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ABSTRACT. The purpose of this paper is to analyze and
compute the early exercise boundary for a class of nonlinear
Black-Scholes equations with a nonlinear volatility which can
be a function of the second derivative of the option price itself.
A motivation for studying the nonlinear Black-Scholes equation
with a nonlinear volatility arises from option pricing models
taking into account, e.g., nontrivial transaction costs, investor’s
preferences, feedback and illiquid markets effects and risk from
a volatile (unprotected) portfolio. We present a new method
how to transform the free boundary problem for the early ex-
ercise boundary position into a solution of a time depending
nonlinear parabolic equation defined on a fixed domain. We
furthermore propose an iterative numerical scheme that can be
used to find an approximation of the free boundary. We present
results of numerical approximation of the early exercise bound-
ary for various types of nonlinear Black-Scholes equations and
we discuss dependence of the free boundary on various model
parameters.

1 Introduction In the past years, the Black-Scholes equation for
pricing derivatives has attracted a lot of attention from both theoretical
as well as practical point of view. Recall that a European Call (Put)
option is the right but not obligation to purchase (sell) an underlying
asset at the expiration price E at the expiration time T . In an idealized
financial market the price of an option can be computed from the well-
known Black-Scholes equation derived by Black and Scholes in [4], and,
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independently by Merton (see also [21], Dewynne et al. [7], Hull [16]).
Assuming that the underlying asset follows a geometric Brownian motion
one can derive a governing partial differential equation for the price of an
option. We remind ourselves that the equation for option’s price V (S, t)
is the following parabolic PDE:

(1) ∂tV + (r − q)S∂SV +
1

2
σ2S2∂2

S V − rV = 0

where σ is the volatility of the underlying asset price process, r > 0
is the interest rate of a zero-coupon bond, q ≥ 0 is the dividend yield
rate. A solution V = V (S, t) represents the price of an option at time
t ∈ [0, T ] if the price of an underlying asset is S > 0. In this paper
we shall focus our attention to the case when the diffusion coefficient
σ2 may depend on the time T − t to expiry, the asset price S and the
second derivative ∂2

SV of the option price (referred to as Γ), i.e.,

(2) σ = σ(S2 ∂2
S V, S, T − t) .

A motivation for studying the nonlinear Black-Scholes equation (1) with
a volatility σ having a general form (2) arises from option pricing mod-
els taking into account nontrivial transaction costs, market feedbacks
and/or risk from a volatile (unprotected) portfolio. Recall that the linear
Black-Scholes equation with σ constant has been derived under several
restrictive assumptions, e.g., frictionless, liquid, complete markets, etc.
We also recall that the linear Black-Scholes equation provides a perfectly
replicated hedging portfolio. In recent years, some of these assumptions
have been relaxed in order to model, for instance, the presence of trans-
action costs (see, e.g., Leland [22], Hoggard et al. [17], Avellaneda
and Paras [2]), feedback and illiquid market effects due to large traders
choosing given stock-trading strategies (Frey and Patie [12], Frey and
Stremme [13], During et al. [8], Schönbucher and Wilmott [29]), im-
perfect replication and investor’s preferences (Barles and Soner [5]), risk
from unprotected portfolio (Kratka [20], Jandačka and Ševčovič [18]).
One of the first nonlinear models is the so-called Leland model (c.f.
[22]) for pricing Call and Put options under the presence of transaction
costs. It has been generalized for more complex options by Hoggard,
Whaley and Wilmott in [17]. In this model the volatility σ is given
by σ2(S2∂2

SV, S, τ) = σ̂2(1 + Le sgn(∂2
SV )) where σ̂ > 0 is a constant

historical volatility of the underlying asset price process and Le > 0
is the so-called Leland constant given by Le =

√
2/πC/(σ̂

√
∆t) where
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C > 0 is a constant round trip transaction cost per unit dollar of trans-
action in the assets market and ∆t > 0 is the time-lag between portfolio
adjustments.

If transaction costs are taken into account perfect replication of the
contingent claim is no longer possible and further restrictions are needed
in the model. By assuming that investor’s preferences are characterized
by an exponential utility function Barles and Soner (c.f. [5]) derived a
nonlinear Black-Scholes equation with the volatility σ given by

(3) σ2(S2∂2
SV, S, τ) = σ̂2

(
1 + Ψ(a2erτS2∂2

SV )
)

where Ψ is a solution to the ODE: Ψ′(x) = (Ψ(x) + 1)/(2
√

xΨ(x) −
x), Ψ(0) = 0, and a > 0 is a given constant representing risk aversion.

Notice that Ψ(x) = O(x
1
3 ) for x → 0 and Ψ(x) = O(x) for x → ∞.

