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Abstract

In this review paper we discuss a nonlinear model of Black-Scholes type for pricing derivative
securities in the presence of both transaction costs as wellas the risk from a volatile portfolio.
The model is derived by following the Risk Adjusted Pricing Methodology approach proposed
by Kratka (1998). It turns outs that prices of plain vanilla options can be computed from a
solution to a fully nonlinear parabolic equation in which a diffusion coefficient representing
volatility nonlinearly depends on the asset price and option’s Gamma. It gives rise to explain
several striking phenomena in option pricing analytically, including, in particular, the volatility
smile behavior of the implied volatility.

1. INTRODUCTION

According to the classical theory due to Black, Scholes and Merton the price of an option in an
idealized financial market can be computed from a solution tothe well-known Black-Scholes linear
parabolic equation (see e.g. Black and Scholes (1973), Kwok(1998), Dewynne et al. (1993), Hull
(1989)). Assuming that the underlying asset follows a geometric Brownian motion one can derive
a governing partial differential equation for the price of an option. We remind ourselves that the
equation governing time evolution of the priceV (S, t) of an option is the following parabolic PDE:

∂tV + (r − q)S∂SV +

1

2

σ̂

2
S

2
∂

2
SV − rV = 0 (1)

whereσ̂ is a constant volatility of the underlying asset price process,r > 0 is the interest rate of
a zero-coupon bond,q ≥ 0 is the dividend yield rate. A solutionV = V (S, t) represents the price
of an option at timet ∈ [0, T ] if the price of an underlying asset isS > 0. If the volatility σ̂ is
assumed to be constant the above equation is called the Black-Scholes equation derived by Black
and Scholes (1973), and, independently by Merton (c.f. Kwok(1998)). The linear Black-Scholes
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equation has been derived under restrictive assumptions like e.g. perfect replication of a portfolio,
frictionless, liquidity, complete markets, etc. Following this theory we can find a value of an option
over moderate time intervals assuming transaction costs and the risk from a volatile portfolio are
negligible. A solution to the linear Black-Scholes equation then provides a perfectly replicating
hedging portfolio.

In recent years, some of these restrictive assumptions havebeen relaxed in order to model,
for instance, the presence of transaction costs (Hoggard etal. (1994)), imperfect replication and
investor’s preferences (Barles and Soner (1998)), introduction of a given stock-trading strategy of
a large trader (Frey and Patie (2002), Frey and Stremme (1997)), risk from unprotected portfolio
(Kratka (1998), Jandačka andŠevčovič (2005)). These models lead to a generalized Black-Scholes
equation for the price of an option in which the volatility need not be necessarily constant and it
may depend on the asset price as well as the option price. Moreprecisely, in these models the
volatility has the general form:

σ

2
= σ

2
(S

2
∂

2
SV, S, T − t) . (2)

For instance, if transaction costs are taken into account then the classical Black-Scholes theory
is no longer applicable. In order to maintain the delta hedgeone has to make frequent portfolio
adjustments yielding thus a substantial increase in transaction costs. The effect of nontrivial trans-
action costs can be described by the so-called Leland model (cf. Hoggard et al. (1994)). In this
model the volatilityσ is given byσ2

= σ̂

2
(1 − Le sgn(∂2

SV )) whereσ̂ > 0 is a constant historical
volatility of the underlying asset price process and Le≥ 0 is the so-called Leland constant given
by Le =

√
2/πC/(σ̂

√

∆t). HereC ≥ 0 is a constant round trip transaction cost per unit dollar of
transaction in the assets market and∆t > 0 is the time-lag between portfolio adjustments. Since
S > 0 we have
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SV )) . (3)

By assuming that investor’s preferences are characterizedby an exponential utility function, Barles
and Soner (1998) derived a nonlinear Black-Scholes equation with the volatilityσ given by

σ
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wherea > 0 is the risk-aversion coefficient andΨ is a solution to the ODE:Ψ′
(x) = (Ψ(x) +

