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1 Introduction
According to the classical theory due to Black, Scholes and Merton an option in a stylized and idealized

financial market can be priced by a solution V = V(S, t) to the linear Black–Scholes parabolic equation:
∂V

∂t
+ 1

2
σ̃2S2

∂2V

∂S2
+ (r − q)S ∂V

∂S
− rV = 0, (1.1)

where r > 0 is the interest rate of a zero-coupon bond, q ≥ 0 is the dividend yield rate and σ̃ > 0 is a constant
historical volatility of the underlying asset price process {St , t ≥ 0}, which is assumed to follow a stochastic

differential equation

dSt = (r − q)Stdt + σ̃StdWt ,

of the geometric Brownianmotion with a drift r − q (cf. [15, 19, 22]). The linear Black–Scholes equation with

a constant volatility σ̃ has been derived under several restrictive assumptions, for example, zero transaction

costs, perfectly replicated portfolio, frictionless, market completeness, etc.

In this paper, the main goal is to investigate and compare two numerical approximation methods for

solving a class of nonlinear generalizations of the linear Black–Scholes equation (1.1) in which the volatility
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is assumed to be a function of the underlying asset price S and Gamma of the option (the Greek Gamma is the

second derivative ∂2
S
V), i.e.

σ = σ(∂2SV, S). (1.2)

The motivation for solving the nonlinear Black–Scholes equation (1.1) with the volatility function σ of the

form (1.2) arises from more realistic option pricing models in which one can take into account nontrivial

transaction costs, market feedbacks, risk from unprotected portfolio and other effects. In the last decades,

some of the restrictive assumptions of the classical Black–Scholes theory [4] have been relaxed in order to

model, for instance, presence of constant transaction costs (see, e.g., Leland [20], Hoggard et al. [13]), non-

constant transaction costs (see, e.g., Amster et al. [1], Ševčovič and Žitňanská [23]), the uncertain volatility

model (cf. Avellaneda and Paras [2]), feedback and illiquidmarket effects due to large traders choosing given

stock-trading strategies (cf. Frey [9], Frey and Patie [10], Frey and Stremme [11], Schönbucher and Wilmott

[21]), imperfect replication and investor’s preferences (cf. Barles and Soner [3]), and risk fromanunprotected

portfolio (cf. Kratka [18], Jandačka and Ševčovič [16]). Efficient techniques and fast computational methods

for pricing derivative securities is a practical task in financial quotes markets. Therefore, realistic PDE-based

option models including, in particular, nonlinear generalizations of the Black–Scholes equation have to be

solved in a fast and efficient way. However, in most important cases there is no explicit formula except for

some special cases with non-standard pay-off diagrams (cf. Bordag [5]). This is the reason why numerical

methods for solving nonlinear Black–Scholes equations have to be developed and analyzed.

In this paper, attention is focused on a class of nonlinear Black–Scholes equations. In particular, the

nonlinear volatility model developed by Frey et al. [8–11] and the risk-adjusted pricing methodology model

proposed and investigated by Kratka [18] and Jandačka and Ševčovič [16, 22] are the main concern of this

work. In a series of papers [8–11] Frey et al. considered a model in which the price of an underlying asset is

affected by specific hedging strategies due to a large trader. They supposed that a large trader uses a given

stock-holding strategy αt and the underlying stock price process satisfies the SDE

dSt = μStdt + σStdWt + ρStdαt ,

where μ is a drift parameter, σ > 0 is the volatility of the process and0 ≤ ρ < ρ̄ is the so-calledmarket liquidity

parameter. It is worth noting that the quantity 1/(ρSt) measures the size of the change in the stock-holding
position of the large trader. Notice that if αt ≡ 0 or ρ = 0, the stock price St follows the geometric Brownian
motion. In [9] Frey (see also [10, 11]) showed that the option price is then a solution to a nonlinear volatility

Black–Scholes equation of the form

∂V

∂t
+ 1

2
σ(∂2SV, S)2S2 ∂

2V

∂S2
+ (r − q)S ∂V

∂S
− rV = 0, (1.3)

for 0 ≤ S < ∞ and 0 ≤ t < T where T is the maturity time. The nonlinear volatility function σ is given by

σ(∂2SV, S) = σ̃(1 − ρS∂2SV)−1, (1.4)

where σ̃ is a constant historical volatility. A solution V = V(S, t) is subject to the terminal pay-off condition
describing the call or put option with expiration price E > 0, i.e.

