
KYBERNET IKA | VOLUME 4 5 ( 2 0 0 9 ) , NUMBER 4 , PAGES 6 7 0 { 6 8 0ON THE SINGULAR LIMIT OF SOLUTIONSTO THE COX{INGERSOLL{ROSS INTERESTRATE MODEL WITH STOCHASTIC VOLATILITYBe�ata Stehl�ikov�a and Daniel �Sev�covi�c
In this paper we are interested in term structure models for pricing zero coupon bondsunder rapidly oscillating stochastic volatility. We analyze solutions to the generalized Cox{Ingersoll{Ross two factors model describing clustering of interest rate volatilities. Themain goal is to derive an asymptotic expansion of the bond price with respect to a singularparameter representing the fast scale for the stochastic volatility process. We derive thesecond order asymptotic expansion of a solution to the two factors generalized CIR modeland we show that the �rst two terms in the expansion are independent of the variablerepresenting stochastic volatility.Keywords: Cox{Ingersoll{Ross two factors model, rapidly oscillating volatility, singularlimit of solution, asymptotic expansionAMS Subject Classi�cation: 35C20 35B25 62P05 60H10 35K051. INTRODUCTIONTerm structure models describe a functional dependence between the time to matu-rity of a discount bond and its present price. Yield of bonds, as a function of matu-rity, forms the so-called term structure of interest rates. If we denote by P = P (t; T )the price of a bond paying no coupons at time t with maturity at T then the termstructure of yields R(t; T ) is given byP (t; T ) = e�R(t;T )(T�t); i. e. R(t; T ) = � logP (t; T )T � t(cf. Kwok [7]). Continuous interest rate models are often formulated in terms ofstochastic di�erential equations (SDEs) for the instantaneous interest rate (or shortrate) as well as SDEs for other relevant quantities like e. g. volatility of the shortrate process. In one-factor models there is a single stochastic di�erential equationfor the short rate. The volatility of the short rate process is given in a deterministicway. It is assumed to be constant (the Va�s���cek model [9]) or it is a function of theshort rate itself. In the classical Cox, Ingersoll, and Ross model (CIR) the short rate



On the Singular Limit of Solutions to the CIR Model 671is modelled by a solution to the following stochastic di�erential equation:dr = �(� � r) dt + �pr dw; (1)where �; �; � > 0 are parameters representing the rate of reversion, the long terminterest rate and volatility of the interest rate, respectively (see [2]). By dw we havedenoted the di�erential of the Wiener process. Beside these two simple models thereis a wide range of other term structure models including, in particular, the Chan{Karolyi{Longsta�{Sanders model [3], the Hull{White model [6] and many others.Based on the assumption made on the form of the short rate process one can derivea linear scalar parabolic equation for the bond price as a function of the currentshort rate and time to maturity.In the two-factor models there are two sources of uncertainty yielding di�erentterm structures for the same short rate as they may depend on the value of theother factor. Moreover, two-factor models have a richer variety of possible shapesof term structures including, in particular, nonmonotone yield curves. The reader isreferred to the books by Kwok [7] and Brigo and Mercurio [1] for detailed discussionon two-factor interest rate modeling.There are several ways how to incorporate the second stochastic factor. It isreasonable to conjecture that in a �nancial market the volatility of a 
uctuatingunderlying process for the short rate can be 
uctuating as well. In the so-called two-factor models with a stochastic volatility we allow the volatility to have a stochasticbehavior driven by another stochastic di�erential equation. As a consequence of themultidimensional Itô's lemma the corresponding equation for the bond price is alinear parabolic equation in two space dimensions. These spatial dimensions corre-spond to the short rate and volatility. It is well known that the density distributionof a stochastic process is a solution to the Fokker{Planck partial di�erential equa-tion and can be expressed analytically in the case the volatility undergoes the Besselsquare root process (see e. g. [5]). The exact value for the stochastic volatility is notknown in the market. We can just however estimate its density distribution func-tion and, consequently, its statistical moments like e. g. the mean value, volatility,skewness of the volatility etc. Knowing the density distribution of the stochasticvolatility we are able to perform averaging of the bond price and the term structurewith respect to the stochastic volatility. Unlike the short rate which is known fromthe market data on daily basis, as it was already mentioned, the volatility of theshort rate process is unknown. Therefore such a volatility averaging is of specialimportance for practitioners.The main goal of the paper is to derive an asymptotic expansion of the bond pricewith respect to a singular parameter representing the fast scale for the stochasticvolatility process. We derive the second order asymptotic expansion of a solution tothe two factors generalized CIR model and we show that the �rst two terms in theexpansion are independent of the stochastic volatility term.The paper is organized as follows. In the next section we present an empiricalevidence of a short rate process for which the volatility is 
