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Abstract We study evolution of a closed embedded plane curve with the normal
velocity depending on the curvature, the orientation and the position of the curve. We
propose a new method of tangential redistribution of points by curvature adjusted con-
trol in the tangential motion of evolving curves. The tangential velocity may not only
distribute grid points uniformly along the curve but also produce a suitable concentra-
tion and/or dispersion depending on the curvature. Our study is based on solutions to
the governing system of nonlinear parabolic equations for the position vector, tangent
angle and curvature of a curve. We furthermore present a semi-implicit numerical
discretization scheme based on the flowing finite volume method. Several numerical
examples illustrating capability of the new tangential redistribution method are also
presented in this paper.
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414 D. Ševčovič, S. Yazaki

1 Introduction

The purpose of this paper is to study evolution of a plane curve Γ t , t ∈ [0, T ), driven
by the normal velocity vwhich is assumed to be a function of the curvature k, tangential
angle ν and position vector x ∈ Γ t ,

v = β(x, ν, k). (1.1)

Geometric equations of the form (1.1) often arise from various applied problems like,
e.g., the material science, dynamics of phase boundaries in thermomechanics, compu-
tational geometry, semiconductors industry, image processing and computer vision,
etc. For a comprehensive overview of industrial applications of the geometric equation
having the form of (1.1) we refer to a book by Sethian [26].

We consider a simple, embedded and closed plane curve Γ which is parameterized
by a smooth function x : R/Z ⊃ [0, 1] → R

2 such that Γ = Image(x) = {x(u); u ∈
[0, 1]} and |∂ux| > 0. Hereafter, we denote ∂ξF = ∂F/∂ξ, and |a| = √

a · a where
a · b is the Euclidean inner product between vectors a and b. The unit tangent vec-
tor can be defined as t = ∂ux/|∂ux| = ∂sx, where s is the arc-length parameter
and ds = |∂ux| du. The unit inward normal vector n is defined in such a way that
det(t,n) = 1. The signed curvature in the direction n is denoted by k. With this orien-
tation we have k = det(∂sx, ∂2

s x). Let ν be the angle of t, i.e., t = (cos ν, sin ν)T and
n = (− sin ν, cos ν)T. The problem of evolution of curves is stated as follows: For a
given initial curve Γ 0 = Image(x0), find a family of planar curves {Γ t }0≤t<T , Γ

t =
{x(u, t); u ∈ [0, 1] ⊂ R/Z} starting from Γ 0 = {x(u, 0) = x0(u); u ∈ [0, 1]} and
evolving in the normal direction according to the velocity given by (1.1).

As typical examples of β one can consider β = w(ν)k representing the anisotropic
mean curvature flow, β = |k|γ−1k (power like flow arising in image processing) and
β = w(x, ν)k + F(x, ν), where w is a weight function, F is an external force and
γ > 0 is a real parameter. The normal velocity v is the normal component of the
following evolutionary equation for the position vector x:

∂t x = βn + αt, x(·, 0) = x0(·). (1.2)

Here α is the tangential component of the velocity vector. Notice that the motion in the
tangential direction with a tangential velocity α has no effect of the shape of evolving
closed curves [7, Proposition 2.4]. The shape is determined by the value of the normal
velocity β only. Hence the trivial setting α ≡ 0 can be chosen. In [6] Dziuk inves-
tigated a numerical scheme for β = k and α = 0. However, it was documented by
many authors (see, e.g., [10,14,15,29] and references therein) that such a choice of α
may lead to various numerical instabilities caused by either undesirable concentration
and/or extreme dispersion of numerical grid points.

In order to construct a stable numerical computational scheme, various choices of a
nontrivial tangential velocity have been proposed and analyzed by many authors. We
present a brief review of development of nontrivial tangential velocities. In [12,13]
Kimura proposed a uniform redistribution scheme for the case when β = k by using
a special choice of α satisfying the uniform redistribution condition (U): |∂ux| = Lt ,
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Curvature adjusted tangential velocity 415

where Lt is total length of a curve Γ t . The author also proved convergence of a
numerically discretized solution when assuming uniform distribution of initial grid
points. In [10], Hou, Lowengrub and Shelley (see also Hou, Klapper and Si [11])
utilized the condition (U) directly for the case β = k. More precisely, they derived the
form of a tangential velocity with ϕ ≡ 1 and ω ≡ 0 [see our notation (3.3) described
in Sect. 3]. Such a tangential velocity was also proposed and analyzed independently
by Mikula and the first author in [15]. In [10, Appendix 2], Hou et al. also pointed out
the role of tangential velocity (3.3) for a general class of the curvature shape function
ϕ(k) with ω ≡ 0 as a generalization of condition (U). However, there was no system-
atic explanation of the consequence of such a choice of the tangential velocity on grid
points redistribution. In the present paper, the important role of the so-called curvature
adjusted tangential velocity (3.3) is emphasized from qualitative and quantitative point
of view.

As we already mentioned, in the paper [15], the authors derived the expression
for the tangential velocity (3.3) with ϕ ≡ 1 and ω ≡ 0 for a rather general class of
planar mean curvature flows satisfying the geometric equation (1.1) with β = β(ν, k).
This result can be considered as an improvement of that of [14] in which satisfactory
results were obtained only for the case when β = β(k) is linear or sublinear function
with respect to k. Next, in the series of papers [16–18], Mikula and the first author
proposed a method of asymptotically uniform redistribution. In terms of our notation,
they derived (3.3) with ϕ ≡ 1 and nontrivial relaxation function ω(t) for a general
class of normal velocities of the form β = β(x, ν, k). Their method was also applied
to geodesic curvature flows and image segmentation problems.

Besides these uniform or asymptotically uniform redistribution methods, in the
so-called crystalline curvature flow, the grid points are distributed densely (sparsely)
in those part of the curve where the absolute value of the curvature is large (small).
Although this redistribution is far from being uniform, numerical computation is quite
stable. One of the reasons for such behavior is that polygonal curves are restricted
to a class of admissible facet directions. In order to extract essence of the crystalline
curvature flow of polygonal curves and generalize it to a wide class of plane curve evo-
lution, the second author showed that the tangential velocity α = −∂sβ/k is implicitly
involved in the crystalline curvature flow of planar curves (cf. [27,29]). Notice that
such a tangential velocity is a local one since its value at some point x of a curve
depends on the local properties of the curve near x. In this point, it is worthwhile
to mention the paper by Deckelnick [5] who used locally defined tangential velocity
having the form α = −∂u(|∂ux|−1) for the special case when β = k. Recently, Pauš
et al. successfully applied curvature adjusted tangential velocity for evolution of open
curves having important applications in the dislocation dynamics (see [22,23]).

The asymptotically uniform redistribution is quite effective and applicable for a
wide range of applications. However, from the approximation point of view, unless
the solution curve is a circle, there is no reason to accept uniform redistribution for
a general case of a curve evolution. Hence the desired redistribution should take into
account the shape of evolution curves and it should also depend on the modulus of the
curvature. We will furthermore present a combination of the method of asymptotic
uniform redistribution [16] and the crystalline tangential velocity discussed in [29].
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416 D. Ševčovič, S. Yazaki

As far as 3D implementation of tangential redistribution is concerned, in the recent
paper by Barrett, Garcke and Nürnberg [1], they proposed and studied a new efficient
numerical scheme for evolution of surfaces driven by the Laplacian of the mean curva-
ture. It turns out that a uniform redistribution of tangential velocity vectors is implicitly
built in their numerical scheme. A similar scheme with an explicit expression for the
tangential redistribution has been proposed and utilized by Morigi in [20].

The organization of the paper is as follows: In Sect. 2, we recall the system of
PDEs for geometric equations (1.1) and (1.2). In Sect. 3, we discuss the problem of
controlling redistribution of grid points by using a nontrivial tangential velocity. We
focus on a class of tangential velocities dependent locally on the curvature combined
with known asymptotically uniform redistributions. The aim of Sect. 4 is to further
motivate our study by constructing a curvature adjusted redistribution yielding the
best possible approximation of the evolving family of planar curves as far as the min-
imization of the error between the length of a curve and the length and enclosed that
of its polygonal approximation is concerned. In Sect. 5, a numerical solution to the
system of governing equations will be constructed by means of the so-called flowing
finite volume method. In Sect. 6, we will present various numerical examples of appli-
cations of the curvature adjusted tangential velocity. Finally in Sect. 7, we conclude
with comments on some key points.

