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Abstract The purpose of this paper is to construct the early exercise boundary for
a class of nonlinear Black—Scholes equations with a volatlity function depending
on the option price. We review and revisit a method how to transtorm the problem
into a solution of a time depending nonlinear parabolic equation defined on a fixed
domain. An example of numerical computation of the early exercise boundary for a
nonlinear Black—5Scholes equation is also presented.

1 Black-Scholes Equations with a Nonlinear Volatility
Function

The main purpose of this paper is to review and revisit the fixed domain transfor-
mation method adopted for solving a class of nonhnear Black—-Scholes equations
having the form:
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(1)
A solution V = V(S5.¢) can be identified with a price V' of the option contract in
the future maturity time 7 > 0 (e.g. call or put) where S > 0 is the underlying asset
value at the present time ¢ € [0. T'). Here, r > 0 is the riskless interest rate, g > 0 is
the dividend yield rate of the underlying asset. For American style of a call option,
the free boundary problem consists in construction of the early exercise position
3= 38,(1) and the solution V' = V(S5.7) to (1) defined on the time dependent
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domain 0 < S < S,(¢). 0 <t <7 (cf. Kwok [13]). V is subjected to the boundary
conditions yielding C' smooth pasting of V(S.r)and V(S. T)at § = S (1)

V(0,1)=0, V(S,).0)=S8;0)—E, dsV(Ss(1).1)=1, (2)
and the terminal pay-off condition at expiry t = 7,
V(S.T)=(S — E)". (3)

where £ > (0 is the exercise price.

We briefly mention a motivation for studying the nonlinear Black—Scholes
equation having the form of (1). Such equations with a volatility function
a(slag V.S. T — 1) arise from modeling the option prices by taking into account
nontrivial transaction costs (¢f. Leland [14], Hoggard et al. [ 11}]. Avellaneda and
Paras [3]), market feedbacks and effects due to large traders choosing given stock-
trading strategies (Frey [7], Frey and Patie [8], Frey and Stremme [%], During
et al. [6], Schonbucher and Wilmott [15]), the risk adjusted pricing methodology
model due to Kratka [12] and its modification developed by Jandatka and SevZovid
|11, [7]). As an example for application of the numerical method, we consider a
nonlinear model taking into account imperfect replication and investor's preferences
which has been proposed by Barles and Soner in [4]. It investor's preferences are
characterized by an exponential utility function they derived a nonlinear Black-
Scholes equation with the volatility function o given by

? 2 w2 ; . 2 2 n2 \
o (S7asV. S.1)=6" (1 + W¥(a“e""S7d5V)). (4)
Here 67 >0 is a constant historical volatility of the asset price returns, ¥ is

the unique solution to the ODE: ¢'(x) = (¥(x) + 1)/(2 \/.\:U/(x) — X)L, ¥(0)=0
and @ = 0 is a constant depending transaction costs and investor’s risk aversion

parameter (see |4] for details). The function ¥ satisfies: ¥(x) = O{-rla) for x —(
and ¥(x) = O(x) for x — o0, For practical purposes, the solution ¥(x) can be
constructed from an implicit equation obtained in [5].

We revisit an iterative numerical algorithm for solving the free boundary problem
(1)-(2) developed by SevCovi¢ in [17]. The key idea of this method consists in
transformation of the free boundary problem into a semilinear parabolic equation
defined on a fixed spatial domain coupled with a nonlocal algebraic constraint
equation for the free boundary position. This method has been analyzed and utilized
in a series of papers [ 1, 2. 16=19] by Ehrhardt and Ankudinova and the author, The
disadvantage of the original method consists in the necessity of solving an algebraic
constraint equation. In this approach, highly accurate evaluation of the denvative of
a solution at one point entering the algebraic constraint is needed (cf. [17]). In this
note, we present a new efficient way how to overcome this difficulty by considering
an equivalent integrated form of the algebraic constraint. We also present results
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of numerical calculation of the free boundary position for the Barles and Soner
nonlinear extension of the Black-Scholes model.