uctuating and it has twoconcentration values. Next we discuss a model for statistical distribution captur-ing such a volatility clustering. Section 3 is devoted to the asymptotic analysis of



672 B. STEHL�IKOV�A AND D. �SEV�COVI�Csolutions to the bond pricing equation in the case when the 
uctuating volatilityis rapidly oscillating. We derive explicit formulae for the �rst three terms in theasymptotic expansion of a solution with respect to a small parameter representingthe fast time scale for rapidly oscillating volatility.2. EMPIRICAL EVIDENCE OF EXISTENCE OF VOLATILITY CLUSTERSAND THEIR MODELINGThe key feature of the CIR modeling consists of the assumption made on constantvolatility of the stochastic process (1) driving the short rate r. However, in real�nancial markets we can observe a substantial deviation from this assumption. Toprovide an empirical evidence for such a volatility process, we computed maximumNowman's type of Gaussian estimates of the dispersion for the CIR model for 20-day-long intervals using three months treasury bills data. Figure 1 (left) shows theestimated dispersion as a function of time. Higher and lower volatility periods canbe distinguished. They can be seen also on the kernel density estimates of the valuesin Figure 1 (right).
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Fig. 1. Left: Estimates of CIR model's dispersion �2 from 20-day intervals(3-months Treasury bills, 90 intervals starting in January 1990).Right: the density distribution of estimates of the dispersion �2.In order to capture such a behavior of the dispersion �2 we shall consider a modelin which the limiting density of the dispersion (as t!1) has two local maxima. Itcorresponds to the so-called volatility clustering phenomenon where the dispersioncan be observed in the vicinity of two local maxima of the density distribution (see[8]). The desired behavior of the process and its limiting density are shown in theFigure 2. A natural candidate for such a volatility process isdy = �(y) dt+ !(y) dw (2)having a drift function �(y) such that the di�erential equation dydt = �(y) has twostable stationary solutions. With added stochastic part !(y) dw of the process, thesestationary solutions become values, around which the volatility concentrates. Recallthat the cumulative distribution function ~G = ~G(y; t) = Prob(y(t) < yjy(0) = y0) ofthe process y = y(t) satisfying (2) and starting almost surely from the initial datum



On the Singular Limit of Solutions to the CIR Model 673y0 can be obtained from a solution ~g = @ ~G=@y to the so-called Fokker{Planckequation for the density function:@~g@t = 12 @2@y2 (!(y)2)~g)� @@y (�(y)~g); ~g(y; 0) = �(y � y0) (3)(cf. Goodman [5]). Here �(y � y0) denotes the Dirac delta function located at y0.The limiting density g(y) = limt!1 ~g(y; t) of the process is therefore a stationarysolution to the Fokker{Planck equation (3) and it forgets any information about theinitial datum y0, i. e. L�0g � 12 @2@y2 (!(y)2g)� @@y (�(y)g) = 0 : (4)
Fig. 2. Simulation of a process (left) and its asymptotic distribution (right).In [8] one of the authors proposed a model with a property that the limiting den-sity is a combination of two Gamma densities. Indeed, let us consider the followingtwo mean reverting Bessel square root stochastic processes:dyi = �y(�i � yi) dt+ vpyi dwi; i = 1; 2; (5)where �i > 0, 2�y�i > v2 > 0 for i = 1; 2; and dw1; dw2 are uncorrelated di�erentialsof the Wiener processes. Solving the stationary Fokker{Planck equation (4) it turnsout that the limiting distributions of the processes y1; y2 are the Gamma distribu-tions with shape parameters 2�y=v2 and 2�y�i=v2. Denote their densities by g1 andg2. Then gi(y) = Ciy 2�y�iv2 �1 exp(� 2�yv2 y) for y > 0 and gi(y) = 0 otherwise. HereCi > 0 is a normalization constant such that RR gi(y) dy = 1. Choose a parameterk 2 (0; 1). Our aim is to construct a process with asymptotic densityg(y) = kg1(y) + (1� k)g2(y); (6)corresponding to a convex mixture of densities g1 and g2. In the following theoremwe see that for the same square root volatility function of the form vpy it is possibleto achieve this goal. Drift of the process �(y) can be written as a weighted sum ofdrifts �i(y) = �(�i � y); i = 1; 2; with the weights depending on y.



