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Abstract. In this paper we propose several techniques for tangential redistribution of points on
evolving surfaces. This is an important issue in numerical approximation of any Lagrangian evolution
model, since the quality of the mesh has a significant impact on the result of the computation. We
explain the volume-oriented and length-oriented tangential redistribution methods in a general setting
of an m-dimensional manifold evolving in an n-dimensional manifold. Then, we apply the proposed
techniques to several manifold evolution problems. We explain the numerical approximation of the
models and present experiments illustrating the performance of our redistribution techniques.
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1. Introduction. Given a Riemannian manifold (possibly a manifold with
boundary) (X, gX) of dimension m and a Riemannian manifold (Y, gY ) of dimension
n, m ≤ n, we define an evolution of X in Y as any smooth map F : X × [0, ts] → Y
such that F t = F (·, t) is an immersion for every t. Throughout the text, we will
also use the notion of an evolving manifold—we will speak, for example, of movement
of points on an evolving manifold. Here, we have in mind a one-parameter family
of subsets of Y , {Im(F t)}t≥0. We would like to emphasize that defining F t as an
immersion, we do not exclude (for the sake of generality) self-intersections of Im(F t).

Since we speak about evolution, the parameter t can be naturally viewed as time.
Within our considerations, we will often deal with maps of the form f : X×[0, ts] → Z,
where Z is some target space. The notation f t will then always represent a time slice
of the a map f , f(·, t). Conversely, given first a map of the form f t : X → Z, we will
automatically consider it as a time slice of the map

f : X × [0, ts] → Z : (x, t) �→ f t(x).

Since F is assumed to be smooth, for a fixed x ∈ X , the map t �→ F t(x) is a
smooth curve in Y . As such it defines, for every t, a vector vt(x) tangential to Y at
the point F t(x). The map v : X × [0, ts] → TY , where TY stands for the tangent
bundle of Y , represents the velocity field of the evolution. Thus, F is a solution to
the evolution equation

∂tF = v(1.1)
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accompanied by an initial condition and, in the case of a manifold with boundary, a
boundary condition. In many situations, it is useful to see v as a composition of two
orthogonal components with different roles in the evolution process. Let TxX denote
the tangential space to X at x. Pushing TxX forward along F t, we obtain a subspace
(F t)∗(TxX) of TF t(x)Y ; it is the tangent space at F t(x) to Im(F t) (or its branch,
if F t(x) happens to be a self-intersection point). This allows for the decomposition
vt(x) = vtN (x)+vtT (x), where v

t
T (x)—the tangential velocity—lies in (F t)∗(TxX) while

vtN (x)—the normal velocity—is its orthocomplement in TF t(x)Y . From this follows
v = vN + vT and the evolution equation modifies to

∂tF = vN + vT .(1.2)

An evolution of this type is present in many models in physics, computer vi-
sion and image processing, biology etc. Some typical examples are the evolution of a
phase interface [2, 4], forest fire front propagation [3], segmentation of objects in two-,
three-, or even four-dimensional (2D, 3D, or 4D) images [1, 14, 24, 25, 28], computa-
tion of minimal surfaces, e.g., in architecture [23], or modeling of molecular surfaces
[5]. Two basic approaches are used for solving manifold evolution problems: the La-
grangian approach that evolves the manifold directly [6, 13, 18, 19, 20, 24, 30, 39]
and the Eulerian (level set) approach that considers the m-dimensional manifold as
a level set of a function of m + 1 variables [5, 14, 25, 28, 36, 38]. This paper follows
the Lagrangian approach.

Having decomposed v according to (1.2), we can see that the velocity field con-
sists of two substantially different parts. While the normal component changes the
image of the manifold X , the tangential component only changes the images of its
individual points. Thus, it allows us to change the immersion of X in Y without
affecting its image.

The question of the choice of the immersion becomes important in numerical real-
izations of problem (1.2). Since the immersion determines the positions of discretiza-
tion points, its choice is a key factor for the computation process. Inappropriately
placed discretization points can lead to unacceptable numerical errors or even to a
crash of the computation. This concerns not only the initial placing of the points;
the quality of the mesh can deteriorate during the computation as a consequence
of the prescribed movement of the points. Therefore, in many cases it is necessary
to redistribute the mesh points along the manifold during the evolution process. In
other situations, even if the quality of the numerical approximation is not the main
question of interest, a specific distribution of mesh points might be desirable for im-
proving the quality of representation of objects—for example, it can help to have a
denser distribution of discretization points in places with high curvature. There are
also applications that directly require some sort of uniform or regular distribution of
points. An example is the design of shell constructions mentioned later in this paper,
where an appropriate placement of the node points optimizes the process of truss
manufacturing and the visual impression.

An appropriate choice of the tangential velocity in (1.2) allows us to obtain an
immersion that meets our criteria without otherwise affecting the evolution process.
Various techniques for tangential redistribution of points have been designed for evolv-
ing curves in two dimensions [10, 16, 22, 26, 30, 31, 39, 40, 42], in three dimensions
[21, 33], and generally in R

d or on 2D manifolds [7, 9, 32]. However, the situation
becomes more complicated for higher dimensional manifolds—the higher dimension-
ality of the tangent space in each point of the manifold modifies the character of
the problem and gives broader possibilities. Some work has already been done for
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surfaces in three dimensions. The work of Morigi [35] proposes several possibilities
for tangential redistribution focused either on areas, lengths or angles in a discrete
mesh. Barrett, Garcke, and Nurnberg [6, 8] introduced an angle-oriented redistribu-
tion technique based on discrete conformal parametrizations. Our paper introduces
several new possibilities for tangential redistribution based on controlling the volume
density during the evolution. We generalize the ideas that have been previously used
for curves in two and three dimensions [30, 31, 33]. Our methods allow conservation
of relative volumes during the evolution or an asymptotically uniform distribution of
points with respect to the volume density. The asymptotically uniform redistribution
model also provides a control of the speed of redistribution and, if we want, we can
adjust the model to control the limit volume of the manifold in case of manifolds
with boundary. Compared with the cited works, all results are formulated in a more
general setting.

The redistribution methods are first presented in a general continuous form, not
particularly as methods for adjusting a discrete mesh. After, we apply them to three
examples of manifold evolution problems—the mean curvature flow of surfaces in R

3,
surface evolution in R

3 with an advection term, and curvature driven evolution of
curves on a sphere. We explain the discretization of all problems and demonstrate
the performance of the method by various examples. Besides test problems, we show
how our methods can be applied to practical problems coming from architecture or
biological data analysis.

2. Tangential redistribution of points on an evolving manifold. When
we are dealing with an evolution equation of the form (1.2), it is usually seen as a
model corresponding to a specific application. For simplicity, let us assume that there
is no tangential movement of points given by the character of our problem and the
corresponding model is just

∂tF = vN .(2.1)

This assumption will simplify the explanation without loss of any of the important
aspects of the problem. In this setting, the tangential term will be added to our model
purely in order to control the distribution of points on the evolving manifold. It will
be designed according to our specific criteria.

2.1. The evolution of the induced metric. By means of the immersion F t,
we can induce a metric on X as the pull-back of gY along F t, gF t = (F t)∗(gY ).
Denote by ξ the measure on the Borel sets of X induced by gX . At every time t
there is also a measure χt on X induced by the metric tensor gF t . The measure of an
arbitrary measurable set U ⊆ X is computed as

χt(U) =

∫
U

dχt =

∫
U

Gtd ξ.(2.2)

The quantity Gt is the Radon–Nikodým derivative

Gt =
dχt

dξ

and we will call it the volume density of F t. As we can see from (2.2), it expresses
how F locally shrinks or expands volumes.

The evolution of the immersion F t results in evolution of the induced metric gF t

and the induced measure χt. These are the tools to examine the properties of the
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immersion from the point of view of the distribution of points. In the following section,
we will formulate some desirable properties of the immersion in terms of the volume
density and the global volume of X . In order to be able to use those conditions for
construction of the tangential velocity field, we need to know how the volume density
and the global volume evolve with the evolving immersion.

