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Socio-economic Impacts of Pandemic Influenza
Mitigation Scenarios in Slovakia’
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Abstract

The aim of this paper is to assess the expected socio-economic impacts of
various scenarios of pandemic influenza mitigation on the economy and mor-
tality for Slovakia. Compared to similar past studies (e.g. Van Genugten et al.
(2003)), our approach bears a significant difference. Whereas those studies
work from the very beginning with the expected values of the data, we have
treated the data as well as the model parameters as random variables. Results in
the form of probability distributions and their characteristics (expected values
and tolerance intervals) were obtained by stochastic Monte Carlo simulations of
random impacts on 5,400,000 inhabitants of Slovakia. Six scenarios of pandemia
mitigation have been analyzed. Total costs of medical treatment, the number of
casualties as well as social costs with casualties included were compared.
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Introduction

Influenza pandemics can occur when a novel strain of flu virus causes epi-
demics that spreads very fast worldwide and affects high proportion of the
world population. There have been 31 influenza pandemics recorded since 1580
(Lazzari and St6hr, 2004). Reliable epidemiological data are sparse until the
pandemics in 1889 — 1992. Most knowledge about the epidemiology of pan-
demic influenza can be obtained from the three well-documented pandemics
of the 20th century in 1918 — 1919, 1957 — 1958 and 1968 — 1969 (Beran and
Havlik, 2005). They represent the main source of evidence on the potential hu-
man toll of the next pandemic. The intervals between the consecutive pandemics
of the 20th century ranged from 11 to 40 years. It has now been 40 years since
the occurrence of the last pandemic in 1968. In 1997, the avian influenza virus
H5N1 was shown to infect humans directly. As of 10 September 2008, 387 human
cases of avian flu have been reported by WHO (World Health Organisation),
245 of which were fatal. Case fatality has reached over 60% (WHO, 2008a). At
present, WHO confirmed few cases of human-to-human transmission of H5NI
(WHO, 2008b).

Increased awareness on influenza pandemics has led to discussions held by
WHO, public health authorities, regulatory authorities, pharmaceutical industry
on what our society can do and also should do to be prepared for the next pan-
demic. In a number of countries pandemic influenza plans have been drafted
with several alternatives of mitigation scenarios that should decrease the health
impacts including severe mortality and death and to minimize the social and
economical impact of the next pandemic. Reports on the expected outcomes of
such scenarios can be found e. g. in recent papers by Van Genugten et al. (2003),
German et al. (2006), Fraser et al. (2004), Longini et al. (2005), Ferguson et al.
(2006).

The present paper represents an analysis of the impacts of several mitigation
scenarios for the country of Slovakia. However, while the papers cited above
work merely with expected values, we take into account entire probability distri-
butions of the variables. A similar approach has been employed by Meltzer et al.
(1999) as well as Doyle et al. (2006). However, whereas in the cited papers un-
certainty is restricted to the mitigation variable, we admit all probability parame- -
ters to be of stochastic nature. Further, instead of triangular or uniform distribu-
tions we work with more adequate beta ones (see below).

This approach is much more computationally involved but also more infor-
mative: in addition to the expected values of the outcomes it yields their entire
probabilistic distributions and, hence, e.g. the value of risk coming from uncer-
tainty of their predictions.
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1. The Simulation Model and its Parameters

1.1. Input Parameters and Scenarios

The data in the Table 1 below have been taken from accessible literature.
They have been consulted with specialists from pharmaceutical and health insur-

ance companies. o

Table 1

Parameters of the Influenza Mitigation Model for the Case of Slovakia
Number of inhabitants 5,400,000
Influenza clinical attack rate 30%
Influenza mortality 2.5%
Percentage of infected medically treated 50%
Clinical complications rate of medically treated 25%
Percentage of infected hospitalized 8%
Percentage of infected hospitalized at ICU 2%
Antivirotics price 26.55 Euro
Price of complications treatment drugs 6.63 Euro
Standard hospitalization costs 464.7 Euro
ICU hospitalization costs 995.8 Euro
Pandemic vaccine price 7.83 Euro
Pre-pandemic vaccine price 7.83 Euro

Note: ICU abbreviates the Intensive Care Unit.

