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Abstract. We propose and analyze a constrained level-set method for semi-automatic

image segmentation. Our level-set model with constraints on the level-set function
enables us to specify which parts of the image lie inside respectively outside the

segmented objects. Such a-priori information can be expressed in terms of upper

and lower constraints prescribed for the level-set function. Constraints have the
same conceptual meaning as initial seeds of the popular graph-cuts based meth-

ods for image segmentation. A numerical approximation scheme is based on the

complementary-finite volumes method combined with the Projected successive over-
relaxation method adopted for solving constrained linear complementarity prob-

lems. The advantage of the constrained level-set method is demonstrated on several
artificial images as well as on cardiac MRI data.
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1. Introduction

The level-set methods for the image segmentation have been studied and applied

during the last two decades. The level-set method applied in the image segmenta-

tion is typically an iterative method. The segmentation starts with an initial curve G0

representing an initial guess for the segmented object and it is evolved in the normal

direction towards the segmented object by means of a suitable geometric law taking

into account the orientation of the segmented object and also the curvature of evolved

curves. Loosely speaking, the better the initial guess is, the better and faster the seg-

mentation process is. This is profitable for processing of time sequences where the
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final segmentation of one frame may serve as the initial guess for the next frame. We

refer the reader to a wide range of literature on this topic e.g. Caselles et al. [7],

Handlovičová et al. [15], Osher, Paragios [25] or Sethian [28] and references therein.

In comparison to parametric models studied by Beneš et al. [1] and Kass et al. [18] the

level-set methods can handle topological changes and therefore one initial curve can

split and segment more separate objects. The level-set method is still subject of very

active research. In [2], time sequences of 2D MRI slices are segmented as 3D data by

the level-set method. It ensures smooth segmentation of adjacent slices. The multi-

layer segmentation level-set method for segmentation of images with nested structures

is presented in [10]. Combination of the level-set methods with statistical approaches

is subject of the review paper [11]. Review of deformable contour models in medical

image segmentation can be found in [16].

Among different segmentation methods there are the graph-cuts methods (see e.g.

Boykov et al. [3, 5], Gurholt and Tai [14], Loucký and Oberhuber [20]) which are

based on the graph theory and algorithms for finding minimal cuts and the maximal

flow respectively. These algorithms are not iterative and they do not require initial

curves. Instead of it, they need initial seeds - one or more points or lines in the interior

and exterior of the segmented object.

Each segmentation algorithm requires some description of the object of our interest.

The object is described usually in some of the following ways: Edges – it is often used

information since many objects in the real world have clearly visible edges. In the level-

set methods, the Perrona-Malik function serves as an edge detector. Color or texture

pattern – real objects usually have uniform or homogeneous surface. Therefore areas of

the same color or texture pattern belongs very likely to objects of the same type. Shape

– another criterion might be segmentation of objects with prescribed shape. The object

shape can be given by insertions of an appropriate anisotropy [24], the shape-learning

methods or by minimizing the elastic energy of the segmentation curve [12]. Location

– it is expressed by the initial condition. Proper setting of the initial curve for the level-

set segmentation may help to specify what object we aim to segment especially if there

are more similar objects. Note however, that the initial curve of the level-set method

is only an initial step for the segmentation algorithm and the final segmentation may

differ from the initial curve significantly. Skeleton – the initial seeds in the graph-cuts

method differ from the initial curve in one important fact. What is marked by the

initial seed as an interior of the segmented object will remain interior even in the final

segmentation and vice versa for the exterior.

From this point of view, we can understand the initial seeds in the graph-cuts

method as a hard segmentation constraint while the initial curve in the level-set method

as a soft segmentation constraint. In this article, we show how to incorporate local

a-priori information similar to the initial seeds used in the graph-cuts method to the

level-set method. We propose a new constrained level-set method which can be ap-

plied to the image segmentation problems. For better understanding of our method,

we will compare it with the classical level-set methods (c.f. [7]) with no surface terms

extracting the information about the object color or texture.



Application of the Level-Set Model with Constraints in Image Segmentation 149

The constrained level set method allows an expert to prescribe an a-priori informa-

tion by marking parts which are surely inside or outside the segmented region. As an

example of application of the constrained level set method we chose cardiac medical

images shown in Figs. 8,9. Applying our level-set method with constraints, we may

mark septum (red lines in Fig. 8 a)) as “must stay outside the segmented region” and

we can obtain correct result. On the other hand, the unconstrained level-set method

Fig. 8 b) was not capable to segment the left and the right ventricle separately. An

advantage of the proposed method, compared to the graph-cuts methods, is that it

allows to incorporate anisotropies [24] or other energies to minimize like the elastic

one [12]. Notice that our aim is to compare segmentation results obtained by the con-

strained and unconstrained level set method as well as the graph-cuts method. It should

be emphasized that for such a specific cardiac segmentation problem there are other

more sophisticated and fully unsupervised methods utilizing specific information about

the image. There are also level set implementation of the region based methods (see

e.g. [26], [17] and references therein). Nevertheless, we do not present comparison to

those specific methods.

