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a Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13,
120 00, Prague 2, Czech Republic

b Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48,
Bratislava, Slovakia

Received 6 May 2015; accepted 13 February 2016
Available online 7 March 2016

Abstract

The paper studies the constrained curvature flow for open planar curves with fixed endpoints by means of its numerical solution.
This law originates in the theory of phase transitions for crystalline materials and where it describes the evolution of closed
embedded curves with constant enclosed area. We show that the area is preserved for open curves with fixed endpoints as well.
Here, the area is given by the curve and its ends connected to the origin of coordinates. We provide the form of the stationary
solution towards which any other solution converges asymptotically in time. The evolution law is reformulated by means of the
direct method into the system of degenerate parabolic partial differential equations for the curve parametrization. This system is
spatially discretized by means of the flowing finite volumes method and solved numerically by the explicit Runge–Kutta solver. We
experimentally investigate the order of approximation of the scheme by means of our numerical data and by knowing the analytical
solution. We also discuss the role of the suitable tangential redistribution. For this purpose, several computational studies related to
the open curve dynamics are presented.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

In this article we focus on the non-local curvature flow for open curves in R2. Our main goal is to investigate the
flow described by the following geometric evolution law:

vΓ = −κΓ + F, where F =
1

L(Γt )


Γt

κΓ ds, (1)

Γt |t=0 = Γini , (2)
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where Γt is a C1 smooth open curve with fixed endpoints in R2. It is evolved in the normal direction with the velocity
vΓ . The evolution starts from the initial curve Γini . Here L(Γt ) =


Γt

ds is the length of the curve Γt and κΓ is the
(mean) curvature of Γt .

In the case where Γt is a closed Jordan curve, nΓ is the outward unit normal vector and the curve is assumed to be
oriented counter-clockwise. This means, that κΓ = 1 if Γt is the unit circle. In the other cases, i.e., the case where Γt
is an open curve or a self-intersected closed curve, nΓ is chosen in such a way that det(nΓ , tΓ ) = 1 where tΓ is the
unit tangent vector to the Γt (see Section 2).

Geometric laws similar to (1) have been discussed in the literature (see [14,11,20,13]) or [18]. They belong to a
class of (mean) curvature flows described by the evolution law

vΓ = −κΓ + F, (3)

with a particular choice of the forcing term F , which is widely studied in the literature (see, e.g., [12]) The evolution
of open curves has been addressed, e.g., in [5,22] or in [23].

The global character of the forcing term F often plays its role in the constrained motion by (mean) curvature,
where the F depends on geometrical properties of Γt , like its length L(Γt ), enclosed area A(Γt ) etc. The particular
choice of F as in (1), i.e., F =


Γt
κΓ ds/L(Γt ), leads to the area preserving (mean) curvature flow, whereas

F =

Γt
κ2
Γ ds/


Γt
κΓ ds yields the length preserving (mean) curvature flow (see [30]), or, by choosing the force

as F = L(Γt )/2A(Γt ), we can investigate the isoperimetric ratio gradient flow (see [30]).
The local character of F is often observed in applications of the (mean) curvature flow in digital image processing.

Namely in image segmentation, where the force F locally depends on the intensity of the segmented image (see, e.g.,
[3,4]).

The (mean) curvature flow with a particular choice of the forcing term F found its applications in many problems
with physical context, e.g., in dislocation dynamics in crystalline materials, where F can describe either global stress
field or local interaction forces between multiple defects (see [6,22]). The constrained motion by (mean) curvature,
in particular, has been investigated in [27,17,7] within the context of a modification of the Allen–Cahn equation (see
[8,1]) approximating the (mean) curvature flow (see [2]). The non-local character of the geometric governing equation
is also connected to the recrystallization phenomena where a fixed previously melted volume of the liquid phase
solidifies again (see [19]).

Problem (3) for closed curves can be mathematically treated by the direct (parametric) method (see, e.g., [10,12,4]),
by the level set method (see, e.g., [24]) or by the phase-field method (see, e.g., [2]). In this paper, we investigate (3) by
means of the direct method as the single option for open or self-intersecting curves and solve the resulting degenerate
parabolic system numerically to provide the information on the solution behavior. For this purpose, the used numerical
scheme based on the flowing finite volume method is suggested using the previous authors’ experience. Approximation
property of this scheme is analyzed and the role of the redistribution for its stable behavior is explained. Then, several
computational examples are presented.

