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ON THE RISK ADJUSTED PRICING METHODOLOGY MODEL
FOR PRICING DERIVATIVE SECURITIES

Daniel Setovic

Department of Applied Mathematics and Statistics, Congedniversity, Mlyns& dolina,
842 48 Bratislava, Slovakia
Email: sevcovi c@ nph. uni ba. sk

Abstract

In this review paper we discuss a nonlinear model of Bladke®xs type for pricing derivative
securities in the presence of both transaction costs asawétle risk from a volatile portfolio.
The model is derived by following the Risk Adjusted Pricingtflodology approach proposed
by Kratka (1998). It turns outs that prices of plain vanillations can be computed from a
solution to a fully nonlinear parabolic equation in whichiffusion coefficient representing
volatility nonlinearly depends on the asset price and ofgiGamma. It gives rise to explain
several striking phenomena in option pricing analyticatigluding, in particular, the volatility
smile behavior of the implied volatility.

1. INTRODUCTION

According to the classical theory due to Black, Scholes amdtdh the price of an option in an
idealized financial market can be computed from a solutidgheavell-known Black-Scholes linear
parabolic equation (see e.g. Black and Scholes (1973), Kiv@88), Dewynne et al. (1993), Hull
(1989)). Assuming that the underlying asset follows a ggamBrownian motion one can derive
a governing partial differential equation for the price af@tion. We remind ourselves that the
equation governing time evolution of the prig¢s, ¢) of an option is the following parabolic PDE:

1
OV + (r —q)SosV + 5&252@%\/ —rV =0 (1)

whereg is a constant volatility of the underlying asset price pesce > 0 is the interest rate of
a zero-coupon bond, > 0 is the dividend yield rate. A solutiori = V' (.S, ¢) represents the price
of an option at timg < [0, T if the price of an underlying asset # > 0. If the volatility ¢ is
assumed to be constant the above equation is called the-Blawies equation derived by Black
and Scholes (1973), and, independently by Merton (c.f. K{&®©8)). The linear Black-Scholes
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118 D. Sevéovic

equation has been derived under restrictive assumptikag lg. perfect replication of a portfolio,
frictionless, liquidity, complete markets, etc. Followithis theory we can find a value of an option
over moderate time intervals assuming transaction costshenrisk from a volatile portfolio are
negligible. A solution to the linear Black-Scholes equatibhen provides a perfectly replicating
hedging portfolio.

In recent years, some of these restrictive assumptions lese relaxed in order to model,
for instance, the presence of transaction costs (Hoggaall €1994)), imperfect replication and
investor’s preferences (Barles and Soner (1998)), inttdn of a given stock-trading strategy of
a large trader (Frey and Patie (2002), Frey and Stremme )98k from unprotected portfolio
(Kratka (1998), Jandacka asavEovit (2005)). These models lead to a generalizeckBlatoles
equation for the price of an option in which the volatilityatenot be necessarily constant and it
may depend on the asset price as well as the option price. preasely, in these models the
volatility has the general form:

0? = 0*(S*0:V, S, T —t). 2)

For instance, if transaction costs are taken into accouert the classical Black-Scholes theory
is no longer applicable. In order to maintain the delta healge has to make frequent portfolio
adjustments yielding thus a substantial increase in tcizsecosts. The effect of nontrivial trans-
action costs can be described by the so-called Leland mofigti¢ggard et al. (1994)). In this
model the volatilitys is given byo? = 6%(1 — Le sgr{d2V')) wheres > 0 is a constant historical
volatility of the underlying asset price process andt @) is the so-called Leland constant given
by Le = \/2/7C/(6+v/At). HereC > 0 is a constant round trip transaction cost per unit dollar of
transaction in the assets market akt > 0 is the time-lag between portfolio adjustments. Since
S > 0 we have

o?(S?0%V, S, T —t) = 6%(1 — Lesgn(ozV)). )

