∆topt is always bounded from below by a positive constant
C/(Rσ2). It follows from (2.30) and (2.35).

2.7. Scale-invariance property. The governing equation (2.19) has a natural scale in-
variance property. Indeed, we multiply the asset and option prices by the same scaling
factor κ > 0. Denote S̃= κS, Ṽ = κV . Then S̃ Γ̃= S̃∂2

S̃
Ṽ = S∂2

SV = SΓ, that is, the term SΓ
remains unchanged after scaling of S and V by a factor κ > 0. Therefore the scaled option
price Ṽ satisfies the same governing equation (2.19) in which we change the variable S to
S̃. This is a very important property of the governing equation which was missing in the
original Kratka approach based on a different definition of the risk coefficient rVP mea-
suring volatility of the portfolio. More precisely, in [14] the risk measure was defined as
follows:

rVP = R
var(∆Π̄)

∆t
, (2.38)
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from which Kratka derived the following equation for the risk-adjusted option pricing
methodology:

∂tV +
σ2

2
S2(1−µΓ1/3)Γ= r

(
V − S∂SV

)
. (2.39)

However, this equation is not scale invariant with respect to the scaling V ↔ κV , S↔ κS.

3. Analysis of the risk-adjusted Black-Scholes equation

The idea how to analyze and solve (2.19) is based on a transformation method. As it
is usual in the classical Black-Scholes theory (cf. [10, 15]), we consider the change of
independent variables

x := ln
(
S

E

)
, x ∈R, τ := T − t, τ ∈ (0,T). (3.1)

As (2.19) contains the term SΓ= S∂2
SV , it is convenient to introduce the following trans-

formation:

H(x,τ) := SΓ= S∂2
SV(S, t). (3.2)

Since we have assumed that V = V(S, t) is a solution to the classical Black-Scholes equa-
tion (2.21) for τ ∈ (0,T − t∗), we obtain from (2.29)

H(x,τ)= N ′(d1
)

σ
√
τ

, d1 = x+
(
r + σ2/2

)
τ

σ
√
τ

, (3.3)

where 0 < τ < T − t∗, x ∈R.

3.1. Valuation formula for option prices. Suppose for a moment that the function H =
SΓ is already known. Then (2.19) can be integrated. It is an easy calculus to verify that the
option price V =V(S, t) is given by the formula

V(S,T − τ)= e−r(τ−τ∗)V
(
Ser(τ−τ∗),T − τ∗

)
+ S
∫ τ

τ∗
β
(
H
(

ln
(
S

E

)
+ r(τ − θ),θ

))
dθ

(3.4)

for any S > 0 and τ ∈ (τ∗,T) where τ∗ = T − t∗. Recall that the option price V(S,T −
τ) for τ ∈ (0,τ∗) can be valuated by an explicit formula for both Call and Put options,
respectively (cf. [10, 15]). More precisely, the valuation formulae for pricing European
Call and Put options read as follows:

Vec(S,T − τ)= SN
(
d1
)−Ee−rτN

(
d2
)
,

Vep(S,T − τ)= Ee−rτN
(−d2

)− SN
(−d1

)
,

(3.5)

where d1 = (ln(S/E) + (r + σ2/2)τ)/(σ
√
τ), d2 = d1− σ

√
τ.
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3.2. Γ equation. Next we derive an equation for the function H on the time interval
(τ∗,T). It turns out that the function H(x,τ) is a solution to a nonlinear parabolic equa-
tion subject to the initial and boundary conditions. More precisely, by taking the second
derivative of (2.19) with respect to x, we obtain, after some calculations, that H =H(x,τ)
is a solution to the quasilinear parabolic equation

∂τH = ∂2
xβ(H) + ∂xβ(H) + r∂xH , (3.6)

τ ∈ (τ∗,T), x ∈R. Henceforth, we will refer to (3.6) as a Γ equation. A solution H to (3.6)
is subjected to the initial condition at τ = τ∗:

H
(
x,τ∗

)= H̄(x), x ∈R, (3.7)

where τ∗ = T − t∗ and H̄(x) = N ′(d)/(σ
√
τ∗) (see (3.3)). In the case of Call or Put op-

tions, the function H is subjected to boundary conditions at x =±∞,

H(−∞,τ)=H(∞,τ)= 0, τ ∈ (0,T). (3.8)

Next we show useful bounds for a solution H to the Γ equation (3.6). Notice that
any constant function H(x,τ)≡ const is a solution to (3.6). Since 0 < maxx∈R H̄(x) < κ=
(3/(4µ))3 it follows from the classical maximum principle for parabolic equations (see,
e.g., [19]) that a solution H(x,τ) to the initial-boundary problem (3.6)–(3.8) satisfies the
estimate

0 <H(x,τ) < κ= (3/(4µ)
)3

, for any x ∈R, τ ∈ (τ∗,T
)
. (3.9)

The above estimate enables us to conclude that a solution V(S, t) to the risk-adjusted
Black-Scholes equation (see Definition 2.3) is indeed a solution to (2.19) on the time
interval t ∈ (0,T − τ∗).