2. Equations

In the direct method for solving (1) one considers the parametrization of the smooth time-dependent curve Γt for
t ≥ 0 by means of the mapping

X⃗ = X⃗(t, u), u ∈ [0, 1],

where u is the parameter in a fixed interval. In the case of a closed curve, the parametrization is orientated counter-
clockwise and the periodic boundary conditions at u = 0 and u = 1 are imposed, i.e. X⃗(t, 0) = X⃗(t, 1). For
open curves with fixed ends we prescribe the Dirichlet boundary conditions for X⃗(t, u) at u = 0 and u = 1;
i.e. X⃗(t, 0) = X⃗0 and X⃗(t, 1) = X⃗1 for given positions X⃗0 and X⃗1, respectively. Consequently, the geometric
quantities of our interest can be expressed by means of the mapping X⃗ . The unit tangent and normal vectors are
given by the following formulas:

tΓ =
∂u X⃗

|∂u X⃗ |
and nΓ =

∂u X⃗⊥

|∂u X⃗ |
=

1

|∂u X⃗ |


∂u X2

−∂u X1


, where X⃗ =


X1

X2


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in accordance with the rule det(nΓ , tΓ ) = 1. For the (mean) curvature κΓ we have

κΓ (X⃗) = −
1

|∂u X⃗ |
∂u


∂u X⃗

|∂u X⃗ |


· nΓ , (4)

and the normal velocity in the direction of nΓ (the projection of the point velocity v⃗Γ at Γ to nΓ ) becomes

vΓ = v⃗Γ · nΓ where v⃗Γ = ∂t X⃗ .

The curve Γt evolves according to (1), provided X⃗ = X⃗(t, u) satisfies the following system

∂t X⃗ =
1

|∂u X⃗ |
∂u


∂u X⃗

|∂u X⃗ |


+ F

∂u X⃗⊥

|∂u X⃗ |
in (0, T )× (0, 1), (5)

X⃗ |t=0 = X⃗ |ini, (6)

where in the case of flow (1) with nonlocally defined forcing term we have

F =


Γt

κΓ ds/L(Γt ), (7)

L(Γt ) =


Γt

ds =

 1

0
|∂u X⃗ |du,


Γt

κΓ ds =

 1

0
κΓ (X⃗)|∂u X⃗ |du.

This is known as the parametric (direct) description of (1).
The details on the general motion law (3) treated by this approach can be found, e.g., in [28], in [10,9] or in [22].

Among advantages of this approach, an easy and straightforward numerical treatment of the curve dynamics is offered.
On the other hand, topological changes can not be treated straightforwardly although there are recent algorithms for
handling topological changes (see, e.g., [4,25,26]).

Denoting

A(Γt ) =
1
2

 1

0
det(X⃗ , ∂u X⃗)du, (8)

the flow governed by (1) preserves A = A(Γt ), i.e. A(Γt ) = A(Γini ) for all t ≥ 0. In the case where Γt is the Jordan
curve, the quantity A represents the enclosed area A(Γt ). And in the case where Γt is an open curve with fixed ends
the quantity A represents the area enclosed by the curve Γt and lines connecting the fixed ends with the origin of the
coordinates (see Fig. 2). The following result is known for the case when Γt is the Jordan curve (see, e.g., [29]). We
extend it for the case when Γt is the open curve with fixed endpoints.

Proposition 1. Suppose {Γt }t≥0 is a family of C1 smooth planar curves, evolving in the normal direction according
to (5)–(6). If Γt are either closed, or open curves with the fixed endpoints, then

dA(Γt )

dt
=


Γt

vΓ ds. (9)

In particular, for each vΓ in the form

vΓ = f −
1

L(Γt )


Γt

f ds,

where f is a smooth function defined on Γt we obtain that

dA(Γt )

dt
= 0. (10)
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Proof. Differentiating (8) we obtain

dA(Γt )

dt
=

1
2

d
dt

 1

0
det(X⃗ , ∂u X⃗)du

=
1
2

 1

0
det(∂t X⃗ , ∂u X⃗)du +

1
2

 1

0
det(X⃗ , ∂2

tu X⃗)du

=

 1

0
det(∂t X⃗ , ∂u X⃗)du +

1
2

 1

0
∂u det(X⃗ , ∂t X⃗)du

=


Γt

vΓ ds +
1
2


det(X⃗ , ∂t X⃗)

1

0
(11)

Eq. (3) is valid provided the mapping X⃗ satisfies the following

∂t X⃗ = (−κΓ + F)nΓ .