Another popular model has been derived for the case when the asset
dynamics takes into account the presence of feedback and illiquid market
effects. Frey and Stremme (c.f. [13, 12]) introduced directly the asset
price dynamics in the case when a large trader chooses a given stock-
trading strategy (see also [29]). The diffusion coefficient σ is again
nonconstant and it can be expressed as:

(4) σ2(S2∂2
SV, S, τ) = σ̂2

(
1 − %λ(S)S∂2

SV
)−2

where σ̂2, % > 0 are constants and λ(S) is a strictly convex function,
λ(S) ≥ 1.

The last example of the Black-Scholes equation with a nonlinearly
depending volatility is the so-called Risk Adjusted Pricing Methodol-
ogy model proposed by Kratka in [20] and revisited by Jandačka and
Ševčovič in [18]. In order to maintain (imperfect) replication of a port-
folio by the delta hedge one has to make frequent portfolio adjustments
leading to a substantial increase in transaction costs. On the other hand,
rare portfolio adjustments may lead to an increase of the risk arising
from a volatile (unprotected) portfolio. In the RAPM model the aim is
to optimize the time-lag ∆t between consecutive portfolio adjustments.
By choosing ∆t > 0 in such way that the sum of the rate of transaction
costs and the rate of a risk from unprotected portfolio is minimal one
can find the optimal time lag ∆t > 0 (see [18] for details). In the RAPM
model, it turns out that the volatility is again nonconstant and it has
the following form:

(5) σ2(S2∂2
SV, S, τ) = σ̂2

(
1 + µ(S∂2

SV )
1
3

)
.
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Here σ̂2 > 0 is a constant and µ = 3(C2R/2π)
1
3 where C, R ≥ 0 are

nonnegative constant representing the transaction cost measure and the
risk premium measure, resp. (see [18] for details).

Notice that all the above mentioned nonlinear models are consistent
with the original Black-Scholes equation in the case the additional model
parameters (e.g., Le, a, %, µ) are vanishing. If plain Call or Put vanilla
options are concerned then the function V (S, t) is convex in S variable
and therefore each of the above mentioned models has a diffusion co-
efficient strictly larger than σ̂2 leading to a larger values of computed
option prices. They can be therefore identified with higher Ask option
prices, i.e., offers to sell an option. Furthermore, these models have been
considered and analyzed mostly for European options, i.e., options can
be exercised only at the maturity t = T . On the other hand, Amer-
ican options are more common in financial markets as they allow for
exercising of an option anytime before the expiry T . In the case of an
American Call option a solution to equation (1) is defined on a time
dependent domain 0 < t < T, 0 < S < Sf (t). It is subject to the
boundary conditions

(6) V (0, t) = 0, V (Sf (t), t) = Sf (t) − E, ∂SV (Sf (t), t) = 1,

and terminal pay-off condition at expiry t = T

(7) V (S, T ) = max(S − E, 0)

where E > 0 is a strike price (c.f. [7, 21]). One of important prob-
lems in this field is the analysis of the early exercise boundary Sf (t) and
the optimal stopping time (an inverse function to Sf (t)) for American
Call options on stocks paying a continuous dividend q > 0. However,
an exact analytical expression for the free boundary profile is not even
known for the case when the volatility σ is constant. Many authors
have investigated various approximation models leading to approximate
expressions for valuing American Call and Put options: analytic approxi-
mations (Barone-Adesi and Whaley [3], Kuske and Keller [19], Dewynne
et al. [7], Geske et al. [14, 15], MacMillan [23], Mynemi [26]); methods
of reduction to a nonlinear integral equation (Alobaidi [1], Kwok [21],
Mallier et al. [24, 25], Ševčovič [28], Stamicar et al. [30]). Concerning
numerical methods for solving free boundary problem we refer to the
book by Kwok [21] and recent papers by Ehrhardt and Mickens [9] and
Zhao et al. [31].

The main goal of this paper is to propose a new iterative numerical
algorithm for solving the free boundary problem for an American Call
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option in the case the volatility σ may depend on the option and asset
values as well as on the time T − t to expiry. The key idea of the pro-
posed algorithm consists in transformation of the free boundary problem
into a semilinear parabolic equation defined on a fixed spatial domain
coupled with a nonlocal algebraic constraint equation for the free bound-
ary position. Since the resulting parabolic equation contains a strong
convective term we make use of the operator splitting method in order
to overcome numerical difficulties. Full space-time discretization of the
problem leads to a system of semi-linear algebraic equations that can be
solved by an iterative procedure at each time level.

The paper has the following plan: in the next section we transform the
free boundary problem into a system consisting of a nonlinear parabolic
equation defined on a fixed domain with time depending coefficients
and an algebraic constraint equation for the free boundary position. In
Section 3 we present a numerical discretization scheme based on the
idea of operator splitting. In Section 4 we present several numerical
results for nonlinear Black-Scholes equations with volatility functions σ
defined in (3) and 5). We make a comparison to well-known methods in
the case the volatility σ is constant. Finally, we discuss dependence of
the free boundary position with respect to various parameters entering
expressions (3) and (5).

