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Abstract

In this paper we present our recent results on application of the Riccati transfor-
mation for solving the evolutionary Hamilton-Jacobi-Bellman equation arising from the
stochastic dynamic optimal allocation problem. It turns out that the fully nonlinear
Hamilton-Jacobi-Bellman equation governing evolution of the value function can be
transformed into a quasi-linear parabolic equation. Its diffusion function is obtained
as a value function of certain parametric convex optimization problem. A solution is
then constructed by means of an implicit iterative finite volume numerical approxima-
tion scheme. As an application we present results of computing optimal strategies for
a portfolio investment problem.
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1 Introduction

The goal of this paper is to investigate a novel method based on the Riccati transformation
for solving a time dependent Hamilton-Jacobi-Bellman equation arising from a stochas-
tic dynamic optimal allocation problem on a finite time horizon. Our motivation arises
from a dynamic stochastic optimization problem in which the purpose is to maximize the
conditional expected value

max
θ|[0,T )

E

[
U(Xθ

T )
∣∣Xθ

0 = x0

]
, (1)
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of the terminal utility U(Xθ

T ) of a portfolio. Here {Xθ
t } is an Itō’s stochastic process on

the finite time horizon [0, T ], U : R → R is a given terminal utility function and x0 a
given initial state condition of {Xθ

t } at t = 0. The function θ : R × [0, T ) → R
n mapping

(x, t) 7→ θ(x, t) represents an unknown control function governing the underlying stochastic
process {Xθ

t }t≥0. Here θ|[t,T ) for 0 ≤ t < T denotes the restriction of the control function

θ to the time interval [t, T ). We assume that Xθ
t is driven by the stochastic differential

equation

dXθ

t =
{
εe−Xt + r + µ(θ)− σ(θ)2/2

}
dt+ σ(θ)dWt, (2)

where Wt denotes the standard Brownian motion and the functions µ(θ) and σ(θ) are the
drift and volatility functions depending on the control function θ. The parameter ε ≥ 0
represents a constant inflow rate of property to the system whereas r ≥ 0 is the interest
rate. Throughout the paper we shall assume that the control parameter θ ∈ Sn belongs to
the compact simplex

Sn = {θ ∈ R
n | θ ≥ 0,1Tθ = 1} ⊂ R

n, (3)

where 1 = (1, · · · , 1)T ∈ R
n. It should be noted that the process {Xθ

t } is a logarithmic

transformation of a stochastic process {Y θ̃
t }t≥0 driven by the SDE:

dY θ̃

t =
{
ε+ [r + µ(θ̃)]Y θ̃

t )
}
dt+ σ(θ̃)Y θ̃

t dWt, (4)

where θ̃(y, t) = θ(x, t) with x = ln y.

As a typical example leading to the stochastic dynamic optimization problem (1) in
which the underlying stochastic process satisfies SDE (2) one can consider a problem of dy-
namic portfolio optimization in which the assets are labeled as i = 1, · · · , n, and associated
with the price processes {Y i

t }t≥0, each of them following a geometric Brownian motion

dY i
t

Y i
t

= µidt+

n∑

j=1

σ̄ijdW
j
t ,

(cf. Merton [12, 13], Browne [4], Bielecki and Pliska [3]. The value of a portfolio with

weights θ̃ = θ̃(y, t) is denoted by Y θ̃
t . We have µ(θ) = µTθ and σ(θ)2 = θT

Σθ with
µ = (µ1, · · · , µn)

T and Σ is a positive definite symmetric covariance matrix, Σ = Σ̄Σ̄
T

where Σ̄ = (σ̄ij). It can be shown that {Y θ̃
t }t≥0 satisfies (4) with ε = r = 0. The

assumption θ ∈ Sn corresponds to the situation in which borrowing of assets is not allowed,
i.e. θi ≥ 0 and

∑n
i=1 θi = 1. A function U(x) represents a given terminal utility function

representing investor’s risk preferences.
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2 Hamilton-Jacobi-Bellman Equation and Method of Riccati

transformation

It is known from the theory of stochastic dynamic programming that the so-called value
function

V (x, t) := sup
θ|[t,T )

E

[
U(Xθ

T )|X
θ

t = x
]

(5)

subject to the terminal condition V (x, T ) := U(x) can be used for solving the stochastic
dynamic optimization problem (1) (cf. Bertsekas [2]). If the process Xθ

t is driven by (2),
then the value function V = V (x, t) satisfies the Hamilton-Jacobi-Bellman (HJB) equation

∂tV + max
θ∈Sn

{(
εe−x + r + µ(θ)−

1

2
σ(θ)2

)
∂xV +

1

2
σ(θ)2∂2

xV

}
= 0 , (6)

for all x ∈ R, t ∈ [0, T ) subject to the terminal condition V (x, T ) := U(x) (see e.g. Macová
and Ševčovič [11] or Ishimura and Ševčovič [6]).