V(S, T) = (S − E)+ (call option), V(S, T) = (E − S)+ (put option).

Another nonlinear model was proposed by Kratka [18]. It was further generalized and analyzed by

Jandačka and Ševčovič in [16, 22]. The model is constructed following the classical Leland approach for

modeling transaction costs (cf. [20]) in which the time between consecutive portfolio rearrangements is

subject to optimization with respect to the risk arising from an unprotected portfolio. In this risk-adjusted

pricing methodology (RAPM) model the nonlinear volatility function has the form

σ(∂2SV, S)2 = σ̃2(1 + μ(S∂2SV) 13 ). (1.5)

A construction of explicit solutions to equation (1.3) with the nonlinear volatility function as the one

defined in (1.5) was recently provided by Bordag and Frey [6] (see also [5]). Several invariant solutions were
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constructed by means of the invariant Lie group theory. These invariant solutions depend on various param-

eters restricting the class of solutions. In particular, not every pay-off diagram can be considered. In general,

there is no exact pricing formula for the case of a call or put terminal pay-off. Hence efficient numerical tech-

niques for solving such nonlinear Black–Scholes equations are required.

A numerical method proposed and investigated by Jandačka and Ševčovič [16] is based on the transfor-

mation H = S∂2
S
V, x = ln(S/E), τ = T − t, which transforms equation (1.3) with σ = σ(S∂2

S
V) into a porous

media type of quasilinear parabolic equation:

∂H

∂τ
= ∂2

∂x2
β(H) + ∂

∂x
β(H) + (r − q)∂H

∂x
− qH, (1.6)

where β(H) = 1
2
σ2(H)H is an increasing function. For instance, in the case of the volatility function given by

(1.4) one obtains β(H) = σ̃2

2
H(1 − ρH)−2 for H < Hmax (see [22] for details). In the recent paper [23], Ševčovič

and Žitňanská investigated the nonlinear equation (1.6) in the context ofmodeling variable transaction costs.

The existence of classical Hölder smooth solutions was proved and useful bounds for the solution were de-

rived.

The transformation technique developed in [16] allows for construction of a semi-implicit finite volume

based numerical scheme for solving (1.6). There are other approaches dealing mainly with the nonlinear

equation (1.3) for the option price rather than for its transformation H = S∂2
S
V. Another method using quasi-

linearization techniques for solving the fully nonlinear parabolic equation (1.3) was proposed and analyzed

by Koleva and Vulkov [17]. A consistent monotone explicit finite difference numerical scheme was analyzed

by Company et al. in the context of the Frey and Patie model (1.3) with a nonlinear volatility function given

by (1.4). In [7] Ehrhardt and Valkov derived an unconditionally stable explicit numerical scheme for solving

the same problem and provided necessary numerical analysis of the scheme.

In this paper, two numerical approximation methods based on the asymptotic perturbation analysis and

the Newton linearization technique are developed. Thesemethods are used to solve a wide class of nonlinear

Black–Scholes equations. The first method is the asymptotic perturbation method which is based on asymp-

totic expansion of the solution into power series in a small model parameter. The first-order expansion then

corresponds to an explicit analytic approximation formula requiring only one-dimensional numerical inte-

gration which can be computed in a fast and efficient way. The secondmethod is based on Newton’s iterative

method for solving the correspondingnonlinear problem in each temporal discretization level. It is applicable

to a rather general nonlinear case not restricted by any specific types of equations and boundary and terminal

conditions. In [12] Heider used Newton’s iterative method for solving equation (1.3) with four types of non-

linear volatilities and different finite different schemes. Note that different variants of Newton’s linearization

and their implementations are also discussed and compared in this paper.

The paper is organized as follows. In Section 2 an explicit analytic approximation formula for solving a

general class of nonlinear volatility models is derived. In Section 3 an algorithm utilizing Newton’s method

for solving equation (1.3) is described and analyzed. Several comparisons of both methods are discussed in

Section 4. Examples of solution to the Frey and Patiemodel andRAPMmodel are presented. Finally, Section 5

contains an example of model calibration to real market quotes data.

