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Abstract

Parametric active contours have been used extensively
in computer vision for different tasks like segmentation and
tracking. However, all parametric contours are known to
suffer from the problem of frequent bunching and spacing
out of curve points locally during the curve evolution. In a
spline based implementation of active contours, this leads
to occasional formation of loops locally, and subsequently
the curve blows up due to instabilities. It has been shown
earlier that in addition to usual evolution along the normal
direction, the curve should also be evolved in the tangential
direction for stability purposes. In this paper, we provide a
mathematical basis for selecting such a suitable tangential
component for stabilisation. We prove the boundedness of
the evolved curve in this paper, and provide the physical
significance. We demonstrate the usefulness of the proposed
method with a number of experiments.

1. Introduction

Active contours or snakes, introduced in [10] are widely
used in computer vision tasks like tracking [8] [16] and seg-
mentation [5] [23]. Active contours are simply connected
closed curves which move so as to minimise appropriately
defined energy functionals. The minimisation of these en-
ergy functionals yields the curve evolution equations. Tra-
ditionally, depending on the numerical implementation, ac-
tive contours have been classified as either parametric or
geometric active contour. Parametric active contours are
implemented using techniques like splines [14] or finite ele-
ment method [3] in a Lagrangian framework and these were
the initial choices for implementation. On the other hand,
geometric active contours are implemented in an Eulerian
framework using the level set methods [19] [21]. An inter-
esting paper which links these two approaches is [22].

The relative merits and demerits of both these numerical
methods are well documented [7]. We consider a B-Spline
based implementation similar to that of [14].

It is out of the scope of this paper to review the entire
active contour literature. However, some of the major works
are [1] [2] [6] [10] [12] [13] [18] [20]. We have used the
works in [5] and [23] for testing our proposed method.

1.1. Problems with Parametric Contours

Parametric contours exhibit a typical undesirable be-
haviour during their evolution. This has been reported in
a number of places, for example [4] [9] [15]. During evolu-
tion the curve points bunch together in some places while
spreading out at other places along the curve. This un-
even spread of points causes problems in computation of
curve measures (e.g. curvature, tangent and normal vec-
tors). Also, due to the spacing out of points the segmenta-
tion is not very accurate. For a spline based implementa-
tion, there is no problem in computing the curve measures
since these are computed analytically, but it may lead to
formation of loops because of the control points bunching
together. This is highly undesirable as it reduces the curve
smoothness and the normal becomes ill-defined and further
curve evolution becomes meaningless. This problem which
is very disturbing during image segmentation, becomes in-
tolerable while tracking.

As a motivational example, we show three frames from a
tracking sequence of a hand in figure (1). Although this is a
very simple contour for tracking or segmentation purposes
and the tracking algorithm used is very naive, it suffices to
illustrate the issue of degeneracy of curve evolution. Figure
(1(a)) shows the curve just after initialisation. The points
on the curve are nearly equidistant. After four frames, as
marked in figure (1(b)), the points accumulated in two re-
gions are marked by red circles. In the very next frame,
in figure (1(c)), we notice that small loops have formed in
these regions. These loops blow up and the curve becomes
unstable within the next few frames.

1.2. Possible Solutions

We now describe a few commonly used approaches to
tackle this problem and discuss their limitations.
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(a) Frame 26 (b) Frame 30 (c) Frame 31

Figure 1. Illustration of curve degeneration:(a) Initial curve (in red). Convergence to target (in green). (b) Bunching of points (in red) starts
due to target motion leading to (c) loop formation.

• Reinitialisation of curve using a least mean squared
criterion [14] can be done either after a fixed number of
frames or when the distance between successive con-
trol points falls below a certain threshold. However,
this is not a very good solution because the shape of
the curve would change during the re-positioning of
the control points. The computation is also increased
in checking the distances in each frame after every it-
eration.• Another ad-hoc solution is insertion and deletion of
points from the curve when the distance between them
exceeds or falls below a certain threshold. This again
is not a very good solution; the thresholds have to be
set manually and, in general, is a naive proposition.