2 The fixed domain transformation The main goal of this sec-
tion is to perform a fixed domain transformation of the free boundary
problem for the nonlinear Black-Scholes equation (1) into a parabolic
equation defined on a fixed spatial domain. For the sake of simplicity
we will present a detailed derivation of an equation only for the case of
an American Call option. Derivation of the corresponding equation for
the American Put option is similar.

Let us consider the following change of variables:

τ = T − t, x = ln (%(τ)/S) where %(τ) = Sf (T − τ).

Then τ ∈ (0, T ) and x ∈ (0,∞) iff S ∈ (0, Sf (t)). The value x =
0 corresponds to the free boundary position S = Sf (t) whereas x ≈
+∞ corresponds to the default value S = 0 of the underlying asset.
Following Stamicar et al. [30] and Ševčovič [28] we construct the so-
called synthetic portfolio function Π = Π(x, τ) defined as follows:

(8) Π(x, τ) = V (S, t) − S∂SV (S, t) .
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It corresponds to a synthetic portfolio consisting of one long positioned
option and ∆ = ∂SV underlying short stocks. Clearly, we have

∂xΠ = S2∂2
SV, ∂τΠ +

%̇

%
∂xΠ = −∂t (V − S∂SV )

where we have denoted %̇ = d%/dτ . Assuming sufficient smoothness of a
solution V = V (S, t) to (1) we can deduce from (1) a parabolic equation
for the synthetic portfolio function Π = Π(x, τ)

∂τΠ +

(
b(τ) − 1

2
σ2

)
∂xΠ − 1

2
∂x

(
σ2∂xΠ

)
+ rΠ = 0

defined on a fixed domain x ∈ R, t ∈ (0, T ), with a time-dependent
coefficient

(9) b(τ) =
%̇(τ)

%(τ)
+ r − q

and a diffusion coefficient given by: σ2 = σ2(∂xΠ(x, τ), %(τ)e−x, τ) de-
pending on τ, x and the gradient ∂xΠ of a solution Π. Now the boundary
conditions V (0, t) = 0, V (Sf (t), t) = Sf (t) − E and ∂SV (Sf (t), t) = 1
imply

(10) Π(0, τ) = −E, Π(+∞, τ) = 0 , 0 < τ < T ,

and, from the terminal pay-off diagram for V (S, T ), we deduce

(11) Π(x, 0) =





−E for x < ln

(
%(0)

E

)

0 otherwise.

In order to close up the system of equations that determines the value
of a synthetic portfolio Π we have to construct an equation for the free
boundary position %(τ). Indeed, both the coefficient b as well as the
initial condition Π(x, 0) depend on the function %(τ). Similarly as in
the case of a constant volatility σ (see [28, 30]) we proceed as follows:
since Sf (t) − E = V (Sf (t), t) and ∂SV (Sf (t), t) = 1 we have d

dtSf (t) =

∂SV (Sf (t), t) d
dtSf (t) + ∂tV (Sf (t), t) and so ∂tV (S, t) = 0 along the free

boundary S = Sf (t). Moreover, assuming ∂xΠ is continuous up to the
boundary x = 0 we obtain S2∂2

SV (S, t) → ∂xΠ(0, τ) and S∂SV (S, t) →
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%(τ) as S → Sf (t)−. Now, by taking the limit S → Sf (t)− in the Black-
Scholes equation (1) we obtain (r−q)%(τ)+ 1

2 σ2∂Π(0, τ)−r(%(τ)−E) =
0. Therefore

%(τ) =
rE

q
+

1

2q
σ2(∂xΠ(0, τ), %(τ), τ)∂xΠ(0, τ)

for 0 < τ ≤ T . Recall that in the linear case when σ > 0 is constant the
initial position of the interface %(0) is given by %(0) = rE/q if r ≥ q > 0
and %(0) = E if 0 < r < q (see Dewynne et al. [7] or Ševčovič [28]). We
also recall that the value of %(0) in the case r ≥ q > 0 can derived easily
from the smoothness assumption made on ∂xΠ at the origin x = 0, τ = 0.
Indeed, continuity of ∂xΠ at the origin (0, 0) implies limτ→0+ ∂xΠ(0, τ) =
∂xΠ(0, 0) = limx→0+ ∂xΠ(x, 0) = 0 because Π(x, 0) = −E for x close to
0+. From the above equation for %(τ) we deduce %(0) = rE/q by taking
the limit τ → 0+. Henceforth, we restrict our attention to the case when
the interest rate is greater then the dividend yield rate, i.e.,

(12) 0 < q ≤ r

leading to the initial position of the free boundary %(0) = rE/q. Putting
all the above equations together we end up with a closed system of
equations for Π = Π(x, τ) and % = %(τ)

(13)