2 The Analytic Approximation Formula Based on Asymptotic
Perturbation Analysis

In this section, an analytic approximation formula for pricing European call or put options with a nonlinear

volatility is derived. Typically this paper considers a wide class of nonlinear volatility functions taking the

following form:

σ(∂2SV, S, T − t)2 = σ̃2 + 2εA(T − t)S𝛾−1Hδ−1, where H = S
∂2V

∂S2
.

The powers 𝛾, δ, the parameter ε as well as the function A(T − t) depend on the chosen nonlinear volatility
model. For example, in the case of the Frey and Patie model with the nonlinear volatility function given by
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equation (1.4), we have

σ(∂2SV, S) = σ̃

1 − ρS∂2
S
V
≈ σ̃(1 + ρS∂2SV),

the parameters are

ε = ρ, 𝛾 = 1, δ = 2, A(T − t) = σ̃2,

and the small model parameter ε can be identified with 0 < ρ ≪ 1.

For the RAPMmodelwith the nonlinear volatility function given by (1.5) the parameters can be identified

as follows:

ε = μ, 𝛾 = 1, δ = 4/3, A(T − t) = σ̃2/2,
and the small parameter ε is identified with 0 < μ ≪ 1.

Equation (1.3) can now be rewritten as

L(V, ε) ≡ ∂V

∂t
+ 1

2
σ(∂2SV, S)2S2 ∂

2V

∂S2
+ (r − q)S ∂V

∂S
− rV = 0, V(S, T) = V̄(S), (2.1)

where V̄ is the prescribed pay-off diagram. The problem is to seek the option price in the formof an asymptotic

expansion in terms of a small parameter (cf. [14]). More precisely,

V = V0 +
N

∑
i=1

εiVi + O(εN+1),

where the leading term V0 ≡ VBS is simply a solution to the linear Black–Scholes model.

The aim here is to derive an asymptotic approximation formula obtained from the first two terms in the

asymptotic expansion, i.e.

V(S, t) ≈ V0(S, t) + εV1(S, t). (2.2)

In order to obtain an explicit formula for the second term V1 in the expansion, equation (2.1) is first approx-

imated as follows:

L(V, ε) ≈ L0(V) + εL1(V) ≈ L0(V0 + εV1) + εL1(V0 + εV1),
where L0 is a linear and L1 is a nonlinear differential operator in V,

L0(V) ≡ ∂V

∂t
+ 1

2
σ̃2S2

∂2V

∂S2
+ (r − q)S ∂V

∂S
− rV, L1(V) ≡ A(T − t)S𝛾(S ∂

2V

∂S2
)δ .

Hence the first-order approximation of the equation L(V, ε) = 0 reads
L0(V0) + ε(L0(V1) + L1(V0)) = 0 (2.3)

satisfying the initial condition

V(S, T) ≡ V0(S, T) + εV1(S, T) = V̄(S). (2.4)

Equation (2.3) with the initial condition (2.4) can be separated into a system of equations in powers of ε, i.e.

O(ε0) : L0(V0) = 0,
V0(S, T) = (S − E)+ (call), V0(S, T) = (E − S)+ (put),

O(ε) : L0(V1) = −L1(V0),
V1(S, T) = 0.

The solution V0 can be obtained by solving the linear Black–Scholes equation. The second equation for V1 is

a non-homogeneous PDE with zero initial condition.

Introduce H0 = S ∂2V0

∂S2
. The equation L0(V1) = −L1(V0) can be rewritten as

{
{
{
L0(V1) = −A(T − t)S𝛾Hδ

0, (S, t) ∈ (0,∞) × [0, T),
V1(S, T) = 0, S ∈ (0,∞). (2.5)
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Therefore, equation (2.5) can be solved once the value of V0(S, t) is evaluated to obtain H0. Recall

V0(S, t) = Se−q(T−t)Φ(d1) − Ee−r(T−t)Φ(d2), d1,2 = ln S
E
+ (r − q ± σ̃2

2
)(T − t)

σ̃√T − t
,

where

Φ(d) = 1

√2π
d

∫
−∞

e−x
2/2dx

is the cumulative distribution function of the standard normal distribution. Hence

H0 = S
∂2V0

∂S2
= e−qτΦ󸀠(d1)

σ̃√τ .