• In a spline based implementation, we could also con-
trol the curve by deleting or inserting control points.
Although algorithms exist for such a procedure; this
solution is not natural, is specific to splines and is com-
putationally expensive. Also, if we were to use the
control points to represent the shape space, these op-
erations would change the dimensions of the feature
space.

The above methods are rather ad-hoc attempts to adjust
Euclidean distance among points after they space out and
do not actually try to prevent this phenomenon from occur-
ing. Some better methods to obtain a more uniform point
spacing have been proposed in [4] [7] [9]. In [4], distance
between successive control points is maintained by using∫ L

0
|Cs|ds, where C is the curve and subscript denotes dif-

ferentiation, as the regularising term rather than the usual
L2 definition. This is however only applicable to quadratic
B-Splines. In [7], it is assumed that the normal force is neg-
ligible and so the tangential velocity is obtained by applying
the diffusion equation. Finally, the term proposed in [9] is
of the form

∫ L

0
(g2 − M)2ds, where M is proportional to

the curve length. The terms g and s will be described in the

next section. This term may cause extra smoothening and
shrinking of the curve. This is not a desirable effect because
curve regularising terms are already defined.

2. Stable Curve Evolution

A curve is denoted by C(p, t), where p is the curve pa-
rameter and t is the artificial time parameter. Thus t param-
eterises a family of curves while p parameterises a single
member of this family. The initial curve is C(p, 0) from
which a family of curves is obtained. The local tangent and
inward normal are denoted by T and N, respectively. The
curvature is denoted by κ and the arc length parameter by
s. The quantity g = |Cp|, is interpreted as the speed of
a particle on the curve. This quantity is a measure of the
parameterisation of the contour.

The force at each point on the curve can be resolved into
two components: along the local tangent and normal de-
noted by α and β, respectively. This is written as:

∂C

∂t
= α(p, t)T + β(p, t)N. (1)

Given this form of the evolution equation, g varies as fol-
lows [11] [15]:

∂g

∂t
= −gκβ +

∂α

∂p
, (2)

It is seen from the above equation that g depends on both
the components. It has been shown by researchers [11] that
only the normal component of the force β influences the
shape of the curve. The tangential component α simply
reparameterises the curve. Based on this fact, most works
have concentrated on defining the normal term to speed up
the convergence, increase the capture range, etc. No specific
efforts were made (except for few works cited previously)
to give some form to the tangential term for the purpose of



curve stabilisation. This did not pose any problems as these
works used level set methods which do not suffer from the
same problems. In this work we propose an exact tangen-
tial evolution term to stabilise the curve and derive precise
bounds for important curve measures like the length and
curvature.

2.1. Asymptotically Uniform Redistribution Ap-
proach [15]

A comprehensive effort of stable evolution was in [15],
where the authors have proposed the following ODE for α,

∂α

∂s
= κβ − 1

L
〈gκβ〉 + (

L

g
− 1)ω (3)

where w = k1 + k2
L 〈gκβ〉, s is the arc length parameter, L

is the curve length. k1, k2 > 0 are arbitrary constants and
〈φ〉 is the average of the quantity φ, i.e. 〈φ〉 =

∫ 1

0
φ(p) dp.

This is a fairly general equation governing α and the au-
thors have proved that the evolution is stable. However,
there is no well-defined method to select proper values of
these constants. Thus for various values of k1 and k2, there
is a family of temporal evolutions of the curve. Although
the entire family is stable theoretically, it is difficult to pre-
dict which set of values would yield best results in actual
implementation.

We provide a new term for evolution of the tangential
component that depends only on single parameter K but
still gives an even redistribution of points. Futher, assum-
ing periodic boundary conditions, one can have an exact ex-
pression for K. This avoids any heuristical selection of the
control parameter K.

2.2. Proposed Approach

We first qualitatively describe the cause for the bunch-
ing of the points on the curve and the control points. It
is seen from equation (2) that g depends on both compo-
nents of the force. Therefore, while reconstructing the curve
with a discrete set of points the spacing between the points
may occasionally vary in an unpredictable manner. This
leads to uneven spacing of points at certain locations of
the curve which cannot be brought under control by normal
smoothening term only.