According to the work of Bauer, Harms, and Michor [11], the map G satisfies the
following evolution equation:

∂tG = (−gY (h, vN ) + divgFwT )G.(2.3)

Here, ht is the mean curvature vector of F t and wt
T (x) is the pull-back of vtT (x) along

F t, wt
T (x) = (F t)∗(vtT (x)), which means wt

T is a vector field on X . The operator
divgF represents the divergence on X associated to the induced metric gF .

Now let At represent the volume of X measured by the induced measure χt. Then
from (2.3) follows

∂tA =

∫
X

(−gY (h, vN ) + divgFwT ) dχ,(2.4)

where χ is defined so that χ(·, t) = χt. Applying the divergence theorem we get

∂tA =

∫
X

(−gY (h, vN )) dχ+

∫
∂X

gF (wT , ν) dHχ,(2.5)

where Hχt is the (m − 1)-dimensional Hausdorff measure on ∂X induced by χt and
for x ∈ ∂X , ν(x) is the outward unit normal (with respect to gF ) to ∂X in TxX . If
∂X = ∅ or wT�∂X is a tangential vector field on ∂X , i.e., gF (wT , ν) = 0, we get

∂tA =

∫
X

(−gY (h, vN )) dχ.(2.6)

2.2. The volume-oriented tangential redistribution. The volume-oriented
redistribution is used when we want to control the volume density of the evolution
of X in Y . In the discrete setting, this corresponds to controlling the volumes of
the m-dimensional mesh elements—lengths of lines for a discretized curve, areas of
polygons for a discretized surface, etc.

A typical requirement for an evolution is to conserve the relative volume of any
set throughout the whole time domain. This means that for any U ⊆ X we require

χt(U)

At
=
χ0(U)

A0

for all t ≥ 0. This implies

Gt(x)

At
=
G0(x)

A0

for almost all x ∈ X , t ≥ 0, or, in other words, for t ≥ 0 we have

∂t

(
G

A

)
= 0.(2.7)

In order to find a corresponding tangential velocity vT or its pull-back wT , we combine
(2.7) with (2.3) and (2.5) and we get

divgFwT = gY (vN , h)− 〈gY (vN , h)〉χ +
1

A

∫
∂X

gF (wT , ν) dHχ,(2.8)
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where 〈gY (vN , h)〉χ is the mean of gY (vN , h) over X with respect to χ, i.e.,

〈gY (vN , h)〉χ =
1

A

∫
X

gY (vN , h) dχ.

If ∂X = ∅ or gF (wT , ν) = 0, we have

divgFwT = gY (vN , h)− 〈gY (vN , h)〉χ.(2.9)

If condition (2.7) is satisfied throughout the evolution, we keep the quality of the
initial immersion with respect to the relative volumes. However, we might not be
satisfied with the initial state; what we usually want is some sort of uniformity which
can be difficult to obtain at the starting point. Thinking of the discrete case, we can
easily construct a uniform mesh in a subset of Rn. But discretization of an arbitrarily
curved shape in some uniform way needs a certain effort even in the one-dimensional
(1D) case and becomes more difficult as the dimension increases. Instead of trying
to find a uniform immersion at the beginning, we can start with any (reasonable)
immersion and let it approach the uniform immersion during the evolution process.

The immersion F t is volume-uniform with respect to gX if its volume density
is constant on its domain. This is equivalent to the practically more convenient
dimensionless condition

Gt(x)

At
= C

for almost all x ∈ X , where C ∈ R+ is a constant. An asymptotically uniform
evolution F satisfies the condition

Gt

At
−→
t→∞

C

uniformly with respect to x. This can be achieved, for example, if G
A is a solution of

the equation

∂t

(
G

A

)
=

(
C − G

A

)
ω,(2.10)

where ω : [0, ts] → R+. This condition can be further modified—besides the immersion
converging to a uniform immersion, we might want the global volume A to converge
to a given value A∞. In that case we get

∂tG

A∞
=

(
C − G

A∞

)
ω.(2.11)

Combining (2.10) with (2.3) and (2.5) we get the condition for wT

divgFwT = gY (vN , h)− 〈gY (vN , h)〉χ +
1

A

∫
∂X

gF (wT , ν) dHχ +

(
C
A

G
− 1

)
ω

(2.12)

and, in case ∂Xt = ∅ or vT · ν = 0,

divgFwT = gY (vN , h)− 〈gY (vN , h)〉χ +

(
C
A

G
− 1

)
ω.(2.13)
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Moreover, if we want to prescribe the limit of the volume of A, we combine (2.11)
with (2.3). This results in

divgFwT = gY (vN , h) +

(
C
A∞
G

− 1

)
ω.(2.14)

If we were able to compute wT directly from (2.8)–(2.9) or (2.12)–(2.14), we could
obtain vT (x) by pushing wT (x) forward along F . However, these conditions do not
uniquely determine the tangential field wT ; there are infinitely many possibilities for
how to choose it. One possibility is to assume that wT is a gradient field, which means
that

wt
T = ∇gFtψ

t,

where ψt is a function on X , ψt : X → R. The gradient ∇gFtψ
t is a vector field on X

defined by

gF t(∇gFtψ
t, u) =

∂ψt

∂u
∀u ∈ TX.

Using this assumption, we get equations for the Laplace–Beltrami operator of ψt. For
the conservation of relative volumes

ΔgFψ = gY (vN , h)− 〈gY (vN , h)〉χ +
1

A

∫
∂X

gF (∇gF ψ, ν) dHχ(2.15)

and for the asymptotically uniform redistribution

ΔgF ψ = gY (vN , h)− 〈gY (vN , h)〉χ +
1

A

∫
∂X

gF (∇gFψ, ν) dHχ +

(
C
A

G
− 1

)
ω.

(2.16)

Equation (2.14) is reduced to

ΔgFψ = gY (vN , h) +

(
C
A∞
G

− 1

)
ω.(2.17)

If (2.8)–(2.9) or (2.12)–(2.14) are accompanied by an appropriate boundary condi-
tion, ψt is uniquely determined. In the case of manifolds with boundary, we have to
prescribe ψt�∂X . In the case of closed manifolds, we have to prescribe the value of ψt

at one selected point.

2.3. The length-oriented tangential redistribution. In some cases, the vol-
umes or relative volumes of mesh elements are not the main object of interest and
we rather want to control distances between selected points on the manifold. In the
section devoted to applications, we will mention a problem arising in architecture
where the lengths of the 1D mesh elements are a crucial factor.

A natural way to control distances on a manifold is to focus on the evolution of
selected curves on the manifold and redistribute the points on these curves as the
manifold is evolving. Looking at the problem in this way, we can apply (2.8)–(2.9)
or (2.12)–(2.14) and find an appropriate tangential velocity for evolving curves in a
higher dimensional manifold Y .
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First, let us think of an evolution of a single curve Γ in Y . Since we are dealing
with a 1D manifold, the procedure described in section 2.2 can be somewhat simplified.
Namely, we can directly obtain the tangential velocity vT given the divergence of wT

and an appropriate boundary condition.
We can write

vT = ‖vT ‖gY
vT

‖vT ‖gY
= αTY ,

where ‖ · ‖gF is the norm associated with gF , α : Γ × [0, ts] → R and TY = F∗(TF ),
TF being a unit vector field on Γ with respect to the metric gF . The divergence of
wT can then be expressed simply as the directional derivative of the function α

divgFwT =
∂α

∂TF
.

Now we can rewrite the conditions for the tangential velocity. If we want to keep
relative lengths on the curve, we get

∂α

∂TF
= gY (vN , h)− 〈gY (vN , h)〉χ +

α(xE)− α(xS)

A
,(2.18)

where xS and xE are the boundary points of Γ (if any) and A is the length of Γ with
respect to gF . The mean curvature vector h is simply the curvature vector of F . If
α(xS) = α(xE), then

∂α

∂TF
= gY (vN , h)− 〈gY (vN , h)〉χ.(2.19)

For the asymptotically uniform redistribution, (2.12) reduces to

∂α

∂TF
= gY (vN , h)− 〈gY (vN , h)〉χ +

α(xE)− α(xS)

A
+

(
C
A

G
− 1

)
ω(2.20)

and (2.13) reduces to

∂α

∂TF
= gY (vN , h)− 〈gY (vN , h)〉χ +

(
C
A

G
− 1

)
ω.(2.21)

Finally, for the asymptotically uniform redistribution with a prescribed limit length
A∞ we have

∂α

∂TF
= gY (vN , h) +

(
C
A∞
G

− 1

)
ω.(2.22)

As we can see, to obtain a unique solution to (2.18)–(2.22), it is enough to set the
value of α in xS and, if necessary, xE . If there is no boundary, we pick any point on
Γ and set the value of α there.