1)/(2

√
xΨ(x) − x), Ψ(0) = 0. Another popular model has been derived for the case when the

asset dynamics takes into account the presence of feedback effects. Frey and Stremme (1997) (see
also Frey and Patie (2002)) introduced directly the asset price dynamics in the case when the large
trader chooses a given stock-trading strategy. The volatility σ is nonconstant and it is given by:
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whereσ̂, ̺ > 0 are constants.
The last example of a nonlinear Black-Scholes equation is the so-called Risk Adjusted Pricing

Methodology model proposed by Kratka (1998), revisited andmodified by Jandačka anďSevčovič
(2005). The idea of derivation of this model is simple: in order to maintain (imperfect) replication
of a portfolio by the delta hedge one has to make frequent portfolio adjustments yielding thus a
substantial increase in transaction costs. On the other hand, rare portfolio adjustments may lead
to the increase of the risk from a volatile (unprotected) portfolio. Minimization of the sum of the
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measure of transaction costs and the risk from unprotected portfolio yields the optimal time lag
between two consecutive portfolio adjustments. The resulting model is again a nonlinear Black-
Scholes type equation with the volatility of the form

σ
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∂

2
SV, S, T − t) = σ̂
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1 − µ(S∂

2
SV )

1

3

)
(4)

for T − t > 0 large enough whereµ ≥ 0 is a coefficient proportional to the risk from volatile
portfolio and transaction costs measures. In the next section we recall key steps and ideas of
derivation of the Risk Adjusted Pricing Methodology (RAPM)model. We will furthermore present
explanation of the volatility smile based on the RAPM model.We also discuss calibration of the
RAPM model to real market data. We also introduce two new implied quantities: the implied
RAPM volatility and implied RAPM risk coefficients. Finally, we will present results of calibration
of these new implied quantities to real option and stock market data.

2. RISK ADJUSTED PRICING METHODOLOGY MODEL

In this section we recall key steps of derivation of the RAPM model. The original model was
proposed by Kratka (1998). In Jandačka andŠevčovič (2005) we modified his approach (we chose
a different measure for risk from unprotected portfolio) inorder to construct a model which is scale
invariant and mathematically well posed. These two important features were missing in the original
model of Kratka. The model is based on the Black-Scholes parabolic PDE in which transaction
costs are described by the Hoggard, Whalley and Wilmott extension of the Leland model (cf.
Hoggard et al. (1994), Kwok (1998), Hull (1989)) whereas therisk from a volatile portfolio is
described by the average value of the variance of the synthesized portfolio. Transaction costs as
well as the volatile portfolio risk depend on the time-lag between two consecutive transactions. We
define the total risk premium as a sum of transaction costs andthe risk cost from the unprotected
volatile portfolio. By minimizing the total risk premium functional we obtain the optimal length
of the hedge interval. It also gives us a new strategy for hedging derivative securities based on
option’s Gamma parameter.

Concerning the dynamics of an underlying asset we will assume that the asset priceS =

S(t), t ≥ 0, follows a geometric Brownian motion with a driftρ, standard deviation̂σ > 0 and it
may pay continuous dividends, i.e.

dS = (ρ − q)Sdt + σ̂SdW (5)

wheredW denotes the differential of the standard Wiener process andq ≥ 0 is a continuous
dividend yield rate. This assumption is usually made when deriving the classical Black-Scholes
equation (see e.g. Hull (1989), Kwok (1998)).