In our approach we ensure curve stability by using a very
simple equation to control g. Though arc length parame-
terisation is most desirable, it cannot always be achieved in
practice due to the curve representation. Therefore, a proper
choice of the control parameter g = K is essential for main-
taining uniform distribution of points. We futher argue that
this K should be independent of the parameterisation used
and a function of time step t only, and denote this by Kt.

It is then natural to use equation (2) to force the curve
towards the parameterisation which would make g = K.

The left hand side of this equation predicts how g changes
given β and α. We know the normal component β; this is
obtained from minimising the energy function defined on
the curve. Equation 2 can be rewritten as:

∂α

∂p
=

∂g

∂t
+ gκβ, (4)

We propose to set:

∂g

∂t
= K − g. (5)

Qualitatively, at each point we try to find α by pushing g at
that point to the constant K. We obtain α by substituting
equation (5) in equation (4) and then numerically solving
the resulting PDE:

∂α

∂p
= K − g + gκβ. (6)

After solving for α(p, t), we use the values in equation (1)
to evolve the curve.

In the next section, we propose a choice of K and also
prove that important curve properties like the length and
curvature remains bounded for the given choice of K.

3. Boundedness of Evolution

The goal of this section is to determine the term K enter-
ing the constitutive relation in equation(5) yielding asymp-
totically uniform redistribution of numerically computed
grid points. Recall that K = Kt, i.e. K is independent
of the spatial parameter p. Without loss of generality we as-
sume M = 1, i.e. the fixed domain parameter p belongs to
the interval [0, 1]. If we take into account periodic boundary
conditions imposed on tangential velocity term α then the
term K = Kt has to satisfy:

0 = α(1, t) − α(0, t) =
∫ 1

0

∂pα(p, t) dp

=
∫ 1

0

(K − g + κβg) dp

= K −
∫ 1

0

g dp +
∫ 1

0

κβg dp

= K − Lt +
∫

Γt

κβ ds

and therefore K = Kt is given by

K = Lt −
∫

Γt

κβ ds (7)

where Lt is the length of the curve Γt, i.e. Lt =
∫
Γt ds =∫ 1

0
g dp.
In what follows we shall assume that the normal ve-

locity β has the form: β = µκ + f(C) where f is a



bounded function depending on the position of a curve
point C. For the purpose of tracking we use the function

f(C) = log
(

ProbB(I(C))
ProbT (I(C))

)
and we smoothly cut-off this

function if either ProbB(I(C)) or ProbB(I(C)) are less
than a prescribed tolerance, i.e. we simply neglect the bins
of a histogram of probability densities.

Concerning estimate of the length Lt of the curve Γt and
the modulus of |κ| and |κβ| we have the following proposi-
tion:

Lemma 1 Assume the normal velocity β = µκ + f(C)
where µ > 0 is a positive constant and f : Ω ⊂ R

2 → R

is a bounded function, i.e. ‖f‖∞ = supC∈Ω |f(C)| < ∞.
Then following estimates are satisfied:

Lt ≤ L0 exp
(
t‖f‖2

∞/(2µ)
)

∫
Γt

|κ| ds ≤ δt + ‖f‖∞
µ

Lt

and ∫
Γt

|κβ| ds ≤ δt δ
t + ‖f‖∞

µ
Lt

where δt = maxΓt |β|.

Proof. Since d
dtL

t = − ∫
Γt κβ ds = −µ

∫
Γt κ2 ds −∫

Γt fκ ds Using Young’s inequality ab ≤ (a2 + b2)/2
we obtain |fκ| =

√
µκf/

√
µ ≤ 1

2µκ2 + 1
2µf2. Hence,

d
dtL

t ≤ − 1
2µ

∫
Γt κ2 ds + ‖f‖2

∞
2µ

∫
Γ

ds ≤ ‖f‖2
∞

2µ Lt. Inte-
grating this inequality we end up with the desired bound
Lt ≤ L0 exp

(
t‖f‖2

∞/(2µ)
)
, as claimed.