A curve on an evolving higher dimensional manifold is obtained as the push-
forward of a 1D submanifold Γ of a manifold X along the immersion F . The normal
velocity of such a curve is obtained by restriction of the normal velocity of X to Γ.
Then we can use (2.18)–(2.22) in order to determine the tangential velocity in the
points of the curve.
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Now we can take our ideas further and consider two intersecting curves Γ1, Γ2 on
X . The intersection point will be denoted by x0. We set the tangential velocity of
the intersection point to

vT (x0, t) =
vT,Γ1(x0) + vT,Γ2 (x0)

2
,(2.23)

where vT,Γ1 and vT,Γ2 are the tangential velocities computed individually for Γ1 and
Γ2. While this choice of vT is no more suitable for the relative length preservation,
it still can be used if our goal is the asymptotically uniform immersion of the two
curves. In fact, if Γ1 and Γ2 are linearly independent in x0, then vT in this point will
never be zero if the two corresponding immersions are not uniform. We are also free
to prescribe a limit length for Γ1 and Γ2 as in (2.22). Since the linear independence
of the curves is a sufficient condition for the reliability of (2.23), we can have up to
m curves intersecting at x0 and still obtain an asymptotically uniform immersion for
all of them. Analogously to (2.23), vT at x0 would be taken as the arithmetic mean
of all vT,Γi .

This reasoning extends straightforwardly to a network of curves. It is enough that
there are no more than m intersecting curves in one node and that all curves passing
through one node are linearly independent. If this condition is satisfied, we can apply
the asymptotically uniform redistribution to all curves in the network. In the discrete
case, we can obtain (at t → ∞) uniformly distributed discretization points on each
curve. Having the possibility of setting the limit length of every curve (and thus
the limit length of each linear segment of the curve), we can obtain equal distances
between discretization points everywhere in the network. The resulting mesh will thus
depend on the curves that we select for redistribution (only the lengths of the edges
belonging to one of the selected curves can be directly controlled) and on the method
of redistribution that we choose.

3. Examples of manifold evolution problems. At this point we apply the
proposed tangential redistribution techniques to several particular problems. The
methods already have been demonstrated to work in the case of curves evolving in
R

2 [30, 31] and R
3 [33, 34] and curves evolving on smooth function graphs [32].

Here we discuss the mean curvature flow of surfaces in R
3, the problem of 3D image

segmentation where the normal velocity of the evolving surface depends on the image
data and the evolution of a curve on a sphere driven by its curvature.

3.1. Mean curvature flow of surfaces. In this example, X is a 2D manifold
and Y is R3 with the standard Euclidean metric. We also suppose that F t is a smooth
embedding of X in R

3. We tested our methods on two mean curvature flow models.
The first model is the standard mean curvature flow of a surface in R

3, which means
F satisfies the evolution equation

∂tF = h,(3.1)

where h = HN is the mean curvature vector of F , H is the mean curvature of F
(defined as the trace of the second fundamental form of F ), and N is the outward
unit normal to Im(F ). If we are dealing with an evolving closed surface, this model
leads to shrinking of the volume enclosed by the surface. For an evolving surface
with boundary, (3.1) is coupled with a Dirichlet boundary condition and Im(F t) will
converge to the minimal surface for the given boundary curve ∂Im(F 0). The initial
condition F 0 is prescribed so that it is compatible with the boundary condition.
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The model (3.1) can be alternatively rewritten as

∂tF = ΔgFF,(3.2)

where ΔgF stands for the Laplace–Beltrami operator with respect to the metric gF .
The second model is the volume preserving mean curvature flow of closed surfaces.

In this case we have

∂tF = h− h̄,(3.3)

where h̄ = H̄N and H̄ is the average of the mean curvature over X , which means

H̄ =
1

χ(X)

∫
X

H dχ.

The alternative formulation in terms of the Laplace–Beltrami operator reads

∂tF = ΔgFF − h̄.(3.4)

Equations (3.2) and (3.4) are the ones that we are going to discretize. In order to
be able to control the quality of the discretization during the evolution, we add the
tangential term to both models. The complete models then read

∂tF = ΔgFF + vT ,(3.5)

∂tF = ΔgFF − h̄+ vT .(3.6)

In the former case, we might have a surface with boundary. In some cases, the
tangential movement of points along the boundary might be desirable. Thus, in
general we set

∂tF = vT , x ∈ ∂X,(3.7)

with the condition that vT lies in the tangential space of ∂(Im(F )).

3.1.1. The time discretization. In order to obtain the time discretization of
(3.5) and (3.6), we apply the semi-implicit approach. This approach was chosen be-
cause it demonstrated better stability properties compared to the explicit discretiza-
tion. If τ is the time step, tn = nτ , and Fn = F (·, tn), we obtain

Fn − Fn−1

τ
= ΔFn−1Fn + vn−1

T(3.8)

for the mean curvature flow model and

Fn − Fn−1

τ
= ΔFn−1Fn − h̄n−1 + vn−1

T(3.9)

for the volume preserving mean curvature flow. The symbol ΔFn−1 denotes the
Laplace–Beltrami operator with respect to the metric gFn−1 induced by Fn−1.

3.1.2. The space discretization. The space discretization of (3.8) and (3.9)
is done by a finite volume technique. The finite volume scheme for evolving sur-
faces is based on polygonal representation of the surfaces. To this end, we consider
a triangulation of X—a simplicial complex homeomorphic to X . The correspond-
ing homeomorphism induces a triangular structure on X consisting of vertices Xi,
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Xi

XipXip+1

CpCp+1 Bp

e
p

e p
+
1

ep,p+1

σp,
1

σ
p,2

F̄n(Xi)

νn
p,1

νn
p,2

T̄p

θn
p,1

θn
p,2

Fig. 1. The discretization mesh. Left, the triangulation of the abstract manifold X. Right, the
corresponding approximation of the embedded manifold Fn(X).

i = 1 . . . nV , edges ej , j = 1 . . . nE , and triangles Tp, p = 1 . . . nT ; these elements are
obtained as the images of the 0,1 and 2-simplices, respectively.

The next step is the construction of a co-volume mesh on X based on the barycen-
tric subdivision of X (Figure 1). We will describe the procedure for a given inner node
Xi. For clarity, we will use local indexing of the mesh elements since it is sufficient to
explain the idea. Let us suppose that the node Xi is the common vertex of m mesh
triangles T1, . . . , Tm. Then it is also the common vertex of m edges e1, . . . , em, where
ep connects Xi with Xip . The triangle Tp admits a barycentric coordinate system—
each point of the triangle can be expressed as P = λ1Xi + λ2Xip + λ3Xip+1 , where
λ1+λ2+λ3 = 1. Let Bp be the barycenter of Tp and Cp the center of ep, p = 1 . . .m,
and let the barycentric subdivision of Tp be constructed using these points. The co-
volume Vi corresponding to Xi is then constructed as the star of Xi—the union of
the triangles Vp,1 = XiCpBp and Vp,2 = XiBpCp+1 for p = 1 . . .m, where we set
Cm+1 = C1. It is a polygon with 2m boundary edges σp,1 = CpBp, σp,2 = BpCp+1.

The manifold X can be embedded in R
3 in a way that respects its triangular

structure. We define the embedding F̄n as follows. In the verticesXi, we set F̄
n(Xi) =

Fn(Xi). Then, for any triangle Tp with vertices Xi, Xip , Xip+1 , we set

F̄n(λ1Xi + λ2Xip + λ3Xip+1) = λ1F
n(Xi) + λ2F

n(Xip) + λ3F
n(Xip+1).

This means that F̄n(X) is a polyhedron with vertices F̄n(Xi) = Fn(Xi) = Fn
i , edges

F̄n(ej), and triangular faces F̄n(Tp). The points Fn
i will be the unknowns of the fully

discretized problem.
Since now we have an additional set of embeddings F̄n, the manifoldX is equipped

with another set of induced metrics gn—the pull-backs of the Euclidean metric along
F̄n. The measure induced by gn will be referred to as χn.