Sources: Fraser et al. (2004) — line 2, Taubenberger et al. (1999) — line 3, Van Genugten et al. (2003) — line 4,
Leroux et al. (2007), Longini et al. (2005), WHO (2008a) — lines 5 — 7, authors’ estimates — lines 12, 13, public
sources — lines 1, 8 — 11.

We have simulated six different scenarios of influenza mitigation:

1. No vaccination (so-called control).

2. Whole population pre-vaccination (i.e. 2x pre-pandemic vaccination + 1x pandemic).
3. 2x pandemic vaccination of 50% population.

4. 2x pre-pandemic vaccination of whole population.

5. Pre-vaccination of 35% population + 2x pandemic vaccination of 32.5% population.
6. 1x pre-pandemic + 1x pandemic vaccination of the entire population.

The expected vaccine efficacy could be found in Table 2.

Table 2

Vaccination Efficacy (in %)
Pre-vaccination 70
2x pandemic 80
2x pre-pandemic 60
1x pre-pandemic + 1x pandemic 65

Sources: WHO (2008b) — line 1, authors’ estimates — lines 2 — 4.

The figures 1 — 8 represent the decrease of the influenza clinical attack rate
due to type of vaccination.
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1.2. Simulation principle

To simulate particular scenarios the computer “infected” each individual of
the population of 5,400,000 with the probability corresponding to the scenario,
hence the distribution of infected individuals was binomial:

number of infected people ~ Bin(n, p_, )
n=5,400,000 p, =specific clinical attack rate

where

specific clinical attack rate = clinical attack rate . (1 — vaccination efficacy).

Recall that a discrete random variable X has a binomial (or Bernoulli) distribu-
tion Bin(n, p) with parameters » € N and p €[0,1], if the probability Prob(X = k)

satisfies
— = = k n—k
Prob(X =k) = (kjp (1-p)

The binomial distribution is the discrete probability distribution of the num-
ber of successes in a sequence of » independent random yes/no experiments,
each of which is successful with probability p between 0 and 1.

In case of Scenarios 3 and 5 the population has been partitioned into vacci-
nated/non-vaccinated and “infection” was carried out in each group separately.
Then, for each infected person the computer generated (randomly with corre-
sponding probability) whether she/he has been medically treated or not: thus, the
number of treated individuals had a binomial distribution:

number of treated people ~ Bin(n,,, p,,.)
n,.=number of infected people, p, = probability of medical treatment.

We have assumed that each treated person has received antivirotics and in
case of complications (the computer generated their occurrence) other drugs as
well. The distribution of the number of complications has been taken as binomial
as well:

number of complications ~ Bin(n, p.,,.)

n, .= number of infected people, p,, = clinical complications rate.
For an infected individual the computer has generated whether he/she would
has been subject to (standard or ICU) hospitalization or not:

number of hospitalizations ~ Bin(n,, p,; )

n, .= number of infected people, p,, = probability of standard hospitalization;
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number of ICU hospitalizations ~ Bin(n,, p,.,)
n,.= number of infected people, p, = probability of the ICU hospitalization.

Eventually, for each infected person the computer generated whether she/he
has survived the infection or not:

number of deaths ~ Bin(n, ., p,)

n,.= number of infected people, p,= probability of death-

To summarize we have confronted the numbers of infected, medically
treated, hospitalized (hospitalized in ICUs, in particular) and dead individuals. The
costs of vaccination, drugs and hospitalization have been calculated as follows:

vaccination costs = (number of prepandemic vaccines) x (prepandemic vaccine price)

+ (number of pandemic vaccines) x (pandemic vaccine price);

drug costs = (number of treated people) x ( antivirotics price)
+ (number of complicat-) x (cost of drugs for complications);

hospitalization costs =
= (number of standard hospitalizations)x(standard hospitalization cost)
+ (number of hospitalized in ICU)X(price of ICU hospitalization).