674 B. STEHL�IKOV�A AND D. �SEV�COVI�CTheorem 1. (Stehl��kov�a [8, Section 5]) Suppose that the drift term � has the form:�(y) = w(y)�1(y) + (1� w(y))�2(y) where w(y) = kg1(y)=(kg1(y) + (1 � k) g2(y))and �i(y) = �(�i � y). Then the stochastic process driven by the SDE: dy =�(y)dt+vpydw has the limiting distribution g given by the convex combination (6)of densities g1; g2.3. GENERALIZED CIR MODEL WITH RAPIDLY OSCILLATINGSTOCHASTIC VOLATILITY AND ITS ASYMPTOTIC ANALYSISThe aim of this section is to provide a tool for modeling the e�ects of rapidly oscil-lating stochastic volatility that can be observed in real markets. If the length of thetime scale for dispersion y is denoted by ", the equation for the variable y reads asfollows: dy = �(y)" dt+ vpyp" dwy: (7)In what follows we will assume that 0 < "� 1 is a small singular parameter. Noticethat the limiting density function g of the stochastic process driven by SDE (7) isindependent of the scaling parameter " > 0. The statement follows directly from thestationary Fokker{Planck equation (4). Concerning structural assumption made onthe drift function � : R! R we shall henceforth assume the following hypothesis:(A) � is a C1 function on [0;1); 2�(0)v2 > 1; lim supy!1 �(y)y < 0:Now it is straightforward computation to verify the following auxiliary lemma.Lemma 1. Let the drift function �(y) be de�ned as a mixture of two Gammalimiting distributions as in Theorem 1. Then the function � satis�es the hypothesis(A) with �(0) = �min(�1; �2) and lim supy!1 �(y)y = �� < 0.Next we shall show the limiting density g of the process driven by SDE (7) isuniquely given by the following lemma:Lemma 2. Under the hypothesis (A) made on the drift function � the stationaryFokker{Planck equation L�0g � v22 @2@y2 (yg)� @@y (�(y)g) = 0 has a unique solution gsuch that g(0) = 0 for y � 0. It can be explicitly expressed as:g(y) = Cy�1 exp� 2v2 Z y1 �(�)� d�� = Cy 2�(0)v2 �1 exp� 2v2 Z y1 �̂(�) d��for y > 0 and g(y) = 0 for y � 0. Here �̂(y) = (�(y) � �(0))=y and C > 0 is anormalization constant such that R10 g(y) dy = 1.P r o o f . It follows by direct veri�cation of the equation. The other linearly inde-pendent solution g2 to the equation (4) has a nontrivial limit g2(0+) > 0. �



On the Singular Limit of Solutions to the CIR Model 675In what follows, we denote by �2; D > 0; and S the limiting mean value, disper-sion and skewness of the stochastic process for the y-variable representing stochasticdispersion, i. e.�2 = Z 10 yg(y) dy; D = Z 10 (y � �2)2g(y) dy; S = 1D 32 Z 10 (y � �2)3g(y) dy :(8)Notice that D = � R10 R y0 (� � �2)g(�) d�dy. In the generalized CIR model with astochastic volatility, the instantaneous interest rate (short rate) r will be modelledby the mean reverting process of the form (1) where the volatility of is replaced bya square root of a stochastic dispersion y, i. e.dr = �(� � r) dt+pypr dwr : (9)The di�erentials of the Wiener processes dwy and dwr are assumed to be uncorre-lated throughout the paper, i. e. E(dwydwr) = 0. Then the corresponding partialdi�erential