Our approximation will also use some elements of F̄n(X). First, we will need
the outward unit normal νni to the boundary of F̄n(Vi) tangent to F̄n(X) (defined
everywhere except the corners of F̄n(Vi)). Since ν

n
i is piecewise constant, we will also

use the notation νnp,1, ν
n
p,2 for the outward unit normals to F̄n(σp,1) and F̄

n(σp,2) in

the plane of T̄p. Further, θnp,1 and θnp,2 will denote the angles of Tp adjacent to Xip

and Xip+1 , respectively, measured in the metric gn.
Integrating (3.8) over Vi, we get∫

Vi

Fn − Fn−1

τ
dχFn−1 =

∫
Vi

ΔFn−1Fn dχFn−1 +

∫
Vi

vn−1
T dχFn−1 .(3.10)
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In the same way, for (3.9)

∫
Vi

Fn − Fn−1

τ
dχFn−1 =

∫
Vi

ΔFn−1Fn dχFn−1 +

∫
Vi

2h̄n−1 dχFn−1 +

∫
Vi

vn−1
T dχFn−1.

(3.11)

Here, χFn−1 stands for the measure induced by the metric gFn−1.
Discretization of the Laplace–Beltrami operator. The Laplace–Beltrami operator

is discretized by the cotangent scheme presented in Meyer et al. [27]. For any control
volume Vi, the Laplace–Beltrami operator term in (3.10) and (3.11) can be rewritten
as ∫

Vi

ΔFn−1Fn dχFn−1 =

∫
∂Vi

∇Fn−1Fn · νn−1
i dHχFn−1

=

m∑
p=1

∑
q=1,2

∫
σp,q

∇Fn−1Fn · νn−1
p,q dHχFn−1 ,

(3.12)

where ∇Fn−1 denotes the gradient with respect to the metric gFn−1. Now, since
Fn ≈ F̄n, we have

(∇Fn−1Fn)�Tp≈ (∇n−1F̄
n)�Tp ,

where ∇n−1 is the gradient with respect to gn−1. From the definition of F̄n follows
that its gradient is constant on Tp. This property leads to the equality [27]

∑
q=1,2

∫
σp,q

∇n−1F̄
n · νn−1

p,q dHχn−1 =
1

2
(cot θn−1

p,2 (Fn
ip − Fn

i ) + cot θn−1
p,1 (Fn

ip+1
− Fn

i ))

(3.13)

for any p = 1 . . .m and further to the approximation (using the full indexing)∫
Vi

ΔFn−1Fn dχn−1 ≈ 1

2

m∑
p=1

(
cot θn−1

i,p−1,1 + cot θn−1
i,p,2

)
(Fn

i − Fn
ip),(3.14)

where θn−1
i,0,1 = θn−1

i,m,1.
Discretization of the tangential velocity term. Based on the two possibilities of

tangential redistribution presented in section 2, we have to suggest two ways to ap-
proach the discretization of the tangential velocity term∫

Vi

vn−1
T dχFn−1 .(3.15)

In case of the volume-oriented tangential redistribution, vT is not computed directly
but it is assumed to be the gradient of a function ψ that can be found according to
(2.15)–(2.17). If we want to use the length-oriented redistribution, we have at our
disposal a direct way to obtain vT (2.18)–(2.22). This determines how we approxi-
mate the integral of vn−1

T in (3.10) and (3.11). In addition, we have to suggest an
appropriate discretization of (2.15)–(2.22).

Equations (2.15)–(2.17) arising in the volume-oriented redistribution contain the
Laplace–Beltrami operator of the unknown function ψ. Just as before, we can inte-
grate them over the volume Vi and then take advantage of the discretization presented
in the previous subsection. This leads to
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∫
Vi

ΔFn−1ψn−1 dχn−1 ≈ 1

2

m∑
p=1

(
cot θn−1

i,p−1,1 + cot θn−1
i,p,2

)
(ψn−1

i − ψn−1
ip

),(3.16)

where ψn−1 = ψ(·, tn−1) and ψn−1
i = ψ(Xi, t

n−1). Further, we need to approximate
the terms on the right-hand side of the integrated versions of (2.15)–(2.17). We take∫

Vi

gY (v
n−1
N , hn−1) dχn−1 ≈ χn−1(Vi)gY (v

n−1
N,i , h

n−1
i )

and the remaining integrals can be approximated analogously. Now, gY (v
n−1
N,i , h

n−1
i )

is simply

gY (v
n−1
N,i , h

n−1
i ) = vn−1

N,i · hn−1
i = hn−1

i · hn−1
i = (Hn−1

i )2

for the standard mean curvature flow and

gY (v
n−1
N,i , h

n−1
i ) = (hn−1

i − h̄n−1) · hn−1
i = (Hn−1

i )2 − h̄n−1 · hn−1
i

for the volume preserving mean curvature flow. Since

h = ΔgFF

we can, once more, use the discretization of the Laplace–Beltrami operator (3.14).
That means

hn−1
i =

1

2χn−1(Vi)

m∑
p=1

(
cot θn−1

i,p−1,1 + cot θn−1
i,p,2

)
(Fn−1

i − Fn−1
ip

).(3.17)

The approximation of the mean curvature H follows directly:

Hn−1
i = ‖hn−1

i ‖,(3.18)

where ‖ · ‖ is the Euclidean norm in R
3. The average of H is approximated as

H̄n−1 =
1

An−1

nV∑
i=1

Hn−1
i χn−1(Vi),(3.19)

where

An−1 =

vN∑
i=1

χn−1(Vi).(3.20)

Similarly

〈gY (vn−1
N , hn−1)〉χn−1 ≈ 1

An−1

nV∑
i=1

(Hn−1
i )2χn−1(Vi)(3.21)

for the mean curvature flow model and

〈gY (vn−1
N , hn−1)〉χn−1 ≈ 1

An−1

nV∑
i=1

(
(Hn−1

i )2 − h̄n−1 · hn−1
i

)
χn−1(Vi)(3.22)
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for the volume preserving mean curvature flow. Finally, if we want to use the asymp-
totically uniform redistribution, we have to approximate the term(

C
A

G
− 1

)
ω.

The question is how to approximate the volume density G. We have

A(tn−1) =

∫
X

G(x, tn−1) dξ ≈
nV∑
i=1

Gn−1
i ξ(Vi).

On the other hand,

A(tn−1) ≈
nV∑
i=1

χn−1(Vi).

Since we do not have any particular conditions imposed on the measure ξ, we can
assume that ξ(X) = 1/C and ξ(Vi) = ξ(X)/nV for all i = 1 . . . nV . Then we can set

Gn−1
i = χn−1(Vi)

nV

ξ(X)
= CnV χ

n−1(Vi).(3.23)

Therefore, (
C
A

G
− 1

)
ω ≈

(
An−1

nV χn−1(Vi)
− 1

)
ωn−1.(3.24)

Equations (3.16)–(3.24) provide all necessary ingredients for the full discretiza-
tion of (2.15)–(2.17). After an appropriate combination, depending on the type of
redistribution, we end up with a linear system with the unknowns ψn

i . In case of
closed surfaces, we have to prescribe ψn

i for one selected index i in order to obtain a
system with a unique solution. If we are dealing with a surface with boundary, the
value ψn

i has to be set for all its boundary vertices.
Now we are ready for discretizing the integral of the tangential velocity vn−1

T

(3.15). Recall that we supposed

(Fn−1)∗
(
vn−1
T (x)

)
= wn−1

T (x) = (∇Fn−1ψn−1)(x)

for any x ∈ X . This implies

vn−1
T (x) = (Fn−1)∗

(
wn−1

T (x)
)
= (Fn−1)∗

(
(∇Fn−1ψn−1)(x)

)
.