By assuming that investor’s preferences are charactebizad exponential utility function, Barles
and Soner (1998) derived a nonlinear Black-Scholes equatith the volatilityo given by

o2 (S2RV, S, T — 1) = 6 (1 + U(a2e’ T 5202V))”

wherea > 0 is the risk-aversion coefficient antl is a solution to the ODEY'(x) = (¥ (x) +
1)/(2y/xV¥(x) — x),¥(0) = 0. Another popular model has been derived for the case when the
asset dynamics takes into account the presence of feedfiectseFrey and Stremme (1997) (see
also Frey and Patie (2002)) introduced directly the asset piynamics in the case when the large
trader chooses a given stock-trading strategy. The vit¥atilis nonconstant and it is given by:

o (SP0V, S, T —t) = 6% (1 — 0S&2V) >

whereg, o > 0 are constants.

The last example of a nonlinear Black-Scholes equatioreistihicalled Risk Adjusted Pricing
Methodology model proposed by Kratka (1998), revisited medlified by Jandacka argbveovic
(2005). The idea of derivation of this model is simple: in@rtb maintain (imperfect) replication
of a portfolio by the delta hedge one has to make frequent@ioradjustments yielding thus a
substantial increase in transaction costs. On the othat, mare portfolio adjustments may lead
to the increase of the risk from a volatile (unprotected}fpio. Minimization of the sum of the
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measure of transaction costs and the risk from unproteatetbfio yields the optimal time lag
between two consecutive portfolio adjustments. The reguihodel is again a nonlinear Black-
Scholes type equation with the volatility of the form

o%yﬁu&T—w:#@fﬂw%ma 4)

for T'—t > 0 large enough wherg > 0 is a coefficient proportional to the risk from volatile
portfolio and transaction costs measures. In the nextseete recall key steps and ideas of
derivation of the Risk Adjusted Pricing Methodology (RAPMbddel. We will furthermore present
explanation of the volatility smile based on the RAPM modak also discuss calibration of the
RAPM model to real market data. We also introduce two new iedptuantities: the implied
RAPM volatility and implied RAPM risk coefficients. Finallwe will present results of calibration
of these new implied quantities to real option and stock micdkta.

2. RISK ADJUSTED PRICING METHODOLOGY MODEL

In this section we recall key steps of derivation of the RAPMd®l. The original model was
proposed by Kratka (1998). In Jandatka &®¥covic (2005) we modified his approach (we chose
a different measure for risk from unprotected portfoliopmder to construct a model which is scale
invariant and mathematically well posed. These two imptiffisatures were missing in the original
model of Kratka. The model is based on the Black-ScholeshodicaPDE in which transaction
costs are described by the Hoggard, Whalley and Wilmottnsibe of the Leland model (cf.
Hoggard et al. (1994), Kwok (1998), Hull (1989)) whereas tis& from a volatile portfolio is
described by the average value of the variance of the syimtteportfolio. Transaction costs as
well as the volatile portfolio risk depend on the time-lagMeen two consecutive transactions. We
define the total risk premium as a sum of transaction costsrendsk cost from the unprotected
volatile portfolio. By minimizing the total risk premium fictional we obtain the optimal length
of the hedge interval. It also gives us a new strategy for imgdderivative securities based on
option’s Gamma parameter.

Concerning the dynamics of an underlying asset we will agstimt the asset pricé =
S(t),t > 0, follows a geometric Brownian motion with a drift standard deviation > 0 and it
may pay continuous dividends, i.e.

dS = (p —q)Sdt + 6SdW (5)

wheredV denotes the differential of the standard Wiener processqand 0 is a continuous
dividend yield rate. This assumption is usually made wheaivuig the classical Black-Scholes
equation (see e.g. Hull (1989), Kwok (1998)).