Again using Young’s inequality we obtain |κ| =√
2εµ|κ|√1/2εµ ≤ εµκ2+ 1

4εµ = εκ(β−f)+ 1
4εµ . Hence

|κ| ≤ ε(δt + ‖f‖∞)|κ| + 1
4εµ . Taking ε = 1

2(δt+‖f‖∞) we

obtain |κ| ≤ 1
2 |κ| + δt+‖f‖∞

2µ and thus, by integrating |κ|
over the curve Γt we obtain∫

Γt

|κ| ds ≤ δt + ‖f‖∞
µ

∫
Γt

ds =
δt + ‖f‖∞

µ
Lt

as claimed. The third inequality follows from
∫
Γt |κβ| ds ≤

δt
∫
Γt |κ| ds. ♦

Now we are able to prove boundedness of the tangen-
tial velocity α proposed in section 3. Recall that α can be
computed from the equation

∂pα = L −
∫

Γ

κβ ds − g + κβ (8)

by taking into account the boundary condition α(0, t) = 0.
Therefore, for any p∗ ∈ [0, 1] we have

|α(p∗, .)| = |
∫ p∗

0

∂pα dp| ≤
∫ p∗

0

|∂pα| dp ≤
∫ 1

0

|∂pα| dp

≤
∫ 1

0

|Kt − g + gκβ| dp

≤ |Kt| +
∫ 1

0

g dp +
∫ 1

0

|gκβ| dp

= |Kt| + Lt +
∫

Γt

|κβ|ds

where Kt = Lt − ∫
Γt κβds. Taking into account the esti-

mates from the previous lemma we can conclude:

Theorem 1 If the normal velocity satisfies β = µκ + f(C)
where µ > 0 is a positive constant and f : Ω ⊂ R

2 → R is
a bounded function then the tangential velocity α given by
(8) is globally bounded in spatial parameter p, and

max
p∈[0,1]

|α(p, t)| ≤ 2
(

Lt +
∫

Γt

|κβ| ds

)
≤ CLt(1 + |δt|2)

for any t ∈ [0, T ] where δt = maxΓt |β| and C > 0 is a
constant depending only on µ, T and ‖f‖∞.

Remark 1. Clearly, 〈g〉 = L and 〈gκβ〉 =
∫
Γ

κβ ds. Com-
paring equation(3) for ∂sα with our proposition in equa-
tion(5) where Kt = Lt − ∫

Γt κβ ds we conclude that our
choice of the tangential velocity sets k1 = 1 and k2 = −1,
respectively. Note however that our approach cannot be de-
rived from [15] as in their work they have assumed both
k1, k2 > 0.

4. Results and Discussion

We have used closed periodic cubic B-Splines [17] to im-
plement the curves. In a B-Spline representation, we need
a higher number of control points to get a better delineation
of the object boundary. The tendency to form loops also
increases. Other representations can also be used as the
method proposed is independent of the choice of represen-
tation. The segmentation algorithms used in this study are
the gradient vector force(GVF) algorithm [5] and the region
competition model [23]. We refer the interested reader to
the papers. For the region competition model, we have used
histograms rather than parametric models.

4.1. Segmentation Results

Figure(2) shows the results of the stabilising term ap-
plied to static segmentation using region based approach
and GVF model, respectively. We have shown results for
the following cases:(a) constant K i.e., K is not varied dur-
ing iterations and (b) K as derived in equation(7). For the
constant K, the stabilisation is not always achieved unless
K lies in a narrow range determined by the initial parame-
terisation. Therefore this is not a suitable choice. Also note
that with constant K, the final redistribution has not come
out perfectly in regions of high curvature as seen near the
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(c) (d) Frame 76
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Figure 2. Region segmentation results: (a,b) No stabilising term used. (c,d) Stabilisation with derived K. (e,f) Stabilisation with constant
K.

thumb region in figure (2(d)). There is however no such
difference in the GVF segmentation using constant K as
seen in figure (2(c)).