2 Fixed Domain Transformation of the Free Boundary
Problem

We recall method how to transform the free boundary problem (1i-(3) into a
form of a nonlinear parabolic equation defined on a fixed domain and satisfying
a nonlocal algebraic constraint equation developed by the author in [17]. It is based
on the following change of independent variables and the transformed function
IT = [1{x. 1) defined as follows:

t=T—t, x=In(p(r)/S). Hx.t)=V(S.1)—SdsV(S.1), (5)

where p(t) =8,(7 — 7). Clearly, r€ (0. T)and x € (0, 2¢) iff S €(0,85/(r)). The
boundary value x = 0 corresponds to the free boundary position § = §;(7) whereas
x = + o¢ corresponds to the default value § = 0 of the underlying asset. Under the
structural assumption

D<g=<r

made on the interest and dividend yield rates and following derivation of the
equation for f7, it turns out that the function I7 and the free boundary position p
satisfy the following system of parabolic equation (6) with algebraic constraint (7):

7

art +(b( ) n-?) aIrr 1 0 ( *an)+ =0 6)
- ——— T I (J " —— =\,
ar  \ ax 20x\" x )77 | |

o.r)y= — E, (400, 7)=0, x>0.t€(0.7),

[1(x.0) = [ —FE. forx < In{r/q).
| 0. otherwise,
rE o (. 71(0, 7). p(1). 1) 817 | , 1k
p(T) = ; 19710, 0. pL7). 7) — (0. 7)., with p(0)= —, (7)
7 2¢ dx ¢

o
where 0 =6 (d,. I1(x. 7). p(T)e " . 7). h(1)= ﬁ:j}” +r—g (cf. [17]). Notice that
(7) 1s not quite appropriate for construction of a robust numerical approximation
scheme since any small inaccuracy in approximation of the value d,.[7(0. 1) is
immediately transferred in to the entire computational domain x € (0. oc) through
the free boundary function p{1) entering (6). Instead of (7), we present a new equiv-
alent integrated equation for the free boundary position p(t). Indeed, integrating the
governing equation (6) for x € (0. nc) taking into account the boundary conditions
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[0, 71)= — E.[I{oc, 1) =0 (and consequently d, [1(~c. 1) =0), we obtain the
following spatially integrated form of the algebraic constraint:

[ e
{—(Elnp(r) - H(I-f)d-‘f) +gp(t) — qE
dr 0

=f 1 . di1
+f (—;rr"(r'}_.hﬂ{,r,r).p(r)e_".ﬂ?(r.r)+F'n(-1'-1‘)) dx =0.(8)
0 ' vx

3 Numerical Scheme Based on Operator Splitting Technique

The idea of the iterative numerical algorithm is based on the original numerical
discretization scheme proposed by the author in [17]. We modify this method
by considering the alternative integrated form (8) of the constraint between []
and p. The spatial domain x € (0. o0) is restricted to a finite interval of values
x € (0, L) where L >0 is sufficiently large. For practical purposes one can take
[.223 (see [17]). Let us denote by k& >0 the time step, k=T7/m and by 71 >0
the spatial step, i = L/n where m.n € [N stand for the number of time and space
discretization steps, respectively. We denote by [T/ an approximation of IT(x;. t;).
P! A o(7;). b b(t;) where x; =ihi.7; = jk. We furthermore denote by 17 the

vector 1?2 = 4§l .1 = Lyves, n}. We approximate the value of the volatility o at the
node (x;. ;) by the finite difference approximation as tollows:

r:r,:‘f =J('(H;’;|_| — !7,-1 )/}?,,O’fi’_"".fj').