A numerical approximation scheme is based on the complementary-finite volumes

method developed by Handlovičová et al. in [15] combined with the projected succes-

sive over-relaxation method for solving constrained problems proposed by Mangasar-

ian in [21] and Elliott, Ockendon in [13]. The advantage of the constrained level-set

method is demonstrated by means of several artificial images.

The paper is organized as follows. In Section 2 we recall general level-set method

for the image segmentation together with the numerical scheme and successive over-

relaxation (SOR) method. In Section 3, we present our level-set model with constraints

together with a efficient numerical scheme. As a solver for the linear complementarity

problem with range bounds we adopt the Projected SOR method. Comparison with the

common level-set method and contributions of the constrained level-set method are

demonstrated in Section 5.

2. The level-set method for the image segmentation

2.1. Time-space continuous framework of the level-set method

We consider a given image which is represented by the greyscale image function

I0 : Ω → [0, 1] defined on a two dimensional rectangle Ω ≡ [K1, L1] × [K2, L2]. The

idea how to segment an object in the image is to start from a closed, embedded and

smooth initial curve G0 approximating the shape of the object and let it evolve towards

the exact boundary of the object. To this end, we construct a family of evolving curves

Gt with the property that Gt converges to the boundary of a segmented object as t
goes to infinity. There are many ways how to construct such a flow of planar curves.

Among them we will focus our attention to the flow of curves proposed in the active

contour model (c.f. Caselles et al. [8], Kichenassamy et al. [19]). A problem of finding

a boundary of an object in the image can be reformulated as a problem of construction
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of planar curves on which the gradient ∇I0 of the image intensity function I0 is large.

Assuming Gt is a C1 smooth curve we can evaluate the unit tangent vector T(x) and

outer unit normal vector N(x). Each point x ∈ Gt is evolved in the normal direction

with the normal velocity V = V (x, t), i. e.

∂tx = V (x, t).N(x, t).

Although the velocity vector ∂tx can be decomposed into its tangential and normal

parts, it should be noted that only the motion in the normal direction has impact on

the shape of the closed curve Gt.

Following the active contour model (c.f. [8, 19]), Mikula and Ševčovič, in [23]

Mikula and Ševčovič considered a generalized form of the normal velocity:

V (x, t) = g0 (x)H (x, t) +∇g0 (x) ·N (x, t) , (2.1)

where H(x, t) is the curvature of Gt. It is known that it has a smoothing effect on the

segmented curve and the curvature driven flow is the gradient flow for the total length

of a curve (c.f. [23]). Next, g0 = g (|Gσ ∗ ∇I0|) where g is a smooth edge detector

function g : [0,∞) → (0,∞) such that

g′ < 0, g(0) = 1, g(+∞) = 0

g′(s) ≤ Cg(s), |g′′(s)| ≤ C, for s > 0,

for some constant C > 0. A typical example is the function g(s) = 1/(1 + λs2) where

λ > 0 is a contrast parameter. Notice that, for a given smooth intensity function I0, the

vector field ~W (x) = −∇g0(x) has an important geometric property as it points towards

edges in the image where the norm of the gradient ∇I0 is large (c.f. [23]). Notice that

a possible lack of smoothness of I0 (e.g. due to a noise) can be overcome by taking

the convolution of I0 with a smooth Gaussian mollifier Gσ with the variance σ2 > 0
(see [22, 23]). The term ∇g0 (x) · N (x, t) pushes the evolved curve Gt towards the

edge of the image I0 (c.f. [18, 23]). The effect of the curvature term H (x, t) consists

in smoothing the segmented curve by means of minimization of its total length. This

property makes the segmentation model robust for application even in the case of a

noisy image. Notice that the term g0 slows down the normal velocity in the vicinity of

edges of I0 (c.f. [23]).

In the level-set method, Gt is given implicitly as

Gt ≡ {x ∈ Ω | u (x, t) = 0} ,
where u is a real valued smooth function defined on Ω such that u (x) < 0 for all x

belonging to the interior of Gt and u (x) > 0 for all x belonging to the exterior of a

Jordan curve Gt. Following derivation from [22], the level-set formulation of (2.1) can

be stated in terms of a solution u to the initial-boundary value problem

ut = Q∇ ·
(

g0
∇u

Q

)

in Ω× (0, T ], (2.2)

∂vu = 0 on ∂Ω, (2.3)

u |t=0= uini in Ω, (2.4)
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where uini is the initial level-set function corresponding to the initial curve G0, ∂vu =
∇u · ν and ν is the outer normal unit vector of the boundary ∂Ω of a computational do-

main Ω. In the level-set framework, the quantity Q should be equal to |∇u|. However,

for practical purposes, it is regularized by means of the Tichonov regularization, i.e.

Q =

√

ǫ2 + |∇u|2, (2.5)

where 0 < ǫ ≪ 1 is a small regularizing parameter.