In order to solve equation (2.5) one adopts the usual transformation (see, e.g., [22])

τ = T − t, S = Eex , eαx+βτu(x, τ) = V1(S, t), (2.6)

where

α = 1

2
+ q − r

σ̃2
, β = −( σ̃

2

8
+ r + q

2
+ (r − q)2

2σ̃2
) = − σ̃

2

2
α2 − r. (2.7)

Equation (2.5) is thus transformed to

{{
{{
{
− eαx+βτ

∂u

∂τ
+ eαx+βτ

σ̃2

2

∂2u

∂x2
= −A(τ) E𝛾e𝛾x e−qδτ (Φ

󸀠( ̃d1))δ
σ̃δτδ/2

,

u(x, 0) = 0.
(2.8)

The term ̃d1 corresponds to d1 after transformation (2.6). It is given by
̃d1 = x

σ̃√τ +
(r − q + σ̃2

2
)

σ̃
√τ = x

σ̃√τ + (1 − α)σ̃√τ.
Finally, equation (2.8) can be simplified to

{{
{{
{

∂u

∂τ
− σ̃2

2

∂2u

∂x2
= E𝛾A(τ)
(2πσ̃2τ)δ/2 e

− δ

2σ̃2τ
x2+[𝛾−δ−α(1−δ)]x−[β+qδ+ δ

2
(1−α)2 σ̃2]τ

,

u(x, 0) = 0, (x, τ) ∈ ℝ × [0, T].
Theorem 1. Let u(x, τ) be a solution to (2.9) satisfying the growth condition |u(x, τ)| ≤ Meb|x|

2

for all x ∈ ℝ,
τ ∈ [0, T] where M, b are some constants. Then u(x, τ) is given by the formula

u(x, τ) = E𝛾
τ

∫
0

A(ξ)
Λ(τ, ξ) e

[ P2 σ̃2

2(δ−1)
+β(δ−1)]ξ+ Px

1−δ
+ P2 σ̃2τ

2(1−δ)2
−[ δx2

2σ̃2
+ Pxδτ

1−δ
+ P2 σ̃2δτ2

2(1−δ)2
] 1
Q(τ,ξ) dξ,

where P = 𝛾− δ − α(1 − δ) is a constant depending on the model parameters, and the functions Q(τ, ξ) and
Λ(τ, ξ) are defined by

Q(τ, ξ) = δτ + (1 − δ)ξ, Λ(τ, ξ) = (2πσ̃2) δ2 ξ δ−1
2 √Q(τ, ξ). (2.9)

The proof of this theorem is a straightforward application of the variation of constants formula and can be

found in Appendix A. As a consequence of the previous theorem an explicit expression for the first-order

approximation of the option price can be obtained. Taking V1(S, t) = eαx+βτu(x, τ) leads to

V1(S, t) = E𝛾

(2πσ̃2)δ/2 (
S

E
)
𝛾−δ
1−δ

e
{β+ [𝛾−δ−α(1−δ)]2 σ̃2

2(1−δ)2
}(T−t) T−t

∫
0

A(ξ)
ξ

δ−1
2 √δ(T − t) + (1 − δ)ξ e

Kξ−M(S) 1
δ(T−t)+(1−δ)ξ dξ,

where K is a constant given by

K = [𝛾− δ − α(1 − δ)]2σ̃2
2(δ − 1) + β(δ − 1)

and

M(S) = δ

2σ̃2
(ln S

E
)2 + [𝛾− δ − α(1 − δ)]δ(T − t)

1 − δ
ln

S

E
+ [𝛾− δ − α(1 − δ)]2σ̃2δ(T − t)2

2(1 − δ)2 .

The analytic approximation of the option price V(S, t) can then be evaluated by using equation (2.2).