The total costs are obtained by summing up all the above costs:

total costs = (vaccination costs) + (drug costs) + (hospitalization costs).

The procedure described above (i.e. an individual simulation of pandemic
influenza) has been repeated 10,000 times for each of the 6 scenarios. This has
given us an interval in which, for a given scenario, one could expect particular
outcomes (i.e. numbers of infected, dead, heights of costs of particular type, etc.)
and which values would be the most probable ones. Notice that random data
simulations we carried out for each individual lead to a time consuming compu-
tational procedure. Approximation of the binomial distribution by a normal one
would not result in a noteworthy decrease of the time complexity of our Monte
Carlo simulations.

1.3. Randomization of Input Parameters

The results of the simulations depend significantly on parameters of the input
probabilities (represented by the percentage data in the Tables 1 and 2), the values of
which are based on estimates of medical specialists. Therefore, we have considered
these parameters as random ones: for each of the 10,000 Monte Carlo simulations
of a particular scenario they have been generated by the computer from the Beta
distribution having its probability density distribution function f defined as:
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x*(1-x)""/B(a, p), ifxe(0,1)
0, otherwise

J(x)=

1
where B(a, f) = I x*"(1-x)""dx is the Euler Beta function.
0

Recall that for an integer value of the parameter « the cumulative probability
of the Beta distribution from 0 to x is the probability that at least « of the random
variables are less than x, a probability is given by summing over the binomial
distribution. We have therefore chosen the Beta distribution because of its rela-
tion to the Binomial distribution and because of its flexibility from the point of
view of approximation of a wide class of distributions.

Figure 1
Model Parameters as Random Variables Generated by Beta Distributions
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Source: Own results.
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The particular Beta distribution has been chosen with expected value equal to
the value in Table 1 or 2. The shape of the density of the particular Beta distribu-
tion reflects our subjective confidence in the values of the parameters of Table 1
and 2: in case we have chosen a wide peak Beta density, the computer generated
values of the respective parameter with a large dispersion around the value in
Table 1 or 2. This means that we do not trust much the value in Table 1 or 2 and
admit deviations from it. On the other hand, a narrow Beta distribution density
means that the generated values of parameter do not deviate significantly from
the value in Table 1 or 2; this reflects our higher trust in the values of Table 1
and 2. Particular choices of the Beta distribution are depicted in Figure 1.

2. Results

2.1. Total Costs

In Figure 2 total costs of the six scenarios are compared. The graphs represent
estimated densities of the costs of particular scenarios, vertical lines being their
statistical frequencies.

Figure 2
Total Costs
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Note: 1: no vaccination (so-called control); 2: whole population pre-vaccination (i.e. 2x pre-pandemic
vaccination plus 1x pandemic); 3: 2x pandemic vaccination of 50% population; 4: 2x pre-pandemic vaccination
of whole population; 5: pre-vaccination of 35% population plus 2x pandemic vaccination of 32.5% population;
6: 1x pre-pandemic plus 1x pandemic vaccination of whole population.

Source: Own results.

The location of the peak indicates where one can approximately expect total
costs of a particular scenario. We see that the peaks of scenarios 2 to 6 are lo-
cated to the right of the peak of scenario 1. This means that the expected value of
scenario 1 is lower than the ones of any of remaining scenarios.
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The height of the graph in a certain interval indicates how likely the costs in
this interval are for a particular scenario. For example, under scenario 1 we see
that costs in the interval 66 to 133 millions of Euro are much more likely than
costs between 133 and 200 millions of Euro because the graph is much higher
over the interval 66 to 133 millions than the corresponding graph over the inter-
val 133 to 200 millions of Euro.