Remark 3.1. Since 0 < λ− ≤ β′(H)≤ λ+ for every H < κ where λ± > 0 are fixed constants,
the local in time existence of a classical (smooth) solution H(x,τ) to the Cauchy problem
(3.6)–(3.8) is a consequence of the general theory of quasilinear parabolic equations due
to Ladyzhenskaya [16]. Notice that local existence of a weak solution to (3.6)–(3.8) with
an L2(R) integrable initial condition can be shown by means of Rothe’s method which
has been intensively studied by Kacur [13]. Global in time existence of either classical or
weak solutions follows from á-priori energy bounds obtained by multiplying (3.6) with
the term β(H) and integrating over the domain x ∈R.

Remark 3.2 (free boundary problem and American-type options). Throughout the paper
we assume that Call or Put options are of the European type and the underlying asset does
not pay any dividend. It means that the option can be exercised only at the expiry T . On
the other hand, American type of options are much more common in quotes markets.
In this case one has to consider the effect of the free boundary (or optimal stopping
time) on the valuation of option prices (see, e.g., [15, 21, 22, 24]). Nevertheless, one can
follow derivation of the RAPM model in order to derive a free boundary problem for
valuing American type of options. A position of the free boundary can be determined by
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several methods including in particular the reduction of the problem to a solution of a
certain nonlinear singular integral equation (cf. [15, 21, 22]). For the sake of simplicity,
we however restrict ourselves to the study of European type of options only.

4. Numerical scheme for full space-time discretization

In this section we describe a full space-time discretization scheme for solving (3.6) and
(3.4). The idea of construction of a numerical approximation to (3.6) is based on the
finite-volume method (see, e.g., [7]).

4.1. Discretization of the Γ equation. In order to find a numerical solution to (3.6), we
have to restrict ourselves to a finite spatial interval x ∈ (−L,L) where L > 0 is sufficiently
large. Since S = Eex, we have restricted the interval of asset values to S ∈ (Ee−L,EeL).
From a practical point of view, it is therefore sufficient to take L≈ 1.5 in order to include
important values of S. Subsequently, we have also to modify boundary conditions (3.8).
Instead of (3.8), we will consider Dirichlet boundary conditions at x =±L, that is,

H(−L,τ)=H(L,τ)= 0, τ ∈ (τ∗,T
)
. (4.1)

We take a uniform division of the time interval [0,T] with a time step k = T/m and a
uniform division xi = ih, i = −n, . . . ,n, of the interval [−L,L] with a step h = L/n. To
construct numerical approximation of a solution H to (3.6), we derive a system of differ-
ence equations corresponding to (3.6) to be solved at every discrete time step. Difference

equations involve discrete values of H
j
i ≈H(ih, jk) where j = p, . . . ,m. Here the index p

corresponds to the initial time τ∗, that is, τ∗ ≈ pk. We choose the time step k less than
∆topt (see (2.14)).

Our numerical algorithm is semi-implicit in time. It means that all nonlinear terms
in equations are treated from the previous time step whereas linear terms are solved at
the current time level. In order to guarantee stability of the scheme, we assume the CLF
condition for the time step k and spatial step h : (k/h2)λ+ < 1/2. Such a discretization
leads to a solution of linear systems of equations at every discrete time level. Now, by
replacing the time derivative by the time difference, approximating H in nodal points
by the average value of neighboring segments, collecting all linear terms at the new time
level j, and taking all the remaining terms from the previous time level j − 1, we obtain
a tridiagonal system subject to homogeneous Dirichlet boundary conditions imposed on
new discrete values of H j :

a
j
i H

j
i−1 + b

j
i H

j
i + c

j
i H

j
i+1 = d

j
i , H

j
−n = 0, H

j
n = 0, (4.2)

for i=−n+ 1, . . . ,n− 1, and j = p+ 1, . . . ,m, where H
p
i = H̄(xi) and

a
j
i =−

k

h2
β′
(
H

j−1
i−1

)
+
k

h
r, b

j
i = 1− (aj

i + c
j
i

)
,

c
j
i =−

k

h2
β′
(
H

j−1
i

)
, d

j
i =H

j−1
i +

k

h

(
β
(
H

j−1
i

)−β
(
H

j−1
i−1

))
.