2 Governing equations

Without loss of generality, we will rewrite the normal velocity β(x, ν, k) as follows:

β = w(x, ν, k)k + F(x, ν). (2.1)

The tangential velocity α will be defined later in Sect. 3. Using the Frenet formula
∂2

s x = ∂s t = kn, the following equation for the position vector follows from (1.1) and
(1.2):

∂t x = w∂2
s x + α∂sx + Fn, (2.2)

where the operators ∂s and ∂2
s stand for arc-length derivatives, i.e., ∂sF = g−1∂uF and

∂2
s F = g−1∂u∂sF, respectively. Here g = |∂ux| denotes the local length of a curve

parameterized by x.

Remark 1 If β is a linear or superlinear function of k such as w(ν)k, w(x, ν)k +
F(x, ν), |k|γ−1k(γ ≥ 1), then the function w appearing in (2.1) has no singularity at
k = 0. However, in the sublinear case, a singularity occurs at k = 0. Then a regulariza-
tion at k = 0 will be necessary from both theoretical (local existence and uniqueness
of solutions) and practical (construction of a stable numerical approximation scheme)
point of view. We refer the reader to [15] for further discussion of this issue. For exam-
ple, if w = |k|γ−1, γ ∈ (0, 1), one can regularize |k|−1 as follows: |˜k|−1 = |k|−1 for
|k| > ε and |˜k|−1 = ε−1 for |k| ≤ ε, for a small ε > 0.

Following [15], one can derive a closed system of PDEs governing the motion
of curves satisfying the geometric equation (1.1) and (1.2). These equations can be
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derived by using the facts that k = det(∂sx, ∂2
s x), t = ∂sx = (cos ν, sin ν)T, Frenet’s

formulae ∂s t = kn, ∂sn = −kt and the relation k = ∂sν. The resulting system of
governing PDEs together with (2.2) reads as follows:

∂tg = (−kβ + ∂sα)g, (2.3)

∂t k = ∂2
s β + α∂sk + k2β, (2.4)

∂tν = (∂kβ)∂
2
s ν + (α + ∂νβ)∂sν + ∇xβ · t, (2.5)

for u ∈ [0, 1] and t ∈ (0, T ), with initial conditions g(·, 0) = g0(·), k(·, 0) =
k0(·), ν(·, 0) = ν0(·), x(·, 0) = x0(·), and the periodic boundary condition for g, k, x
for u ∈ [0, 1] ⊂ R/Z and the boundary condition ν(1, t) = ν(0, t)+ 2π . The partial
derivative ∇xβ is defined as ∇xβ = (∂x1β(x, ·, ·), ∂x2β(x, ·, ·))T for x = (x1,x2)

T.
The initial functions g0, k0, t0 and x0 are required to satisfy the following compatibility
conditions: g0 = |∂ux0| > 0, ∂u t0 = g0k0, k0 = (g0)−3 det(∂ux0, ∂2

u x0).
In our simple and fast numerical approximation scheme proposed in Sect. 5 we

will discretize (2.2) and the tangential velocity equation (3.3) with the constraint (3.4)
only. With regard to [15], in the case where a more accurate numerical scheme and
results are required, it is recommended to discretize the full system of evolutionary
PDEs (2.2), (2.3), (2.4) and (2.5) for all remaining geometric quantities g, k, and ν.
On the other hand, as far as the time complexity of computation and simplicity of a
numerical approximation scheme are concerned, discretization of (2.2) together with
(3.3), (3.4), yields satisfactory numerical results.

However, as w may depend on k and ν, the proof of existence and uniqueness
of a smooth solution to the system of Eqs. (2.2), (3.3), (3.4) does not seem to be a
straightforward issue.

Recall that in the case where α is given by the expression (3.3) with ϕ ≡ 1 and
ω = 0, the short time existence and uniqueness of smooth solutions to the system of
PDEs (2.2), (2.3), (2.4) and (2.5) has been shown in [15]. In the forthcoming paper
[25] the authors will prove local existence and uniqueness of a classical solution to
the full system of governing equations (2.2)–(2.5) and (3.3), (3.4).

3 A curvature adjusted tangential redistribution of grid points

A key tool for construction of a suitable tangential redistribution functional α is the
so-called relative local length (cf. [15]). It is defined by the following ratio r:

r(u, t) = g(u, t)

Lt
, u ∈ [0, 1], t ∈ [0, T ),

where Lt is the total length of Γ t :

Lt =
∫

Γ t

ds =
1

∫

0

g du, t ∈ [0, T ),

and T > 0 is the maximal time of existence of a solution.
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The role of r can be explained as follows: suppose that N grid points {x(ui , t)}N
i=1

are distributed on the curve Γ t for ui = i/N , i = 1, 2, . . . , N . Since the arc-length s
is given by s(u, t) = s(0, t)+ ∫ u

0 g(u, t) du, we have

s(ui , t)− s(ui−1, t) =
ui

∫

ui−1

g(u, t) du = Lt

ui
∫

ui−1

r(u, t) du

for each i . Hence, if r(u, t) ≡ 1 holds for all u at a time t, then all grid points are
distributed uniformly in the sense that s(ui , t)− s(ui−1, t) = Lt/N for each i at the
time t . Furthermore, if the evolving family of curves fulfills the limit r(u, t) → 1 for
all u as t → T then redistribution of grid points become asymptotically uniform as
t → T (cf. [16,17]).

It has been documented by many practical examples (see, e.g., [16,17]) that (asymp-
totically) uniform redistribution can significantly stabilize and speed up numerical
computation. We recall that the tangential motion has no influence on the shape of
evolved closed planar curves. A natural question arises:

Question 1 How to design the relative local length ratio r and, subsequently, α such
that redistribution takes into account the shape of the limiting curve. In other words,
how to densely (sparsely) redistribute grid points on those parts of a curve where the
modulus of the curvature is large (small).

The modulus |k| of curvature will be measured by the following shape function:

Definition 1 Let ϕ : R → R+ be a nonnegative even function ϕ(−k) = ϕ(k) > 0
for k �= 0 such that ϕ(k) is nondecreasing for k > 0.

As an example of a shape function one can consider ϕ(k) ≡ 1, ϕ(k) = |k|, ϕ(k) =
1 − ε+ ε|k| (ε ∈ [0, 1]), ϕ(k) = √

ε2 + k2 (|ε| � 1), etc. In numerical computations
contained in this paper, a linear combination of these functions will be often used (see
Example 4).

In order to answer Question 1, we introduce a generalized relative local length
adopted to the shape function ϕ as follows:

rϕ(u, t) = g(u, t)

Lt

ϕ(k(u, t))

〈ϕ(k(·, t))〉 , u ∈ [0, 1], t ∈ [0, T ). (3.1)

Here the bracket 〈F〉 denotes the average of function F(u, t) on the curve Γ t :

〈F(·, t)〉 = 1

Lt

∫

Γ t

F ds = 1

Lt

1
∫

0

F(u, t)g(u, t) du.

Next we explain the role of the generalized ratio rϕ . Suppose, for a moment, that
rϕ(u, t) ≡ 1 for all u at a time t . Then s(ui , t) − s(ui−1, t) ≶ Lt/N holds, if |k|
satisfies ϕ(k) ≷ 〈ϕ(k)〉 on the i-th interval [ui−1, ui ]. Using this property we are in
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a position to construct the desired curvature adjusted tangential redistribution which
takes account of deviations of the shape function ϕ(k) from its average value 〈ϕ(k)〉.
Indeed, suppose that we are able to construct a tangential velocity α in such a way
that rϕ(u, t) → 1, i.e.,

θ(u, t) = ln rϕ(u, t) → 0

holds for all u ∈ [0, 1] as t → T . For t close to T,we can conclude if |k| is above/below
the average in the sense that ϕ(k) ≷ 〈ϕ(k)〉, then g ≶ Lt holds, respectively. Distri-
bution of grid points on corresponding subarcs is dense/sparse, respectively.