Important information is carried by the width of the peak. It informs about the
dispersion of the expected costs: the wider the peak, the higher the uncertainty of
the expected costs of the particular scenario. The width of the peak allows us to
compare €. g. the scenarios 1 and 3 (Figure 2). From the point of view of mean
expected values the scenarios are practically equivalent. However, the peak of
the density of scenario 3 is considerably narrower which means that the costs of
scenario 3 are much more predictable than those of scenario 1. The width of the
peak can be characterized by the 95% tolerance interval that is, by definition, the
interval including with 95% probability the total costs of the particular scenario.
The results are summarized in Table 3. For the reader’s convenience, let us recall
the numbering of the scenarios:

1. No vaccination (so-called control).

2. Whole population pre-vaccination (i.e. 2x pre-pandemic vaccination + 1x pandemic).
3. 2x pandemic vaccination of 50% population.

4. 2x pre-pandemic vaccination of whole population.

5. Pre-vaccination of 35% population + 2x pandemic vaccination of 32.5% population.
6. 1x pre-pandemic + 1x pandemic vaccination of whole population.

Table 3
Total Costs
Scenario Mean Value Median Tolerance Interval Interval Width
1 86.3 79.6 from 30 to 169.3 1394
2 152.7 146.0 from 129.5 to 205.8 76.3
3 929 89.6 from 59.7 to 146 86.3
4 119.5 112.8 from 89.6 t0 179.2 89.6
5 112.9 109.5 from 86.3 to 159.3 73.0
6 112.9 109.5 from 86.3 10 169.3 83.0

Note: Mean value, median, 95% tolerance interval and interval width in millions of Euro.

Source: Own results.

One can see that lowest mean costs can be expected under scenario 1 (i.e. without
intervention) whereas the highest mean costs can be expected under scenario 2
(i.e. pre-vaccination of the total population). Scenario 2, on the other hand, is the
best from the point of view of the expected dispersion: its estimated density in
Figure 2 has the narrowest peak, and therefore the smallest tolerance interval. The
reason is that by the expensive pre-vaccination (which is primarily responsible
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for the high total costs) the unpredictability of the course of infection of the
population is lowered. As a result of pre-vaccination the vulnerability to infection
of the population drops considerably and so do the random costs of medical
treatment and hospitalization that are exclusively responsible for the dispersion.

However, the lowest costs of scenario 1 are misleading. Undoubtedly, this
scenario has the widest peak of the estimated costs and the widest tolerance in-
terval. This means that the total costs of scenario 1 may deviate considerably
from their mean value. So, the lowest mean of scenario 1 is outweighed by
a significant uncertainty due to uncertainty of the costs.

2.2. Mortality

An analysis similar to the one of total costs has been carried out for mortality.
Figure 3 compares scenarios 2 to 6 with the non-interventional scenario 1.

Figure 3
Mortality

Frequency

0 20 40 60 80 100
Mortality (thousands of deaths)

Note: 1: no vaccination (so-called control); 2: whole population pre-vaccination (i.e. 2x pre-pandemic vaccination
plus 1x pandemic); 3: 2x pandemic vaccination of 50% population; 4: 2x pre-pandemic vaccination of whole
population; 5: pre-vaccination of 35% population plus 2x pandemic vaccination of 32.5% population; 6: 1x
pre-pandemic plus 1x pandemic vaccination of whole population.

Source: Own results.

