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ABSTRACT

We discuss the role of tangential stabilization in a curvature driven flow of planar curves. The governing system of nonlinear
parabolic equations includes a nontrivial tangential velocity functional yielding a uniform redistribution of grid points along the
evolving family of curves preventing numerically computed curves from forming various instabilities. (© 2008 WILEY-VCH Verlag
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On tangential stabilization in curvature driven flows of planar curves
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We discuss the role of tangential stabilization in a cumetiriven flow of planar curves. The governing system of maar
parabolic equations includes a nontrivial tangential e#jofunctional yielding a uniform redistribution of gridbnts along
the evolving family of curves preventing numerically cortgmicurves from forming various instabilities.
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1 Introduction

In this paper we study evolution of a family of closed smodtmp curved’, : S* — R2,t > 0, driven by the normal velocity
v which is assumed to be a function of the curvatureangential angle and position vector: € T';,

v =0z, k,v). Q)

As a typical example one can consider a normal velocity offdhe: v = & (mean curvature driven flow), = k3 (affine
invariant flow),v = a(z,v)k + ¢(z,v) (Gibbs-Thomson law), etc. Geometric equations of the fdkjrcan often be found
in variety of applied problems like e.g. the material scerynamics of phase boundaries in thermomechanics, inlimgde
of flame front propagation, in combustion, in computatiohféret arrival times of seismic waves, in computational gebrmy,
robotics, semiconductors industry, etc. They also haveeaigbconceptual importance in image processing and canput
vision. For an overview of important applications of (1) vedar to a book by Sethian [1].

An idea behind the direct (or Langrangean) approach cansigtepresenting the family of immersed cunigsby the
position vector: € R?,i.e.T'; = Imag€z(.,t)) = {z(u,t), u € S'} wherez is a solution to the geometric equation

dwx = BN + oT 2)

where = B(z, k,v), N = (—sinv,cosv) andT = (cosv,sinv) are the unit inward normal and tangent vectors, respec-
tively. We chose the orientation of the tangent vedtosuch that d({tf, 1\7) = 1. Notice that the presence of arbitrary
tangential velocity functional has no impact on the shape of evolving curves and éhcesn be viewed as free parameter to
be suitably determined. The unit arc-length parameteozaif a curvel' = Imagex) will be denoted by. Thends = g du
whereg = |0,x|.

According to [2, 3] (see also [4, 5]) the system of governiggaions for the curvaturk, tangent angle, local lengthg
and the position vectar reads as follows:

Ok = 02 B+adk+k2B, Oy = BL0%v+(a+B)0.v+V.B.T, 0,9 =—gkB+d,a, Oz =FN+aT (3)

where(u,t) € S* x (0,T), ds = gdu, A solution(k, v, g,z) to (3) is subject to initial conditions and periodic boundar
conditions in the: variable.

2 The role of the tangential velocity functional

Notice that the functional is still undetermined and it may depend on varialdlgs, g, = in various ways including nonlocal
dependence in particular. Suitable choices of the tanglargiocity functionak are discussed in a more detail in this section.
Althougha plays an important role in the governing equations resyitidependence df, v, g, = on «, the family of planar
curvesl', = Imagez(.,t)),t € [0,T), is independent of a particular choicef

To motivate further discussion, we recall some of compoaoiteti examples in which the usual choiee= 0 fails and may
lead to serious numerical instabilities like e.g. formataf so-called swallow tails. In Figure 1-a) we computed theam
curvature flow of an initial curve (bold faced curve). We olas= 0. It should be obvious that numerically computed grid
points merge in some parts of the culuepreventing thus numerical approximationlaf ¢ € [0, 7'), to be continued beyond
some timeT" which is still far away from the maximal time of existen€g,,,. This and many other examples from [2, 3]
showed that a suitable grid points redistribution govelmed nontrivial tangential velocity functionalis needed in order to
compute the solution over its life-span.

* Corresponding author: DaniSeveovit, E-mailsevcovic@fmph.uniba.sk, Phone:v +00421 260295134 Fax: +00421 2 65412305
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a) b)

Fig. 1 Numerically computed evolution of an initial curve (bol@) merging of numerically computed grid points in the caseeab
tangential velocityx = 0; b) enhancement of grid point redistribution in the casesghaptotically uniform parametrization.

The idea behind construction of a suitable tangential vigldanctional « is rather simple and consists in the analysis of
the quantityd defined a® = In(g/L) whereg = |0,,z| is alocal lengthand, = L; = fr, ds = fol g(u,t) duis atotal length
of the curvel’; = Imag€z(., t)). The quantityd can be viewed as the logarithm of the relative local lengtio g/ L. Taking
into account equations (3) and the equation for the totajtha%L + fF kpds = 0 (obtained again from (3) by integration)
we have

80 + kB — (kB)r = dsa (4)

where(k3)r denotes the average bf} over the curvd’, i.e. (kB)r = %fr kB3 ds By an appropriate choice @f;« in the
right hand side of (4) appropriately we can therefore cdnitr@ behavior of). Equation (4) can be also viewed as a kind of a
constitutive relation determining redistribution of gg@dint along a curve. The simplest possible choicéf is:

Osa=kfB — (kB)r (5)

yielding 8,0 = 0 in (4). Consequentlyg(u,t)/L; = g(u,0)/Lo for anyu € S, t € [0,T),..). Notice thata can be
uniquely computed from (5) under the additional renornadian constrainta(0,¢) = 0. The tangential redistribution driven
by a solutionx to (5) is refereed to a& parameterization preserving relative local length (c.f. [2]). It has been first discovered
and utilized by Hou et al. in [6, 7] and independently by ththaus in [2, 3].

A more general choice af is based on the following setup:

Do = kB — (ke + (77 — 1) w(t) (6)

wherew € Lj, ([0, Tinaz)). If we additionally supposg, "** w(r) dr = +oo then, after insertion of (6) into (4) and solving
the ODE®,0 = (e~? — 1) w(t), we obtaind(u,t) — 0 ast — Tyna, and hencey(u,t)/L; — 1 ast — Tpq, Uniformly
w.r. tou € S*. In this case redistribution of grid points along a curvedraes uniform ag approaches the maximal time of
existencel},.... We will refer to the parameterization based on (6) tarmasymptotically uniform parameterization (c.f. [3]).
The impact of a tangential velocity functional defined agihan enhancement of redistribution of grid points can beplesl
from two examples shown in Fig. 1-b) computed by the authofg]i It can be shown that the appropriate choice for the
control functionw takes the formv = k; + ko(kSB)r andky, ke > 0 are given constants. A detailed discussion on this
topic can be found in [3, 4]. If we insert tangential velodiiyctionala: computed from (6) into (3) the system of governing
equations can be rewritten as follows:

Ok = 928 + O(ak) + k(kB)r + (1 — L/g)kw, 8w = B0 + (o + B3,)0sv + Vo 5.7, @)

Org = —g{kB)r + (L — g)w, oz = BN +aT.
Itis worth to note that the strong reaction tekd3 in (3) has been replaced by the averaged tethB)r in (7). This is a very
important feature as it allows for construction of an effitiand stable numerical scheme discussed in more detaBsj.[
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