This means that Im(vn−1
T ) = ∇Im(Fn−1)

(
(Fn−1)∗ψ

n−1
)
, where ∇Im(Fn−1) is defined

so that the diagram

F
(
Im(Fn−1)

)
V
(
Im(Fn−1)

)

F(X) V(X)

(Fn−1)∗

∇Im(Fn−1)

∇Fn−1

(Fn−1)∗
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commutes (F denoting the space of functions and V the space of vector fields).
Obviously, if Im(Fn−1) is considered to be a submanifold of R

3 with the metric
gIm(Fn−1) pulled back from R

3, then ∇Im(Fn−1) represents the gradient on Im(Fn−1)
with respect to gIm(Fn−1). It is also usual [17] to define ∇Im(Fn−1)ϕ for a function
ϕ : Im(Fn−1) → R as

∇Im(Fn−1)ϕ = ∇ϕ̄− (∇ϕ̄ ·N)N,

where ϕ̄ is any smooth extension of ϕ to the neighborhood of Im(Fn−1) in R
3. In

this case, ∇Im(Fn−1) is usually referred to as the tangential gradient or the surface
gradient.

Having vn−1
T of this specific form, the following identity holds [17]:∫
Vi

vn−1
T dχFn−1 =

∫
∂Vi

ψn−1νn−1
i dHχFn−1 −

∫
Vi

ψn−1hn−1 dχF
n−1.(3.25)

The approximation follows straightforwardly,∫
Vi

vn−1
T dχFn−1 ≈

m∑
p=1

(
‖σi,p,1‖n−1ψ

n−1
i,p,1ν

n−1
i,p,1 + ‖σi,p,2‖n−1ψ

n−1
i,p,2ν

n−1
i,p,2

)
−χn−1(Vi)ψ

n−1
i hn−1

i ,

(3.26)

where ψn−1
i,p,1, ψ

n−1
i,p,2 are the values of ψn−1 in the midpoints of σi,p,1 and σi,p,2. They

are obtained from the values of ψn−1 in the vertices Xi by linear interpolation, which
means

ψn−1
i,p,1 =

5ψn−1
i + 5ψn−1

ip
+ 2ψn−1

ip+1

12
,

ψn−1
i,p,2 =

5ψn−1
i + 2ψn−1

ip
+ 5ψn−1

ip+1

12
.

The other option for the tangential redistribution—the length-oriented
redistribution—leads to a much simpler approximation of the tangential velocity term.
Since in this case we obtain vT explicitly, we simply use∫

Vi

vn−1
T dχFn−1 ≈ χn−1(Vi)v

n−1
T,i ,(3.27)

where vn−1
T,i is the tangential velocity in Xi.

The principle of the length-oriented redistribution is to consider the point Xi

situated on a curve Γ, which means, in the discretized setting, Xi = Γj . Since Γ is
one-dimensional, we can assume that the points Γj , j = 0 . . . np, are ordered (indexed)
according to their distance from a boundary point, if any, or from an arbitrarily chosen
point Γ0 in case there is no boundary. The velocity vn−1

T,i is obtained as

vn−1
T,i = αn−1

j T n−1
Y,j ,

where αn−1
j = αn−1(Γj) and T

n−1
Y,j = Fn−1

∗ (T n−1
Γ,j ), T n−1

Γ,j being the unit tangent vector

to Γ in Γj with respect to gFn−1 . The speed αn−1
j is obtained from (2.18)–(2.22), where

the directional derivative ∂αn−1

∂Tn−1
Γ,j

is approximated as

∂αn−1

∂T n−1
Γ,j

≈
αn−1
j − αn−1

j−1

dn−1(Γj−1,Γj)
.(3.28)
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Here, dn−1(Γj−1,Γj) is the distance between Γj−1 and Γj with respect to the metric
gn−1. The value αn−1

0 is set according to the specific requirements of the problem
that we are solving.

Further, we approximate the vector T n−1
Y,j ,

T n−1
Y,0 ≈ Fn−1(Γ1)− Fn−1(Γ0)

dn−1(Γ0,Γ1)
,(3.29)

T n−1
Y,j ≈

Fn−1(Γj+1)−Fn−1(Γj)
dn−1(Γj+1,Γj)

+
Fn−1(Γj)−Fn−1(Γj−1)

dn−1(Γj−1,Γj)

2
, j = 1 . . . np − 1,

T n−1
Y,np

≈
Fn−1(Γnp)− Fn−1(Γnp−1)

dn−1(Γnp−1,Γnp)
.

In order to discretize the curvature vector h, we use the difference

h(Γj) ≈
T n−1
Y,j+1 − T n−1

Y,j

dn−1(Γj−1,Γj)+dn−1(Γj ,Γj+1)
2

(3.30)

for j = 1 . . . np − 1. In the first and the last point, we can set

h(Γ0) ≈
T n−1
Y,1 − T n−1

Y,0

dn−1(Γ1,Γ0)
,

h(Γnp) ≈
Tnp − Tnp−1

dn−1(Γnp ,Γnp−1)

if we need the approximation of the curvature there.

If the point Xi is the intersection point of two curves, then vn−1
T,i is taken as the

arithmetic mean of the two corresponding tangential velocities according to (2.23).

3.1.3. The fully discrete formulation. At this point, only a few details are
missing for the full discretization of the mean curvature flow models. First, we take

∫
Vi

Fn − Fn−1

τ
dχFn−1 ≈ χn−1(Vi)

Fn
i − Fn−1

i

τ
.(3.31)

If we are dealing with the volume preserving version of the mean curvature flow, we
also have to include the approximation

∫
Vi

2h̄n−1 dχFn−1 ≈ 2χn−1(Vi)h̄
n−1,(3.32)

where h̄n−1
i is obtained from (3.19). Finally, combining (3.31), (3.14), (3.26) or (3.27),

and, if appropriate, (3.32), we obtain a linear system with unknowns Fn
i . The solution

of this system is the numerical solution of our problem.

Remark 3.1. In our implementation, we multiplied each linear equation corre-
sponding to the fully discretized evolution problem by the factor τ/χn−1(Vi). There-
fore, if si is the sum of all off-diagonal coefficients in the ith row of the system matrix,
the diagonal coefficient is equal to si + 1. For an appropriately chosen time step τ
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(depending on the properties of the triangulation), the system will be diagonally dom-
inant. We solved this system using the BiCGStab method [41] and usually only a few
iterations were needed to obtain a sufficiently precise solution in all our experiments.
We also tested the SOR method that, too, never failed to converge though the number
of iterations was much higher even if the method was optimally tuned. When using the
volume-oriented redistribution, we have to solve another system corresponding to
the discretization of (2.15)–(2.17). Here we do not have the possibility to guarantee
the diagonal dominance. However, both BiCGStab and SOR methods converged in all
experiments that we performed though the number of necessary iterations was usually
one order of magnitude higher than in the case of the system for Fn

i . The number
of iterations depends on the discretization of the evolving manifold. A more precise
investigation of the properties of the two matrices and of the convergence of particular
numerical methods that can be applied could be a subject of further research.

Remark 3.2. Within the description of the discretization mesh, we did not men-
tion the boundary nodes Xi. The difference here is that the node with m neighboring
mesh triangles has m + 1 neighboring edges e1, . . . , em+1 and the point Xi is one of
the vertices of the co-volume Vi—see Figure 2. However, the discretization of the
Laplace–Beltrami operator is not necessary in the boundary points; what we need is
just the area of the boundary co-volume.

3.1.4. Experiments and applications. In this section, we demonstrate the
properties and performance of the numerical scheme and the tangential redistribution
techniques. We present several test examples as well as some practical applications.

The experimental order of convergence of the finite volume scheme. If Im(F 0) is
a standard Euclidean sphere, the exact solution to (3.1) is known. If the radius of the
sphere is r0, then Im(F t) is a sphere with radius

r(t) =
√
r20 − 4t.

This allows us to examine the experimental order of convergence (EOC) of the nu-
merical method described in the previous section.

In our case, we set r0 = 1.0 and we stopped the computation when ts = 0.06.
The discretization of the sphere was based on an octahedron with isosceles triangular
faces and the mesh refinement was done by dividing each triangle into four equal
triangles. The coarsest grid used for the evaluation of EOC contained 66 vertices and
128 triangles (see Figure 3). We used the coupling τ ∼ l2, where l characterizes the
size of the triangle sides. The EOC was computed as

log2

(
δl
δl/2

)
,

Xi

Fig. 2. The co-volume corresponding to a boundary node Xi.
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where δl is the L2 error,

δl =

ts/τ∑
j=1

(
nV∑
i=1

∣∣∣‖F j
i ‖ − r(tj)

∣∣∣χn−1(Vi)

)
τ.