The graphical plots in Figure 3 are statistically summarized in Table 4. It can
be seen that scenario 2 appears as optimal. The average number of deaths as well
as its dispersion appears to be the lowest (i.e. the peak of the distribution density
is the lowest and the tolerance interval are the narrowest ones). The opposite
extreme is represented by the non-interventional scenario 1: it has the highest
average number of deaths and, more importantly, an extremely large dispersion,
which means significant planning uncertainty (of e.g. medical care costs).
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Table 4
Number of Deaths
Scenario Mean Median Tolerance Interval Interval Width

1 40.9 28.7 from 1.7 to 153.3 151.6
2 12.3 6.7 from 0.2 to 57.6 574
3 243 16.7 from 1.0 to 89.7 88.7
4 16.4 9.7 from 0.4 to 71.9 71.5
5 19.8 13.7 from 0.9 to 74.2 732
6 14.4 8.2 from 0.3 to 64.4 64.1

Note: Mean, median, 95% tolerance interval and interval width in thousands.

Source: Own results.

2.3. The Impact of Parameter Uncertainty

The widths of the peaks of the total costs and the number of deaths are
determined by our trust in the input parameters. None of the values of the
parameters we have considered is certain. This is why we have modelled them
by a Beta distribution around the reference value. The dispersion of the Beta
distribution reflected our trust in the reference value (smaller dispersion reflects
more trust). The decrease of the uncertainty of the input parameter (i.e. decrease
of dispersion of the corresponding Beta distribution) would decrease the disper-
sion of the output parameters (e.g. total costs, number of death, etc.).

Figure 4
Total Costs under Random/Fixed Pre-vaccination Efficacy
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Source: Own results.

As an example we consider “pre-vaccination efficacy” and the impact of its
dispersion on the dispersion of the total costs of scenario 2 (i.e. pre-vaccination of
the total population). Normally, the pre-vaccination efficacy has been generated
from the Beta (35,15) distribution (cf. Figure 1), the mean of which is 70%, the
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reference value from Table 2. We have carried out additional simulations of the
pandemic impacts under scenario 2: the pre-vaccination efficacy has been set to
exactly 70%. That is, we have trusted to this value absolutely, its dispersion
having been zero. Figure 4 and Table 5 show a decrease of the dispersion of total
costs that can be considered as an advantage.

Table §

Total Costs under Random/Fixed Pre-vaccination Efficacy
Efficacy Mean Median Tolerance Interval Interval Width
Random 152.7 146 from 129.5 to 205.8 76.3
Fixed 152.7 149.4 from 136 to 175.9 39.8

Note: Mean value, median, 95% tolerance interval and interval width in millions of Euro.

Source: Own results.

We see that a decrease of the parameter dispersion yields improved (i.e. less
dispersed) information about the values of the output parameters (e.g. the toler-
ance interval narrowed almost by 1/2).

A decrease of the parameter dispersion (i. e. improvement of information) can
be achieved either by better understanding of the pandemic mechanisms or by
improved observation. The costs due to uncertainty can be considered as a measu-
re of the value of additional information. This issue will be pursued in the future.

2.4  Variable Percentage of Vaccinated

Scenarios 1 a 2 represent the two opposite extremes of total costs, the number
of deaths and their dispersions. This is due to the fact that under scenario 1 there
is no vaccination whereas under scenario 2 all the population is pre-vaccinated,
a vaccine being applied 3 times. To tie these extreme cases we have simulated
scenarios that are compromises between scenarios 1 a 2 with pre-vaccinations of
20%, 40%, 60% or 80% of the population. The results are depicted in Figures 5
and 6 are summarized in Tables 6 a 7.

Table 6
Total Costs under Percentages of Pre-vaccinated
% of Pre-vaccinated Mean Median Tolerance Interval Interval Width
0 86.3 79.7 from 29.9 to 169.3 139.4
20 96.3 92.9 from 53.1 to 169.3 116.2
40 112.9 106.2 from 73 to 175.9 102.9
60 126.1 119.5 from 92.9t0 179.2 86.3
80 1394 132.8 from 112.9 to 192.5 79.7
100 152.7 146.0 from 129.5 to 205.8 76.3

Note: Mean value, median, 95% tolerance interval and interval width in millions of Euro.

Source: Own results.
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Figure 5

Total Costs under Varying Percentages of Vaccinated
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Source: Own results.