Example 1 Consider ϕ(k) ≡ 1. Then θ = ln r. If one constructs α in such a way that
θ(u, t) ≡ θ(u, 0) for all u and t then relative local length r is preserved. On the other
hand, if one takes α such that θ(u, t) → 0 (i.e., r → 1) for all u as t → T then
redistribution becomes asymptotically uniform. See Example 2.

Convergence limt→T rϕ(u, t) → 1 is fulfilled provided that there exists a relaxation
function ω ∈ L1

loc[0, T ) such that

T
∫

0

ω(τ) dτ = ∞

and θ(u, t) = ln((eθ(u,0) − 1)e− ∫ t
0 ω(τ) dτ + 1) for all u ∈ [0, 1] and t ∈ [0, T ). The

previous equation can be rewritten as an ODE:

∂tθ(u, t)+ ω(t)(1 − e−θ ) = 0. (3.2)

Remark 2 For θ̃ = ln rϕ one can obtain another convergence if we use θ̃ (u, t) =
θ̃ (u, 0)e− ∫ t

0 ω(τ) dτ , i.e., ∂t θ̃ (u, t)+ω(t)θ̃(u, t) = 0. The convergence rate of θ̃ (u, t)
is the same as that of θ(u, t).

With regard to [16,17] one can choose the relaxation function ω(t) as follows:

ω(t) = κ1 − κ2∂t ln Lt = κ1 + κ2〈kβ〉,

where κ1 ≥ 0 and κ2 ≥ 0 are nonnegative constants. Here we have employed the total
length equation: ∂t Lt + ∫

Γ t kβ ds = 0 (cf. [15]). If we formally set κ1 = κ2 = 0,
then the function θ is constant in time t . On the other hand, if the maximal existence
time is infinite T = ∞, we can choose κ1 > 0 and κ2 = 0. If T < ∞ and Lt → 0
as t → T, we can choose κ2 > 0. In both cases we have

∫ T
0 ω(τ) dτ = ∞ and so

rϕ(u, t) → 1 as t → T .
The equation for the tangential velocity α can be derived as follows. Differentiating

θ = ln rϕ = ln g + ln ϕ − ln
∫ 1

0 ϕg du with respect to t, using (2.3), (2.4) and the
relation ∂s(ϕα) = α(∂sk)ϕ′ + (∂sα)ϕ, we obtain
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ϕ∂tθ = (−kβ + ∂sα)ϕ + (∂2
s β + k2β + α∂sk)ϕ′ − ϕ

Lt 〈ϕ〉
1

∫

0

∂t (ϕg) du

= ∂s(ϕα)− f + ϕ

〈ϕ〉 〈 f 〉,

where f = ϕ(k)kβ − ϕ′(k)(∂2
s β + k2β), ϕ′(k) = ∂kϕ(k). Hence (3.2) holds if and

only if the tangential velocity α satisfies the following equation:

∂s(ϕ(k)α)

ϕ(k)
= f

ϕ(k)
− 〈 f 〉

〈ϕ(k)〉 + ω(t)(r−1
ϕ − 1). (3.3)

Equation (3.3) is written in the form ∂s(ϕ(k)α) = F , where

F := f − 〈 f 〉
〈ϕ(k)〉ϕ(k)+ ω(t)ϕ(k)(r−1

ϕ − 1).

Since
∫

Γ t ϕ(k)(r−1
ϕ −1) ds = ∫ 1

0 (L
t 〈ϕ(k)〉g−1 −ϕ(k))g du = 0,we obtain 〈F〉 = 0.

Thus the equation ∂s(ϕ(k)α) = F has at least one solution α. In order to construct a
unique solution α, we assume the following renormalization condition for α:

〈ϕ(k)α〉 = 0. (3.4)

Example 2 (uniform redistribution) In the case where ϕ(k) ≡ 1, the tangential veloc-
ity equation becomes

∂sα = kβ − 〈kβ〉 + ω(t)(r−1 − 1).

If we setω ≡ 0, then a solution α preserves the relative local length r (see [15]). Under
the assumption ω �≡ 0 with suitable κ1, κ2, redistribution of grid points becomes
asymptotically uniform [16–18].

Example 3 (crystalline tangential velocity) Suppose that the evolving curveΓ t is con-
vex. If we consider the shape function ϕ(k) = |k| and ω(t) ≡ 0, then, with regard
to (3.3) we have ∂s(kα) = −∂2

s β. Taking into account renormalization constraint
〈ϕ(k)α〉 = 0 we end up with α = −∂sβ/k. This is exactly the same tangential veloc-
ity as it was derived by the second author in the continuous limit of the crystalline
curvature flow (see [29]). If the evolving curveΓ t has negative curvature on those parts,
the shape function ϕ(k) = |k| is regularized as, for instance, ϕ(k) = √

1 − ε + εk2

with ε ∈ (0, 1).

Example 4 (their linear combination) In our numerical computations in Sect. 6, we
will use the following smoothed shape function ϕ:

ϕ(k) = 1 − ε + ε
√

1 − ε + εk2, ε ∈ (0, 1).
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(a) (b)

(c) (d)

(f)(e)

Fig. 1 Various redistributions of N = 12 grid points along the ellipse: a uniform redistribution (ε = 0),
b curvature adjusted redistribution (ε = 0.9), c curvature adjusted redistribution (ε = 1), d crystalline
redistribution (corresponding to ε = 1), e the length discrepancy minimizing curvature adjusted redistri-
bution with ϕ(k) = |k|2/3, and f the area discrepancy minimizing curvature adjusted redistribution with
ϕ(k) = |k|1/3

It is a linear combination of shape functions in Examples 2 and 3. Notice thatϕ(k) → 1
if ε → 0, ϕ(k) → |k| if ε → 1, and ϕ(k) ≥ ϕ(0) > 0 for ε ∈ (0, 1).

In Fig. 1 we plot an example of distribution of grid points along the ellipse. Let
x(l) = (a cos(2πl), b sin(2πl))T be the ellipse with axes ratio a = 3 : b = 1,
where l ∈ [0, 1] ⊂ R/Z. We will construct a new parameterization u ∈ [0, 1]
using the reparameterization function l(u) such that x(u) = x(l(u)), l(0) =
0, l(1) = 1, ∂ul(u) > 0 as follows: since ∂ux(u) = ∂lx(l(u))∂ul(u), we have
g(u) = g(l(u))∂ul(u), where g(l) = |∂lx(l)|. Then if rϕ ≡ 1, we obtain the
ODE

∂ul(u) = L〈ϕ(k)〉
g(l(u))ϕ(k(l(u)))

to be solved. We have used the relation k(u) = k(l(u)). Applying the Runge–Kutta
ODE solver we obtained Fig. 1a–c. The crystalline curvature redistribution {x(li )},
i.e., {li } is obtained from the condition t(li ) = (− sin(2π i/N ), cos(2π i/N ))T, and the
i-th inward normal vector of the circumscribed polygon is n(li ) for i = 1, 2, . . . , N
(Fig. 1d).
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4 Optimal redistribution of points for stationary curves in the plane

The aim of this section is to further motivate the study of curvature adjusted tangential
redistribution. In what follows, we will address the question on what is the optimal
redistribution of vertices {x1, x2, . . . , xN } belonging to a given smooth closed curveΓ
such that the discrepancy between the length/area of Γ and that of a polygon spanned
by vertices {x1, x2, . . . , xN } is minimal. In the case where Γ is a circle, the optimal
redistribution is clearly given by a regular N -polygon. However, it should be obvious
that, e.g., for an oval, the optimal redistribution has to take curvature of the curve into
account. Interestingly enough, we will prove that the length/area discrepancy mini-
mizing redistribution X = {x1, x2, . . . , xN }, for N → ∞, is closely related to the
curvature adjusted redistribution discussed in previous section with the shape functions

ϕ(k) = |k|2/3 for the length discrepancy,

ϕ(k) = |k|1/3 for the area discrepancy.