∂τΠ +

(
b(τ) − 1

2
σ2

)
∂xΠ − 1

2
∂x

(
σ2∂xΠ

)
+ rΠ = 0,

Π(0, τ) = −E, Π(+∞, τ) = 0, x > 0, τ ∈ (0, T ),

Π(x, 0) =

{
−E for x < ln(r/q)

0 otherwise,

where σ = σ(∂xΠ(x, τ), %(τ)e−x, τ) , b(τ) = %̇(τ)/%(τ) + r − q and the
free boundary position %(τ) = Sf (T − τ) satisfies an implicit algebraic
equation

(14) %(τ) =
rE

q
+

σ2(∂xΠ(0, τ), %(τ), τ)

2q
∂xΠ(0, τ) with %(0) =

rE

q

where τ ∈ (0, T ). Notice that, in order to guarantee parabolicity of equa-
tion (13) we have to assume that the function p 7→ σ2(p, %(τ)e−x, τ)p is
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strictly increasing. More precisely, we shall assume that there exists a
positive constant γ > 0 such that

(15) σ2(p, ξ, τ) + p∂pσ
2(p, ξ, τ) ≥ γ > 0

for any ξ > 0, τ ∈ (0, T ) and p ∈ R.

Remark 1. In [28] the author derived a single equation for the position
of the free boundary % for the case when the volatility σ = σ̂ is constant.
In this case one can solve the initial-boundary value problem for the
linear parabolic equation (13) with spatially independent coefficients by
means of one-sided sine and cosine Fourier transforms in the spatial x
variable. The explicit formula for Π(x, τ) together with equation (14)
enables us to conclude that the free boundary position % satisfies the
following nonlinear weakly singular integral equation

%(τ) =
rE

q

(
1 +

σ̂

r
√

2πτ
exp

(
−rτ − (Aτ,0 + ln(r/q))2/(2σ̂2τ)

)

+
1√
2π

∫ τ

0

[
σ̂ +

1

σ̂

(
1 − q%(s)

rE

)
Aτ,s

τ − s

]

×
exp

(
−r(τ − s) − A2

τ,s

2σ̂2(τ−s)

)

√
τ − s

ds

)

(16)

where the function Aτ,s depends upon % via

Aτ,s = ln %(τ) − ln %(s) +

(
r − q − 1

2
σ̂2

)
(τ − s).

The above integral equation can be solved by an iterative procedure
based on a Banach fixed point argument (see [28] for details). It is
worthwhile noting that this approach cannot be applied to the case when
the volatility may depend on the asset price S and/or the second deriva-
tive of the option price as the Fourier integral transform technique is no
longer applicable. However, in Section 4 we shall use a solution com-
puted from the nonlinear integral equation (16) in order to make com-
parison of our iterative numerical scheme in the case when the volatility
σ is constant.

Remark 2. We also present a formula for pricing American Call options
based on the solution (Π, %) to (13)–(14). By (8) we have

∂S

(
S−1V (S, t)

)
= −S−2Π (ln (%(T − t)/S) , T − t) .
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Taking into account the boundary condition V (Sf (t), t) = Sf (t)−E and
integrating the above equation from S to Sf (t) = %(T − t), we obtain
the expression for the option price V (S, t):

(17) V (S, T − τ) =
S

%(τ)

(
%(τ) − E +

∫ ln %(τ)
S

0

exΠ(x, τ) dx

)
.

3 Discretization scheme. An iterative algorithm for approx-

imation of the early exercise boundary In this section we derive
a full space-time discretization scheme for a numerical approximation of
the problem (13), (14). Recall that in the case of a constant volatility
there are, in principle, two ways how to solve numerically the free bound-
ary problem for the value of an American Call resp. Put option and the
position of the early exercise boundary. The first class of algorithms is
based on reformulation of the problem in terms of a variational inequal-
ity (see Kwok [21] and references therein). The variational inequality
can be then solved numerically by the so-called Projected Super Over
Relaxation method (PSOR for short). An advantage of this method is
that it gives us immediately the value of a solution. A disadvantage is
that one has to solve large systems of linear equations iteratively taking
into account the obstacle for a solution, and, secondly, the free boundary
position should be deduced from the solution a posteriori. Moreover, the
PSOR method is not directly applicable for solving the problem (1)–(6)
when the diffusion coefficient σ may depend on the second derivative of
a solution itself. The second class of methods is based on derivation of a
nonlinear integral equation for the position of the free boundary without
the need of knowing the option price itself (see, e.g., Kuske-Keller [19],
Mallier and Alobaidi [1, 24, 25], Ševčovič et al. [28, 30]). In this ap-
proach an advantage is that only a single equation for the free boundary
has to be solved; a disadvantage is that the method is based on integral
transformation techniques and therefore the assumption σ is constant is
crucial.