Figure 6

Total costs in millions of Euro

Number of Deaths for Various Parameter Values
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Source: Own results.

Table 7

Numbers of Deaths under Varying Percentages of Pre-vaccinated

20

60 80
Mortality (thousands of deaths)

100

% of Pre-vaccinated Mean Median Tolerance Interval Interval Width
0 40.9 28.7 from 1.7 to 153.3 151.6
20 343 24.3 from 1.5 to 123.5 122.0
40 28.8 20.1 from 1.2 to 103.4 102.2
60 235 16.3 from 1.0 to 85.1 84.1
80 17.8 11.6 from 0.6 to 69.7 69.1
100 12.3 6.7 from 0.2 to 57.6 57.4

Note: Mean value, median, 95% tolerance interval and interval width in thousands.

Source: Own results.
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The graph labelled “0%” represents the non-intervention scenario 1. We see
that an increase of the percentage of pre-vaccinated leads to an increase of total
costs and a decrease of the number of deaths until the values of “100%”, i.e.,
scenario 2 are reached. It is worth noting that an increase of the pre-vaccination
percentage decreases the width of the estimated peaks, i.e. the dispersion of total
costs and the number of deaths. As already mentioned, this is caused by the fact
that by an increase of the percentage of pre-vaccinated individuals the
probability of infection is decreased. This eliminates uncertainty of the costs and
the number of deaths implied by the uncertainty of the number of infected.

2.5. Total Loss

Until now we have assessed the scenarios by the values of total costs and the
number of deaths separately. These two criteria appear to be in conflict since by
more vaccination total costs (consisting primarily from the vaccination costs)
increase, while the number of deaths is considerably lower.

Now, we attempt to summarize these two indicators into one number to be
called total loss consisting of total costs plus the number of deaths multiplied by
the value of one life. The value of life is an extremely sensitive and questionable
parameter. For illustration we have chosen the value 33,200 Euro (1,000,000
SKK). The estimated densities of total loss under particular scenarios are de-
picted in Figure 7 and summarized in Table 8.

Figure 7
Total Loss (= costs + loss due to lost lives)
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Note: 1: no vaccination (so-called control); 2: whole population pre-vaccination (i.e. 2x pre-pandemic
vaccination plus 1x pandemic); 3: 2x pandemic vaccination of 50% population; 4: 2x pre-pandemic vaccination
of whole population; 5: pre-vaccination of 35% population plus 2x pandemic vaccination of 32.5% population;
6: 1x pre-pandemic plus 1x pandemic vaccination of whole population.

Source: Own results.
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Table 8
Total Loss (= costs + value of lost lives).
Scenario Mean Median Tolerance Interval Interval Width
1 1,4273 1,035.6 from 126.1 to 5198 5,072
2 561.0 371.8 from 142.7 to 2091 1,849
3 899.6 647.3 from 116.2 to 3090 2,974
4 663.9 441.5 from 112.9 to 2532 2,420
5 770.1 567.6 from 132.8 to 2589 2,390
6 594.2 385.0 from 103 to 2300 2,197

Note: Mean value, median, 95% tolerance interval and interval width in millions of Euro.
Source: Own results.

It appears that scenario 2 is best and scenario 1 worst. It should be noted,
though, that this result is considerably affected by the parameter value of life.
Should we choose a lower value of life, the optimal scenario could be different.
In order to carry out an adequate optimization analysis it is unavoidable to make
a more adequate estimate of vaccination costs including profit margins, taxes,
costs of storing and carrying out vaccination. The vaccination cost then become
a nonlinear function of its extent (i.e. he unit cost increases with vaccination
extent) and includes and element of randomness due to the uncertainty of storing
and acquirement.