Suppose that a given smooth closed curve Γ is parameterized by a smooth function
x : [0, 1] �→ R

2. Let X = {x1, x2, . . . , xN } denote the set of grid points of Γ such
that xi = x(ui ) where ui = ih and h = 1/N .

The length discrepancy Let L = ∫

Γ
ds be the length of Γ and

L(X) =
N−1
∑

j=0

|x j+1 − x j |

be the length of a polygon with vertices {x1, x2, . . . , xN }. Here we have identified
xN+i = xi since Γ is assumed to be a closed curve. Clearly, L(X) ≤ L . Our goal is
to find conditions under which the parameterization x(·) yields the minimizer X =
{x1, x2, . . . , xN } of the problem

min
X⊂Γ (L − L(X)). (4.1)

Since

L(X) =
i−2
∑

j=0

|x j+1 − x j | + |xi − xi−1| + |xi+1 − xi | +
N−1
∑

j=i+1

|x j+1 − x j |

we obtain the following expression for the derivative of L with respect to xi in the
direction y ∈ R

2:

L′
xi
(X)y = −ñi · y, ñi = xi+1 − xi

|xi+1 − xi | − xi − xi−1

|xi − xi−1|
Recall that the above minimization problem (4.1) is subject to the constraint xi ∈ Γ for
each i = 1, 2, . . . , N . Therefore, the first order necessary condition for the constrained
minimizer X of (4.1) reads:
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(a) (b)

Fig. 2 A graphical illustrations of the necessary conditions at a point xi for maximizing of the polygo-
nal length discrepancy L(X) (a) and the polygonal enclosed area A(X) (b) of a discrete approximation
X = {x1, . . . , xN } of a smooth curve Γ, respectively

L′
xi
(X)y = 0 for any y ∼ ti , i = 1, 2, . . . , N ,

where the symbol y ∼ ti means that the vector y is collinear with the unit tangent
vector ti to Γ at the point xi ∈ Γ . Hence, the necessary condition for a set X =
{x1, . . . , xN } ∈ R

2×N of points belonging to Γ to be a minimizer of the functional
X �→ L − L(X) can be rewritten as:

ñi ⊥ ti , i = 1, 2, . . . , N . (4.2)

A graphical description of the necessary condition is depicted in Fig. 2a.
Next we will express the necessary condition (4.2) in terms of the parameterization

x(·) of the curve Γ . The Taylor expansion of x(·) at xi = x(ih) yields

xi±1 − xi = ± ∂ux(ui )h + ∂2
u x(ui )

h2

2
± ∂3

u x(ui )
h3

6
+ ∂4

u x(ui )
h4

24
+ O(h5) as h → 0+.

Derivatives ∂ j
u x at ui = ih can be decomposed as follows:

∂
j

u x(ui ) = b j ni + a j ti , j = 1, 2, . . . ,

where ni and ti are, respectively, the unit inward normal and tangent vector to the
curve Γ at a point xi ∈ Γ . Then a1 = g, b1 = 0 where g = gi = |∂ux(ui )| is the local
length at the point xi ∈ Γ . Furthermore, using the Frenet formulae g−1∂u t = ∂s t = kn
and g−1∂un = ∂sn = −kt, we obtain the recurrent relations

a1 = g, b1 = 0, a j+1 = ∂ua j − gkb j , b j+1 = ∂ub j + gka j . (4.3)

for j ≥ 1 where k = ki is the curvature of Γ at xi ∈ Γ .
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Let us define Φ(h) and Ψ (h) as the following auxiliary functions

Φ(h) =
∞
∑

j=1

a j

j ! h j−1, Ψ (h) =
∞
∑

j=1

b j

j ! h j−1.

Using these functions, the forward and backward difference at xi can be expressed as

xi±1 − xi

±h
= Φ(±h)ti + Ψ (±h)ni ,

|xi±1 − xi |
h

=
√

Φ(±h)2 + Ψ (±h)2.

Then the necessary condition (4.2) can be rewritten as:

F(h) = 0,

where h = 1/N . The function F is defined by

F(h) = Φ(h)
√

Φ(h)2 + Ψ (h)2
− Φ(−h)

√

Φ(−h)2 + Ψ (−h)2
.

Due to the symmetry F(−h) = −F(h) we have F(0) = F ′′(0) = 0. Moreover,
F ′(0) = 0 because of the fact that b1 = 0 and so Ψ (0) = 0. The leading order term
of Taylor’s expansion of F(h) is therefore given as:

F(h) = 1

6
F ′′′(0)h3 + O(h4) as h → 0+.

Calculation of F ′′′(0) can be simplified if one uses the substitution ξ(h) :=
Ψ (h)/Φ(h). Notice that Φ(h) > 0 for small |h| � 1 because Φ(0) = a1 = g > 0.
Then F ′′′(0) = −6ξ ′(0)ξ ′′(0). Using (4.3) we finally obtain

F ′′′(0) = 3
b2

2

a3
1

[

a2

2
− 1

3

a1b3

b2

]

.

Since F(h) ≡ 0 we finally deduce the condition

a2

2
− 1

3

a1b3

b2
= 0,

which has to be satisfied by the minimizer X in the limit h → 0+, i.e., for N → ∞.
Now calculating the corresponding terms a1, a2, b2 and b3 from the recurrent relations
(4.3) we obtain

a1 = g, a2 = ∂ug, b2 = kg2, b3 = ∂u(kg2)+ gk∂ug.
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Table 1 The values of length defect ΔL and area defect ΔA for the cases in Fig. 1a, b, c, e the length
optimal case ϕ(k) = |k|2/3, and Fig. 1f the area optimal case ϕ(k) = |k|1/3

X (a) Uniform
ε = 0

(b) Curv. adj.
ε = 0.9

(c) Crystalline
ε = 1

(e) The length
optimal

(f) The area
optimal

ΔL 0.01835 0.00789 0.00966 0.00733 0.01085

ΔA 0.05834 0.05400 0.11998 0.06222 0.04507

Italic values are the minimum in each defect

Hence

1

2

∂ug

g
− 1

3

∂u(kg2)+ gk∂ug

kg2 = 0 on Γ = {x(u); u ∈ [0, 1]},

which is clearly equivalent to the statement: |k|g3/2 = constant, i.e.,

|k|2/3g = constant (4.4)

on the curveΓ = {x(u); u ∈ [0, 1]}. It corresponds to the curvature adjusted tangential
velocity with ϕ(k) = |k|2/3 and the extended relative local length [see (3.1)]

rϕ(u) = g(u)

L

ϕ(k(u))

〈ϕ(k(·))〉 ≡ 1, for each u ∈ [0, 1].

In other words, such a curvature adjusted tangential velocity yields (in the limit of num-
ber of grid points tending to infinity) the best possible approximation of the evolving
family of planar curves, as far as the minimization of the error between the length of
a curve and the length of its polygonal approximation is concerned.

Figure 1e displays an example of the length discrepancy minimizing redistribution
in the case when

ϕ(k) = |k|2/3.

The values of length defect ΔL := 1 − L(X)/L for those X ’s corresponding to the
cases in Fig. 1 and the length optimal case are computed in Table 1.

The area discrepancy Similarly as in the case of the length functional we can ask
the question what is an asymptotically optimal redistribution of points on a given
curve Γ such that the discrepancy in areas enclosed by the curve Γ and its polygonal
approximation is minimal.

The area A enclosed by the curve Γ is given by A = 1
2

∫

Γ
det(x, ∂sx) ds. The area

enclosed by the closed polygonal curve with vertices X = {x1, x2, . . . , xN } is given
by

A(X) = 1

2

N−1
∑

j=0

det(x j , x j+1 − x j ),

123



426 D. Ševčovič, S. Yazaki

where x0 = xN . Clearly, A(X) = 1
2

∑N−1
j=0 det(x j , x j+1). The first order necessary

condition for a set X = {x1, x2, . . . , xN } of vertices to be a minimizer of the area
discrepancy functional

min
X⊂Γ (A − A(X))2,

where the vertices are constrained to belong to the curve Γ reads:

A′
xi
(X)y = 0 for any y ∼ ti , i = 1, 2, . . . , N .

We have

A′
xi
(X)y = 1

2
(det(xi−1, y)+ det(y, xi+1)) = −1

2
det(˜ti , y), ˜ti = xi+1 − xi−1

for any direction y ∈ R
2. Hence, the necessary condition for a set X = {x1, . . . , xN } ∈

R
2×N on Γ to be a minimizer of the functional X �→ (A − A(X))2 can be rewritten

as:

˜ti // ti ⇔˜ti ⊥ ni , i = 1, 2, . . . , N . (4.5)

A graphical description of the necessary condition is depicted in Fig. 2b.
Now, calculating the difference˜ti by means of the Taylor series and using the fact

that det(ti ,ni ) = 1 and det(ti , ti ) = 0, we see that condition (4.5) can be restated as:

1

3
b3h3 + O(h5) = 0 as h → 0+.