2.2. Time-space discretized framework of the level-set method

We discretize the initial-boundary value problem (2.2)–(2.4) by means of the method

of complementary finite volumes developed by Handlovičová et al. [15] in the context

of a class of level-set equations arising in the image processing. Let τ be a time step for

time discretization. Let h = (h1, h2) be spatial discretization steps such that hi =
Li−Ki

Ni

for some Ni ∈ N
+, i = 1, 2. We define a numerical grid

Mh =
{

(ih1, jh2) | i = 0, · · · , N1, j = 0, · · · , N2

}

.

For a function u ∈ C
(

Ω× (0, T ];R
)

we define its piecewise constant approximation on

Mh at the time kτ as a grid function defined by ukij = u (ih1, jh2, kτ). We furthermore

introduce a dual mesh Vh defined as

Vh ≡
{

vij =
[(

i− 1

2

)

h1,
(

i+
1

2

)

h1

]

×
[(

j − 1

2

)

h2,
(

j +
1

2

)

h2

]∣

∣

∣

i = 1, · · · , N1 − 1, j = 1, · · · , N2 − 1
}

.

For 0 < i < N1, 0 < j < N2, i and j fixed, we consider a finite volume vij of the

dual mesh Vh. We denote its interior by Ωij, its boundary by Γij and let µ (vij) be the

area of Ωij (see Fig. 1). We also denote the set of all neighboring volumes (having one

common edge) of a finite volume vij by Nij. For all inner finite volumes vij of the dual

mesh Vh, the boundary Γij consists of four linear segments. We denote them as Γij,īj

for īj ∈ Nij. It means that Γij,īj is a boundary between the finite volumes vij and vīj .
Let lij,īj be the length of this part of Γij.

Dividing Eq. (2.2) by the term Q, integrating it over the interior Ωij of a finite

volume vij we obtain the equation:

∫

Ωij

ut
Q
dx =

∫

Ωij

∇ ·
(

g0
∇u

Q

)

dx.

Applying the Euler backward difference in time discretization of ut we end up with the

following time semi-discretization of (2.2):

∫

Ωij

1

Qk−1

uk − uk−1

τ
dx =

∫

Ωij

∇ ·
(

g0
∇uk

Qk−1

)

dx.
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Γij,i−1j ∩ Γij,ij−1

 

 

 

Figure 1: A description of a finite volume vij defined on the dual mesh. Here Ωij is its interior, Γij its
boundary consisting of linear segments Γij,i±1j ,Γij,ij±1.

Next, after long but straightforward calculations and evaluations described in Appendix

we are in a position to formulate full time-space discretization of the level set Eq. (2.2).

It is a semi-implicit scheme in which the nonlinear terms are treated explicitly. It can

be rewritten in a form of the following system of linear equations:

Ak
iju

k
ij +Ak

i+1ju
k
i+1j +Ak

ij+1u
k
ij+1 +Ak

i−1ju
k
i−1j +Ak

ij−1u
k
ij−1 = uk−1

ij , (2.6)

for i = 1, · · · , N1 − 1 and j = 1, · · · , N2 − 1, and

Ak
0ju

k
0j +Ak

1ju
k
1j = 0 for j = 0, · · · , N2,

Ak
N1ju

k
N1j +Ak

N1−1ju
k
N1−1j = 0 for j = 0, · · · , N2,

Ak
i0u

k
i0 +Ak

i1u
k
i1 = 0 for i = 0, · · · , N1,

Ak
iN2ju

k
iN2

+Ak
iN2−1u

k
iN2−1 = 0 for i = 0, · · · , N1,

where the terms Ak
ij are derived in Appendix (see (7.4)–(7.5) ).

At each time level kτ we can represent a solution ukij by a stacked vector

ũ ≡ ũ
k =

(

uk00, · · · , uk0N2
, uk10, · · · , uk1N2

, uk20, · · · , ukN10, · · · , ukN1N2

)T
,

by mapping the node (i, j) of the two dimensional spatial domain to the one-dimensional

vector, i.e. I = I(i, j) = j · N1 + i for i = 0, · · · , N1 and j = 0, · · · , N2 and setting

ũ
k
I = ukij. With this notation, the system of linear equations (2.6) can be then rewritten

in a matrix form

Aũ = b (2.7)

for the solution vector ũ ≡ ũ
k. The dimension of the square matrix A as well as of the

vectors ũ and b is (N1 + 1)(N2 + 1). The I = I(i, j)-th row of the matrix A = (aIJ )
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contains only five nonzero elements Ak
ij , A

k
i±1j , A

k
ij±1. Now it follows from (7.4)–(7.5)

that Ak
i±1j , A

k
ij±1 < 0 and the diagonal term

aII = Ak
ij = 1−

(

Ak
i+1j +Ak

ij+1 +Ak
i−1j +Ak

ij−1

)

> 0.

Hence the matrix A is a sparse diagonally dominant M -matrix. We can solve the prob-

lem (2.7) by means of the Successive over-relaxation method (SOR) [27].