From the latter integral expression we deduce

dA(Γt )

dt
=


Γt

vΓ ds +
1
2


det(X⃗ , ∂t X⃗)

1

0
.

The following identity
det(X⃗ , ∂t X⃗)

1

0
= 0

is valid provided that either Γt is a closed curve (X⃗(t, 0) = X⃗(t, 1)) or Γt is an open curve with the fixed endpoints
(∂t X⃗(t, 0) = ∂t X⃗(t, 1) = 0). Moreover, if the normal velocity has the form vΓ = f −

1
L(Γt )


Γt

f ds, then

Γt
vΓ ds

vanishes since

Γt

ds = L(Γt ). Then

dA(Γt )

dt
= 0

holds for any sufficiently smooth function f .

Remark 1. It follows that (10) holds for the choice of f = κΓ in agreement with (7).

Remark 2. The asymptotic behavior of curves evolving according to (3) has been studied mainly by [16,15]. They
assumed F = 0, and proved that any smooth closed convex curve embedded in R2 evolved by the curvature converges
to a point in finite time with asymptotic circular shape (see [15]). Furthermore, any smooth closed curve embedded
in R2 evolved by the curvature becomes convex in finite time and then it converges to a point in finite time with
asymptotical circular shape (see [16]). In the case of law (1), the closed simple curve asymptotically achieves circular
shape enclosing the same area, as discussed, e.g., by [27,18,7,30]. For the open non-intersecting curves connecting
fixed ends one can hypothesize that the curve asymptotically attains the shape corresponding to the arc (the part of
circle) with radius given by the initial area obtained by connecting the curve with the origin of coordinates — see
Figs. 2 and 3. In this article, we present the computational results which comply with this hypothesis.

Tangential effects
Further modifications of (3) lead to the form of law (5) with tangential terms proposed, e.g., in [12] for closed

curves and applied by [6]. Instead of (5), one can consider the evolution law

∂t X⃗ =
1

|∂u X⃗ |
∂u


∂u X⃗

|∂u X⃗ |


+ F

∂u X⃗⊥

|∂u X⃗ |
+ αloc

∂u X⃗

|∂u X⃗ |
in (0, T )× [0, 1], (12)

where, according to [21], the local tangential velocity αloc

αloc = −∂u


1

|∂u X⃗ |


=
∂u X⃗ · ∂uu X⃗

|∂u X⃗ |3
.
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Law (12) then becomes

∂t X⃗ =
∂uu X⃗

|∂u X⃗ |2
+ F

∂u X⃗⊥

|∂u X⃗ |
in (0, T )× [0, 1]. (13)

It contains a nontrivial locally defined tangential velocity. Unlike (5), the modified system (12) contains the local
tangential term αloctΓ . However, numerical experiments often show this local tangential redistribution is not enough
to provide satisfactory results on its own. Therefore, it is useful to replace it by a general tangential velocity denoted
by α, such that

∂t X⃗ =
1

|∂u X⃗ |
∂u


∂u X⃗

|∂u X⃗ |


+ F

∂u X⃗⊥

|∂u X⃗ |
+ α

∂u X⃗

|∂u X⃗ |
in (0, T )× [0, 1]. (14)

Here α is a general, possibly nonlocally defined tangential velocity. There are various ways how to choose the
tangential velocity α. For a discussion on the choice of α we refer to [21]. If properly chosen, the numerical algorithm
is more stable and shows better accuracy. Notice that the tangential velocity does not change the shape of the evolved
curves in case either Γt is closed or Γt is an open curve with the fixed ends provided α vanishes at the endpoints,
i.e. α|u=0 = α|u=1 = 0. For example, if α satisfies

1

|∂u X⃗ |
∂uα = κΓ vΓ − ⟨κΓ vΓ ⟩Γ + ω


L(Γt )

|∂u X⃗ |
− 1


, (15)

where α|u=0 = 0 and ⟨ f ⟩Γ =
1

L(Γt )


Γt

f ds is the curve average of the quantity f , then tangential redistribution α
vanishes at the other endpoint α|u=1 = 0 as well, ω is a given scalar parameter.