Similarly as in the derivation of the classical Black-Scholes equation we construct a synthesized
portfolio Π consisting of a one option with a priceV andδ assets with a priceS per one asset:

Π = V + δS . (6)

We recall that the key idea in the Black-Scholes theory is to examine the differential∆Π of equa-
tion (6). The right-hand side of (6) can be differentiated byusing Itô’s formula whereas portfolio’s
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increment∆Π(t) = Π(t + ∆t) − Π(t) of the left-hand side can be expressed as follows:

∆Π = rΠ∆t + δqS∆t (7)

wherer > 0 is a risk-free interest rate of a zero-coupon bond. In the real world, such a simplified
assumption is not satisfied and a new term measuring the totalrisk should be added to (7). More
precisely, the change of the portfolioΠ is composed of two parts: the risk-free interest rate part
rΠ∆t and the total risk premium:rRS∆t whererR is a risk premium per unit asset price. It means
that∆Π = rΠ∆t + rRS∆t. The total risk premiumrR consists of the transaction risk premium
rTC and the portfolio volatility risk premiumrV P , i.e. rR = rTC + rV P . Hence

∆Π = rΠ∆t + δqS∆t + (rTC + rV P )S∆t . (8)

Our next goal is to show how these risk premium measuresrTC , rV P depend on the time lag and
other quantities, like e.g.̂σ, S, V, and derivatives ofV. The problem can be decomposed in two
parts: modeling the transaction costs measurerTC and volatile portfolio risk measurerV P .

2.1. Modeling transaction costs and volatile portfolio risk measures

In practice, we have to adjust our portfolio by frequent buying and selling of assets. In the presence
of nontrivial transaction costs, continuous portfolio adjustments may lead to infinite total transac-
tion costs. A natural way how to consider transaction costs within the frame of the Black-Scholes
theory is to follow the well known Leland approach extended by Hoggard, Whalley and Wilmott
(cf. Hoggard et al. (1994), Kwok (1998)). In what follows, werecall crucial lines of the Hoggard,
Whalley and Wilmott derivation of Leland’s model in order toshow how to incorporate the effect
of transaction costs into the governing equation. More precisely, we will derive the coefficient of
transaction costsrTC occurring in (8).

Let us denote byC the round trip transaction cost per unit dollar of transaction. Then

C = (Sask − Sbid)/S (9)

whereSask andSbid are the so-called Ask and Bid prices of the asset, i.e. the market price offers
for selling and buying assets, respectively. HereS = (Sask + Sbid)/2 denotes the mid value.

In order to derive the termrTC in (8) measuring transaction costs we will assume, for a moment,
that there is no risk from the volatile portfolio, i.e.rV P = 0. Then∆V + δ∆S = ∆Π = rΠ∆t +

δqS∆t + rTCS∆t. Following Leland’s approach (c.f. Hoggard et al. (1994)),using Itô’s formula
and assumingδ-hedging of a synthetised portfolioΠ one can derive that the coefficientrTC of
transaction costs is given by the formula:

rTC =

Cσ̂S

√

2π

∣∣
∂

2
SV

∣∣ 1

√

∆t

(10)

(see (Hoggard et al. 1994, Eq. (3)) and also formula (3)).
Next we focus our attention to the problem how to incorporatea risk from a volatile portfolio

into the model. In the case when a portfolio consisting of options and assets is highly volatile an
investor usually asks for a price compensation. Notice thatexposure to risk is higher when the
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time-lag between portfolio adjustments is higher. We shallpropose a measure of such a risk based
on the volatility of a fluctuating portfolio. It can be measured by the variance of relative increments
of the replicating portfolioΠ = V + δS, i.e. by the termvar((∆Π)/S). Hence it is reasonable to
define the measurerV P of the portfolio volatility risk as follows:

rV P = R

var

(
∆Π
S

)

∆t

. (11)

In other words,rV P is proportional to the variance of a relative change of a portfolio per time
interval∆t. A constantR is the so-calledrisk premium coefficient. It can be interpreted as the
marginal value of investor’s exposure to a risk. If we apply Itô’s formula to the differential∆Π =

∆V + δ∆S we obtain∆Π = (∂SV + δ) σ̂S∆W +
1

2
σ̂

2
S

2
Γ(∆W )

2
+ G whereΓ = ∂

2
SV and

G = (∂SV + δ)ρS∆t + ∂tV ∆t is a deterministic term, i.e.E(G) = G in the lowest order∆t-term
approximation. Thus