3. The constrained level-set method and its numerical approximation

3.1. Time-space continuous framework of the constrained level-set method

In this section we introduce our constrained level-set method for image segmenta-

tion. We suppose that there are two disjoint subdomains Ωin and Ωout of the domain Ω
such that Ωin is a subset of the interior of the segmented object and Ωout lies outside

the segmented object. Furthermore, we suppose that there are two prescribed func-

tions v,w ∈ C (Ω) with the property such that w < v in Ω and v < 0 in Ωin and v > 0
in Ω \Ωin and w > 0 in Ωout and w < 0 in Ω \Ωout. Notice that any function u fulfilling

w ≤ u ≤ v in Ω must be negative in Ωin and positive in Ωout. Its zero level-set contains

the set Ωin in its interior and Ωout in its exterior.

Our purpose is to construct a solution u = u(x, t) such that it satisfies the level

set Eq. (2.2) in the open region where w(x) < u(x, t) < v(x). Moreover, we require

that w(x) ≤ u(x, t) ≤ v(x) for all x ∈ Ω, t ∈ (0, T ]. The reason why to prescribe range

bounds on the level-set function u is to keep the set Ωin inside and Ωout outside the zero

level set Gt = {x, u(x, t) = 0} approaching the boundary of a segmented object when

t → ∞. To this end we consider the following partial differential inequality problem:

ut = Q∇ ·
(

g0
∇u

Q

)

for (x, t) ∈ Ω× (0, T ], s.t. w(x) < u(x, t) < v(x), (3.1)

ut ≥ Q∇ ·
(

g0
∇u

Q

)

for (x, t) ∈ Ω× (0, T ], s.t. u(x, t) = w(x), (3.2)

ut ≤ Q∇ ·
(

g0
∇u

Q

)

for (x, t) ∈ Ω× (0, T ], s.t. u(x, t) = v(x),

∂vu = 0 at ∂Ω, (3.3)

u |t=0= uini in Ω. (3.4)

The precise mathematical formulation of (3.1) can be stated in terms of the following

variational inequality problem: given barrier functions v,w ∈ W 1,2 (Ω), w(x) < v(x)
for a.e. x ∈ Ω, find a solution u ∈ K ⊂ X where X = W 1,2((0, T ) : L2(Ω)) ∩ L2((0, T ) :
W 1,2(Ω)) such that

〈A(u), φ − u〉 ≥ 0, for each φ ∈ K,
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where K is the convex closed cone (c.f. Brezis [6, Chapter 2]):

K =
{

u ∈ X , w(x) ≤ u(x, t) ≤ v(x), for a.e. x ∈ Ω, t ∈ (0, T )
}

. (3.5)

Here Lp(Ω), 1 ≤ p < ∞ is the usual Lebesgue space consisting of all measurable func-

tions on Ω such that ‖u‖p = (
∫

Ω |f(x)|pdx)1/p < ∞. Furthermore, W 1,2(Ω) stands

for the Sobolev space consisting of all functions having finite Sobolev norm ‖u‖1,2 =
‖u‖2 + ‖Du‖2 where Du is the gradient of u in the sense of distributions. Finally,

W−1,2(Ω) is the dual space to W 1,2(Ω). The operator A : X → L2((0, T ) : W−1,2(Ω)) is

defined by

A(u) =
ut
Q

−∇ ·
(

g0
∇u

Q

)

and 〈., .〉 is the inner product in L2((0, T ) : L2(Ω)), i.e.

〈A(u), φ − u〉 =
∫ T

0

∫

Ω

(

ut(φ− u) + g0∇u · ∇(φ− u)
) dx

Q
dt,

where Q = Q (u) =

√

ǫ2 + |∇u|2, g0 = g0 (u).

3.2. Time-space discretized framework of the constrained level-set method

The discretization of (3.1)–(3.4) follows exactly from the discretization of the level

set equation (2.2)–(2.4) when taking into account the range bound constraints w(x) <
u(x, t) < v(x) for a.e. x ∈ Ω, t ∈ (0, T ). At each time step we have to construct a

solution ũ to the following linear complementarity problem:

(Aũ)I = bI for I such that wI < ũI < vI ,

(Aũ)I ≥ bI for I such that ũI = wI , (3.6)

(Aũ)I ≤ bI for I such that ũI = vI ,

for I = 1, · · · , (N1 + 1)(N2 + 1).
In order to solve the linear complementarity problem (3.6) we make use of the

so-called Projected SOR method (PSOR) [13,21] adopted for our problem.

For each index I = 1, · · · , (N1 + 1)(N2 + 1), we repeat the following up-dating of

the vector ũ(p):

û
(p+1)
I = (1− ω) ũ

(p)
I +

ω

aII

(

bI −
∑

J<I

aIJ ũ
(p+1)
J −

∑

J>I

aIJ ũ
(p)
J

)

, (3.7)

ũ
(p+1)
I = min{max{û(p+1)

I , wI}, vI}, (3.8)

until the prescribed tolerance level for the difference ‖ũ(p+1) − ũ
(p)‖ < tol is achieved.