In our approach we make an attempt to take advantages of both
above mentioned methods. As it was mentioned in the previous section
we are going to solve the system of nonlinear equations (13) with con-
straint (14). Because the volatility σ may be nonconstant we cannot use
integral transformation techniques in order to derive a single integral
equation for %(τ). However, the form of the system (13), (14) allows
for an efficient and fast numerical algorithm for computing of the early
exercise boundary position %(τ) = Sf (T − τ).

The idea of the iterative numerical algorithm for solving the problem
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(13), (14) is rather simple: we use the backward Euler method of finite
differences in order to discretize the parabolic equation (13) in time. In
each time level we find a new approximation of a solution pair (Π, %).
First we determine a new position of % from the algebraic equation (14).
We remind ourselves that (even in the case σ is constant) the free bound-
ary function %(τ) behaves like rE/q + O(τ 1/2) for τ → 0+ (see, e.g., [7]
or [28]) and so b(τ) = O(τ−1/2). Hence the convective term b(τ)∂xΠ
becomes a dominant part of equation (13) for small values of τ . In
order to overcome this difficulty we use the operator splitting method
for successive solving of the convective and diffusion parts of equation
(13). Since the diffusion coefficient depends on the solution Π itself we
make several micro-iterates to find a solution of a system of nonlinear
algebraic equations.

Now we present our algorithm in more details. We restrict the spatial
domain x ∈ (0,∞) to a finite interval of values x ∈ (0, L) where L > 0
is sufficiently large. For practical purposes one can take L ≈ 3 as it
corresponds to the interval S ∈ (Sf (t)e−L, Sf (t)) in the original asset
price variable S. The value Sf (t)e−L is then a good approximation for
the default value S = 0 if L ≈ 3. Let us denote by k > 0 the time step,
k = T/m, and, by h > 0 the spatial step, h = L/n where m, n ∈ N
stand for the number of time and space discretization steps, resp. We
denote by Πj

i an approximation of Π(xi, τj), %j ≈ %(τj), bj ≈ b(τj) where
xi = ih, τj = jk. We approximate the value of the volatility σ at the
node (xi, τj) by finite difference as follows:

σj
i = σj

i (%
j , Πj) = σ((Πj

i+1 − Πj
i )/h, %je−xi , τj) .

Then for the backward in time Euler finite difference approximation of
equation (13) we have

(18)
Πj − Πj−1

k
+

(
bj − 1

2
(σj)2

)
∂xΠj − 1

2
∂x

(
(σj)2∂xΠj

)
+ rΠj = 0

and the solution Πj = Πj(x) is subject to Dirichlet boundary conditions
at x = 0 and x = L. We set Π0(x) = Π(x, 0). Now we decompose the
above problem into two parts - a convection part and a diffusive part by
introducing an auxiliary intermediate step Πj− 1

2 :
(Convective part)

(19)
Πj− 1

2 − Πj−1

k
+ bj∂xΠj− 1

2 = 0 ,
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(Diffusive part)

(20)
Πj − Πj− 1

2

k
− (σj)2∂xΠj − 1

2
∂x

(
(σj)2∂xΠj

)
+ rΠj = 0 .

The idea of the operator splitting technique now consists in comparison
the sum of solutions to convective and diffusion part to a solution of
(18). Indeed, if ∂xΠj ≈ ∂xΠj− 1

2 , then it is reasonable to assume that
Πj computed from the system (19)–(20) is a good approximation of the
system (18).

The convective part can be approximated by an explicit solution to
the transport equation:

(21) ∂τ Π̃ + b(τ)∂xΠ̃ = 0 for x > 0, τ ∈ (τj−1, τj ]

subject to the boundary condition Π̃(0, τ) = −E and initial condition

Π̃(x, τj−1) = Πj−1(x). Since the free boundary %(τ) = Sf (T − τ) must
be an increasing function in τ and we have assumed 0 < q ≤ r we have
b(τ) = %̇(τ)/%(τ) + r − q > 0 and so the in-flowing boundary condition

Π̃(0, τ) = −E is consistent with the transport equation. Let us denote
by B(τ) the primitive function to b(τ), i.e., B(τ) = ln %(τ) + (r − q)τ .
Equation (21) can be integrated to obtain its explicit solution:

(22) Π̃(x, τ) =






Πj−1(x − B(τ) + B(τj−1)),

if x − B(τ) + B(τj−1) > 0,

−E, otherwise.

Thus the spatial approximation Π
j− 1

2

i can be constructed from the for-
mula

(23) Π
j− 1

2
i =

{
Πj−1(ξi), if ξi = xi − ln %j + ln %j−1 − (r − q)k > 0,

−E, otherwise,

where a linear approximation between discrete values Πj−1
i , i = 0, 1,

. . . , n, is being used to compute the value Πj−1(xi − ln %j + ln %j−1 −
(r − q)k).