Similarly as in the derivation of the classical Black-Sas¢quation we construct a synthesized
portfolio IT consisting of a one option with a priééandj assets with a pricé per one asset:

=V +48S. (6)

We recall that the key idea in the Black-Scholes theory isxemene the differential\I1 of equa-
tion (6). The right-hand side of (6) can be differentiatedusing Itd’s formula whereas portfolio’s
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incrementAll(¢) = I1(t + At) — I1(¢) of the left-hand side can be expressed as follows:
All = rIIAt + 0gS At (7)

wherer > 0 is a risk-free interest rate of a zero-coupon bond. In thewedd, such a simplified
assumption is not satisfied and a new term measuring thertsitadhould be added to (7). More
precisely, the change of the portfolibis composed of two parts: the risk-free interest rate part
rITAt and the total risk premium:z S At wherery is a risk premium per unit asset price. It means
that AIl = rIIAt 4+ rgSAt. The total risk premiunmrz consists of the transaction risk premium
rrc and the portfolio volatility risk premiumy p, i.e.rg = rrc + ryp. Hence

AIl = rlIAt 4+ §¢gSAt + (roe + rvp)SAL. (8)

Our next goal is to show how these risk premium meastresry, » depend on the time lag and
other quantities, like e.gr, S, V, and derivatives o¥. The problem can be decomposed in two
parts: modeling the transaction costs measyreand volatile portfolio risk measureg, p.

2.1. Modeling transaction costs and volatile portfolio ri&k measures

In practice, we have to adjust our portfolio by frequent Ingyand selling of assets. In the presence
of nontrivial transaction costs, continuous portfoliowstments may lead to infinite total transac-
tion costs. A natural way how to consider transaction codtsimthe frame of the Black-Scholes
theory is to follow the well known Leland approach extendgdHoggard, Whalley and Wilmott
(cf. Hoggard et al. (1994), Kwok (1998)). In what follows, wexall crucial lines of the Hoggard,
Whalley and Wilmott derivation of Leland’s model in orderdloow how to incorporate the effect
of transaction costs into the governing equation. Moreipey, we will derive the coefficient of
transaction costs;c occurring in (8).

Let us denote by’ the round trip transaction cost per unit dollar of trangactiThen

C = (Sask - szd)/s (9)

whereS,,, and.S;; are the so-called Ask and Bid prices of the asset, i.e. th&eharice offers
for selling and buying assets, respectively. H8re (S.q. + Spiq)/2 denotes the mid value.

In order to derive the termy¢ in (8) measuring transaction costs we will assume, for a nmme
that there is no risk from the volatile portfolio, i.g:p = 0. ThenAV + §AS = AIl = rlIAt +
0qSAt + rrcSAt. Following Leland’s approach (c.f. Hoggard et al. (1994iping 1td’s formula
and assuming-hedging of a synthetised portfolid one can derive that the coefficient. of
transaction costs is given by the formula:

CcaoS 1
rre = —— |03V| —
e \/271" o ’\/At
(see (Hoggard et al. 1994, Eq. (3)) and also formula (3)).
Next we focus our attention to the problem how to incorpogatisk from a volatile portfolio

into the model. In the case when a portfolio consisting ofas and assets is highly volatile an
investor usually asks for a price compensation. Notice ¢lxgpbsure to risk is higher when the

(10)
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time-lag between portfolio adjustments is higher. We shiapose a measure of such a risk based
on the volatility of a fluctuating portfolio. It can be measdiby the variance of relative increments
of the replicating portfolidl = V' + 4.5, i.e. by the termvar((AIl)/S). Hence it is reasonable to
define the measure,  of the portfolio volatility risk as follows:
var (A1)
=R——==. 11
rvep =R Al (11)

In other words,ry p is proportional to the variance of a relative change of afpbot per time
interval At. A constantR is the so-calledisk premium coefficientlt can be interpreted as the
marginal value of investor’s exposure to a risk. If we appdysl formula to the differential\IT =
AV + 6AS we obtainATl = (9sV + §) 6SAW + 1625°T(AW)? + G wherel' = 92V and
G = (0sV + 0)pSAt + 0,V At is a deterministic term, i.e2(G) = G in the lowest orde\¢-term
approximation. Thus

ATl — E(ATL) = (9sV + 0) 6SopvV At + %&252@2 — 1)L At

where¢ is a random variable with the standard normal distributischghatAW = ¢v/ At. Hence
the variance ofAIl can be computed as follows:

var(AIL) = E ([AIL - E(AIN?) = B ([(asv +0)6SHVAL + 157S°T (¢* — 1) At]2> .