Eq. (3.7) corresponds to a usual SOR method. Eq. (3.8) ensures that the prescribed
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constraints are satisfied. Recall that the matrix A is a positively diagonally dominant

M -matrix and so aII > 0 for each I. Assume that ũ
(p) → ũ as p → ∞. Hence

û
(p+1) → (1− ω) ũ+ ωD−1 (b− (L+ U)ũ). It means

ũI = min{max{[(1− ω) ũ+ ωD−1 (b− (L+ U)ũ)]I , wI}, vI}. (3.9)

Clearly,

wI ≤ ũI ≤ vI

for each index I. Here D,L,U stand for the diagonal, sub-diagonal and upper-diagonal

parts of the matrix A, respectively. If the strict inequality wI < ũI < vI holds for some

index I, then

ũI = [(1− ω) ũ+ ωD−1 (b− (L+ U)ũ)]I .

It means that

(Aũ)I = bI .

On the other hand, if ũI = wI then ũI < vI . According to (3.9) we conclude that

ũI ≥ [(1− ω) ũ+ ωD−1 (b− (L+ U)ũ)]I .

Since aII > 0 we obtain

(Aũ)I ≥ bI .

Analogously, if ũI = vI for some index I then it follows from (3.9) that

ũI ≤ [(1− ω) ũ+ ωD−1 (b− (L+ U)ũ)]I .

Thus

(Aũ)I ≤ bI .

Hence the vector ũ is a solution to the linear complementarity problem (3.6).

4. Computational results

4.1. Convergence analysis in the case of smooth barrier functions

In this section we present result of convergence analysis for a test problem in which

the barrier functions are sufficiently smooth so that they belong to the space W 1,2(Ω).
We set up the following test problem. The computational domain is [−0.5, 0.5]2 and the

initial condition is as follows:

uini (x, y) = min
{

x2 + y2 − 0.55, 0
}

. (4.1)

The exact solution of (2.2)–(2.4) with g0 ≡ 1 is

u (x, y, t) = min
{

x2 + y2 − 0.55 + t, 0
}

. (4.2)
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With additional smooth constraint v ∈ W 1,2(Ω), there is no longer an analytical

solution. However, we see that the solution (4.2) is axially symmetric with its center in

origin. Prescribing an axially symmetric constraint enables us to keep axial symmetry

of the solution. It allows us to transform our problem (3.1)–(3.4) into coordinates (r, t)
where r =

√

x2 + y2. The symmetric formulation then reads as

ft =
ǫ2

ǫ2 + (f2
r )

frr +
fr
r

for (r, t) ∈ (0, R)× (0, T ], s.t. w (r) < f (r) < v (r) , (4.3)

ft ≥
ǫ2

ǫ2 + (f2
r )

frr +
fr
r

for (r, t) ∈ (0, R)× (0, T ], s.t. f (r) = w (r) , (4.4)

ft ≤
ǫ2

ǫ2 + (f2
r )

frr +
fr
r

for (r, t) ∈ (0, R)× (0, T ], s.t. f (r) = v (r) , (4.5)

f (·, 0) = fini for r ∈ [0, R], (4.6)

fr (R, t) = 0 for t ∈ [0, T ], (4.7)

fr (0, t) = 0 for t ∈ [0, T ]. (4.8)

In our numerical experiments, we set w ≡ −∞. We solve the problem (4.3)–(4.8)

numerically with very fine resolution having 1000 nodes on interval [0, 0.5]. We take it

as an exact solution for (3.1)–(3.4) with symmetric initial condition

f0 (r) = min
{

r2 − 0.55, 0
}

which agrees exactly with (4.1). Firstly, we set v as

v (r) =















L/2 for r < R− r0,

L
π arctan

(

r−R
r0

(

5 + 35
(

(r−R)2

R2

)))

for R− r0 ≤ r ≤ R+ r0,

−L/2 for r > R+ r0.

(4.9)

For R = 0.5, L = 0.3 and r0 = 0.1 the shape of the function v(r) is depicted on the Fig.

2(a).

The results at times t = 0 and t = 0.075 are depicted on the Fig. 3 and convergence

rate analysis is summarized in Table 1. We present the experimental order of con-

vergence (EOC) for various norms of the error depending on the mesh discretization

h1 = h2 = 1/N where N = N1 = N2. It is defined as follows:

EOC = log2

(

error(h)

error(h/2)

)
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Figure 2: Different constraints considered for the convergence study: a) arctan shape, b) discontinuous
constraint.

-0.4

-0.2

 0

 0.2

 0  0.5  1

v

f

u

(a) t = 0

-0.4

-0.2

 0

 0.2

 0  0.5  1

v

f

u

(b) t = 0.075

Figure 3: Results obtained with the arctan-like constraint v, f is solution of symmetric problem (4.3–4.8)
and u is solution of level-set formulation (3.1)–(3.4) with g ≡ 1.

Table 1: Experimental order of convergence with the arctan-like constraint v given by (4.9). It shows the
second order of convergence in the L2 norm while the convergence rate in the L1 is only linear in 1/N .