The error δl/2 is computed in the same way after applying one step of space discretiza-
tion refinement and changing τ accordingly.

We tested the method without any tangential redistribution and then with the
asymptotically uniform volume-oriented tangential redistribution with ω = 1.0, ω =
10.0, ω = 100.0. The results are presented in Tables 1–4. The first two tables also
show the CPU time (in seconds) needed for the computation on a single 2.4-GHz
processor. The most time-consuming part of the procedure is updating the mesh-
related elements (control volumes, normals, etc.) in each time step. Computing the
tangential component of the velocity takes relatively a lot of time with respect to
solving the global linear system due to the higher number of iterations needed for the
BiCGStab method to converge.

Looking at the tables, we observe the second order accuracy in all four cases. This
order of convergence is due to the space discretization that is second order accurate
and due to the coupling τ ∼ l2 that is natural for parabolic problems. Investigating
the convergence in time alone, we would observe the first order accuracy. Comparing
the results, we can see that the L2 error is higher when we use the tangential redis-
tribution and it is increasing with increasing ω. This is because the approximation
of the tangential movement is not purely tangential anymore; this leads to a certain
deviation of the mesh nodes from the surface where they should be situated. How-
ever, the method still converges without any loss of the convergence rate. Moreover,
the presented test example is an evolution of a sphere which is a surface of constant
mean curvature. The experiments that follow will demonstrate that the tangential
movement might be crucial in evolution of surfaces with a significant variation of the
mean curvature.

Fig. 3. The discretization of the sphere, from left to right: nV = 66, 258, 1026, 4098.

Table 1

The EOC for the case with no tangential redistribution.

nV τ L2 error CPU EOC
66 0.01 3.49211e-3 4.03e-3

258 0.0025 8.93590e-4 6.94e-2 1.96642
1026 0.000625 2.21598e-4 2.04 2.01167
4098 0.00015625 5.53971e-5 109.94 2.00006
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Table 2

The EOC for the case with the asymptotically uniform tangential redistribution, ω = 1.0.

nV τ L2 error CPU EOC
66 0.01 3.72866e-3 5.27e-3

258 0.0025 9.27154e-4 9.78e-2 2.00778
1026 0.000625 2.28472e-4 2.83 2.02079
4098 0.00015625 5.70027e-5 198.89 2.00291

Table 3

The EOC for the case with the asymptotically uniform tangential redistribution, ω = 10.0.

nV τ L2 error EOC
66 0.01 4.83682e-3

258 0.0025 1.19628e-3 2.01549
1026 0.000625 2.96323e-4 2.01332
4098 0.00015625 7.38617e-5 2.00427

Table 4

The EOC for the case with the asymptotically uniform tangential redistribution, ω = 100.0.

nV τ L2 error EOC
66 0.01 1.48276e-2

258 0.0025 2.54933e-3 2.54010
1026 0.000625 5.53847e-4 2.20256
4098 0.00015625 1.33084e-4 2.05715

Fig. 4. The discretization of the ellipsoid with semiprincipal axes of lengths a = 1.2, b = 1.0,
c = 0.8. Left, nV = 258; right, nV = 1026.

The role of tangential redistribution in the computation process. Here, we present
several experiments demonstrating the effects and importance of the tangential redis-
tribution in the process of evolution of discrete surfaces.

In the first experiment, we applied the mean curvature flow model and the evolv-
ing surface was an approximation of the ellipsoid with the semiprincipal axes of lengths
a = 1.2, b = 1.0, c = 0.8. The grid was constructed in the same way as described in
section 3.1.2 (Figure 4). Tables 5, 6, and 7 illustrate the effect of the volume-oriented
tangential redistribution measured in terms of the ratio rA = Amin

Amax
, where Amin is

the minimum and Amax the maximum co-volume area in the mesh. The first table
displays the evolution of rA in the case with no tangential redistribution. The sec-
ond table shows how rA evolves when we apply the redistribution preserving relative
areas. The third table contains the results for the asymptotically uniform redistribu-
tion. The number of node points, the time step, and the redistribution speed ω are
listed in each column of the tables. As we can see, in the case with no redistribution
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Table 5

Evolution of rA in the case with no tangential redistribution.

t
nV =258 nV =1026
τ=3.0e-3 τ=7.5e-4

0.000 0.281745 0.256451
0.045 0.224503 0.206107
0.090 0.182472 0.167306
0.135 0.146004 0.130404
0.180 0.110983 0.094962
0.225 0.053318 0.046544

Table 6

Evolution of rA in the case with the relative area preserving redistribution.

t
nV =258 nV =1026
τ=3.0e-3 τ=7.5e-4

0.000 0.281745 0.256451
0.045 0.273905 0.252824
0.090 0.267797 0.250508
0.135 0.261826 0.249062
0.180 0.255447 0.248805
0.225 0.247222 0.251225

Table 7

Evolution of rA in the case with the asymptotically uniform redistribution.

t
nV =258 nV =258 nV =258 nV =1026 nV =1026 nV =1026
τ=3.0e-3 τ=3.0e-3 τ=3.0e-3 τ=7.5e-4 τ=7.5e-4 τ=7.5e-4
ω=1.0 ω=10.0 ω=100.0 ω=1.0 ω=10.0 ω=100.0

0.000 0.281745 0.281745 0.281745 0.256451 0.256451 0.256451
0.045 0.282313 0.354639 0.729898 0.263034 0.351779 0.721432
0.090 0.284454 0.419558 0.804872 0.270825 0.437894 0.781555
0.135 0.286607 0.476460 0.847488 0.279512 0.500058 0.817059
0.180 0.288372 0.528390 0.880004 0.289722 0.547976 0.844647
0.225 0.289122 0.587350 0.842915 0.304414 0.600890 0.853963

of points, we can observe a decrease of rA. If we use the redistribution preserving
relative areas, there is only a small change in rA due to the discretization error. For
the asymptotically uniform redistribution, rA increases with a rate depending on the
redistribution speed ω.

In the second experiment, we followed the mean curvature flow of the discretized
ellipsoid with semiprincipal axes of lengths a = 3.0, b = 1.0, c = 0.8. This surface
has regions with relatively high curvature and these parts become problematic in the
course of the evolution process. It is demonstrated in Figure 5, 6, 7, and 8, where
we can see how the mesh triangles and control volumes contract in regions with high
curvature. We can observe that for both presented discretizations of the ellipsoid
the area of some co-volumes shrinks so that it leads to obviously wrong results. As
we could see in section 3.1.4, the tangential redistribution introduces some extra
numerical error in the earlier stages of the evolution, but in the later stages the
approximation is much more correct than in the case with no tangential movement.

Finally, we present an experiment concerning the volume preserving mean cur-
vature flow. This time we used a cymling-like shape with 1026 discretization points.
This shape is parametrized as
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Fig. 5. Evolution of a discretized ellipsoid with 258 grid points, τ = 3.0e− 3; the selected time
steps are n = 0, n = 40, n = 80, n = 110. The first two rows correspond to the case with no
tangential redistribution; the other images represent the evolution with the asymptotically uniform
tangential redistribution with ω = 100.0.

Fig. 6. Evolution of a discretized ellipsoid with 258 grid points, τ = 3.0e−3, with both triangle
and co-volume mesh displayed. The selected time steps are n = 0, n = 40, n = 80, n = 110. The
first row corresponds to the case with no tangential redistribution, and the second row represents the
evolution with the asymptotically uniform tangential redistribution with ω = 100.0. The view is set
so that we can observe the point with the highest initial mean curvature. The images are scaled in
order to show more details.
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Fig. 7. Evolution of a discretized ellipsoid with 1026 grid points, τ = 7.5e − 4; the selected
time steps are n = 0, n = 160, n = 320, n = 440. The first two rows correspond to the case with
no tangential redistribution, and the other images represent the evolution with the asymptotically
uniform tangential redistribution with ω = 100.0.