∆Π − E(∆Π) = (∂SV + δ) σ̂Sφ

√

∆t +

1

2

σ̂

2
S

2
(φ

2
− 1)Γ∆t

whereφ is a random variable with the standard normal distribution such that∆W = φ

√

∆t. Hence
the variance of∆Π can be computed as follows:

var(∆Π) = E

(
[∆Π − E(∆Π)]

2
)

= E

(
[(∂SV + δ)σ̂Sφ

√

∆t +
1

2
σ̂

2
S

2
Γ

(
φ

2
− 1

)
∆t]

2
)

.

Similarly, as in the derivation of the transaction costs measurerTC we assumeδ-hedging of port-
folio adjustments, i.e. we chooseδ = −∂SV . SinceE((φ

2
− 1)

2
) = 2 we obtain an expression for

the risk premiumrV P in the form:

rV P =

1

2

Rσ̂

4
S

2
Γ

2
∆t . (12)

Notice that in our approach the increase in the time-lag∆t between consecutive transactions leads
to a linear increase of the risk from a volatile portfolio where the coefficient of proportionality de-
pends on the asset priceS, option’s Gamma,Γ = ∂

2
SV , as well as the constant historical volatility

σ̂ and the risk premium coefficientR.

2.2. Risk adjusted Black-Scholes equation

The total risk premiumrR = rTC + rV P consists of two parts: transaction costs premiumrTC and
the risk from a volatile portfoliorV P premium defined as in (10) and (12), respectively. We assume
that an investor is risk averse and he/she wants to minimize the value of the total risk premiumrR.
For this purpose one has to choose the optimal time-lag∆t between two consecutive portfolio
adjustments. As bothrTC as well asrV P depend on the time-lag∆t so does the total risk premium
rR. In order to find the optimal value of∆t we have to minimize the following function:

∆t 7→ rR = rTC + rV P =

C|Γ|σ̂S

√

2π

1

√

∆t

+

1

2

Rσ̂

4
S

2
Γ

2
∆t .
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The unique minimum of the function∆t 7→ rR is attained at the time-lag∆topt = K

2
/(σ̂

2
|SΓ|

2

3 )

whereK = (C/(R

√

2π)

1

3 . For the minimal value of the function∆t 7→ rR(∆t) we have

rR(∆topt) =

3

2

(
C

2
R

2π

) 1

3

σ̂

2
|SΓ|

4

3
. (13)

Taking into account both transaction costs as well as risk effects from a volatile portfolio, we have
shown that the equation for the change∆Π of a portfolioΠ reads as:

∆V + δ∆S = ∆Π∆t = rΠ + δqS∆t + rRS∆t

whererR represents the total risk premium,rR = rTC+rV P . On the other hand, by the no-arbitrage
principle the change∆Π in the portfolioΠ is equal to the changerΠ∆t of secure bonds with the
interest rater > 0. Applying Itô’s lemma to a smooth functionV = V (S, t) and assuming the
δ-hedging strategy for the portfolio adjustments we finally obtain the following generalization of
the Black-Scholes equation for valuing options:

∂tV +

σ̂

2

2

S

2
∂

2
SV + (r − q)S∂SV − rV − rRS = 0 .

By taking the optimal value of the total risk coefficientrR derived as in (13), the option priceV is
a solution to the following nonlinear parabolic equation:

(Risk adjusted Black-Scholes equation)

∂tV +

σ̂

2

2

S

2
(
1 − µ(S∂

2
SV )

1

3

)
∂

2
SV +(r− q)S∂SV − rV = 0 , where µ = 3

(
C

2
R

2π

) 1

3

. (14)

In the case there are neither transaction costs (C = 0) nor the risk from a volatile portfolio (R = 0)
we haveµ = 0. Then equation (14) reduces to the original Black-Scholes linear parabolic equation
(1). We note that equation (14) is a backward parabolic PDE ifand only if the functionβ(H) =