Therefore, in the limit h = 1/N → 0,we conclude that b3 = 0. Since b3 = ∂u(kg2)+
gk∂ug = kg2∂u(ln(|k|g2) + ln g), we obtain g3|k| = constant on Γ, i.e., g|k|1/3 =
constant . It means that the area discrepancy curvature adjusted tangential velocity
has the shape function

ϕ(k) = |k|1/3.

Figure 1f displays an example of the area discrepancy minimizing redistribution in
the case when ϕ(k)=|k|1/3. The values of area defectΔA :=1−A(X)/A for those X ’s
corresponding to the cases in Fig. 1 and the area optimal case are computed in Table 1.

5 Numerical approximation scheme

The purpose of this section is to construct a numerical approximation scheme for
solving the governing equation (2.2) for the position vector and the tangential velocity
equation (3.3) satisfying renormalization constraint (3.4).

Scheme For a given initial N -sided polygonal curve P0 = ⋃N
i=1 S0

i , find a family

of N -sided polygonal curves {P j } j=1,2,...,P j = ⋃N
i=1 S j

i , where S j
i = [x j

i−1, x j
i ]
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is the i-th edge with x j
0 = x j

N for j = 0, 1, 2, . . .. The initial polygon P0 is an
approximation of Γ 0 satisfying {x0

i }N
i=1 ⊂ P0 ∩ Γ 0, and P j is an approximation of

Γ t at the time t = t j , where t j = jτ is the j-th discrete time ( j = 0, 1, 2, . . .) if

we use a fixed time increment τ > 0, or t j = ∑ j−1
l=0 τl ( j = 1, 2, . . . ; t0 = 0) if we

use adaptive time increments τl > 0, l = 0, . . . , j − 1. The updated curve P j+1 is
determined from the data for P j at the previous time step by using discretization in
space and time as follows.

Discretization in space Let P = ⋃N
i=1 Si be an N -sided polygonal curve, where

Si = [xi−1, xi ] is the i-th edge and xi is the i-th vertex (i = 1, 2, . . . , N ; x0 = xN ).
The length of Si is denoted by ri = |xi − xi−1|. The i-th unit tangent vector ti can
be defined as ti = (xi − xi−1)/ri . Then the i-th unit tangent angle νi is obtained
from ti = (cos νi , sin νi )

T in the following way: firstly, from t1 = (t11, t21)
T, we

obtain ν1 = 2π − arccos(t11) if t12 < 0; ν1 = arccos(t11) if t12 ≥ 0. Secondly, for
i = 1, 2, . . . , N we successively compute νi+1 from νi :

νi+1 =
⎧

⎨

⎩

νi + arcsin(D) if I > 0,
νi + arccos(I ) if D > 0,
νi − arccos(I ) otherwise,

where D = det(ti , ti+1), I = ti · ti+1.

Finally, we obtain ν0 = ν1 − (νN+1 − νN ) and νN+2 = νN+1 + (ν2 − ν1).
In order to derive a discrete numerical scheme, we follow the flowing finite volume

method adopted for curve evolutionary problems as it was proposed by Mikula et al.
in [17,19]. Let us introduce the “dual” volume S∗

i = [x∗
i , xi ]∪ [xi , x∗

i+1] of Si ,where
x∗

i = (xi−1 + xi )/2 (i = 1, 2, . . . , N ; x∗
N+1 = x∗

1). We define the i-th unit tangent
angle of S∗

i by ν∗
i = (νi + νi+1)/2. The i-th curvature ki has the constant value on

Si , which is obtained from integration of k = ∂sν over Si with respect to s:
∫

Si

k ds = ki

∫

Si

ds = kiri ,

∫

Si

k ds =
∫

Si

∂sν ds = [ν]xi
xi−1

= ν∗
i − ν∗

i−1.

Hereafter,
∫

Si
F ds means

∫ si
si−1

F ds for arc-length si satisfying xi = x(si , ·). Thus we
have ki = (∂sν

∗)i , where (∂sF)i = (Fi − Fi−1)/ri . The i-th curvature k∗
i at xi can be

defined as k∗
i = (ki+1 + ki )/2 which has the constant value on S∗

i .
Next we discretize Eq. (3.3) for the tangential velocity α:

∂s(ϕα) = 〈 f 〉
〈ϕ〉ϕ − f +

(

L

g
〈ϕ〉 − ϕ

)

ω,

where f = (∂2
s β+k2β)ϕ′(k)−kβϕ(k). Integrating the above equation over Si yields

∫

Si

∂s(ϕα) ds = [ϕ(k)α]xi
xi−1

= 〈 f 〉
〈ϕ〉

∫

Si

ϕ(k) ds −
∫

Si

f ds +
⎛

⎜

⎝
L〈ϕ〉

∫

Si

1

g
ds −

∫

Si

ϕ(k) ds

⎞

⎟

⎠
ω.
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Then

ψi = ϕ(k∗
i )αi − ϕ(k∗

i−1)αi−1

= 〈 f 〉
〈ϕ〉ϕ(ki )ri − fi ri +

(

L〈ϕ〉 1

N
− ϕ(ki )ri

)

ω,

fi = ((∂s(∂s∗β))i + k2
i βi )ϕ

′(ki )− kiβiϕ(ki ),

where βi = β(x∗
i , νi , ki ) is constant on Si ,

(∂s(∂s∗β))i = (∂s∗β)i − (∂s∗β)i−1

ri
= 1

ri
[∂sβ]xi

xi−1
, (∂s∗F)i = Fi+1 − Fi

r∗
i

,

r∗
i = (ri + ri+1)/2 is the length of S∗

i , and

L =
N

∑

i=1

ri

is the total length of P . The averages 〈 f 〉 and 〈ϕ〉 are approximated as:

〈 f 〉 = 1

L
N

∑

i=1

fi ri , 〈ϕ〉 = 1

L
N

∑

i=1

ϕ(ki )ri .

To determine {αi }N
i=1, we have to take account of the renormalization constraint

〈ϕα〉 = 0. It can be discretized as:

〈ϕα〉 = 1

L
N

∑

i=1

ϕ(k∗
i )αi r

∗
i = 0.

Notice that L = ∑N
i=1 ri = ∑N

i=1 r∗
i . We define a partial sum of {ψi } by

Ψi =
i

∑

l=2

ψl (i = 2, 3, . . . , N ), Ψ1 = 0.

With this notation we obtain

ϕ(k∗
i )αi r

∗
i = ϕ(k∗

1)α1r∗
i + Ψi r

∗
i .

Summing the above terms yields

N
∑

i=1

ϕ(k∗
i )αi r

∗
i = ϕ(k∗

1)α1L +
N

∑

i=1

Ψi r
∗
i , L =

N
∑

i=1

r∗
i .

123



Curvature adjusted tangential velocity 429

Hence we obtain

α1 = − 1

Lϕ(k∗
1)

N
∑

i=2

Ψi r
∗
i , αi = 1

ϕ(k∗
i )
(ϕ(k∗

1)α1 + Ψi ) (i = 2, 3, . . . , N ).

Discretization in time The semidiscretized (in space) evolution equation (2.2) has
the form:

∂t xi = w∗
i (∂s∗ t)i + αi (∂s∗x∗)i + F∗

i n∗
i , w∗

i = w(xi , ν
∗
i , k∗

i ), F∗
i = F(xi , ν

∗
i )

for i = 1, 2, . . . , N , which follows from integration of ∂t x = w∂s t +α∂sx + Fn [see
(2.2)] over the volume S∗

i . The right-hand side can be discretized as follows:

∂t xi = w∗
i

r∗
i

(

xi+1 − xi

ri+1
− xi − xi−1

ri

)

+ αi

2r∗
i
(xi+1 − xi−1)+ F∗

i n∗
i .