The diffusive part can be solved numerically by means of finite differ-
ences. Using central finite difference for approximation of the derivative
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∂xΠj we obtain

Πj
i − Π

j− 1
2

i

k
+ rΠj

i − (σj
i )

2 Πj
i+1 − Πj

i−1

2h

− 1

2h

(
(σj

i )
2 Πj

i+1 − Πj
i

h
− (σj

i−1)
2 Πj

i − Πj
i−1

h

)
= 0.

Hence, the vector of discrete values Πj = {Πj
i , i = 1, 2, . . . , n} at the

time level j ∈ {1, 2, . . . , m} satisfies the tridiagonal system of equations

(24) αj
i Π

j
i−1 + βj

i Πj
i + γj

i Πj
i+1 = Π

j− 1
2

i

for i = 1, 2, . . . , n, where

αj
i ≡ αj

i (%
j , Πj) = − k

2h2
(σj

i−1)
2 +

k

2h

(σj
i )

2

2
,

γj
i ≡ γj

i (%
j , Πj) = − k

2h2
(σj

i )
2 − k

2h

(σj
i )

2

2
,(25)

βj
i ≡ βj

i (%
j , Πj) = 1 + rk − (αj

i + γj
i ) .

The initial and boundary conditions at τ = 0 and x = 0, L, resp., can
be approximated as follows:

Π0
i =

{
−E for xi < ln (r/q)

0 for xi ≥ ln (r/q)

for i = 0, 1, . . . , n, and Πj
0 = −E, Πj

n = 0.
Next we proceed by approximation of equation (14) which introduces

a nonlinear constraint condition between the early exercise boundary
function %(τ) and the trace of the solution Π at the boundary x = 0 (S =
Sf (t) in the original variable). Taking a finite difference approximation
of ∂xΠ at the origin x = 0 we obtain

(26) %j =
rE

q
+

1

2q
σ2

(
Πj

1 − Πj
0

h
, %j , τ

)
Πj

1 − Πj
0

h
.

Now, equations (23), (24) and (26) can be written in an abstract form
as a system of nonlinear equations:

%j = F(Πj , %j)

Πj− 1
2 = T (Πj , %j)(27)

A(Πj , %j)Πj = Πj− 1
2
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where F(Πj , %j) is the right-hand side of the algebraic equation (26),
T (Πj , %j) is the transport equation solver given by the right-hand side
of (23) and A = A(Πj , %j) is a tridiagonal matrix with coefficients given
by (25). The system (27) can be approximately solved by means of
successive iterates procedure. We define, for j ≥ 1, Πj,0 = Πj−1, %j,0 =
%j−1. Then the (p + 1)-th approximation of Πj and %j is obtained as a
solution to the system:

%j,p+1 = F(Πj,p, %j,p)

Πj− 1
2 ,p+1 = T (Πj,p, %j,p+1)(28)

A(Πj,p, %j,p+1)Πj,p+1 = Πj− 1
2 ,p+1 .

Notice that the last equation is a linear tridiagonal equation for the
vector Πj,p+1 whereas %j,p+1 and Πj− 1

2 ,p+1 can be directly computed
from (26) and (23), respectively. Now, if the sequence of approximate
solutions {(Πj,p, %j,p)}∞p=1 converges to some limiting value (Πj,∞, %j,∞)
then this limit is a solution to a nonlinear system of equations (27) at the
time level j and we can proceed by computing the approximate solution
the next time level j + 1.

4 Numerical approximations of the early exercise boundary

In this section we focus on numerical experiments based on the iter-
ative scheme described in the previous section. The main purpose is
to compute the free boundary profile Sf (t) = %(T − t) for different
(non)linear Black-Scholes models and for various model parameters. We
used n = 750 spatial points and m = 225000 time discretization steps.
In average we needed p ≤ 6 micro-iterates (28) in order to solve the
nonlinear system (27) with the precision 10−7. A solution (Π, %) has
been computed by our iterative algorithm for the following basic model
parameters: E = 10, T = 1, r = 0.1, q = 0.05, and σ̂ = 0.2.

4.1 Case of a constant volatility—comparison study In our first
numerical experiment we make attempt to compare our iterative approx-
imation scheme for solving the free boundary problem for an American
Call option to known schemes in the case when the volatility σ > 0
is constant. We compare our solution to the one computed by means
of a solution to a nonlinear integral equation for %(τ) as described in
Remark 1 (see also [28, 30]). This comparison can be also considered
as a benchmark or test example for which we know a solution that
can be computed by a another justified algorithm. In Figure 1, part
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a), we show the function % computed by our iterative algorithm for
E = 10, T = 1, r = 0.1, q = 0.05, σ = 0.2. At the expiry T = 1 the
value of %(T ) was computed as: %(T ) = 22.321. The corresponding value
%(T ) computed from the integral equation (see [28]) was %(T ) = 22.375.
The relative error is less than 0.25%. In the part b) we present 7 ap-
proximations of the free boundary function %(τ) computed for different
mesh sizes h (see Table 1 for details). The sequence of approximate free
boundaries %h, h = h1, h2, . . . , converges monotonically from below to
the free boundary function % as h ↓ 0. The next part c) of Figure 1 de-
picts various solution profiles of a function Π(x, τ). In order to achieve
a good approximation to equation (26) we need very accurate approxi-
mation of Π(x, τ) for x close to the origin 0. The last part d) of Figure 1
depicts the contour plot of the function Π(x, τ).