3. Numerical solution

For the space discretization of (14), the method of flowing finite volumes is used as, e.g., in [22]. The discrete nodes
Xi = X(t, ui ), i = 0, . . . ,M , as well as dual nodes Xi± 1

2
= X(t, ui± 1

2
) for ui± 1

2
= ui ± h/2, i = 1, . . . ,M, h =

1/M , are positioned along Γt as shown in Fig. 1. Notice that (Xi + Xi±1)/2 denote averages on segments connecting
nearby discrete nodes and differs from Xi± 1

2
∈ Γt . The governing equation is integrated along the dual segments

surrounding the nodes Xi , i = 1, . . . ,M − 1 resulting into u
i+ 1

2

u
i− 1

2

∂t X|∂uX|du =

 u
i+ 1

2

u
i− 1

2

∂u


∂uX
|∂uX|


du + F

 u
i+ 1

2

u
i− 1

2

∂uX⊥du +

 u
i+ 1

2

u
i− 1

2

α∂u X⃗du,

F =
1 1

0 |∂uX|du

 1

0
κΓ |∂uX|du, (16)

κΓ = −
1

|∂uX|
∂u


∂uX
|∂uX|


·
∂uX⊥

|∂uX|
.

Evaluating the first integral on the right-hand side, we obtain u
i+ 1

2

u
i− 1

2

∂t X|∂uX|du =
∂uX
|∂uX|


u

i+ 1
2

−
∂uX
|∂uX|


u

i− 1
2

+ F
 u

i+ 1
2

u
i− 1

2

∂uX⊥du +

 u
i+ 1

2

u
i− 1

2

α∂u X⃗du. (17)

We denote the discrete quantities

d j = |X j − X j−1| for j = 1, . . . ,M,

where X0 = XM and XM+1 = X1 for closed Γt , or X0, XM fixed for open Γt , and

κi = −
2

di + di+1


Xi+1 − Xi

di+1
−

Xi − Xi−1

di


·

X⊥

i+1 − X⊥

i−1

di + di+1
.



6 M. Kolář et al. / Mathematics and Computers in Simulation 126 (2016) 1–13

Fig. 1. Curve discretization by finite volumes.

Fig. 2. Area enclosed by the curve Γt and the lines connecting the origin Θ of coordinates.

Considering the approximation of the integrals by the finite-volume method along the curve, we have u
i+ 1

2

u
i− 1

2

∂t X|∂uX|du ≈
dXi

dt

di + di+1

2 u
i+ 1

2

u
i− 1

2

∂uX⊥du ≈
(X⊥

i+1 − X⊥

i−1)

2
,

 u
i+ 1

2

u
i− 1

2

α∂u X⃗du ≈ αi
(Xi+1 − Xi−1)

2
.

Discrete approximation of tangential velocity αi follows from (15) and denotes the value αi = α(t, ui ). Integration
yields the following recurrent formulas

αi = α1 + Ψi , i = 2, . . . ,M − 1, (18)

α1 = −

M
l=2
(dl + dl+1)Ψi/2

M
l=1
(dl + dl+1)/2

, (19)

Ψi =

i
k=2

ψk, (20)

ψk = κk(−κk + F)dk −

M
l=1
κl(−κl + F)dl

M
l=1

dl

+ ω


M

l=1
dl

M
− dk

 , (21)

where we set α0 = αM = 0. For more detailed analysis of the discretization of the tangential velocity α we refer the
reader to, e.g., [21,30]. Finally, the semi-discrete scheme solving (14) within the context of (1) is the following

dXi

dt

di + di+1

2
=


Xi+1 − Xi

di+1
−

Xi − Xi−1

di


+ F

(X⊥

i+1 − X⊥

i−1)

2
+ αi

(Xi+1 − Xi−1)

2
, (22)

F =
1

M
l=1

dl

M
l=1

κl
dl+1 + dl

2
, (23)

X⃗ i (0) = X⃗ ini (ui ), (24)
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Fig. 3. Schematic figure of the test curve with known area.

for i = 1, . . . ,M − 1. This system can be solved by means of the 4th-order explicit Runge–Kutta–Merson scheme as
in [6], with the automatic time step control and the tolerance parameter ε = 10−6. The initial time step is chosen as
h2, where h = 1/M is the mesh size dividing the parameter range [0, 1].

Remark 3. Assuming that the solution of (14) with forcing term given by (7) is sufficiently smooth, results of our
numerical experiments indicate that finite-volume scheme (22) has the order of integral approximation O(h2), where
h =

1
M . In this paper, our main focus lies in computational aspects of constrained motion of open planar curves

exhibiting zero tangential velocity on their ends. Detailed discussion on consistency, stability, and convergence of the
described numerical scheme together with more general choice of normal velocity will be the subject of our future
work.

4. Computational studies

We use scheme (22)–(23) with the tangential redistribution to perform a series of computational studies showing
the behavior of solutions to (1).