Similarly, as in the derivation of the transaction costs sueer- we assumeé-hedging of port-
folio adjustments, i.e. we choose= —0sV. SinceE((¢* — 1)?) = 2 we obtain an expression for
the risk premiumry p in the form:

1
rvp = 53545%2&. (12)

Notice that in our approach the increase in the timeAadpetween consecutive transactions leads
to a linear increase of the risk from a volatile portfolio wé¢he coefficient of proportionality de-
pends on the asset pri¢e option’s Gammal’ = 9%V, as well as the constant historical volatility
¢ and the risk premium coefficiert.

2.2. Risk adjusted Black-Scholes equation

The total risk premiumr = rrc + v p CcONsists of two parts: transaction costs premiyia and
the risk from a volatile portfolio p premium defined as in (10) and (12), respectively. We assume
that an investor is risk averse and he/she wants to minirheedlue of the total risk premiuny.
For this purpose one has to choose the optimal timedadpetween two consecutive portfolio
adjustments. As bothy- as well as-y p depend on the time-lafyt so does the total risk premium
rg. In order to find the optimal value af¢ we have to minimize the following function:
o5 1, Lpsisrreae.

V2r VAt 2

At —rgp=rrc +1VP =
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The unique minimum of the functioA¢ — r is attained at the time-lagt,,; = K2/(62|ST|3)
whereK = (C//(Rv/27)s. For the minimal value of the functiot — r(At) we have

3 (C2R\® , s
TR(Atopt) = 5 ( o ) 0'2|SF‘3 . (13)

Taking into account both transaction costs as well as rigcts from a volatile portfolio, we have
shown that the equation for the chanQyél of a portfolioIl reads as:

AV +0AS = AlIAL = rll + 6¢SAt + rpSAt

wherer i represents the total risk premiung, = rrc+7ry p. Onthe other hand, by the no-arbitrage
principle the chang@ll in the portfolioll is equal to the changdIAt of secure bonds with the
interest rate- > 0. Applying Itd’s lemma to a smooth functioi = V(S,¢) and assuming the
0-hedging strategy for the portfolio adjustments we finalbyain the following generalization of
the Black-Scholes equation for valuing options:

~2
A,V + %SQagv (= q)S9sV —rV —rpS=0.

By taking the optimal value of the total risk coefficient derived as in (13), the option pridéis
a solution to the following nonlinear parabolic equation:
(Risk adjusted Black-Scholes equajion

62 1 C2R %
atVJr?Sz <1 _ M(s@é‘/ﬁ) OV +(r—q)S0sV —rV =0, whereu=3 ( 5 ) . (14)
T

In the case there are neither transaction ca@sts:(0) nor the risk from a volatile portfolioR = 0)
we haveu = 0. Then equation (14) reduces to the original Black-Schatest parabolic equation
(1). We note that equation (14) is a backward parabolic PC#adf only if the function(H) =
%(1 — ,uH%)H is an increasing function in the variablé := ST = S92V. Hence, in order to
verify parabolicity of (14), we have to assume the followoandition:

3
SOV (S,t) < k = (%) : (15)

If we consider prices of either Call or Put options computeaf a solution to the classical
Black-Scholes equation (1) then the te$fii = S92V (S, t) becomes infinite af = E fort — T~
and the (15) condition is violated. The same feature is pitesethe generalized equation (14)
yielding thus the change of the sign of the diffusion coefiitiof (14) close to expiration time
T. This is why we have to modify the model equation (14) neardkgiration time, i.e. for
0 < T —t < 1. The idea of modified early exercise behavior was introdunedandacka and
Sevéovit (2005). It consists in determining the so-chBevitching timet, < T such that the
RAPM model is modified as follows: the price of an option isegivby a solutioid/ (S, ¢) to the
following problem:

1. V(S,t) is a solution to equation (14) on the time inter0ak ¢ < ¢,; whereas
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Figure 1: Explanation of the volatility smile based on RAPWhe implied volatility surface
(S,t) — a(S,t).