40 | K. Ďuriš et al., Solving a Class of Nonlinear Black–Scholes Equation

3 Implicit Finite Difference Scheme Using Newton’s Method
Astandardway of solving equation (1.3) numerically is to use implicit temporal discretization in combination

with a finite difference method for approximating the derivatives. Note that the volatility term appearing in

(1.4) and (1.5) is nonlinear and at each time level an iterative technique is to be applied. The frozen coefficient

technique is commonly applied to handle the nonlinearity though sometimes it converges slowly without

proper initial guess. To obtain a better convergence rate, Newton’smethodhas to be employed in combination

with a temporal implicit discretization scheme.

Newton’s method is a linearization technique with many variants and each takes different implementa-

tion. In this section two approaches are discussed. The first approach (denoted by NM1) addresses the root-

finding problem of the nonlinear systemderived from an implicit scheme inwhich calculation of the Jacobian

matrix is used to update the approximate solution. The second approach (NM2) linearizes the original equa-

tion in which a correction term is to be solved and used to update the approximate solution.

3.1 Newton’s Method (Algorithm 1, NM1)

An implicit finite difference scheme with standard notations and the transformation τ = T − t replaces equa-

tion (1.3) as follows:

Vn+1
i

− Vn
i

Δτ
− 1

2
σn+1
i

S2i
Vn+1
i+1 − 2Vn+1

i
+ Vn+1

i−1

(ΔS)2 − rSi
Vn+1
i+1 − Vn+1

i−1

2ΔS
+ rVn+1

i
= 0.

The volatility function σ as given by (1.4) may be discretised as

σn+1
i

= σ̃(1 − ρSi
Vn+1
i+1 − 2Vn+1

i
+ Vn+1

i−1

(ΔS)2 )−1.
Here Si = (i − 1)ΔS, i = 1, . . . ,M, and n = 1, . . . , N − 1, where M and N are the numbers of grid points for

spatial and temporal discretization, respectively. The above equation can be simplified as follows:

H(Vn+1)Vn+1 − Vn = 0,
where H(Vn+1) is anM ×M tridiagonal matrix whose elements nonlinearly depend on Vn+1. Introducing the

mapping

G(Vn+1) = H(Vn+1)Vn+1 − Vn

turns the original problem to the construction of a solution Vn+1 of the equation G(Vn+1) = 0 at each time

level. Newton’s method is applied to solve the root-finding problemwhich requires the Jacobianmatrix of the

function G to be computed. An initial guess chosen as the solution V from the previous time level usually

reduces the number of Newton’s iterations.

In order to compute the Jacobian matrix efficiently, a decomposition of the matrix H(Vn+1) may be

adopted as follows:

H(Vn+1) = Σn+1 H1 + H2, where Σn+1 = Diag((σn+1
i

)2).
Note that H1 and H2 are constant tridiagonal matrices. By using this decomposition, the Jacobian matrix of

G becomes

Jac(G(Vn+1)) = ∂[H(Vn+1)Vn+1]
∂Vn+1

= H(Vn+1) + Diag(H1 V
n+1)∇(Σn+1),

where

∇(Σn+1) = ((∇(σn+11 )2)T , (∇(σn+12 )2)T , . . . , (∇(σn+1M )2)T)T ,
here ∇(σn+1

k
)2 is treated as a row vector.

This decomposition simplifies the computing of the Jacobian matrix in terms of the nonlinear volatility.

Each gradient ∇(σn+1
k

)2 can be obtained by either deriving the analytic expression for σ or by using a finite
difference approximation of the spatial derivatives.
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Algorithm 1: Newton’s Method (NM1)
Input: initial guess Vn+1, tol, initial condition V1 = V(S, τ = 0)
Output: VN = V(S, τ = T)
for n = 1 : N − 1 do

1. G(Vn+1) = H(Vn+1)Vn+1 − Vn;

2. if ‖G(Vn+1)‖ < tol then
break;

else
Vn+1 = Vn+1 − [Jac(G(Vn+1))]−1G(Vn+1);
go back to 1.

end
end

end

Algorithm 2:Waveform-Newton’s Method (NM2)
Input: initial guess V∗, tol, initial condition V1 = V(S, τ = 0), v1 = 0
Output: VN = V(S, τ = T)
for n = 1 : N − 1 do

1. Calculate ∂F
∂V∗

τ
, ∂F
∂V∗

S

, ∂F
∂V∗

SS

, ∂F
∂V∗ ;

2. Solve equation (3.2) to get vn+1;

if ‖vn+1‖ < tol then
Vn+1 = V∗; break;

else
V∗ = V∗ + vn+1;

go back to 1.

end
end

end

3.2 Waveform-Newton’s Method (Algorithm 2, NM2)

The second approach of applying Newton’s linearization is to consider a smooth function F representing the

nonlinear Black–Scholes equation, i.e.