(4.3)
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Since tridiagonal systems admit a simple LU-matrix decomposition, we can solve the
above tridiagonal system in every time step in a fast and effective way.

4.2. Computation of option prices. Equation (3.4) is a simple updating formula once a
numerical approximation of a solution H(x,τ) to the Γ equation is known. We can use a
simple trapezoidal rule for numerical integration of (3.4), that is,

V(S,T − jk)=V
(
Ser( j−p)k,T − pk

)
e−r( j−p)k

+ Sk
j∑

l=p+1

β
(
H
(

ln(S/E) + r( j− l)k, lk
)) (4.4)

for j = p + 1, . . . ,m, where τ∗ ≈ pk. The value of a function H at a spatial point x =
ln(S/E) + r( j− l)k ∈ [xi,xi+1] is computed by a piecewise linear approximation ofH using
the neighboring values Hl

i , H
l
i+1.

5. Computational results

The purpose of this section is to discuss the application of the RAPM model to the real
market option price data. We introduce a concept of the so-called implied RAPM volatil-
ity σRAPM and the implied risk premium coefficientR. Furthermore, we discuss the volatil-
ity smile phenomenon and its explanation within the frame of the RAPM model.

5.1. Explanation of the volatility smile by the RAPM model. One of the most strik-
ing phenomena in the Black-Scholes theory is the so-called volatility smile phenomenon.
Notice that the derivation of the classical Black-Scholes equation (2.21) relies on the as-
sumption of a constant value of the volatility σ . On the other hand, as it might be docu-
mented by many examples observed in market options datasets (see, e.g., [2, 6, 11, 23]),
such an assumption is often violated. More precisely, the implied volatility σimpl is no
longer constant and it can depend on the asset price S, the strike price E, as well as the
time t.

In the RAPM approach we are able to explain the volatility smile analytically. The
risk-adjusted Black-Scholes equation (2.19) can be viewed as an equation with a variable
volatility coefficient, that is,

∂tV +
σ̄2(S, t)

2
S2Γ= r

(
V − S∂SV

)
, (5.1)

where Γ = ∂2
SV and the volatility σ̄2(S, t) depends itself on a solution V = V(S, t) as fol-

lows:

σ̄2(S, t)= σ2(1−µ(SΓ)1/3). (5.2)



250 The risk-adjusted pricing methodology

σ̄(S, t)

σ

E
S

(a)

σ̄(S, t)

σ

E
S

(b)

σ̄(S, t)

ES
T

t

0

(c)

Figure 5.1. Explanation of the volatility smile. Dependence of σ̄(S, t) on S is depicted in (a) for t close
to T and in (b), for a time 0 < t� T . The mapping (S, t) �→ σ̄(S, t) is shown in (c).

In Figure 5.1 we show the dependence of the function σ̄(S, t) on the asset price S and time
t. It should be obvious that the function S �→ σ̄(S, t) has a convex shape near the exercise
price E. We have used the RAPM model in order to compute values of Γ= ∂2

SV . We chose
µ= 0.2, σ = 0.3, r = 0.011, and T = 0.5.

With regard to scale invariance property of the RAPM model (see Section 2.7) if we
express both the asset price S as well as the option price V in terms of units of E (i.e.,
we introduce scaling s↔ S/E and v↔ V/E), then the volatility σ̄ defined as in (5.2) is a
function of the ratio s= S/E and time t only.

5.2. Modeling bid-ask spreads of option values. In real market quotes datasets there are
listed two different option prices Vbid < Vask called bid and ask price representing thus
offers for buying and selling options, respectively (cf. [18]). We note that in the RAPM
model derived in Section 2, asset transaction costs as well as risk from an unprotected
portfolio were on the side of a holder of an option, because a holder has to keep a fixed
amount of options and to adjust portfolio by buying or selling assets. Having assumed
such a long option position, the solution to the RAPM model (2.19) corresponds to the
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Figure 5.2. A comparison of bid and ask option prices computed by means of the RAPM model. The
dotted line in the middle is the option price computed from the Black-Scholes equation. We chose (a)
σ = 0.3, µ= 0.2, r = 0.011, E = 25, and T = 1 and (b) T = 0.3.