Fig. 8. Evolution of a discretized ellipsoid with 1026 grid points, τ = 7.5e−4, with both triangle
and co-volume mesh displayed. The selected time steps are n = 0, n = 160, n = 320, n = 440. The
first row corresponds to the case with no tangential redistribution, and the second row represents the
evolution with the asymptotically uniform tangential redistribution with ω = 100.0. The view is set
so that we can observe the point with the highest initial curvature. The images are scaled in order
to show more details.
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Fig. 9. Evolution of a discretized cymling-like shape with 1026 grid points, τ = 7.5e − 4, the
volume preserving mean curvature flow. Both triangle and co-volume mesh are displayed. The
selected time steps are n = 0, n = 10, n = 40, n = 100, n = 250, n = 1000. No tangential
redistribution was used.

x(u, v) =

(
0.15 cos(4u) +

0.5 sin(8v)√
2π

e−50u2

+ 0.85

)
cosu cos v,

y(u, v) =

(
0.15 cos(4u) +

0.5 sin(8v)√
2π

e−50u2

+ 0.85

)
cosu sin v,

z(u, v) = −0.5

(
0.15 cos(4u) +

0.5 sin(8v)√
2π

e−50u2

+ 0.85

)
sinu

and it evolves (for t → ∞) into a sphere with the same volume. We show several
selected steps of the evolution with no tangential movement and with the asymptoti-
cally uniform redistribution with ω = 100 (Figures 9 and 10). We also present a table
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Fig. 10. Evolution of a discretized cymling-like shape with 1026 grid points, τ = 7.5e − 4,
the volume preserving mean curvature flow. Both triangle and co-volume mesh are displayed. The
selected time steps are n = 0, n = 10, n = 40, n = 100, n = 250, n = 1000. The asymptotically
uniform tangential redistribution with ω = 100.0 was used.

illustrating the evolution of rA (Table 8) and a detail of the mesh at the end of the
evolution (Figure 11). We set the time step τ = 7.5e− 4. Even though this time we
do not observe any completely incorrect result, the quality of the mesh during the
evolution is much better in the case when we use the tangential redistribution.

Remark 3.3. The redistribution methods are designed so that the redistribution
speed ω can be time-dependent. However, in all presented experiments as well as
in the examples that follow, ω(t) was set to be a constant function. This choice
was sufficient for demonstrating the behavior of the methods and to obtain results of
desired quality. Using a time-dependent redistribution speed would be necessary, for
example, if we wanted to achieve a uniform distribution of points at a finite time [31].
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Table 8

Evolution of rA for the cymling-like shape, the volume preserving mean curvature flow.

t No redistribution
Asymptotically uniform
redistribution, ω = 100.0

0.0000 0.294552 0.294552
0.0075 0.133083 0.414416
0.0300 0.010791 0.469153
0.0750 0.016281 0.688545
0.1875 0.004780 0.775162
0.7500 0.006693 0.809300

Fig. 11. A detail of the mesh of the cymling-like shape at t = 1000. Left, the case with no
tangential redistribution. Right, the same part of the shape but with the asymptotically uniform
redistribution applied.

A practical application of mean curvature flow with tangential redistribution. In
some cases we may deal with problems that directly require some sort of uniform
discretization of surfaces. Here we present a problem coming from architecture—the
design of shell structures. These structures have become very popular in the last
decades because they are lightweight and flexible—they can have almost an arbitrary
shape. A shell structure consists of two types of elements—1D truss elements usually
made of metal or wood and 2D shell elements that can be made, for example, of glass,
plastic, or wood. In order to optimize the manufacturing process, it is important to
have as many equal elements as possible. In many cases, some sort of uniformity can
also help to meet the aesthetic criteria.

The mean curvature flow model combined with the tangential redistribution of
mesh points is an efficient tool for designing structures that represent minimal sur-
faces. Given a boundary curve Γ, the corresponding minimal surface is obtained by
applying the mean curvature flow equation (3.1), where F 0 is a smooth surface with
the boundary Γ and it is a topological disk. The truss structure naturally represents
the discretization of the surface. In order to be able to control the quality of the grid,
we can use the model (3.5) with the tangential redistribution term. Our goal in the
design process is to obtain a structure with as many equally sized truss elements as
possible. Therefore, this time we use the length-oriented redistribution.

The topic of the truss structure design was elaborated in detail in a recent work
[23]. Here we show one example. In this case the boundary curve Γ consisted of four
segments,

ΓW (z) = (0.0, z,−(z − 0.5)2 + 0.25), z ∈ 〈0, 1〉,
ΓE(z) = (1.0, z,−(z − 0.5)2 + 0.25), z ∈ 〈0, 1〉,
ΓN (z) = (z, 1.0, 0.0), z ∈ 〈0, 1〉,
ΓS(z) = (z, 0.0, 0.0), z ∈ 〈0, 1〉.
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Fig. 12. The shell structure design—two different views of the initial condition. Left, an
axonometric projection; right, a perspective projection. The curves that were used for the length-
oriented redistribution are highlighted by thicker red, green, and blue lines.

At the beginning of the evolution, all grid points were situated in the xy-plane except
the boundary points that were placed on the boundary curve (Figure 12). The network
of curves γk that were used for the length-oriented redistribution consisted of the
diagonal curves. Moreover, the points were also allowed to move on the boundary
segments ΓW and ΓE . We used the redistribution with the prescribed limit length,
which means that the tangential velocity was obtained from (2.22). However, since
the movement of the endpoints is limited, the limit length was prescribed only for the
parts of the curves between their second point and the last but one point. It was set
to A∞,k = d∞,k(pk − 3), where pk is the number of node points of the curve. The
parameter d∞,k represents the length of a single truss segment of the kth curve and it
was set to d∞,k = 0.101 for the inner curves and d∞,k = 0.12 for the boundary curves.
As for the other parameters, the time step was set to τ = 6.25e− 3 and we stopped
the computation after 800 time steps. The redistribution speed was ω = 800.0. The
parameter ω was large in order to obtain equally sized truss elements (within the
tolerance that allows length differences of about 1� of the element length). The
tangential speed in the endpoints of the curves was set to zero.

The final question is how to set the value of α in the second points (γn1,k) of the
curves. For aesthetic reasons we decided that the first and the last segment of a curve
should have the same length at the end of the evolution. This can be achieved by the
following choice of αn

1,k:

αn
1,k = dn1,kh

n
1,k · κn1,k + (dnpk,k − dn1,k)ω,

where hn1,k is the mean curvature vector of the surface at the point γn1,k, κ
n
1,k is the

curvature vector of γnk at γn1,k, and d
n
1,k, d

n
pk,k

are the lengths of the first and the last
segment of γnk .

The results are shown in Figures 13 and 14. Of 401 truss elements, 180 have
the same length (within the allowed tolerance). That represents 44.89% of the total
number of trusses. For the number of segments tending to infinity, this ratio would
approach 2

3 = 66.67% (since the curve network is chosen so that two of three sides of
almost all triangles would have the prescribed length). The result is also satisfactory
from the aesthetic point of view.

3.2. Surface evolution with an advection component. Now we will present
an example of surface evolution that, besides the mean curvature movement, contains
an advection component. One of the typical applications where such evolution occurs
is 3D image segmentation. In this case, the evolution of the surface depends on the
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Fig. 13. The shell structure design—the computed triangulated minimal surface in axonometric
projection.

Fig. 14. The shell structure design—the computed triangulated minimal surface in perspective
projection, top view. The equally sized truss elements are highlighted on the right picture.

image intensity function. Let I : R3 ⊃ Ω → R be an image intensity function. The
manifoldX will be a 2D Riemannian sphere and F : X → Ω×〈0, ts〉 its time-dependent
embedding in Ω. We used the following surface evolution model [29]:

∂tF = a (∇e ·N)N + beΔgFF + vT ,(3.33)

where the function e : Ω → R is an edge detector of the image I. This equation is a
3D analogue of the geodesic active contour model [14] enriched with two parameters
a ∈ R+, b ∈ R+. These parameters are used to better control the evolution process
consisting of mean curvature flow and the edge detector driven flow. Assigning differ-
ent weights to the two normal velocities, we are able to find their most appropriate
combination for a particular image.

