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ABSTRACT

We discuss the role of tangential stabilization in a curvature driven flow of planar curves. The governing system of nonlinear 
parabolic equations includes a nontrivial tangential velocity functional yielding a uniform redistribution of grid points along the 
evolving family of curves preventing numerically computed curves from forming various instabilities. (© 2008 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim)
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We discuss the role of tangential stabilization in a curvature driven flow of planar curves. The governing system of nonlinear
parabolic equations includes a nontrivial tangential velocity functional yielding a uniform redistribution of grid points along
the evolving family of curves preventing numerically computed curves from forming various instabilities.
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1 Introduction

In this paper we study evolution of a family of closed smooth plane curvesΓt : S1 → R
2, t ≥ 0, driven by the normal velocity

v which is assumed to be a function of the curvaturek, tangential angleν and position vectorx ∈ Γt,

v = β(x, k, ν) . (1)

As a typical example one can consider a normal velocity of theform: v = k (mean curvature driven flow),v = k
1

3 (affine
invariant flow),v = a(x, ν)k + c(x, ν) (Gibbs-Thomson law), etc. Geometric equations of the form (1) can often be found
in variety of applied problems like e.g. the material science, dynamics of phase boundaries in thermomechanics, in modeling
of flame front propagation, in combustion, in computations of first arrival times of seismic waves, in computational geometry,
robotics, semiconductors industry, etc. They also have a special conceptual importance in image processing and computer
vision. For an overview of important applications of (1) we refer to a book by Sethian [1].

An idea behind the direct (or Langrangean) approach consists in representing the family of immersed curvesΓt by the
position vectorx ∈ R

2, i.e. Γt = Image(x(., t)) = {x(u, t), u ∈ S1} wherex is a solution to the geometric equation

∂tx = β ~N + α~T (2)

whereβ = β(x, k, ν), ~N = (− sin ν, cos ν) and ~T = (cos ν, sin ν) are the unit inward normal and tangent vectors, respec-
tively. We chose the orientation of the tangent vector~T such that det(~T , ~N) = 1. Notice that the presence of arbitrary
tangential velocity functionalα has no impact on the shape of evolving curves and thusα can be viewed as free parameter to
be suitably determined. The unit arc-length parameterization of a curveΓ = Image(x) will be denoted bys. Thends = g du
whereg = |∂ux|.

According to [2, 3] (see also [4, 5]) the system of governing equations for the curvaturek, tangent angleν, local lengthg
and the position vectorx reads as follows:

∂tk = ∂2

sβ+α∂sk+k2β , ∂tν = β′

k∂2

sν+(α+β′

ν)∂sν+∇xβ.~T , ∂tg = −gkβ+∂uα , ∂tx = β ~N+α~T (3)

where(u, t) ∈ S1 × (0, T ), ds = g du, A solution(k, ν, g, x) to (3) is subject to initial conditions and periodic boundary
conditions in theu variable.

2 The role of the tangential velocity functional

Notice that the functionalα is still undetermined and it may depend on variablesk, ν, g, x in various ways including nonlocal
dependence in particular. Suitable choices of the tangential velocity functionalα are discussed in a more detail in this section.
Althoughα plays an important role in the governing equations resulting in dependence ofk, ν, g, x onα, the family of planar
curvesΓt = Image(x(., t)), t ∈ [0, T ), is independent of a particular choice ofα.

To motivate further discussion, we recall some of computational examples in which the usual choiceα = 0 fails and may
lead to serious numerical instabilities like e.g. formation of so-called swallow tails. In Figure 1–a) we computed the mean
curvature flow of an initial curve (bold faced curve). We chose α = 0. It should be obvious that numerically computed grid
points merge in some parts of the curveΓt preventing thus numerical approximation ofΓt, t ∈ [0, T ), to be continued beyond
some timeT which is still far away from the maximal time of existenceTmax. This and many other examples from [2, 3]
showed that a suitable grid points redistribution governedby a nontrivial tangential velocity functionalα is needed in order to
compute the solution over its life-span.
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a) b)

Fig. 1 Numerically computed evolution of an initial curve (bold);a) merging of numerically computed grid points in the case ofzero
tangential velocityα = 0; b) enhancement of grid point redistribution in the case of asymptotically uniform parametrization.

The idea behind construction of a suitable tangential velocity functionalα is rather simple and consists in the analysis of
the quantityθ defined asθ = ln(g/L) whereg = |∂ux| is a local length andL = Lt =

∫

Γt

ds =
∫

1

0
g(u, t) du is a total length

of the curveΓt = Image(x(., t)). The quantityθ can be viewed as the logarithm of the relative local length ratio g/L. Taking
into account equations (3) and the equation for the total length d

dt
L +

∫

Γ
kβds = 0 (obtained again from (3) by integration)

we have

∂tθ + kβ − 〈kβ〉Γ = ∂sα (4)

where〈kβ〉Γ denotes the average ofkβ over the curveΓ, i.e. 〈kβ〉Γ = 1

L

∫

Γ
kβ ds By an appropriate choice of∂sα in the

right hand side of (4) appropriately we can therefore control the behavior ofθ. Equation (4) can be also viewed as a kind of a
constitutive relation determining redistribution of gridpoint along a curve. The simplest possible choice of∂sα is:

∂sα = kβ − 〈kβ〉Γ (5)

yielding ∂tθ = 0 in (4). Consequently,g(u, t)/Lt = g(u, 0)/L0 for any u ∈ S1, t ∈ [0, Tmax). Notice thatα can be
uniquely computed from (5) under the additional renormalization constraint:α(0, t) = 0. The tangential redistribution driven
by a solutionα to (5) is refereed to asa parameterization preserving relative local length (c.f. [2]). It has been first discovered
and utilized by Hou et al. in [6,7] and independently by the authors in [2,3].

A more general choice ofα is based on the following setup:

∂sα = kβ − 〈kβ〉Γ +
(

e−θ − 1
)

ω(t) (6)

whereω ∈ L1

loc
([0, Tmax)). If we additionally suppose

∫ Tmax

0
ω(τ) dτ = +∞ then, after insertion of (6) into (4) and solving

the ODE∂tθ =
(

e−θ − 1
)

ω(t), we obtainθ(u, t) → 0 ast → Tmax and henceg(u, t)/Lt → 1 ast → Tmax uniformly
w.r. to u ∈ S1. In this case redistribution of grid points along a curve becomes uniform ast approaches the maximal time of
existenceTmax. We will refer to the parameterization based on (6) to asan asymptotically uniform parameterization (c.f. [3]).
The impact of a tangential velocity functional defined as in (5) on enhancement of redistribution of grid points can be observed
from two examples shown in Fig. 1–b) computed by the authors in [2]. It can be shown that the appropriate choice for the
control functionω takes the formω = κ1 + κ2〈kβ〉Γ andκ1, κ2 ≥ 0 are given constants. A detailed discussion on this
topic can be found in [3, 4]. If we insert tangential velocityfunctionalα computed from (6) into (3) the system of governing
equations can be rewritten as follows:

∂tk = ∂2

s
β + ∂s(αk) + k〈kβ〉Γ + (1 − L/g)kω , ∂tν = β′

k
∂2

s
ν + (α + β′

ν
)∂sν + ∇xβ.~T , (7)

∂tg = −g〈kβ〉Γ + (L − g)ω , ∂tx = β ~N + α~T .

It is worth to note that the strong reaction termk2β in (3) has been replaced by the averaged termk〈kβ〉Γ in (7). This is a very
important feature as it allows for construction of an efficient and stable numerical scheme discussed in more details in [3–5].
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