σ̂2

2
(1 − µH

1

3 )H is an increasing function in the variableH := SΓ = S∂

2
SV . Hence, in order to

verify parabolicity of (14), we have to assume the followingcondition:

S∂

2
SV (S, t) < κ :=

(
3

4µ

)3

. (15)

If we consider prices of either Call or Put options computed from a solution to the classical
Black-Scholes equation (1) then the termSΓ = S∂

2
SV (S, t) becomes infinite atS = E for t → T

−

and the (15) condition is violated. The same feature is present in the generalized equation (14)
yielding thus the change of the sign of the diffusion coefficient of (14) close to expiration time
T . This is why we have to modify the model equation (14) near theexpiration time, i.e. for
0 < T − t ≪ 1. The idea of modified early exercise behavior was introducedby Jandačka and
Ševčovič (2005). It consists in determining the so-called switching timet∗ < T such that the
RAPM model is modified as follows: the price of an option is given by a solutionV (S, t) to the
following problem:

1. V (S, t) is a solution to equation (14) on the time interval0 < t < t∗; whereas
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Figure 1: Explanation of the volatility smile based on RAPM.The implied volatility surface
(S, t) 7→ σ̄(S, t).

2. V (S, t) is a solution to the linear Black-Scholes equation (1) on thetime intervalt∗ < t < T

and satisfying the prescribed pay-off diagram at expiryt = T ;

3. functionV (S, t) is continuous int = t∗.

The switching timet∗ < T is chosen as nearest time to expiryT for which the value ofSΓ = S∂

2
SV

is less or equal to the threshold valueκ. Now if we compute the quantitySΓ for plain Call or Put
options by using the original Black-Scholes model (1) we obtainmaxS>0 SΓ(S, t∗) =

1
√

2πσ̂2(T−t∗)
.

Then we can deduce

T − t∗ =

C

Rσ̂

2
. (16)

As t∗ must be positive we haveT − t∗ < T it also turns out that we have to require the following
structural condition

0 ≤ C < σ̂

2
RT . (17)

to be satisfied (see Jandačka andŠevčovič (2005) for details).

3. CALIBRATION OF THE RAPM MODEL TO REAL MARKET DATA

The purpose of this section is to discuss application of the RAPM model to real market option
price data. We also introduce a concept of the so-called implied RAPM volatilityσRAPM and the
implied risk premium coefficientR. First we discuss capability of RAPM model to explain the
so-called volatility smile analytically.

3.1. Volatility smile and RAPM model

One of the most striking phenomena in the Black-Scholes theory is the so-calledvolatility smile
phenomenon. Notice that derivation of the classical Black-Scholes equation (1) relies on the as-
sumption of a constant value of the volatilityσ. On the other hand, as it might be documented by
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Figure 2: Intra-day behavior of Microsoft stocks (April 4, 2003) and shortly expiring Call op-
tions with expiry date April 19, 2003. Computed implied volatilities σ̂RAPM and risk premium
coefficientsR.

many examples observed in market options data sets such an assumption is often violated. More
precisely, the implied volatilityσimpl is no longer constant and it may depend on the asset priceS,
the strike priceE as well as the timet.

In the RAPM approach we are able to explain the volatility smile analytically. The Risk ad-
justed Black-Scholes equation (14) can be viewed as an equation with a variable volatility coeffi-
cient, i.e.∂tV +

1

2
σ̄

2
(S, t)∂

2
SV +(r−q)S∂SV −rV = 0 whereΓ = ∂

2
SV and the volatilitȳσ2

(S, t)

depends itself on a solutionV = V (S, t) as follows:

σ̄

2
(S, t) = σ̂

2
(
1 − µ(SΓ)

1/3
)

. (18)

In Fig. 1 we show the dependence of the functionσ̄(S, t) on the asset priceS and timet. It should
be obvious that the functionS 7→ σ̄(S, t) has a convex shape near the exercise priceE. We have
used the RAPM model in order to compute values ofΓ = ∂

2
SV . We choseµ = 0.2, σ̂ = 0.3, r =

0.011, andT = 0.5. In Fig. 1 we show the dependence of the functionσ̄(S, t) on the asset priceS
and timet. It should be obvious that the functionS 7→ σ̄(S, t) has a convex shape near the exercise
priceE.