bid option price Vbid. Switching to a short positioned option we transfer both transaction
costs and risk from an unprotected portfolio to the other side of an option contract. In
this case, we changed the governing equation slightly—the coefficient µ has the reversed
sign. It means that the RAPM equation modeling higher ask option prices reads as fol-
lows:

∂tV +
σ2

2
S2(1 +µ(SΓ)1/3)Γ= r

(
V − S∂SV

)
. (5.3)

The above PDE can be numerically computed exactly in the same way as the RAPM equa-
tion (2.19) for the bid option price. In fact, we only change the sign of the coefficient µ
in our numerical scheme. The switching time remains the same: t∗ = T −C/(Rσ2) for
valuing both Vbid as well as Vask option prices.

We denote V(S, t;σ , t∗,µ) the value of a solution to (2.19). In order to calibrate the
RAPM model, we seek a pair (σRAPM,R) such that Vbid = V(S, t;σ , t∗,µ) and Vask =
V(S, t;σ , t∗,−µ), where Vbid and Vask are market bid and ask option prices. It leads us
to the following definition of the implied RAPM volatility and risk premium coefficients.

Definition 5.1. Let Vbid, Vask denote the market option data for the bid and ask option
prices. By the implied RAPM volatility σRAPM and implied RAPM risk premium coeffi-
cient R we mean the unique values of σ > 0 and R > 0, such that Vbid = V(S, t;σ , t∗,µ)
and Vask = V(S, t;σ , t∗,−µ), where µ = 3(C2R/(2π))1/3, t∗ = T −C/(Rσ2), and C > 0 is
transaction cost rate.

In Figure 5.2 we show a comparison of Vbid and Vask option prices to the Call option
payoff diagram. We also show the solution to the classical Black-Scholes equation (2.21)
lying on between Vbid and Vask prices. Notice that a solution σ to the equation Vmid =
V(S, t;σ , t∗,0), where Vmid = (Vbid +Vask)/2 is just the usual implied volatility σimpl (cf.
[15]).
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Remark 5.2. In modeling bid-ask spreads, we have unambiguously associated a long
positioned option with a lower bid price, and a short positioned option with a higher
ask price. In a real market, it need not be so easy to switch costs and the risk to the
other side of the contract. A consistent way how to calibrate the RAPM model should
be to work with either one of Vbid or Vask and stick to it. It turned out from the cal-
ibration of implied pairs (σRAPM,R) that σRAPM is very close to the Black-Scholes im-
plied volatility σimpl, their relative difference being less than 5.10−3 (see Section 5.3). Of
course they need not coincide as the governing parabolic equation is nonlinear and so
(1/2)(V(S, t;σ , t∗,−µ) + V(S, t;σ , t∗,µ)) �= V(S, t;σ , t∗,0), in general. Nevertheless, from
practical point of view, we may take σRAPM ≈ σimpl leading to calibration of the remaining
parameter µ (and subsequently R) from the single equation Vbid =V(S, t;σ , t∗,µ) only.

In order to find a pair (σRAPM,R) of the implied volatility and risk premium R, we have
to solve the following system of nonlinear equations:

F(σ ,µ)= (Vbid,Vask
)
, (5.4)

where the mapping F :R2 →R2 is defined as F(σ ,R)= (V(S, t;σ , t∗,µ),V(S, t;σ , t∗,−µ)).
To find a solution to (5.4), we make use of the iterative Newton-Kantorovich method (cf.
[1]),

yn+1 = yn− [F′(yn)]−1
F
(
yn
)
, n= 0,1, . . . , (5.5)

where yn = (σn,Rn) and F′ is the derivative of F. Taking a good initial approximation
(σ0,R0) of an implied pair, the Newton-Kantorovich sequence yn = (σn,Rn) defined as in
(5.5) converges to a solution (σ ,R) of (5.4). In practice, we replace partial derivatives in
the Jacobi matrix F′ by their central difference approximations. Notice that the overall
complexity of a single Newton-Kantorovich step is therefore 10 times the complexity of
computation of a particular RAPM option price V(S, t;σ , t∗,µ). In our experiments to
follow, we needed (in average) 5–15 steps in the Newton-Kantorovich scheme in order to
find a solution to (5.4) with accuracy less than 0.1% of the option price.