4.2. Tracking Results

The tracking algorithm is a naive extension of the one
used for segmentation explained above. We take the final
contour in previous frame as the initialisation for the con-
tour in the current frame. For tracking, we observed that
curve degeneration happens when there is a sudden change
in shape or rapid motion. In figure (3), we show the same
frames as in figure (1). We note that not only is the curve
stabilised in figure (3(a)) but also continues to remain so in
figure (3(b)), 9 frames later.

In tracking sequences, note that the proposed evolution
term stabilises the curve through rapid motion and shape

change. For constant K when a significant shape reduction
occurs, the points get bunched up towards the end of the
curve. This set of compressed points then rotates around
along the curve length for the rest of the tracking. This phe-
nomenon is most probably due to the fact that the control-
ling ODE pushes g to a constant at each point on the curve,
irrespective of the curve length. When there is a signifi-
cant shrinkage of the object perimeter, the same number of
points have to be accommodated within a shorter length and
the points start accumulating at the end.

5. Conclusions

Parametric curves and B-Splines are simpler to imple-
ment than the level set method. However, these suffer from
the typical implementation problems of bunching and other
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Figure 3. Tracking results for the same sequence as in figure (1). Curve remains stable despite significant motion and shape change.

associated instabilities. In this work, we have derived and
proved the boundedness of a tangential stabilising term. We
have also shown that this term is similar to a special case of
the general term proposed in [15]. The proposed method is
highly suitable for practical implementations of wide vari-
ety of curve evolution equations.
Acknowledgments

V.S thanks Prof. Harish Pillai of EE Department, I.I.T Bom-
bay, for his valuable suggestions. Funding from DST, India under
the Swarnajayanti project and ISRO project 03IS013 is gratefully
acknowledged.

References

[1] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active con-
tours. IJCV, 22(1):61–79, 1997. 1

[2] T. F. Chan and L. A. Vese. Active contours without edges.
IEEE Trans. on Image Processing, 10(2):266–277, 2001. 1

[3] L. Cohen and I. Cohen. Finite-element methods for active
contour models and balloons for 2-d and 3-d images. IEEE
PAMI, 15(11):1131–1147, November 1993. 1

[4] D. Cremers, Schnorr, and J.Weickert. Diffusion snakes:
Combining statistical shape knowledge and image informa-
tion in a variational framework. In IEEE VLSM, Vancouver,
2001. 1, 2

[5] C.Xu and J.L.Prince. Snakes, shapes, and gradient vector
flow. IEEE Trans.Image Proc., 7(3):359–369, 1998. 1, 4

[6] H. Delingette. On smoothness measures of active contours
and surfaces. In IEEE Workshop on VLSM, pages 43–50,
Vancouver, Canada, July 2001. 1

[7] H. Delingette and J. Montagnat. Shape and topology con-
straints on parametric active contours. CVIU, 83(2):140–
171, 2001. 1, 2

[8] D. Freedman and Zhang. Active contours for tracking dis-
tributions. IEEE Trans. Image Proc., 13(4):518–527, April
2004. 1

[9] M. Jacob, T. Blu, and M. Unser. Efficient energies and algo-
rithms for parametric snakes. IEEE Trans. on Image Proc.,
13(9):1231–1244, September 2004. 1, 2

[10] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models. IJCV, pages 321–331, 1988. 1

[11] B. B. Kimia, A. R. Tannenbaum, and S. W. Zucker. On the
evolution of curves via a function of curvature, I: The classi-
cal case. JMAA, 163(2):438–458, January 1992. 2

[12] C. Li, J. Liu, and M. Fox. Segmentation of edge-preserving
gradient vector flow:an approach towards automatic initial-
ization and splitting of snakes. In CVPR, 2005. 1

[13] R. Malladi, J. A.Sethian, and B. C.Vemuri. Shape modeling
with front propagation: A level set approach. IEEE Trans.
on Pattern Anal. and Mach. Intell., 17(2):158–175, 1995. 1

[14] Menet, Saint-Marc, and Medioni. Active contour models:
Overview, implementation and application. In Proc. IEEE
Conf. on SMC, pages 194–199, 1990. 1, 2
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