3.2. Implied volatility and risk premium in RAPM model

Let us denoteV (S, t; C, σ̂, R) the value of a solution to (14) with parametersC, σ̂, R. Suppose
that the coefficient of transaction costsC is known from and is given by (9). In real option market
data we can observe different Bid and Ask prices for an option, Vbid < Vask, respectively. Let us
denote byVmid the mid value, i.e.Vmid =

1

2
(Vbid + Vask). By the RAPM model we are able to

explain such a Bid-Ask spread in option prices. The lower Bidprice corresponds to a solution to
the RAPM model with some nontrivial risk premiumR whereas the mid valueVmid corresponds to
a solutionV (S, t) for vanishing risk premiumR = 0, i.e. to a solution of the linear Black-Scholes
equation (1).
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Figure 3: One week behavior of Microsoft stocks (March 20 - 27, 2003) and Call options with
expiration date April 19, 2003. Computed implied volatilitiesσ̂RAPM and risk premiumsR.

In order to calibrate the RAPM model we are seeking for a couple (σ̂RAPM , R) such that
Vbid = V (S, t; C, σ̂RAPM , R) andVmid = V (S, t; C, σ̂RAPM , 0). It means that we have to find a
solution to a nonlinear problem:

F (σ̂, R) = (Vbid, Vmid) (19)

where the mappingF : R
2
→ R

2 is defined as:F (σ̂, R) = (V (S, t; C, σ̂, R), V (S, t; C, σ̂, 0)).
It can be solved numerically by means of the Newton-Kantorovich iterative method for solving
algebraic equations. A solutionV (S, t; C, σ̂, R) can be computed from the Risk adjusted Black-
Scholes equation by means of finite difference (see Jandačka andŠevčovič (2005) for details).

As an example we considered sample data sets for Call optionson Microsoft stocks. We
considered a flat interest rater = 0.02, a constant transaction cost coefficientC = 0.01 estimated
from (9), and we assumed that the underlying asset pays no dividends, i.e.q = 0. In Fig. 2
we present results of calibration of implied couple(σ̂RAPM , R). Interestingly enough, two Call
options with higher strike pricesE = 25, 30 had almost constant implied risk premiumR. On the
other the risk premium of an option with lowestE = 23 was fluctuating and it had highest average
of R.

Finally, in Fig. 3 we present one week behavior of implied volatilities and risk premium coef-
ficients for the Microsoft Call option onE = 25 expiring atT = April 19, 2003. In the beginning
of the investigated period the risk premium coefficientR was rather high and fluctuating. On the
other hand, it tends to a flat value ofR ≈ 5 at the end of the week. Interesting feature can be
observed at the end of the second day when both stock and option prices went suddenly down. The
time series analysis of the implied volatilitŷσRAPM from first two days was unable to predict such
a behavior. On the other, high fluctuation in the implied riskpremiumR during first two days can
send a signal to an investor that sudden changes can be expected in the near future.
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4. CONCLUSIONS

In this paper we discussed the Risk Adjusted Pricing Methodology model for for pricing derivative
securities in the presence of both transaction costs as wellas the risk from unprotected portfolio.
We showed that the option price can be deduced from a solutionto a nonlinear parabolic PDE.
The governing equation extends the classical Black-Scholes equation and Leland’s equation to the
case when the risk from unprotected portfolio is taken into account. We have performed extensive
numerical testing of the model and compared the results to real option market data. Furthermore,
we introduced a concept of the so-called implied RAPM volatility and implied risk premium co-
efficients. We have computed these implied quantities for sample option data sets and we have
indicated how these implied factors can be used in qualitative analysis of option market data sets.
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