equation for the bond price P " = P "(t; r; y) has the following form:@P "@t + (�(� � r)� ~�1(y; r)r 12py)@P "@r + 12ry @2P "@r2 � rP " (10)+ 1p" ��~�2(y; r)vpy @P "@y �+ 1" ��(y)@P "@y + v2y2 @2P "@y2 � = 0;(t; r; y) 2 QT � (0; T ) � R+ � R+ ; where ~�1; ~�2 are the so-called market prices ofrisk (cf. [7, Chapter 7]). By a solution P " to (11) we mean a bounded functionP " 2 C1;2(QT ) \ C( �QT ) satisfying equation (11) on �QT . Concerning the structuralform of market prices of risk functions ~�1; ~�2 we shall suppose that~�1(t; r; y) = �1prpy; ~�2(t; r; y) = �2py;where �1; �2 2 R are constants. It is worthwhile noting that the latter assumptionis not restrictive as the original one-factor CIR model assumes such a form of themarket price of risk (cf. Kwok [7]). We shall rewrite PDE (11) in the operator form:("�1L0 + "�1=2L1 + L2)P " = 0; (11)where the linear di�erential operators L0;L1;L2 are de�ned as follows:L0 = �(y) @@y + v2y2 @2@y2 ; L1 = ��2vy @@y ;L2 = @@t + (�(� � r)� �1ry) @@r + 12ry @2@r2 � r: (12)Next we expand the solution P " into Taylor power series:P "(t; r; y) = 1Xj=0 " j2Pj(t; r; y); (13)



676 B. STEHL�IKOV�A AND D. �SEV�COVI�Cwith the terminal conditions P0(T; r; y) = 1; Pj(T; r; y) = 0 for j � 1 at expiryt = T . The main goal of this paper is to examine the singular limiting behavior ofa solution P " as " ! 0+. More precisely, we shall determine the �rst three termsP0; P1; P2 of the asymptotic expansion (13). We shall henceforth denote by h ithe averaged value of the function  2 C([0;1)) with respect to the density g, i. e.h i = R10  (y)g(y) dy. We shall also use the notation hL2i standing for the averagedlinear operator L2, i. e.hL2i � @@t + ��(� � r) � �1r�2� @@r + 12�2r @2@r2 � r: (14)Lemma 3. Let  2 C1([0;1)) be such that L0 is bounded. Then hL0 i = 0.P r o o f . Notice that the operator L�0 is the adjoint operator to the linear operatorL0 with respect to the L2{inner product ( ; �) = R10  (y)�(y) dy. It means thathL0 i = (L0 ; g) = ( ;L�0g) = 0 because the density g is a solution to Eq. (4). �The following lemma will be useful when computing higher order term in seriesexpansion (13).Lemma 4. Let F 2 C([0;1)) be such that hF i = 0. Then, up to an additiveconstant, there exists a unique solution  2 C2((0;1)) \ C([0;1)) to the non-homogeneous equation L0 = v22 F . Its derivative @ @y is given by@ @y (y) = 1yg(y) Z y0 F (�)g(�) d�:Moreover, hL1 i = �2v R10 F (y) yg(y) dy. In particular, if  is a solution to theequation L0 = 0 then  is a constant function with respect to the y-variable.P r o o f . Using equation (4) for the limiting density g and inserting @ @y into theoperator L0 we obtain that  is a solution to the equation L0 = v22 F . Otherindependent solutions are not continuous at y = 0. The formula for hL1 i followsfrom the de�nition of the operator L1 by applying integration by parts formula. �Now we proceed with collecting the terms of the power series expansion of (11).� In the order "�1 we have L0P0 = 0. According to Lemma 4 we have P0 = P0(t; r),i. e. P0 is independent of the y-variable.