In order to construct a numerical approximation of (3.33), we apply a semi-
implicit time discretization similar to (3.8),

Fn − Fn−1

τ
= a

(
∇e ·Nn−1

)
Nn−1 + bΔFn−1Fn + vn−1

T .(3.34)

For the space discretization, we need two grids—the triangulation representing the
evolving surface and the voxel grid of the 3D image. The surface triangulation has
been described in section 3.1, as well as the discretization of the Laplace–Beltrami
operator. What we need to approximate now is the edge detector e and its gradient.

Let us suppose the image domain Ω is a box subdivided into cubic voxels of side
length l and that the image intensity I is constant on any voxel. Since X is embedded
in Ω, Fn(Xi) is situated in a voxel Pj , where j = (x, y, z) represents a vector of integer
coordinates. The representative value of e in Pj will be denoted by ej . Further, v1,
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v2 and v3 are the standard basis vectors in R
3. The voxel faces will be denoted by

S±p
j , p = 1, 2, 3.

First, we construct the approximation of ∇e in the barycenter c±p
j of S±p

j . The
derivative in the direction of vp is discretized by

D±pIj = ±
(
Ij±vp − Ij

)
/l.(3.35)

For the other two directions vq, q �= p, we will use the values of e in the centers of the
voxel edges S±p,±q

j denoted by ej± 1
2vp±

1
2vq

. We set

D±p,qej =
ej± 1

2vp+
1
2vq

− ej± 1
2vp−

1
2vq

l
,(3.36)

where

ej± 1
2vp±

1
2vq

=
ej+ ej±vp+ ej±vq+ ej±vp±vq

4
.

Finally, the gradient of e in the barycenter of the voxel Pj can be approximated by
taking the arithmetic mean of the approximate gradients on its faces.

In our experiment, the edge detector was of the form

e(x, y, z) =
1

1 +K‖∇I(x, y, z)‖2 ,(3.37)

whereK is a positive real constant. So, in addition, we need to approximate∇I. Here,
we apply again (3.35) and (3.36) with e substituted by I. Afterward, we compute the
norm of the approximate gradient on each face and then take the arithmetic mean of
the six obtained values.

The described segmentation technique was applied to a zebrafish cell nucleus
image. Segmentation of cell nuclei plays an important role in cell image analysis [12].
Particularly, having the segmented object in the form of a triangulated surface allows
us to directly estimate the surface of the nucleus or evaluate its shape by principal
component analysis. Before segmenting, the image was presmoothed by the geodesic
mean curvature flow filtering algorithm [14, 15, 25]. The results of the segmentation
are shown in Figures 15 and 16. The values of the model parameters were set to
nV = 258, τ = 0.001, l = 1.0, a = 1.0, b = 200.0 for time steps 1 . . . 200 and b = 1.0
after. We used the asymptotically uniform volume-oriented tangential redistribution
with ω = 100.0. The initial condition was a sphere centered in a manually estimated
nucleus center. Figure 15 shows a 2D slice of the segmented nucleus surface. Figure 16
demonstrates the effect of the tangential redistribution by showing the quality of
the resulting triangulation compared to the mesh obtained without any tangential
movement of grid points.

3.3. Curvature driven flow of a curve on a sphere. Finally, in order to
provide an example when Y is not a Euclidean space, we show an example of a curve
evolving on a sphere. The metric gY is induced by an embedding of Y in R

3 given by
the parametrization

S(ϑ, ϕ) = (cosϑ cosϕ, cosϑ sinϕ, sinϑ), ϑ ∈ 〈−π/2, π/2〉, ϕ ∈ 〈−π, π〉.

The evolution equation is again

∂tF = h+ vT .(3.38)
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Fig. 15. Cell nucleus segmentation. A 2D slice of the initial condition and the segmented
surface are shown together with the corresponding slice of the image.

Fig. 16. Cell nucleus segmentation. Left, the segmented nucleus surface obtained with no
tangential redistribution. Right, the surface obtained with tangential redistribution of mesh points,
ω = 100.0.

In our case, X will be a curve with boundary and we set ∂tF = 0 in the boundary
points. In such setting, the image of X will converge to a straight line—a geodesic—
in Y .

In our experiments we used an explicit time discretization and the space dis-
cretization was done according to (3.27)–(3.30). The only difference is that the (ap-
proximated) curvature vector computed by (3.30) has to be projected on the tangent
space of the sphere in the corresponding point of the curve. That means

h(Xi, t
n−1) ≈ h̄n−1

i − (h̄n−1
i ·Nn−1

Y,i )Nn−1
Y,i ,

where h̄n−1
i is the vector obtained by (3.30) and Nn−1

Y,i is a unit normal to Y in

Fn−1(Xi). Since Y is embedded in R
3 as the unit sphere centered at the origin, we

have simply Nn−1
Y,i = Fn−1(Xi).

The results of the experiments are shown in Figures 17, 18 and 19. The initial
condition is given by the curve γ,

γ(t) = S(t, 0.3 sin(5t) + (t− π/5)2(t+ π/5)(− cos(9t)− 0.1t+ 1)), t ∈ 〈−π/5, π/5〉.

The curve was discretized by 50 grid points. Further, we used τ = 2e − 4 and we
performed 3000 time steps. The first figure shows the initial condition and the result
of the evolution. The second figure represents a closer view on the evolution, showing
several stages of the process together with all discretization points. Here, we used
the asymptotically uniform redistribution with ω = 100. The last figure shows what
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Fig. 17. Curvature driven evolution of a curve on a sphere with the asymptotically uniform
redistribution of grid points. Left, the initial condition. Right, the result of the evolution after 3000
time steps—we can see that the curve converges to a geodesic line.

Fig. 18. Curvature driven evolution of a curve on a sphere with the asymptotically uniform re-
distribution of grid points. The grid points are marked to demonstrate the effect of the redistribution.
Time steps 0, 20, 50, 150, 500, and 3000 are shown.

Fig. 19. Curvature driven evolution of a curve on a sphere without any redistribution. Time
steps 20, 50, and 110 are shown.

happens if no redistribution is applied. Very soon, the algorithm fails to provide a
correct result.

4. Conclusions. We presented several possibilities for tangential redistribu-
tion of points on evolving manifolds based on controlling the volume density. We
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demonstrated the performance of the proposed techniques on several examples and a
practical application.

There are several issues left for further research. Tangential redistribution makes
the Lagrangian approach practically applicable; however, we do not consider topolog-
ical changes in this paper. Further, the tangential velocity field is considered to be a
gradient field. It could be useful to investigate how limiting this assumption is and
what other possibilities there are for obtaining this vector field. As far as the numer-
ical scheme is concerned, it is presented for triangular discretizations of surfaces. For
the sake of generality, it could be extended to general polygonal meshes.
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[4] E. Bänsch and A. Schmidt, Simulation of dendritic crystal growth with thermal convection,
Interfaces Free Bound., 2 (2000), pp. 95–115.

[5] P. W. Bates, Z. Chen, Y. Sun, G. W. Wei, and S. Zhao, Geometric and potential
driving formation and evolution of biomolecular surfaces, J. Math. Biol., 59 (2009),
pp. 193–231.

[6] J. W. Barrett, H. Garcke, and R. Nurnberg, On the parametric finite element approxi-
mation of evolving hypersurfaces in R3, J. Comput. Phys., 227 (2008), pp. 4281–4307.

[7] J. W. Barrett, H. Garcke, and R. Nurnberg, Numerical approximation of gradient flows
for closed curves in R

d, IMA J. Numer. Anal., 30 (2010), pp. 4–60.
[8] J. W. Barrett, H. Garcke, and R. Nurnberg, Parametric approximation of surface clusters

driven by isotropic and anisotropic surface energies, Interfaces Free Bound., 12 (2010),
pp. 187–234.

[9] J. W. Barrett, H. Garcke, and R. Nurnberg, Parametric approximation of isotropic
and anisotropic elastic flow for closed and open curves, Numer. Math., 120 (2012),
pp. 489–542.

[10] J. W. Barrett, H. Garcke, and R. Nurnberg, The approximation of planar curve evolutions
by stable fully implicit finite element schemes that equidistribute, Numer. Methods Partial
Differential Equations, 27 (2011), pp. 1–30.

[11] M. Bauer, P. Harms, and P. W. Michor, Sobolev metrics on shape space of surfaces, J.
Geom. Mech., 3 (2011), pp. 389–438.
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