In our approach, we use the semi-implicit numerical scheme for discretization in
time:

x j+1
i − x j

i

τ
= a−x j+1

i−1 + a0x j+1
i + a+x j+1

i+1 + F∗ j
i n∗ j

i ,

a− = b

r j
i

− a, a0 = −(a− + a+), a+ = b

r j
i+1

+ a, a = α
j
i

2r∗ j
i

, b = w
∗ j
i

r∗ j
i

,

where F j
i is the i-th data of an N -sided polygonal curve P j ≈ Γ (t j ) for i =

1, 2, . . . , N . In other words, the following tridiagonal matrix has to be solved in order
to obtain solution in the new j + 1 time level:

−a−τx j+1
i−1 + (1 − a0τ)x

j+1
i − a+τx j+1

i+1 = x j
i + F∗ j

i n∗ j
i τ (i = 1, 2, . . . , N )

subject to periodic boundary conditions x j+1
0 = x j+1

N , x j+1
N+1 = x j+1

1 . We note that
the tridiagonal matrix is strictly diagonally dominant provided that τ is small enough.
The time step τ can be chosen also adaptively by using the following expression

τ j = r j
min

4(1 + λ)

(

w
∗ j
max

r j
min

+ |α j |max

2

)−1

, (5.1)

where λ>0,Fmin =min1≤i≤N Fi ,Fmax =max1≤i≤N Fi and |F|max = max1≤i≤N |Fi |.
With this choice of τ j the solution {x j+1

i }N
i=1 exists and is unique.
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6 Computational results

This section is devoted to presentation of various numerical experiments. In all figures,
for the prescribed τ̂ > 0, we plot every μτ̂ discrete time step using discrete points
representing the evolving curve. In every 3μτ̂ time step, we plot a polygonal curve
connecting those points, where μ = [[T/τ̂ ]/100] ([x] is the integer part of x), and
T is approximation of the final time which computed as follows. Let At and Lt be
the enclosed area and the total length of P j at time t = t j . In Figs. 9, 10 and 11,
T is the smallest discrete time t for which both conditions |At/At−τ − 1| < δ and
|Lt/Lt−τ − 1| < δ are satisfied. In all other figures, T is the smallest discrete time
t such that At/A0 < δ. In figure captions, we provide the number of grid points
N , ε ∈ (0, 1) for ϕ(k) = 1−ε+ε√1 − ε + εk2, κ1 and κ2 for the relaxation function
ω(t). In all examples, the initial discretization is given by the uniform N -division of
the u-range [0, 1].

Initial test curves As initial test examples we use a circle, an ellipse and the follow-
ing initial curves x(u, 0) = (x1(u),x2(u))T depicted in Fig. 3 and parameterized by

x1(u) = cos z, x2(u) = 0.7 sin z + sin x1 + x2
3, u ∈ [0, 1],

where x3 = sin(3z) sin z and z = 2πu (left), and

x1(u)=1.5 cos z, x2(u)=1.5(0.6 sin z+0.5x2
3+0.4 sin x4+0.1 sin x5), u ∈[0, 1],

where x3 = sin(3z) sin z,x4 = 2x2
1,x5 = 3e−x1 and z = 2πu (right) (cf. [15]).

Classical curvature flows According to the classical convexification theory and the
asymptotic behavior derived by Grayson, Gage and Hamilton, in the case where the
geometric equation is given by β = k, any embedded curve becomes convex in finite
time [9], and any convex curve shrinks to a single point. Its asymptotic shape is a
circle [8]. See Fig. 4.

Fig. 3 Initial curves with grid points corresponding to a uniform division of u ∈ [0, 1] with N = 100
points
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(a) (b)

(a’) (b’)

Fig. 4 Numerical examples with the normal velocity β = k. a, b are evolving curves, respectively. a′,
b′ are the corresponding final magnified curves. Numerical parameters: N = 100, ε = 0.1, κ1 = κ2 =
100, τ = 0.1N−2, δ = 10τ, and τ̂ = 0.001

Affine curvature flows Convexification also holds true in the case where the evolu-
tion law is the so-called affine scale space normal velocity β = k1/3 (cf. [24]). In this
case, convexification was proved and the asymptotic behavior was derived by Sapiro
and Tannenbaum. They showed that any embedded curve shrinks to a single point
with an ellipse as the asymptotic shape [24]. See Fig. 5.

Experimental order of convergence (EOC) In the case of the normal velocity
β = k1/3, any ellipse shrinks to a point homothetically. It means that an ellipse is
a self-similar solution to (1.1) (see Fig. 6).

By using the explicit self-similar solution, the so-called experimental order of con-
vergence (EOC) can be obtained in the following way.

When the position vector is described by x(u, t) = η(t)z(u) with η(0) = 1, and
when the initial curve is an ellipse x(u, 0) = z(u) = (a cos(2πu), b sin(2πu))T

with a, b > 0, for the curvature we obtain k(u, t) = ab η(t)−1ζ(u)−3/2, ζ(u) =
a2 sin2(2πu)+ b2 cos2(2πu). In the case when β = k1/3, ∂t x · n = (ab)1/3η(t)−1/3

ζ(u)−1/2 holds. On the other hand, we have ∂t x·n = ∂tη(t) z·n = −ab ∂tη(t) ζ(u)−1/2.
Hence we obtain the rate η(t) = (1 − 4

3 (ab)−2/3t)3/4 and the extinction time
T = 3

4 (ab)2/3, which is determined by η(T ) = 0.
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(a) (b)

(b’)(a’)

Fig. 5 Numerical examples with affine the space scale normal velocity β = k1/3: a, b are evolving
curves, and a′, b′ are the corresponding final magnified curves. In both cases, parameters were chosen:
N = 100, ε = 0.1, κ1 = κ2 = 100, τ = 0.1N−2, δ = 10τ, and τ̂ = 0.001

Numerical errors at t = t j with the number of points N can be defined as

err j
p(N ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

max
1≤i≤N

∣

∣

∣

∣

∣

(x
j
1i )

2

(a η(t j ))2
+ (x

j
2i )

2

(b η(t j ))2
− 1

∣

∣

∣

∣

∣

, if p = ∞,

⎛

⎝

1

N

∑

1≤i≤N

∣

∣

∣

∣

∣

(x
j
1i )

2

(a η(t j ))2
+ (x

j
2i )

2

(b η(t j ))2
− 1

∣

∣

∣

∣

∣

p
⎞

⎠

1/p

, if 1 ≤ p < ∞,

where x j
i = (x

j
1i ,x

j
2i )

T is the i-th grid point. Therefore we can define the
Lq((0, tM ), L p(0, 1)) error such as

E p,q(N ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max
1≤ j≤M

err j
p, if q = ∞,

⎛

⎝

1

M

∑

1≤ j≤M

(err j
p)

q

⎞

⎠

1/q

, if 1 ≤ q < ∞,
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(a) (b)

(b’)(a’)

(c) (d)

(d’)(c’)

Fig. 6 From a–d, ε = 0, 0.1, 0.5, 0.9. Figures a–d are evolving ellipses starting from the same ellipse
with the axes ratio 3 : 1, and a′–d′ are the final magnified curves, respectively. Numerical parameters:
N = 128, κ1 = κ2 = 100, τ = 0.1N−2, δ = 10τ, and τ̂ = 0.001

where tM < T . If E p,q(N ) ≈ N−μ holds, then E p,q(N/2) ≈ 2μN−μ also holds.
From these approximations, we may expect μ ≈ log2(E p,q(N/2)/E p,q(N )). We
therefore use the right hand side as an indicator of the numerical convergence, i.e., the
EOC from the Lq((0, tM ), L p(0, 1)) error is defined as

EOCp,q(N ) = log2
E p,q(N/2)

E p,q(N )
.