The following examples demonstrate how a solution of (1) evolves in time approaching the arc shape, which is the
asymptotic profile in the case of open curve with fixed ends. The arc is the part of the circle in steady state with the
radius R given implicitly by the following equation

A(Γini) = πR2


1 −
1
π

arcsin


d

2R


,

where d is a distance between the fixed ends. This case is illustrated in Fig. 3.
Additionally, the experimental orders of convergence (EoC) have been measured for all testing examples. As the

testing parameter for estimation of the order of convergence of our scheme we chose the quantity A representing
the enclosed area. We measured the error given by the difference between area at the initial time (t = 0)
which has been evaluated analytically, and the area at given data output times T1, T2, . . . , TN , where we denote
∆ti = Ti − Ti−1, i = 1, 2, . . . , N . The difference between the analytically given area A(Γini ) and the actual area
A(Ti ) of polygonal domain enclosed by piece-wise linear approximation of Γt obtained by (22)–(24) at the time level
Ti for given mesh with M elements is evaluated both by the maximum norm as

error1(M) = max
i=1,2,...,N

|A(Γini )− A(Ti )|

and by the L1 norm as

error2(M) =
1

TN

N
k=1

|A(Γini )− A(Tk)|∆tk ≈
1
T

 T

0
|A(Γini )− A(t)|dt.
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Fig. 4. The area-preserving (mean) curvature flow (1) from Example 1, where the initial open curve asymptotically approaches the arc shape. The
curve Γt is depicted for t = 0, t = 0.025, t = 0.1 and t = 0.5.

Both errors depend on the parameter M , which is the number of finite volumes. Assuming as in [2] and in references
therein that both error estimates depend on the number of finite volumes as

errori (M) = const


1
M

EoC

, i = 1, 2,

we can estimate the order of convergence EoC of scheme (22) between two levels of meshes M1 and M2 as

EoC =

log


errori (M1)
errori (M2)


log


M2
M1

 , i = 1, 2.

Example 1. Fig. 4 illustrates behavior of a solution for the initial open curve given by parametric equations

X⃗(0, u) =


1 − u,


4u(1 − u)

2 (25)

for u ∈ [0, 1], i.e. the initial curve is a graph of the fourth-order polynomial. The motion in the time interval [0, 0.5]

is driven by the normal velocity given by (1). The number of finite volumes is M = 200. The curve Γt asymptotically
approaches the arc shape whereas the enclosed area is preserved (see [27]). The initial curve encloses the area of
0.533269 and at t = 0.5, the curve encloses the area of 0.53334. Table 1 shows the values of EoC for enclosed area.

Example 2. In Fig. 5, the second example shows the behavior of the solution when the initial open curve is given by
parametric equations

X⃗(0, u) =


1 + 0.3 cos(1.2πu)


cos(πu),


1 + 0.3 cos(12πu)


sin(πu)


(26)

for u ∈ [0, 1]. The motion in the time interval [0, 2.0] is driven by the normal velocity given by (1). The number of
finite volumes is M = 200. The curve Γt asymptotically approaches the arc shape, where the preserved quantity A(Γt )
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Fig. 5. The area-preserving (mean) curvature flow (1) from Example 2, where the initial open curve asymptotically approaches the arc shape. The
curve Γt is depicted for t = 0, t = 0.0125, t = 0.1 and t = 2.0.

Fig. 6. Time evolution of the curvature from Example 2 for M = 200 finite volumes.

is just the area below the graph of the curve. As seen in Fig. 6, the initial curve exhibits high variation of curvature,
whereas the curvature of steady state remains constant. The initial curve encloses the area of 1.53819 and at t = 2.0,
the curve encloses the area of 1.53866. Table 1 shows the values of EoC for enclosed area.

Example 3. In Fig. 7, the third example shows the behavior of the solution when the initial open curve is given by
parametric equations

X⃗(0, u) =


0.75 + 0.25 cos(4πu)


cos(πu),


0.5 + cos(5πu)


sin(πu)


(27)

for u ∈ [0, 1]. The motion in the time interval [0, 5.0] is driven by the normal velocity given by (1). The number of
finite volumes is M = 200. The curve Γt asymptotically approaches the arc shape, where the preserved quantity At
is just the area below the graph of the curve. As seen in Fig. 8, the initial curve exhibits high variation of curvature,
whereas the curvature of steady state remains constant. The initial curve encloses the area of 0.58902 and at t = 5.0,
the curve encloses the area of 0.58926. Table 1 shows the values of EoC for enclosed area.
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Fig. 7. The area-preserving (mean) curvature flow (1) from Example 3, where the initial open curve asymptotically approaches the arc shape. The
curve Γt is depicted for t = 0, t = 0.05, t = 0.1 and t = 5.0.