� In the order "�1=2 we have L0P1 + L1P0 = 0. Since P0 = P0(t; r) we deduceL1P0 = 0 and so L0P1 = 0. By Lemma 4, P1 = P1(t; r) is independent of y.� In the order "0 we have L0P2 + L1P1 + L2P0 = 0. Since P1 = P1(t; r) we haveL1P0 = 0. Hence L0P2 + L2P0 = 0. Taking the average h:i of both sides of thelatter equation we obtain hL0P2i + hL2P0i = 0. By Lemma 3 and the fact that P0is independent of y-variable we conclude hL2iP0 = hL2P0i = 0. Therefore P0 is a



On the Singular Limit of Solutions to the CIR Model 677solution to the classical one-factor PDE equation for the CIR model satisfying theterminal condition P0(T; r) = 1 for any r � 0. It is well known that the solutionP0 = P0(t; r) to the equation hL2iP0 = 0 is given by the explicit formula:P0(t; r) = A0(t)e�B(t)r; (15)where A00 = ��A0B and B0 = (�+ �1�2)B + �22 B2 � 1, A0(T ) = 1; B(T ) = 0; i. e.A0(t) = � 2�e(�+ )(T�t)=2(�+  )(e�(T�t) � 1) + 2�� 2���2 ; B(t) = 2(e�(T�t) � 1)(�+  )(e�(T�t) � 1) + 2�; = �+�1�2; � =p 2 + 2�2 (cf. Kwok [7, Chapter 7]). Since hL2iP0 = 0 we have�L2P0 = (hL2i � L2)P0 = (�2 � y)f(t)re�B(t)r wheref(t) = ��1B(t) + 12B(t)2�A0(t):Hence L0P2 = �L2P0 = (�2 � y) f(t)re�B(t)r. According to Lemma 4 we have@P2@y = � 2v2 f(t) re�B(t)rH(y); H(y) = 1yg(y) Z y0 (� � �2)g(�) d�: (16)� In the order "1=2 we have L0P3 + L1P2 + L2P1 = 0. Since hL0P3i = 0 we havehL1P2i + hL2P1i = 0. The function P1 = P1(t; r) is independent of the y-variableand therefore hL2iP1 = hL2P1i = �hL1P2i. By Lemma 4 we haveL1P2 = 2�2v f(t)re�B(t)ryH(y); �hL1P2i = K1f(t)re�B(t) r;where K1 = � 2�2v R10 R y0 (� � �2)g(�) d�dy = 2�2v D is a constant (see (8)). Noticethat the constant K1 and the function f(t) depend on the �rst two moments �2 andD of the stochastic dispersion only. Equation hL2iP1 = hL2P1i = �hL1P2i reads as:@P1@t + ��(� � r) � �1r�2� @P1@r + 12r�2 @2P1@r2 � rP1 = K1f(t)re�B(t) r: (17)The solution P1 satisfying the terminal condition P1(T; r) = 0 for r � 0 can befound in the closed form:P1(t; r) = (A10(t) +A11(t) r) e�B(t) r; (18)where the functions A10(t), A11(t) are solutions to the system of linear ODEs:A011(t) = ���B(t) + �+ �1�2 + �2B(t)�A11(t) +K1f(t); (19)A010(t) = ��B(t)A10(t)� ��A11(t);with terminal conditions A10(T ) = 0, A11(T ) = 0. We can analytically and alsonumerically compute A10, A11 in a fast and accurate manner. This way we have



678 B. STEHL�IKOV�A AND D. �SEV�COVI�Cobtained the term P1(t; r). In Figure 3 examples of numerical approximation of theterm structure R"(T ��; r) = � 1� loghP "(T ��; r; :)i corresponding to the second or-der expansion of the averaged value of hP "(t; r; :)i, P "(t; r; y) � P0(t; r)+p"P1(t; r).We plot term structures starting from the short rate r = 0:03 (left) and r = 0:031(right) for parameters � = 5, � = 0:03, �y = 100, v = 1:1832, �1 = 0:025, �2 = 0:1,k = 1=3, �1 = �1, �2 = �100 and " = 0; 0:001; 0:01 (black, red and blue curves).Having P1 and @P2@y we can compute the term L1P2 + L2P1. With regard toLemma 4 equation L0P3 = �L1P2 �L2P1 then yields a formula for @P3@y andhL1P3i = �2�2v ��2�2v K3 +K1�2� f(t) re�B(t) r +D���1r@P1@r + r2 @2P1@r2 �� ;where the constant K3 = R10 �3H(�)g(�) d� = � 12SD 32 � �2D depends on the �rstthree statistical moments of the stochastic dispersion.