Tables 2, 3, 4, 5 indicate the Lq((0, tM ), L p(0, 1)) errors E p,q(N ) and EOC
EOCp,q(N ) for N = 24, 25, 26, 27, 28, (p, q) ∈ {1, 2,∞}, and ε = 0, 0.1, 0.5, 0.9.
Parameters are τ = 0.1N−2 and κ1 = κ2 = 100, and sample data are used at the
time t j = 1.5 j/M with j = 0, 1, . . . ,M = 200. Ellipses with the axes ratio 3 : 1 are
the same as in Fig. 6. In this case, the extinction time T = 3

4 (ab)2/3 = 1.560 · · · >
tM = 1.5. Since the governing system is of the parabolic type, we have used the time
step τ ≈ N−2. From Tables 2, 3, 4, 5, we can observe EOC ≈ 2 independently of
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Table 2 ε = 0

N p E p,1(N ) EOCp,1(N ) E p,2(N ) EOCp,2(N ) E p,∞(N ) EOCp,∞(N )

16 1 0.5380220 0.5509331 0.6336300

2 1.0534598 1.0704854 1.2142337

∞ 5.9554974 6.0404891 6.8679124

32 1 0.1792467 1.586 0.1825282 1.594 0.2122894 1.578

2 0.3427337 1.620 0.3437584 1.639 0.3692181 1.718

∞ 1.8652997 1.675 1.8668395 1.694 1.9453397 1.820

64 1 0.0537848 1.737 0.0552922 1.723 0.0691816 1.618

2 0.1018371 1.751 0.1024454 1.747 0.1161671 1.668

∞ 0.5383176 1.793 0.5391202 1.792 0.5812710 1.743

128 1 0.0148900 1.853 0.0154231 1.842 0.0202166 1.775

2 0.0281297 1.856 0.0283963 1.851 0.0334721 1.795

∞ 0.1466961 1.876 0.1470527 1.874 0.1622977 1.841

256 1 0.0038891 1.937 0.0040411 1.932 0.0053923 1.907

2 0.0073462 1.937 0.0074271 1.935 0.0088928 1.912

∞ 0.0381401 1.943 0.0382441 1.943 0.0425560 1.931

Table 3 ε = 0.1

N p E p,1(N ) EOCp,1(N ) E p,2(N ) EOCp,2(N ) E p,∞(N ) EOCp,∞(N )

16 1 0.5290974 0.5419132 0.6255006

2 1.0325342 1.0494491 1.1963774

∞ 5.8214106 5.9054873 6.7533333

32 1 0.1743048 1.602 0.1774370 1.611 0.2056751 1.605

2 0.3314933 1.639 0.3324330 1.658 0.3553780 1.751

∞ 1.7951405 1.697 1.7964082 1.717 1.8597097 1.861

64 1 0.0518231 1.750 0.0532112 1.738 0.0656620 1.647

2 0.0974615 1.766 0.0979813 1.762 0.1092110 1.702

∞ 0.5117050 1.811 0.5122756 1.810 0.5425148 1.777

128 1 0.0142197 1.866 0.0146984 1.856 0.0188710 1.799

2 0.0266349 1.872 0.0268569 1.867 0.0309018 1.821

∞ 0.1377070 1.894 0.1379516 1.893 0.1485155 1.869

256 1 0.0036908 1.946 0.0038251 1.942 0.0049766 1.923

2 0.0069038 1.948 0.0069696 1.946 0.0081078 1.930

∞ 0.0354977 1.956 0.0355656 1.956 0.0384550 1.949

the values ε’s. It means that these four tangential redistribution methods seem to be
almost equally effective in view of the EOC.

The length and the area discrepancy An ellipse is a shrinking self-similar solution
to (1.1) in the case of the normal velocity β = w(ν)k, as well as the affine curvature
flows β = k1/3. Here the weight is
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Table 4 ε = 0.5

N p E p,1(N ) EOCp,1(N ) E p,2(N ) EOCp,2(N ) E p,∞(N ) EOCp,∞(N )

16 1 0.4042607 0.4129555 0.4910215

2 0.7821867 0.7914808 0.9293693

∞ 4.3834563 4.4198180 5.1595141

32 1 0.1310031 1.626 0.1322110 1.643 0.1454189 1.756

2 0.2483055 1.655 0.2485107 1.671 0.2563577 1.858

∞ 1.3333636 1.717 1.3334130 1.729 1.3505401 1.934

64 1 0.0362174 1.855 0.0366554 1.851 0.0410071 1.826

2 0.0669561 1.891 0.0670737 1.889 0.0698023 1.877

∞ 0.3448818 1.951 0.3449364 1.951 0.3496285 1.950

128 1 0.0093125 1.959 0.0094400 1.957 0.0106475 1.945

2 0.0170431 1.974 0.0170821 1.973 0.0178686 1.966

∞ 0.0863334 1.998 0.0863494 1.998 0.0876178 1.997

256 1 0.0023454 1.989 0.0023787 1.989 0.0026894 1.985

2 0.0042800 1.994 0.0042904 1.993 0.0044945 1.991

∞ 0.0215749 2.001 0.0215790 2.001 0.0218997 2.000

Table 5 ε = 0.9

N p E p,1(N ) EOCp,1(N ) E p,2(N ) EOCp,2(N ) E p,∞(N ) EOCp,∞(N )

16 1 0.4408205 0.4417817 0.4758601

2 0.8949908 0.8959769 0.9555951

∞ 5.1442600 5.1492367 5.4758260

32 1 0.1161771 1.924 0.1164446 1.924 0.1245329 1.934

2 0.2229378 2.005 0.2230329 2.006 0.2323277 2.040

∞ 1.2060030 2.093 1.2062437 2.094 1.2425380 2.140

64 1 0.0290339 2.001 0.0290913 2.001 0.0307145 2.020

2 0.0543111 2.037 0.0543233 2.038 0.0558738 2.056

∞ 0.2827757 2.093 0.2827892 2.093 0.2876229 2.111

128 1 0.0072402 2.004 0.0072539 2.004 0.0076294 2.009

2 0.0134384 2.015 0.0134411 2.015 0.0137813 2.019

∞ 0.0690806 2.033 0.0690829 2.033 0.0700398 2.038

256 1 0.0018087 2.001 0.0018121 2.001 0.0019041 2.002

2 0.0033502 2.004 0.0033509 2.004 0.0034332 2.005

∞ 0.0171611 2.009 0.0171616 2.009 0.0173862 2.010

w(ν) = a2b2

2T (a2 sin2 ν + b2 cos2 ν)
,

when the axes ratio of ellipse is a : b and the extinction time is T > 0. Similarly as in the
previous subsection EOC, one can obtain the position vector of a shrinking ellipse by
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Table 6 Numerical discrepancy of the length ΔL ,q and the area ΔA,q for q = 1, 2,∞ in various choice

of ϕ(k), where ϕε(k) = 1 − ε + ε
√

1 − ε + εk2

ϕ(k) ΔL ,1 ΔL ,2 ΔL ,∞ ΔA,1 ΔA,2 ΔA,∞

ϕ0(k) ≡ 1 0.014487 0.044087 0.461457 0.026691 0.099960 1.119496

ϕ0.1(k) 0.013191 0.039820 0.417640 0.024203 0.089520 1.000038

ϕ0.5(k) 0.005216 0.016007 0.172409 0.009032 0.033209 0.370852

ϕ0.9(k) 0.001666 0.004468 0.047258 0.002119 0.008126 0.092089

ϕ1(k) = |k| 0.001051 0.001213 0.006871 0.001291 0.002045 0.018642

|k|2/3 0.001124 0.002903 0.030946 0.001427 0.005267 0.060430

|k|1/3 0.003680 0.011821 0.128524 0.006159 0.023999 0.270145

x(u, t) = η(t)z(u) with the scaling function η(t) = √
1 − t/T (η(0) = 1, η(T ) = 0)

and the initial ellipse x(u, 0) = z(u) = (a cos(2πu), b sin(2πu))T. By using this exact
solution, we will calculate the numerical test of the length and the area discrepancy in
the following way.