2.6. The Costs per Life Saved and the Index of Effectiveness

The assessment of the vaccination scenarios by the total loss depends strongly
on the subjectively chosen value of life. Alternatively, we can include mortality
into consideration by the “costs per life saved” (see e.g. Gold et al., 1996). How-
ever, because the number of casualties is small compared to the size of the popu-
lation, a certain normalization is needed. This is why we introduce an index of
effectiveness. It relates the scenario under consideration to the non-interventio-
nal (control) scenario 1 by considering the increase of total costs and relative
decrease of the number of deaths:

te, / tc,
(d,—d,)/d,

Here tc; and d; stand for the total costs and number of deaths under the i-th
scenario respectively. In order to compute the index we have carried out each of
the 10 000 Monte Carlo simulation runs simultaneously for scenario i (/ = 2,...,6)
with the same random statistical parameters. Fitted densities of the simulated
indices of effectiveness are depicted on Figure 8 and summarized in Table 9.

It is obvious that a decrease of the numerator and an increase of the denomi-
nator increases effectiveness. Hence, the smaller is the index of effectiveness,
the more effective is the scenario. As one can see from Figure 8 and Table 9.
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scenario 6 (1x pre-pandemic plus 1x pandemic vaccination of whole population)
appears to be the most effective one. It is rather surprising because this scenario did
not appear to be optimal from the point of view of total costs including mortality.

Figure 8
Index of Effectiveness

Frequency (x 10-3)

0 500 1000 1500 2000 2500 3000

Total loss in millions of Euro

Note: 2: whole population pre-vaccination (i.e. 2x pre-pandemic vaccination plus 1x pandemic); 3: 2x
pandemic vaccination of 50% population; 4: 2x pre-pandemic vaccination of whole population; 5: pre-
vaccination of 35% population plus 2x pandemic vaccination of 32.5% population; 6: 1x pre-pandemic plus 1x
pandemic vaccination of whole population.

Source: Own results.

Table 9
Index of Effectiveness
Scenario Mean Median Tolerance Interval Interval Width
2 35 2.8 from 1.1 t0 10.2 9.1
3 32 2.8 from 1.7 t0 6.8 5.1
4 35 2.6 from0.9to 11.9 11.0
5 3.1 2.8 from 1.5t0 6.6 5.1
6 2.9 22 from 0.8 t0 9.1 8.3

Source: Own results.

Conclusions

By random Monte Carlo simulations of pandemic influenza effects on the
5,400,000 inhabitants of Slovakia under several mitigation scenarios we have
assessed their national impacts including economic costs and mortality losses.
Simulation of individual cases allowed us to obtain the entire probabilistic
distribution of the outcome variables. In particular, we have been able to obtain
not only their expected values but also their dispersions.
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We show that, although preventive measures mean extra social expenses, this is
outweighed by the reduction of losses due to mortality. A direct assessment of the
mortality losses involves a subjective element — the value of life. In order to remedy
this difficulty we introduce an index measuring the costs of lives saved by a particular
intervention measure. Rather unexpectedly, this index indicates the scenario of
one pre-pandemic and one pandemic vaccination as the most effective.

It is worthwhile to observe that dispersions representing uncertainty are the
lowest under the most expensive scenario of twice pre-pandemic and once pandemic
vaccination of the total population. Since uncertainty represents additional costs, the
dispersions should be taken into account when comparing different mitigation sce-
narios as well. Expressing this circumstance in economic terms needs an assessment
of the uncertainty costs which is an interesting challenge for further research.
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Erratum
Figure 8 on page 177 is a copy of figure 7 on page 175. It should be replaced by the following

figure:

Figure 8
Index of Effectiveness

Index of effectivensss

Note: 2: whole population pre-vaccination (i.e. 2x pre-pandemic vaccination plus 1x pandemic); 3: 2x pandemic vaccination of 50% population; 4: 2x
pre-pandemic vaccination of whole population; 5: pre-vaccination of 35% population plus 2x pandemic vaccination of 32.5% population; 6: 1x pre-
pandemic plus 1x pandemic vaccination of whole population.

We apologize for this misprint.