5.3. Examples of calibration of the RAPM model. In this section, we summarize results
of several numerical experiments and comparison of results to market option datasets.
We focus on calibration of the RAPM model. The main goal is to analyze time series
of option prices and to compute the implied RAPM volatility σRAPM and risk premium
coefficient R. The analyzed datasets consisted of several hundreds of option prices for dif-
ferent exercise prices E and exercise times T . As it was already mentioned in the previous
section, computation of implied volatilities and risk premiums is rather complex because
we have to solve approximately 100 PDEs per one option price record. The overall com-
putational time ranged from 2 hours up to 6 hours of 3 GHz Pentium CPU depending
on the size of the analyzed dataset.
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As an example we considered sample datasets for Microsoft Corporation. In all studied
cases, we computed the implied RAPM volatilities and risk premium coefficients. We
considered a flat interest rate r = 0.02 and a constant transaction cost coefficient C =
0.01. We also compared implied RAPM volatilities to standard implied volatilities σimpl

computed by means of the classical Black-Scholes equation (2.21). It turned out that time
series of σRAPM and σimpl are almost perfectly correlated with correlation higher than 0.99.
On the other hand, in all studied cases we have σRAPM > σimpl with the relative difference
(σRAPM − σimpl)/σRAPM less than 0.005. Notice that we have considered only Call option
price records in which Vbid > Sbid−E.

In Figures 5.3a and 5.3b, we present the behavior of the mid value asset price S =
(Sbid + Sask)/2 during April 4, 2003. We chose three Call options with the same expiration
date T =May 17, 2003, and different expiration prices E = 23, E = 25, E = 30 Figure 5.3c.
The behavior of the implied volatility σRAPM and implied risk premium R is depicted
Figures 5.3c and 5.3d. For Call options with expiration prices E = 25 and E = 30, implied
risk coefficients are almost constant during the day except for the initial shock for the
option with E = 30. On the other hand, both implied risk coefficient as well as implied
σRAPM volatility are highly volatile during this day. The lowest risk (measured by R) is
achieved by holding the Call option on E = 25. These results could indicate that holding
E = 25 Call option is less risky compared to other analyzed call options.

In Figure 5.4b, we present analogous results for Microsoft stocks and Call options hav-
ing a longer expiration date T = January 22, 2005. Again, we chose three Call options
with different expiration prices E = 20, E = 25, and E = 30. The behavior of the implied
volatility σRAPM and implied risk premium R is depicted Figures 5.4c and 5.4d. Similarly
as in Figure 5.3, Call options with expiration prices E = 25 and E = 30 have almost con-
stant implied risk coefficients. Interestingly enough, in the first half of the day, the implied
risk coefficient R for the Call option with E = 20 is much higher compared to those cor-
responding to E = 25 and E = 30, respectively. During the second part of the day, it is
jumping up and down between them. It could give some indication to an investor that
the portfolio consisting of E = 25 Call options is less risky.

Finally, in Figure 5.5 we present one-week behavior of implied volatilities and risk pre-
mium coefficients for the Microsoft Call option on E = 25 expiring at T = April 19, 2003.
In the beginning of the investigated period, the risk premium coefficient R was rather
high and fluctuating. On the other hand, it tends to a flat value of R≈ 5 at the end of the
week.

6. Discussion

We introduced a new model for pricing derivative securities in the presence of both trans-
action costs as well as the risk from unprotected portfolio. The option prices can be
computed from a solution to a nonlinear parabolic PDE. The governing equation ex-
tends the classical Black-Scholes equation and Leland’s equation to the case when the risk
from unprotected portfolio is taken into account. It is a fully nonlinear parabolic equa-
tion in which a diffusion coefficient representing the volatility nonlinearly depends on
the solution itself giving rise to analytically explain the volatility smile phenomenon. We
have shown how this equation can be approximated by a stable numerical scheme. We
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Figure 5.3. Intraday behavior of Microsoft stocks (April 4, 2003) and shortly expiring Call options
with expiry date April 19, 2003, with computed implied volatilities σRAPM and risk premium coeffi-
cients R.
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Figure 5.4. Intraday behavior of Microsoft stocks (April 17, 2003) and Call options with long expira-
tion date January 22, 2005, with computed implied volatilities σRAPM and risk premiums R.
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Figure 5.5. One week behavior of Microsoft stocks (March 20–27, 2003) and Call options with expi-
ration date April 19, 2003. Computed implied volatilities σRAPM and risk premiums R.
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have performed extensive numerical testing of the model and compared the results to
real option market data. Furthermore, we introduced a concept of the so-called implied
RAPM volatility and implied risk premium coefficients. We have computed these implied
quantities for sample option datasets and we have indicated how these implied factors can
be used in qualitative analysis of option market datasets.
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