N = N1 = N2

‖·‖h,τ
L1(ωh×(0,T ))

‖·‖h,τ
L2(ωh×(0,T ))

‖·‖h,τL∞(ωh×(0,T ))

Error EOC Error EOC Error EOC

32 0.004232 0.000752 0.087758

64 0.001777
1.25

0.000174
2.11

0.046046
0.93

128 0.000732
1.27

0.000044
1.98

0.0249
0.88

256 0.000328
1.15

0.000012
1.87

0.015742
0.66

512 0.000152 1.10 0.000003 2 0.01068 0.55

4.2. Decrease of convergence ratio for non-smooth barrier functions

In this section, we present an example showing that the assumption of smoothness

of barrier functions has a strong impact on the convergence of the method. We consider
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Table 2: Experimental order of convergence with the discontinuous constraint v.

N = N1 = N2

‖·‖h,τ
L1(ωh×(0,T ))

‖·‖h,τ
L2(ωh×(0,T ))

Error EOC Error EOC

32 0.003713 0.000777

64 0.002179
0.77

0.000256
1.6

128 0.001287
0.76

0.000096
1.4

256 0.000823
0.64

0.00004
1.3
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(c) t = 0.15

Figure 4: Results obtained with the discontinuous constraint v, f is solution of symmetric problem (4.3–4.8)
and u is solution of level-set formulation (3.1)–(3.4) with g ≡ 1.

an upper barrier function v representing a discontinuous constraint:

v (r) =

{

−0.15 for r ≤ 0.5,
0.15 for r ≥ 0.5.

(4.10)

This is the most common choice in practical image segmentation computations. How-

ever, such a function does not belong to the space W 1,2(Ω). The shape of the constraint

is depicted on Fig. 2(b) and the results are summarized in Table 2. Details of the radi-

ally symmetric solution profile are depicted on the Fig. 4. We see that a thin interface

develops between the level-set function u and the constraint v. It is reflected by the

L∞ norm of the error in which the scheme converges very slowly. The reason why

the convergence is slowed is due to the fact that the set of discontinuity of a barrier

function is fixed. As a consequence, a solution to a variational inequality is pasted to

the barrier function in this set of discontinuity.

4.3. Smoothing of the barrier functions

In previous parts 4.1 and 4.2 we showed the importance of a smooth barrier func-

tion and its impact on the accuracy of computed solutions. If the barrier is smooth than

the accuracy of the level set solution is higher. However, in practice the barrier func-

tions w and v are often characteristic functions of the prescribed regions in the images.

Nevertheless, we can smooth such step functions in a canonical way using their con-

volution with a two dimensional Gaussian kernel Gσ(x) = (2πσ2)−1 exp(−‖x‖2/2σ2)
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where σ ≪ 1 is sufficiently small. It means that the barrier functions are defined as:

wσ = Gσ ∗ w, vσ = Gσ ∗ v.

The advantage of a such smoothing is the order preserving property, i.e. w(x) < v(x)
for each x ∈ Ω implies wσ(x) < vσ(x) in Ω.

5. Application to image segmentation and computational results

In this section, we present experimental results obtained by the constrained level-set

method. We first demonstrate the effect of the constraints applied to artificial images.

Fig. 5 a) (left) shows an image we want to segment. There are two rectangles with

centers at points (0.4, 0.5) and (0.6, 0.5). The width of the rectangles is 0.1 and the

height is 0.4. Thickness of the rectangles edges is 0.04. On the inner edge of each

rectangle, there is a thin hole. The image intensity function is defined on the domain

Ω ≡ (0, 1)2. The initial curve is a circle with the radius r =
√
0.08 centered exactly be-

tween the rectangles. Its signed distance function (taken as the initial level-set function

uini) is depicted in Fig. 5 a) (right). The numerical mesh consisted of 128 × 128 grid

points. If the thin holes in the rectangles should be taken into account we may want

to segment only the edges of rectangles. It can be achieved by setting the regularizing

parameter ǫ = 1. In [22] Mikula and Sarti interpreted the regularization parameter ǫ as

a parameter by which we can control “convexity” of the final segmentation curve. The

result taken at time t = 1.2 is depicted in Fig. 5 b). On the other hand, if small holes

are present by mistake, we may want the segmentation curve to fill them. It may be

achieved by setting ǫ = 0.0001. However, a convex hull of both rectangles is segmented

as we can see in Fig. 5 c).

The segmentation we aim to can be achieved by prescribing one constraint guar-

anteeing that the part of the image between the rectangles must be outside the seg-

mentation domain. We construct the constraint by putting a red bar placed on between

the rectangles on the Fig. 6 a). Its width equals 0.04 and the height is set to 0.6. The

constraint function w(x) is positive on the red bar region and negative everywhere else.

We again set ǫ = 0.0001. The result taken at time t = 67 is shown on Fig. 6 b).

In our last synthetic example shown in Fig. 7 we place one more constraint inside

the left rectangle. The segmentation poses features of both experiments on Figs. 5 and

6. It shows that the constrained level-set method is capable of controlling which part

of the image we want to segment.