We set [77(x) = IT(x;.0). Next, following the idea of the operator splitting method
discussed 1n [17], we decompose the above problem into two parts—a convection

X v ; v o " ; o |
part and a diffusive part by introducing an auxiliary intermediate step f1/72. OQur
discretization of (8) and (6) reads as follows:
(Integrated form of the algebraic part)

Elnp’ =EInp’~" + I(I1’~")y = Iy(I1) + k (qE — gp’ = I,(p?. 1T7)), (9)

. . . . . 0
where /4(IT) stands for numerical trapezoid quadrature of the integral [, [T(§)d&
whereas I, (p/. IT) is a trapezoid quadrature of the second integral in (8), i.e.

e 1 , e all |
Li(p! . TT) =~ / (—;n‘(a_tﬂ(.ﬂ.p*’y | -f,r'}ﬂ(-“ + ril(x) | dx.
0 = ] |

(Convective part)

mi—1 — i~ N
- —IT771 =0,
: ’ax” (10)
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(Diffusive part)

k 2 dx 3

7/ —gi-3 Iy g | o 3 0 - '
ST a{_((n")‘—”‘*)+rﬁ"=ﬂ- (11}
A A :

The convective part can be approximated by an explicit solution to the transport
11

. - F = » . - .:' 3
equation d.IT + b(t)d JT =0. Thus the spatial approximation [I7 ° can be
constructed from the formula

H,"_% _ (IT77UE). & =x;—Inp/ +Inp/~ —(r —q)k >0,
' | —E. otherwise,

(12)
. T : . : . -1
where a piecewise linear interpolation between discrete values [T/ i = 0. 1.....n,
is being used to compute the value IT7 "'(x; = Inp/ +Inp/ ' = (r — g)k).
The diffusive part can be solved numerically by means of finite differences. Using
a central finite difference approximation of the derivative o, /7' we obtain

nr:f B nfj_j + rn_f {ﬂ-a'j )2 nrf{-&-l o n;f—l o L (ﬂj ]2 nf'{l-[ - nf'j
k ' 2 20 2h ' h
P s
—(67_)* = ; i1} =0, (13)
!

Now, (9), (12) and (13) can be rewritten in the operator form:
ol =& . phy, mt=gw1l.p). U, ot =mi1,

where % (IT/ . p/) is the right-hand side of the integrated algebraic equation (9).
The operator .7 (IT/. p’ ) is the transport equation solver given by the right-hand
side of (12) and & = /(17 p’) is a tridiagonal matrix with coefficients given
corresponding to (13). Ateachtime level z;, j=1,..., m, the above system can be
solved approximately by means of successive iterations procedure. Given a discrete
solution I7/7', we start up iterations by defining /77" = J7/7!, p/"" = p/~!, Then
the (p -+ 1)-th approximation of 7/ and p’ is obtained as a solution to the system:

L p41 e N P | —n.p 7 P i p1-
pPt = TP, ph?y, TPt = g1, plPt,

G/ (MP, pf'-ﬂ-i-l_}nffﬂ"‘l — nf—?ﬂ'*-'_ (14}

We repeat the procedure for p=0,1.... p,.., until the prescribed tolerance is
achieved.

Al the end of this section, we present a numerical example of approximation
of the early exercise boundary for the Barles and Soner model by means of a
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Fig. 1 A comparison of pir) = .5'_;-{?' — 1) (solid fine) for the Barles and Soner model with
a = 0.15 and for the Black-Scholes equation, i.e.a =0

solution to the transformed system of equations. In this model the volatility 1s
given by expression (4). A discrete solution pair (/7, p) has been computed by
our iterative algorithm for the model parameters: £ = 10,7 = | (one vear), r = 0.1
(10% p.a) . ¢ =0.05 (5% p.a.) and 6 = 0.2. As for the numerical parameters, we
chose n = 750 spaual points and m = 225.000 time discretization steps. The step
k =T /m represents 140 s in the real time scale. In order to achieve the precision
1077 we used py,. = 6 micro-iterates in (14). A graphical plot of the early exercise
boundary p(t) = §,(7 — 7) is shown in Fig. 1. Taking a positive value of the risk
aversion coefficient @ = 0.15 results in a substantial increase of the free boundary
position p(r) in comparison to the linear Black-Scholes equation with constant
volatility o = . Notice that the Barles and Soner model for ¢ = 0 coincides with
the linear Black—Scholes model with constant volatility.
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