Following the methodology of the Riccati transformation studied by Ishimura et al.
[1, 5, 7] and further analyzed by Ishimura and Ševčovič [6], we introduce the following
Riccati like transformation:

ϕ(x, t) = 1−
∂2
xV (x, t)

∂xV (x, t)
. (7)

According to [8, Theorem 3.2], the transformed function ϕ is a solution to a Cauchy
problem for the following quasi-linear parabolic equation

∂tϕ+ ∂2
xα(ϕ) + ∂x[(εe

−x + r)ϕ+ (1− ϕ)α(ϕ)] = 0, x ∈ R, t ∈ [0, T ), (8)

ϕ(x, T ) = 1− U ′′(x)/U ′(x), x ∈ R,

where the diffusion function α(ϕ) is obtained as the value function of the parametric non-
linear constrained optimization problem.

α(ϕ) = min
θ∈Sn

{−µ(θ) +
ϕ

2
σ(θ)2} . (9)

In our application the problem (9) is a convex quadratic programming problem with µ(θ) :=
µTθ and σ(θ)2 := θT

Σθ where µ ∈ R
n and Σ is a positive definite n× n matrix.

Unfortunately, the value function α(ϕ) need not be sufficiently smooth. Indeed, ac-
cording to [8, Theorem 4.1] α ∈ C1,1(R+), i.e. its derivative is Lipschitz continuous only.
Moreover, with regard to [8] there are concrete market data examples of German DAX 30
stock index for which the value function can have a finite number of discontinuities in the
second derivative of α.
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Applying the methodology of Schauder estimates we were able to prove the following
result on existence and smoothness of classical solutions to (8) belonging to the parabolic
Hölder spaces H2+λ,1+λ/2(R× [0, T ]) for some 0 < λ < 1. The detailed proof can be found
in the recent paper [8] by the authors.

Theorem 2.1 Suppose that Σ is positive definite, µ ∈ R
n, ε, r ≥ 0, and the optimal

value function α(ϕ) is given by (9). Assume that the terminal condition ϕ(x, T ) = 1 −
U ′′(x)/U ′(x), x ∈ R, is positive and uniformly bounded for x ∈ R and belongs to the Hölder
space H2+λ(R) for some 0 < λ < 1/2. Then there exists a unique classical solution ϕ(x, t)
to the backward quasi-linear parabolic equation (8) satisfying the terminal condition ϕ(x, T ).
The function t 7→ ∂tϕ(x, t) is λ/2-Hölder continuous for all x ∈ R whereas x 7→ ∂xϕ(x, t) is
Lipschitz continuous for all t ∈ [0, T ]. Moreover, α(ϕ(., .)) ∈ H2+λ,1+λ/2(R× [0, T ]).

3 Application to portfolio optimization

In [8], the authors proposed an iterative numerical approximation scheme for solving the
Cauchy problem for the quasi-linear parabolic equation (8). We followed the method of a
finite volume approximation scheme (cf. LeVeque [10]) combined with a nonlinear equation
iterative solver proposed by Mikula and Kútik in [9]. The scheme has been tested with semi-
explicit traveling wave solutions (see [8, Sections 6,7]) and it turned out that the scheme is
of the second experimental order of convergence. We furthermore applied the scheme to a
practical example in which our goal was to optimize a portfolio consisting of n = 30 assets
forming the German DAX 30 Index. The regular contribution to the portfolio was set to
ε = 1 and r = 0. As far as the utility function is concerned, we considered the constant
absolute risk aversion (CARA) utility function of the form U(x) = − 1

a−1 exp(−(a−1)x) with
a coefficient of the absolute risk aversion a = 9. In terms of the transformed variable x =
ln y the CARA utility function corresponds to the constant relative risk aversion (CRRA)
function Ũ(y) = − 1

a−1y
−a+1. We considered the finite time horizon T = 10.

Using the finite volume approximation scheme we constructed a numerical solution
ϕ(x, t) to the quasilinear parabolic equation (8). Then, by solving the parametric quadratic
programming problem (9) for ϕ = ϕ(x, t) we found optimal response strategies θ as a
function of the logarithmic level of property x and time t. Results of numerical calculation
are shown at Fig. 1.

It turned out shows that there are only a few relevant assets out of the set of thirty
assets entering the DAX 30 Index. The figure reveals the highest portion of Merck stocks
for the early period of saving and for low account values y. It is indeed reasonable to invest
in an asset with the highest expected return, although with the highest volatility, when
the account value is low, in early times of saving. Evident fast decrement of the Merck
company weight can be observed for increasing account value. It should be noted that
Fresenius Medical company has the lowest volatility out of the considered five assets (and
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Figure 1: Nonzero components θ̃i, i ∈ {1, · · · , n} of tptimal response strategy vector θ̃ =
θ̃(y, t) = θ(ln y, t) for the DAX 30 index portfolio optimization, for time instances t = 0,
t = T/3, t = 2T/3 and t = T where T = 10 Source: [8].

third lowest out of all thirty assets) and third best mean return, which is reflected in its
major representation in the portfolio.
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