� In the order "1 we have L0P4 + L1P3 + L2P2 = 0. Proceeding similarly as beforewe have hL0P4i = 0 and thereforehL1P3i+ hL2P2i = 0: (20)We decompose the function P2(t; r; y) in the formP2(t; r; y) = �P2(t; r) + ~P2(t; r; y); (21)where �P2 is the averaged value of P2 and ~P2 is a zero mean 
uctuation, i. e. h ~P2i = 0.As �P2 does not depend on y, we have @ ~P2@y = @P2@y . Taking into account hL2 ~P2i = 0we obtain ~P2(t; r; y) = � 2v2 f(t)re�B(t) r �Z y0 H(�) d� �K2;�where K2 = R10 g(s) R s0 H(�)d�ds is a constant and the function H is given by(16). Now we can use decomposition (21) to evaluate hL2P2i. We have hL2P2i =hL2( �P2 + ~P2)i = hL2i �P2 + hL2 ~P2i because �P2 is independent of y. Next we candetermine hL2 ~P2i in the following form:hL2 ~P2i = � 2v2K4f(t)r���1 @@r + 12 @2@r2� (re�B(t)r)where K4 = R10 R y0 H(�) d�(y � �2)g(y) dy. It is worthwhile noting that both con-stants K2;K4 depend on all nontrivial statistical moments of the stochastic disper-sion. Equation (20) then becomeshL2i �P2 = �hL2 ~P2i � hL1P3i = (a(t) + b(t)r + c(t)r2)e�B(t)r; �P2(T; r) = 0;which is a partial di�erential equation for �P2 = �P2(t; r; y) with a right hand sidewhich can be explicitly computed from already obtained results in the closed form:�P2(t; r) = (A20(t) +A21(t)r +A22(t)r2)e�B(t)r; (22)where the functions A20; A21; A22 are solutions to a linear system of ODEs. We omitdetails here.In summary we have shown the following main result of this paper:
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Fig. 3. The approximate term structure R" = R"(T � �; r) based on the �rst two leadingterms of the bond price P " � P0(T � �; r) +p"P1(T � �; r) starting from the short rater = 0:03 (left) and r = 0:031 (right) for several values of the singular parameter" = 0; 0:001; 0:01 (black, red and blue curves), resp.Theorem 2. The solution P " = P "(t; r; y) of the generalized CIR bond pricingequation (11) with rapidly oscillating dispersion can be approximated, for smallvalues of the singular parameter 0 < " � 1, by P "(t; r; y) � P0(t; r) +p"P1(t; r) +"P2(t; r; y) +O(" 32 ).The �rst two terms P0; P1 are independent of the y-variable representing unob-served stochastic volatility. They depend only on the �rst two statistical moments(mean value and dispersion) of the stochastic dispersion and other model parameters.The next term in the expansion P2 nontrivially depends on the y-variable. P2 aswell as its averaged value hP2i depends also on all nontrivial statistical moments ofthe stochastic dispersion.The terms P0; P1; P2 can be evaluated by closed-form formulae (15), (18), (22).ACKNOWLEDGMENTAuthors were supported by APVV SK-BG-0034-08 and VEGA 1/0381/09 grants.(Received October 30, 2008)REFERENCES[1] D. Brigo and F. Mercurio: Interest Rate Models { Theory and Practice. With smile,in
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