2. V(95,t) is a solution to the linear Black-Scholes equation (1) ortithe intervalt, <t < T
and satisfying the prescribed pay-off diagram at expiey T,

3. functionV' (S, t) is continuous irt = t...

The switching time, < T is chosen as nearest time to exglijor which the value ofT = S92V
is less or equal to the threshold valkieNow if we compute the quantityT" for plain Call or Put
1

options by using the original Black-Scholes model (1) weaohhaxg-o ST(S,t,) = oy

Then we can deduce o

" R&2
As t, must be positive we havE — ¢, < T it also turns out that we have to require the following
structural condition

T —t, (16)

0<C <6*RT. (17)
to be satisfied (see JandacCka Swiovic (2005) for details).

3. CALIBRATION OF THE RAPM MODEL TO REAL MARKET DATA

The purpose of this section is to discuss application of tA®R model to real market option
price data. We also introduce a concept of the so-calledi@adRAPM volatility oz 4 pys and the
implied risk premium coefficienk. First we discuss capability of RAPM model to explain the
so-called volatility smile analytically.

3.1. Volatility smile and RAPM model

One of the most striking phenomena in the Black-Scholesryhisahe so-calledrolatility smile
phenomenon. Notice that derivation of the classical Bl&ckoles equation (1) relies on the as-
sumption of a constant value of the volatility On the other hand, as it might be documented by
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Figure 2: Intra-day behavior of Microsoft stocks (April 40@3) and shortly expiring Call op-
tions with expiry date April 19, 2003. Computed implied vdlaes 6z 4py; and risk premium
coefficientsR.

many examples observed in market options data sets suclsampison is often violated. More
precisely, the implied volatility;,,,,; is no longer constant and it may depend on the asset Srice
the strike pricel’ as well as the time.

In the RAPM approach we are able to explain the volatilitylemanalytically. The Risk ad-
justed Black-Scholes equation (14) can be viewed as aniequaith a variable volatility coeffi-
cient, i.e.0,V + 152(S,t)0%V + (r — q)S0sV —rV = 0 wherel' = 92V and the volatilitys?(S, t)
depends itself on a solutidn = V/(.5, t) as follows:

7%(S,t) = 6% (1 — pu(ST)3) . (18)

In Fig. 1 we show the dependence of the functids, t) on the asset pric& and timet. It should

be obvious that the functiofi — &(S,t) has a convex shape near the exercise pric&\Ve have
used the RAPM model in order to compute value§' ef §%V. We chose: = 0.2,6 = 0.3,r =
0.011, and7 = 0.5. In Fig. 1 we show the dependence of the functidf, ¢) on the asset pricé

and timet. It should be obvious that the functich— (.5, t) has a convex shape near the exercise
price E.

3.2. Implied volatility and risk premium in RAPM model

Let us denotd/(S,¢; C, 5, R) the value of a solution to (14) with parametérss, R. Suppose
that the coefficient of transaction costds known from and is given by (9). In real option market
data we can observe different Bid and Ask prices for an oplign < V.., respectively. Let us
denote byV,,;, the mid value, i.e.V,,;; = 1(Viia + Vask). By the RAPM model we are able to
explain such a Bid-Ask spread in option prices. The lower @ide corresponds to a solution to
the RAPM model with some nontrivial risk premiuRwhereas the mid valug,,;;, corresponds to
a solutionV/ (.S, t) for vanishing risk premiunk = 0, i.e. to a solution of the linear Black-Scholes
equation (1).
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Figure 3. One week behavior of Microsoft stocks (March 20 - 2003) and Call options with
expiration date April 19, 2003. Computed implied volai@&s r 4 o), and risk premiumsz.

In order to calibrate the RAPM model we are seeking for a a®(pkarys, R) such that
Viia = V(S,t;C,6rapm, R) andV,,;q = V(S,t;C,6rapm,0). It means that we have to find a
solution to a nonlinear problem:

F(6,R) = (Vbid; Vinia) (19)

where the mapping’ : R? — R? is defined as:F (6, R) = (V(S,t;C,6,R),V(S,t;C,5,0)).