In the remaining two figures we present a real application of the constrained level-

set method to segmentation of cardiac MRI data. First we want to segment both, the

left and the right ventricle of a heart. The unconstrained level-set method for the image

segmentation (c.f. [22]) is not capable to separate them. In Fig. 8 we present a) the

initial set-up of the constraint barriers; b) segmentation without constraints involved;

c) segmentation with constraints separating both ventricles well. Figs. 8 d) and 8 e)

demonstrate the relation between the constrained level-set method and the graph-cuts
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(a)

(b)

(c)

Figure 5: a): We plot an initial curve G0 set as a circle with the radius r =
√
0.08 (left) and its level-set

function (right). b): The segmentation at time t = 1.2 after setting the regularizing parameter ǫ from (2.5)
to 1 is depicted together with the level-set function. c): The segmentation result with ǫ = 0.0001 at time
t = 145.

method as described in [20] (see the appendix for more details). Fig. 8 d) shows set-

up of the initial seeds. They are the same as the constraints for the level-set method.

There is only one more (blue) seed inside the left ventricle, otherwise it would not be
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(a)

(b)

Figure 6: a): An example of prescription of a single constraint depicted by the red bar in the middle of the

image. The initial curve G0 is a circle with the radius r =
√
0.08. b): The segmentation at time t = 67

shows nice separation of both rectangles. The corresponding level-set functions are depicted on the right.

segmented. The result is depicted in Fig. 8. It is worth noting that there are other

powerful methods which are specific for solving cardiac segmentation problems like

the one shown in Fig. 8. They are based on incorporation of higher level Bayesian

priors and taking into account supervised learning from available cardiographic data

sets (see e.g. [9] ) or they are based on fully unsupervised and region based level set

method [17,26].

More complex segmentation is studied in Figs. 9 a) and b). Here we have separated

the left ventricle, septum and the right ventricle together with pericardium fat. Com-

parison with the graph-cuts method can be found in Figs. 9 c) and d). Note that the

red ellipse in Fig. 9 c) serves as the initial seed as well. Compared to the initial curve

green circle in Fig. 9 a), the red ellipse does not allow the segmentation curve to grow

outside. It is not true for the initial curve for the constrained level-set method. In some

applications it might be advantage. Note that even though the level-set function was

negative inside the green circle (Fig. 9 a)), the red-line constraint pushed the level-set

function to positive values immediately. It is no difficulty for the numerical approxi-
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(a)

(b)

Figure 7: a): An example with two prescribed constraints depicted by red bars (top left). The initial curve

G0 is a circle with the radius r =
√
0.08. b): The segmentation result at time t = 67 is shown in the bottom

left part of the figure. The corresponding level-set functions are shown on the right.

mation. Thanks to this fact, the initial condition need not to be compatible with the

imposed constraints.

6. Conclusion

We proposed a constrained level-set model for the image segmentation. The method

gives a possibility to an expert to prescribe an additional information concerning the

expected shape of the segmented object. In this method, we may preset fixed con-

straints telling us which parts of the segmented object should be inevitably inside the

segmented region and some parts must remain outside. The complementary finite-

volume method was used for the numerical approximation of the level-set equation. It

was combined with the Projected Successive Over Relaxation method for solving the

corresponding parabolic variational inequality problem. We demonstrated the differ-

ence between the proposed and the usual level-set method on several artificial images

as well as on data from magnetic resonance imaging.
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a) b) c)

d) e)

Figure 8: a) Setup for the constrained level set method with the initial curve G0 (green) and two constraints
– the red curve stands for the exterior while the blue one is for interior of the segmented region. b)
Segmentation results obtained by the unconstrained level-set method. c) Segmentation obtained by means
of the constrained level-set method. The interior constraint helps to capture the bottom of the right
ventricle. d) Initial seeds for the graph-cuts method. e) Segmentation obtained by the graph-cuts method.
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7. Appendix

7.1. Time-space discretization of the level-set method

In this section we show details of derivation of the full time-space discretization of

(2.2). The numerical scheme is based on the finite volume approximation. It is a slight

modification of the scheme proposed by Handlovičová et al. in [15].

First we evaluate the norm of smoothed gradient of the image intensity function

sij = |Gσ ∗ ∇I0|ij , where Gσ(x) = (2πσ2)−1 exp(−‖x‖2/2σ2) (see [22] for details how

to effectively calculate sij). Then g0ij = 1/
√

1 + λs2ij on ωh and we approximate g0
ij,īj

on the finite volume edges as follows:

g0ij,i±1j =
1

2

(

g0ij + g0i±1j

)

, g0ij,ij±1 =
1

2

(

g0ij + g0ij±1

)

.
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a) b)

c) d)

Figure 9: a) Setup for the constrained level-set method. b) Segmentation separating the left ventricle (small
almost circular curve inside) surrounded by septum (larger curve) and the right ventricle with pericardium fat
(the outer curve). c) Initial seeds for the graph-cuts method. d) Segmentation computed by the graph-cuts
method.