Fig. 8. Time evolution of the curvature from Example 3 for M = 200 finite volumes.

Example 4. In Fig. 9, the fourth example shows the behavior of the solution when the initial open curve is given by
parametric equations

X⃗(0, u) =


0.75 + 0.25 cos(5πu)+ 0.25 sin(5πu)


cos(πu),


0.5 + 0.5 cos(5πu)+ 0.5 sin(5πu)


sin(πu)


(28)

for u ∈ [0, 1]. The motion in the time interval [0, 2.0] is driven by the normal velocity given by (1). The number of
finite volumes is M = 200. The curve Γt asymptotically approaches the arc shape, where the preserved quantity At
is just the area below the graph of the curve. The initial curve encloses the area of 0.825874 and at t = 2.0, the curve
encloses the area of 0.824312069605. Table 1 shows the values of EoC for enclosed area.
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Fig. 9. The area-preserving (mean) curvature flow (1) from Example 4, where the initial open curve asymptotically approaches the arc shape. The
curve Γt is depicted for t = 0, t = 0.025, t = 0.2 and t = 2.0.

Table 1
Table of EoC for Examples 1–5.

M error1 EoC error2 EoC
(EoC for error1) (EoC for error2)

Example 1
A(Γini) = 0.533269

100 0.000017583819 – 0.000019645546 –
200 0.000008454447 1.056 0.000008761386 1.165
300 0.000004374383 1.625 0.000004492787 1.647
400 0.000002643685 1.751 0.000002706492 1.762
500 0.000001765270 1.810 0.000001804284 1.817

Example 2
A(Γini) = 1.53819

100 0.009968971070 – 0.009933596328 –
200 0.000499490704 4.319 0.000498814330 4.316
300 0.000183365980 2.471 0.000183093782 2.472
400 0.000100446450 2.092 0.000100287455 2.092
500 0.000064864539 1.960 0.000064757573 1.960

Example 3
A(Γini) = 0.58902

100 0.006099061574 – 0.005900274464 –
200 0.000216169514 4.818 0.000200691023 4.878
300 0.000102164881 1.848 0.000094836643 1.849
400 0.000058271550 1.952 0.000054052171 1.954
500 0.000037510079 1.974 0.000034774945 1.977

Example 4
A(Γini) = 0.825874

100 0.005547674900 – 0.005385431344 –
200 0.001561930395 1.829 0.001511765019 1.833
300 0.000730291865 1.875 0.000707040287 1.874
400 0.000420150011 1.922 0.000406979651 1.920
500 0.000271559188 1.956 0.000263163652 1.954

Example 5
A(Γini) = 0.651942

100 0.002450053055 – 0.002438076928 –
200 0.000713227097 1.780 0.000710694296 1.778
300 0.000342511990 1.809 0.000341409141 1.808
400 0.000196973384 1.923 0.000196359571 1.923
500 0.000126204707 1.995 0.000125817158 1.995
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Fig. 10. The area-preserving (mean) curvature flow (1) from Example 5, where the initial open curve asymptotically approaches the arc shape. The
curve Γt is depicted for t = 0, t = 0.0125, t = 0.05 and t = 2.0.

Example 5. In Fig. 10, the fifth example shows the behavior of the solution when the initial open curve is given by
parametric equations

X⃗(0, u) =


0.25 + 0.25 cos4(5πu)


cos(πu),


0.5 + 1.5 cos4(5πu)


sin(πu)


(29)

for u ∈ [0, 1]. The motion in the time interval [0, 2.0] is driven by the normal velocity given by (1). The number of
finite volumes is M = 200. The curve Γt asymptotically approaches the arc shape, where the preserved quantity At
is just the area below the graph of the curve. The initial curve encloses the area of 0.651942 and at t = 2.0, the curve
encloses the area of 0.652655227097. Table 1 shows the values of EoC for enclosed area.

5. Conclusion

In this paper we analyzed the area-preserving (mean) curvature flow of open curves and its qualitative and
quantitative behavior of solutions obtained numerically by means of the flowing finite volumes method. Our
computations confirmed the hypothesis that the solution attains an arc shape in long-term. This behavior corresponds
to the expected use in modeling the recrystallization phenomena in solid phase.
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