In Table 1 we present the numerical error analysis for the distance
‖%h − %‖p measured in two different norms (L∞ and L2) of a computed
free boundary position %h corresponding to the mesh size h and the
solution % computed from the integral equation described in Remark 1
(see also [28]). The time step k has been adjusted to the spatial mesh size
h in order to satisfy CFL condition σ̂2k/h2 ≈ 1/2. We also computed
the experimental order of convergence eoc(Lp) for p = 2,∞. Recall that
the experimental order of convergence can be defined as the ratio

eoc(Lp) =
ln(‖%hi

− %‖p) − ln(‖%hi−1 − %‖p)

ln hi − ln hi−1
.

It can be interpreted as an exponent α = eoc(Lp) for which we have
‖%h − %‖p = O(hα). It turns out from Table 1 that it is reasonable to
make a conjecture that ‖%h − %‖∞ = O(h) whereas ‖%h − %‖2 = O(h3/2)
as h → 0+.

4.2 Risk adjusted pricing methodology model In the next exam-
ple we computed the position of the free boundary %(τ) in the case of the
Risk Adjusted Pricing Methodology model—a nonlinear Black-Scholes
type model derived by Jandačka and Ševčovič in [18]. In this model
the volatility σ is a nonlinear function of the asset price S and the sec-
ond derivative ∂2

SV of the option price, and it is given by formula (5).
In Figure 2 we present results of numerical approximation of the free
boundary position %R(τ) = SR

f (T − τ) in the case when the coefficient
of transaction costs C = 0.01 is fixed and the risk premium measure R
varies from R = 5, 15, 40, 70, up to R = 100. We compare the position
of the free boundary %R(τ) to the case when there are no transaction
costs and no risk from volatile portfolio, i.e., we compare it with the
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FIGURE 1: a) A comparison of the free boundary function %(τ ) com-
puted by the iterative algorithm (green solid curve) to the integral equa-
tion based approximation (dashed red curve); b) free boundary positions
computed for various mesh sizes; c) a solution profile Π(x, τ ) for τ = 0
(blue line), τ = T/2 (red curve), τ = T (green curve); d) contour plot
of the function Π(x, τ ).

free boundary position %0(τ) for the linear Black-Scholes equation (see
Figure 2). An increase in the risk premium coefficient R resulted in an
increase of the free boundary position as it can be expected.

In Table 2 and Figure 2 we summarize results of comparison of the free
boundary position %R for various values of the risk premium coefficient
to the reference position % = %0 computed from the Black-Scholes model
with constant volatility σ = σ̂, i.e., R = 0. The experimental order αp

of the distance function ‖%R − %0‖p = O(Rαp) has been computed for
p = 2,∞, as follows:

αp =
ln(‖%Ri − %0‖p) − ln(‖%Ri−1 − %0‖p)

ln Ri − ln Ri−1
.

According to the values presented in Table 2 it turns out that the plau-
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h err(L∞) eoc(L∞) err(L2) eoc(L2)

0.03 0.5 - 0.808 -
0.012 0.215 0.92 0.227 1.39
0.006 0.111 0.96 0.0836 1.44
0.004 0.0747 0.97 0.0462 1.46
0.003 0.0563 0.98 0.0303 1.47
0.0024 0.0452 0.98 0.0218 1.48
0.002 0.0378 0.98 0.0166 1.48

TABLE 1: Experimental order of convergence of the iterative algorithm
for approximating the free boundary position.

R ‖%R − %0‖∞ α∞ ‖%R − %0‖2 α2

1 0.0601 - 0.0241 -
2 0.0754 0.33 0.0303 0.328
5 0.102 0.33 0.0408 0.326

10 0.128 0.33 0.0511 0.324
15 0.145 0.32 0.0582 0.323
20 0.16 0.32 0.0639 0.322
30 0.182 0.32 0.0727 0.321
40 0.2 0.32 0.0798 0.32
50 0.214 0.32 0.0856 0.319
60 0.227 0.32 0.0907 0.318
70 0.239 0.32 0.0953 0.317
80 0.249 0.32 0.0994 0.317
90 0.259 0.32 0.103 0.316