Numerical discrepancy of the length and area defects at the time t = t j can be
defined as

Δ
j
L =

∣

∣

∣

∣

1 − Lt j

Lt j

∣

∣

∣

∣

, Δ
j
A =

∣

∣

∣

∣

1 − At j

At j

∣

∣

∣

∣

,

respectively. Here Lt = η(t)L0 and At = η(t)2 A0 are the length and area of Γ t , and
Lt and At are the length and area of P j at t = t j , respectively. Therefore we can
define the Lq(0, tM ) numerical discrepancy of the length and area as follows

Δ∗,q =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max
0≤ j<M

Δ
j∗, if q = ∞,

⎛

⎝

1

M

∑

0≤ j<M

(Δ
j∗)q

⎞

⎠

1/q

, if 1 ≤ q < ∞,

where ∗ = L , A and tM ≤ T .
Table 6 indicates ΔL ,q and ΔA,q for q = 1, 2,∞. Parameters are: N = 100, τ =

0.1N−2 and κ1 = κ2 = 100, the extinction time is T = 1, sample data are used
at the time t j = T j/M with j = 0, 1, . . . ,M = 200, and the axes ratio of the
initial ellipse Γ 0 are a = 3 : b = 1. As for the shape functions we chose: ϕ(k) =
1 − ε + ε

√
1 − ε + εk2 with ε = 0, 0.5, 0.9, 1, ϕ(k) = |k|2/3 and ϕ(k) = |k|1/3. In

Table 6, we can observe that the shape function ϕ(k) = |k| attains the minimum value
in each Δ∗,q for ∗ = L , A and q = 1, 2,∞.

Weighted curvature flows Asymptotic behavior of solutions to the weighted curva-
ture flow β = w(ν)k is related to self-similar shrinking solutions, which need not be
unique. For details we refer to the paper by Yagisita [28] and references therein. In
Fig. 7 we show evolving family of plane curves with β = w(ν)k.
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(a) (b)

(b’)(a’)

(c) (d)

(d’)(c’)

Fig. 7 a, a′, b, b′ are in the case where the weight is w(ν) = 1 − (7/9) cos(3ν), and c, c′, d, d′ are those
wherew(ν) = 1 − 0.8 cos(4(ν−π/4)). Both weights are used in [15]. a, b (resp. c, d) are evolving curves,
respectively. a′, b′ (resp. c′, d′) are the corresponding final magnified curves. In all cases, parameters are
N = 100, ε = 0.1, κ1 = κ2 = 100, τ = 0.1N−2, δ = 10τ, and τ̂ = 0.001

123
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(a) (b)

(b’) (c)(a’)

Fig. 8 Numerical examples for the normal velocity β = w(ν)k + F(ν), w(ν) = 1 − 0.7 cos(6ν), F(ν) =
sin(ν). a, b are evolving curves, respectively. a′ and b′ are the corresponding final magnified curves. In
both cases, parameters were chosen as: N = 100, ε = 0.1, κ1 = κ2 = 100, τ = 0.1N−2, δ = 10τ, and
τ̂ = 0.001. The function σ(ν) = 1 + (0.7/35) cos(6ν) is the unique solution of w = σ + ∂2

ν σ, and c is the
locus of the boundary of the Wulff shape of σ, which is given by σ(−n)+ (∂νσ )t

Forced curvature flows The theory of Grayson, Gage and Hamilton was generalized
to the case of an anisotropic curvature driven flow by Chou and Zhu in [3]. They
considered the case where the evolution law is given by β = w(ν)k + F(ν) with
w(ν) = σ(ν) + ∂2

ν σ (ν), where σ is a given anisotropy function, σ(ν + π) = σ(ν),

and F(ν + π) = −F(ν). They proved that any embedded curve becomes convex in
finite time [4], and any convex curve shrinks to a single point with the asymptotic
shape being a self-similar solution to β = w(ν)k, i.e., the Wulff shape of σ [3]. In
Fig. 8 we illustrate the convexification theory and the asymptotic behavior of evolving
plane curves due to Chou and Zhu.

Loss of convexity phenomenon In the case when the normal velocity is given by
β = k + F(x, ν), an initially convex curve may loose its convexity in finite time for
a special choice of the external force F . In Fig. 9 we present such examples with F
presented by Nakamura et al. in [21]. Note that the usual crystalline curvature flow is
unable to capture this convexity-breaking phenomena.
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(a) (b) (c) (d)

Fig. 9 a, b correspond to the external force F = −2pq sin(q(4x2
1 + x2

2))(−4x1 sin ν + x2 cos ν) with

p = 1.25, q = 3.0. c, d correspond to the force F = 2pqπ cos(qπ |x|2)x · n, p = 1.956, q = 1.15. a
(resp. c) indicates evolving curves starting from the unit circle (resp. ellipse with axes ratio 1 : 2), and b
(resp. d) is the final curve at T . Parameters are N = 120, ε = 0.5, κ1 = 100, κ2 = 0, τ = τ̂ = 0.001, and
δ = 10−5

Image segmentation by using a gradient flow Let γ (x) > 0 be an inhomogeneous
energy density along the curve Γ t . If γ is differentiable, then the L2 gradient flow of
the following energy

E(Γ t ) =
∫

Γ t

γ (x) ds

is realized by the geometric equation (1.1) of the form β = γ (x)k − ∇γ (x) · n. Such
a gradient flow can be successfully utilized in various image segmentation problems.
For example, let an image intensity function be denoted by I : R

2 ⊃ Ω → [0, 1]. We
assume that I (x) is a piecewise constant function on each pixel. Here I = 0(I = 1)
corresponds to the black (white) color and I ∈ (0, 1) corresponds to a scale of gray
colors. For simplicity, we assume that our target figures are drawn in white color with
the black background. Then edges of the image correspond to regions where the gradi-
ent |∇ I (x)| is sufficiently large. Let us introduce an auxiliary density function γ (x) =
f (|∇ I (x)|) where f is a smooth edge detector function such as f (s) = 1/(1 + s2) or
f (s) = e−s . Hence the solution curve Γ t of β = γ (x)k − ∇γ (x) · n has the tendency
to minimize the energy E(Γ t ). In other words, it moves toward the edge in the image
on which |∇ I (x)| is large. This is a fundamental idea of image segmentation, and it
has developed to a sophisticated numerical scheme [17,18]. An example of such a
curve evolution converging to an edge in the given images is depicted in Fig. 10.

Image segmentation for sharp images If contrast of the target image is sufficiently
high, a simpler scheme described in [2] can be used. We consider the geometric flow
β = k + F and define the forcing term F(x) as follows:

F(x) = Fmax − (Fmax − Fmin)I (x) (x ∈ Ω),

where Fmax > 0 corresponds to pure black (background) and Fmin < 0 corresponds
to pure white (the object to be segmented). Maximal and minimal values determine
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(c) (d) (e)

Fig. 10 a Indicates the original bitmap image faded shadow “Venus” inΩ = [−1.5, 1.5]2 with the 600 pix-
els resolution, b indicates image intensity function I (x) in 3D, and c is the gray scaled auxiliary function
γ (x). d Indicates evolving curves starting from circle with radius 1.5, and e is the final curve at T . Parame-
ters were chosen as: N = 100, ε = 0.1, κ1 = 100, κ2 = 0, τ̂ = 0.001, and δ = 10−5. Adaptive time step
sizing (5.1) with λ = 1 has been used

the final shape because in general 1/F is equivalent to the minimal radius the curve
can attain. Choosing an appropriate F, we can make the final shape be rounded, or
we can prevent the curve from passing through the outline. A segmentation of a given
sharp image by means of a plane curve evolution is shown in Fig. 11.

7 Conclusions

In this paper, we proposed and analyzed a new class of tangential velocities by which
we can control tangential motion and grid point redistribution of plane curves that
evolve with the normal velocity depending on a general function of the curvature, tan-
gential angle and the position vector. The curvature adjusted tangential velocity may
not only distribute grid points uniformly along the curve but also produce a desirable
concentration and/or dispersion depending on the curvature. We also demonstrated that
curvature adjusted tangential redistribution yields the best possible approximation of
the evolving family of planar curves as far as the minimization of the error between
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(a) (b)

(c)

Fig. 11 a indicates the original bitmap image “ya” (it is the Chinese character for arrow) in Ω =
[−1.5, 1.5]2 with the 600 pixels resolution, b indicates evolving curves starting from circle with radius
2, and c is the final curve at T . Parameters are N = 200, ε = 0.1, κ1 = 100, κ2 = 0, τ̂ = 0.0005, δ =
10−5/2, Fmax = 30 and Fmin = −30. Adaptive time step sizing (5.1) with λ = 1 has been used

the length and area of a stationary curve and that of its polygonal approximation is
concerned. Numerical experiments based on semi-implicit numerical flowing finite
volume method demonstrated capability of our new method.

Acknowledgments The authors would like to express our gratitude to the anonymous referees for their
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