Denote ∇uk
ij,īj

=
(

∂x1
uk
ij,īj

, ∂x2
uk
ij,īj

)

. The approximation of ∇uk
ij,īj

in the direction

of the vector νij,īj is obvious:

∂x1
ukij,i±1j =

uki±1j − ukij
h1

, ∂x2
ukij,ij±1 =

ukij±1 − ukij
h2

. (7.1)

In order to calculate remaining coordinates of ∇uk
ij,īj

which are perpendicular to νij,īj
we need to know the value uk at the ends of lij,īj (corners of the finite volume vij).

They can be only approximated using the value of uk at the neighboring volumes:

ukij,pq =
1

4

(

ukij + ukpj + ukiq + ukpq

)

,

where p = i±1, q = j±1. Hence we obtain the approximation of ∇uk
ij,īj

in the direction

perpendicular to νij,īj in the form

∂x1
ukij,ij±1 =

ukij,i+1j±1 − ukij,i−1j±1

h1
, ∂x2

ukij,i±1j =
ukij,i±1,j+1 − ukij,i±1j−1

h2
. (7.2)
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Having calculated approximation of ∇uk
ij,īj

we can approximate the term Qk
ij,īj

as fol-

lows:

Qk−1
ij,pq =

√

ǫ2 +
(

∂x1
uk−1
ij,pq

)2
+
(

∂x2
uk−1
ij,pq

)2
,

where p = i± 1, q = j ± 1. The “capacity” term 1/Qk and the function uk are approxi-

mated by a constant value on the finite volume vij . Taking the averaged value

Qk−1
ij =

1

4

(

Qk−1
ij,i+1j +Qk−1

ij,ij+1 +Qk−1
ij,i−1j +Qk−1

ij,ij−1

)

,

yields the approximation of the left-hand side of (2.2):

∫

Ωij

1

Qk−1

uk − uk−1

τ
≈ h1h2

1

Qk−1
ij

ukij − uk−1
ij

τ
.

Applying the Stokes theorem to the right-hand side of (2.2) yields

∫

Ωij

∇ ·
(

g0
∇uk

Qk−1

)

dx =
∑

īj∈Nij

∫

Γij,īj

g0

Qk−1

∂uk

∂ν
dS

≈
∑

īj∈Nij

lij,īj
g0
ij,īj

Qk−1
ij,īj

∇ukij,īj · νij,īj, (7.3)

where ν is the outer unit normal of Γij. Here we have assumed that the fluxes are

constant on each segment Γij,īj of the boundary of a finite volume. Notice that νij,īj =
(̄i− i, j̄− j) (see Fig. 1). In such a regular grid, one coordinate of ν is always vanishing.

It cancels one coordinate of ∇uk in the inner product ∇uk · ν. Recall that lij,īj attains

only the values h1 or h2. We have

∫

Ωij

∇ ·
(

g0
∇uk

Qk−1

)

+ dx ≈ h2
g0ij,i+1j

Qk−1
ij,i+1j

uki+1j − ukij
h1

+ h1
g0ij,ij+1

Qk−1
ij,ij+1

ukij+1 − ukij
h2

+h2
g0ij,i−1j

Qk−1
ij,i−1j

uki−1j − ukij
h1

+ h1
g0ij,ij−1

Qk−1
ij,ij−1

ukij−1 − ukij
h2

.

It leads to the system of linear Eq. (2.6) where

Ak
i±1j = −τQk−1

ij

g0ij,i±1j

h21Q
k−1
ij,i±1j

, Ak
ij±1 = −τQk−1

ij

g0ij,ij±1

h22Q
k−1
ij,ij±1

, (7.4)

Ak
ij = 1−

(

Ak
i+1j +Ak

ij+1 +Ak
i−1j +Ak

ij−1

)

. (7.5)

Approximation of the Neumann boundary condition ∇u · ν = 0 on ∂Ω yields Ak
0j =

Ak
i0 = Ak

N1j
= Ak

iN2
= 1, Ak

1j = Ak
i1 = Ak

N1−1j = Ak
iN1−1 = −1.
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Table 3: Summary of edge weights for the graph-cuts method. Ip, Iq denotes intensities if pixels p and q
respectively; d denotes a distance of the pixels.

Link type Edge Capacity

n-link (p, q) for p, q ∈ P, d = ‖(p, q)‖ B(∆I, d)

t-link (s, p) for p ∈ P \ {O ∪ P} λRs(Ip)
for p ∈ O ∞
for p ∈ P 0

(p, t) pro p ∈ P \ {O ∪ P} λRt(Ip)
for p ∈ O 0
for p ∈ P ∞

7.2. Set-up of the graph-cuts method.

The details of the implementation of the graph-cuts method is described in [20]. For

the purpose of this paper we have used different set-up of the edge capacities adopted

from [4]. The model is briefly described in Table (3) where

B(∆I, d) = exp

(

−∆I 2

2σ2
n

)

· 1
d

Rs(I) = − lnP (I|O)

Rt(I) = − lnP (I|P)

∆I = |Ip − Iq| .

(7.6)

Here lnP (I|O) and lnP (I|P ) are conditioned probabilities expressing if given pixel

belongs to the object O and background P respectively. These probabilities are deter-

mined from histograms measured on the initial seeds inside and outside the object of

interest respectively.
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