100 0.268 0.32 0.107 0.316

TABLE 2: Distance ‖%R−%0‖p (p = 2,∞) of the free boundary position
%R from the reference free boundary position %0 and orders α∞ and α2

of approximation.
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FIGURE 2: A comparison of the free boundary function %R(τ ) com-
puted for the Risk Adjusted Pricing Methodology model. Dashed red
curve represents a solution corresponding to R = 0, whereas the green
curves represent a solution %R(τ ) for different values of the risk premium
coefficients R = 5, 15, 40, 70, 100.
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FIGURE 3: Dependence of the norms ‖%R − %0‖p (p = ∞, 2) of the
deviation of the free boundary % = %R(τ ) for the RAPM model on the
risk premium coefficient R.

sible conjecture is that ‖%R − %0‖p = O(R1/3) for both norms p = 2
and p = ∞. Since the transaction cost coefficient C and risk premium
measure R enter the expression for the RAPM volatility (5) only in the
product C2R we can conjecture that ‖%R,C − %0,0‖p = O(C2/3R1/3) as
either C → 0+ or R → 0+.

4.3 Barles and Soner model The last example is devoted to the
nonlinear Black-Scholes model due to Barles and Soner (see [5]). In
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this model the volatility is given by equation (3). Numerical results are
depicted in Figure 4. Choosing a larger value of the risk aversion coef-
ficient a resulted in increase of the free boundary position %a(τ). The
position of the early exercise boundary %a(τ) has considerably increased
in comparison to the linear Black-Scholes equation with constant volatil-
ity σ = σ̂. In contrast to the case of constant volatility as well as the
RAPM model, there is, at least a numerical evidence (see Figure 4 and
%a for the largest a = 0.35) that the free boundary profile %a(τ) need not
be necessarily convex. Recall that that convexity of the free boundary
profile has been proved analytically by Ekström et al. and Chen et al.

in a recent papers [6, 10, 11] in the case of a American Put option and
constant volatility σ = σ̂.
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23
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Ρ

FIGURE 4: A comparison of the free boundary function %(τ ) com-
puted for the Barles and Soner model. Dashed red curve represents
a solution corresponding to R = 0, whereas the green curves repre-
sents a solution %(τ ) for different values of the risk aversion coefficient
a = 0.01, 0.07, 0.13, 0.25, 0.35.

Similarly as in the previous model we also investigated the dependence
of the free boundary position % = %a(τ) on the risk aversion parameter
a > 0. In Table 3 and Figure 5 we present results of comparison of
the free boundary position %a for various values of the risk aversion
coefficient a to the reference position % = %0. Inspecting values αp of
the order of distance ‖%a − %0‖p it can be conjectured that ‖%a − %0‖p =
O(a2/3) as a → 0. for both norms p = 2 and p = ∞.
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a ‖%a − %0‖∞ α∞ ‖%a − %0‖2 α2

0.01 0.156 - 0.0615 -
0.02 0.25 0.68 0.0985 0.68
0.05 0.472 0.69 0.184 0.679
0.07 0.602 0.72 0.232 0.69
0.1 0.793 0.77 0.298 0.712
0.11 0.857 0.82 0.32 0.74
0.13 0.99 0.86 0.364 0.766
0.15 1.13 0.92 0.409 0.807
0.2 1.52 1. 0.529 0.897
0.25 1.97 1.2 0.669 1.05
0.3 2.49 1.3 0.833 1.21
0.35 3.07 1.4 1.03 1.35

TABLE 3: Distance ‖%a −%0‖p (p = 2,∞) of the free boundary position
%a from the reference free boundary position %0 orders α∞ and α2 of
approximation.
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FIGURE 5: Dependence of the norms ‖%a − %0‖p (p = ∞, 2) of the
deviation of the free boundary % = %a(τ ) for the Barles-Soner model on
the risk aversion parameter a.

5 Conclusions We proposed a new iterative numerical scheme for
approximating of the early exercise boundary for a class of Black-Scholes
equations for pricing American options with a volatility nonlinearly de-
pending in the asset prices and the second derivative of the option price.
The method consisted of transformation the free boundary problem
for the early exercise boundary position into a solution of a nonlinear
parabolic equation and a nonlinear algebraic constraint equation. The
transformed problem has been solved by means of operator splitting it-
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erative technique. We also presented results of numerical approximation
of the free boundary for several nonlinear Black-Scholes equation includ-
ing, in particular, Barles and Soner model and the Risk adjusted pricing
methodology model.
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30. R. Stamicar, D. Ševčovič and J. Chadam, The early exercise boundary for the
American put near expiry: numerical approximation, Canad. Appl. Math. Quar-
terly 7 (1999), 427–444.

31. Jichao Zhao, R. M. Corless and M. Davison, Compact finite difference method
for American option pricing, J. Computational and Applied Mathematics, to
appear, (2005), available online 22 August 2006.

Department of Applied Mathematics and Statistics, Faculty of Mathemat-

ics, Physics & Informatics,

Comenius University, 842 48 Bratislava, Slovak Republic

E-mail address: sevcovic@fmph.uniba.sk