It can be solved numerically by means of the Newton-Kantcitoiterative method for solving
algebraic equations. A solutidri(S,¢; C,, R) can be computed from the Risk adjusted Black-
Scholes equation by means of finite difference (see Jaadat#iSeveovic (2005) for details).

As an example we considered sample data sets for Call optiondicrosoft stocks. We
considered a flat interest rate= 0.02, a constant transaction cost coefficiéht= 0.01 estimated
from (9), and we assumed that the underlying asset pays ndedws, i.e.q = 0. In Fig. 2
we present results of calibration of implied coupte;apar, R). Interestingly enough, two Call
options with higher strike priceE = 25, 30 had almost constant implied risk premiui On the
other the risk premium of an option with lowest= 23 was fluctuating and it had highest average
of R.

Finally, in Fig. 3 we present one week behavior of impliedatidities and risk premium coef-
ficients for the Microsoft Call option o' = 25 expiring at7’ = April 19, 2003. In the beginning
of the investigated period the risk premium coefficiévas rather high and fluctuating. On the
other hand, it tends to a flat value &f ~ 5 at the end of the week. Interesting feature can be
observed at the end of the second day when both stock anahgguices went suddenly down. The
time series analysis of the implied volatiligy; 4 o5, from first two days was unable to predict such
a behavior. On the other, high fluctuation in the implied psgmiumR during first two days can
send a signal to an investor that sudden changes can be estpretihe near future.
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4. CONCLUSIONS

In this paper we discussed the Risk Adjusted Pricing Metlagyomodel for for pricing derivative
securities in the presence of both transaction costs asawéhe risk from unprotected portfolio.
We showed that the option price can be deduced from a soltgi@nnonlinear parabolic PDE.
The governing equation extends the classical Black-Selexj@ation and Leland’s equation to the
case when the risk from unprotected portfolio is taken iimoant. We have performed extensive
numerical testing of the model and compared the resultsaicopion market data. Furthermore,
we introduced a concept of the so-called implied RAPM vétgtand implied risk premium co-
efficients. We have computed these implied quantities forga option data sets and we have
indicated how these implied factors can be used in qual@atnalysis of option market data sets.
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De Koninklijke Vlaamse Academie van Belgié voor Wetenschappen en Kunsten codrdineert
jaarlijks tot 25 wetenschappelijke bijeenkomsten, ook contactfora genoemd, in de domeinen
van de natuurwetenschappen (inclusief de biomedische wetenschappen), menswetenschappen
en kunsten. De contactfora hebben tot doel Vlaamse wetenschappers of kunstenaars te
verenigen rond specifieke thema’s.

De handelingen van deze contactfora vormen een aparte publicatiereeks van de Academie.

Contactforum “4™ Actuarial and Financial Mathematics Day” (10 februari 2006, Prof.
M. Vanmacele)

De “4™ Actuarial and Financial Mathematics Day” is een vaste waarde geworden als contactforum. Niet alleen
academici maar ook heel wat collega's uit de bank- en verzekeringswereld blijven de weg vinden naar dit
jaarlijkse evenement. Het is de gelegenheid bij uitstek om op de hoogte te blijven van het recente onderzoek op
het vlak van financiéle en actuariéle wiskunde in Belgi€ en van nieuwe uitdagingen die ons te wachten staan
zoals in het kader van Basel 1. Naast twee gastsprekers kwamen doctoraatsstudenten, postdocs en mensen uit de
bedrijfswereld aan bod. In deze publicatie vindt u een neerslag van de voorgestelde onderwerpen. Alle
onderwerpen kunnen gesitueerd worden in het ruime gebied van financi€le en actuariéle toepassingen van
wiskunde, maar met een grote variatie: de bijdragen betreffen “capital allocation” problemen, modellen voor
kredietrisico, voor stop-loss premies en voor basket- en spreadopties, risicomanagement van coupon bonds, etc.
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