F(Vτ , VS , VSS , V) ≡ Vτ − 1

2
σ2(VSS , S)S2VSS − rSVS + rV = 0.

HereVτ , VS , VSS abbreviate thepartial derivatives ∂τ , ∂SV, ∂
2
S
V, respectively. The linearizationof the function

F at (V∗
τ , V

∗
S
, V∗

SS
, V∗) in direction (vτ , vS , vSS , v) reads as follows:
F(V∗

τ + vτ , V
∗
S + vS , V

∗
SS + vSS , V + v)

= F(V∗
τ , V

∗
S , V

∗
SS , V

∗) + ∂F

∂Vτ

vτ + ∂F

∂VS

vS + ∂F

∂VSS

vSS + ∂F

∂V
v + O(D2), (3.1)

where D2 represents all higher order terms and the partial derivatives are evaluated at (V∗
τ , V

∗
S
, V∗

SS
, V∗).

Equation (3.1) transforms equation (1.3) into a linear partial differential equation of the correction term

v with zero boundary and initial conditions. This equation can be solved easily because all coefficients of

equation (3.1) are determined. Similar to the first approach (NM1), these coefficients can be evaluated either
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Figure 1. Difference of the solution between NM1 and NM2 with respect to the number of gird points under the integral l2 norm
(left) and maximum norm (right).

by the analytic expression for σ or by a finite difference approximation. Eventually, the problem becomes

∂F

∂V∗
τ

vn − ΔτF(V∗
τ , V

∗
S , V

∗
SS , V

∗) = H∗(V∗)vn+1. (3.2)

Again, an initial guess can be set to the solution from previous time level in the algorithm.

The main difference between algorithm NM1 and NM2 is the linearization error O(D2). Figure 1 illus-

trates this error which can be reduced by refining the mesh using more grid points. Both approaches can

approximate to the same value with ΔS and Δt small enough and can be easily applied to different nonlinear

volatilities models as well as different types of options.

4 Numerical Experiments
In this section a comparison is made of two different numerical approximation methods for computing

prices of European call options based on Newton’s methods (NM1, NM2) and the analytic asymptotic ap-

proximation formula developed in Section 2. In the asymptotic approximation formula, the Frey and Patie

model (1.4) and the RAPM model (1.5) are characterized by the following parameters: (ε, δ, 𝛾) = (ρ, 2, 1)
and (ε, δ, 𝛾) = (μ, 4/3, 1), respectively. For the finite difference Newton’s methods (NM1, NM2) terminal and
boundary conditions were chosen as

{{{
{{{
{

V(S, T) = (S − E)+ for 0 ≤ S < Smax,

V(0, t) = 0 for 0 ≤ t ≤ T,

V(S, t) = S − Ee−r(T−t) for S = Smax.

Common model parameters were chosen as

σ̃ = 0.4, E = 100, r = 0.03, q = 0, Smin = 0, Smax = 300, T = 1/12,
and a transformation τ = T − t was used. The tolerance for Newton’s iterations was set as tol = 10−8. The ini-
tial guess in Newton’s methods at the first time level was chosen as the constant value of 1. In the subsequent

temporal levels the initial guess was taken from the approximate solution at the previous time level. The fast

and robust Thomas algorithm for tridiagonal solver was used in Newton’s method. Calculation of integrals

for the asymptotic formula was done by using the built-in Matlab function integral.
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Δτ ΔS ErrNM1 aNM1 ErrNM2 aNM2 ErrFrozen aFrozen
0.00833 30 2.93e−05 — 2.93e−05 — 2.93e−05
0.00208 15 1.72e−06 4.09 1.72e−06 4.09 1.72e−06 4.09
5.21e−04 7.5 1.02e−07 4.08 1.02e−07 4.08 1.02e−07 4.08
1.30e−04 3.75 2.50e−08 2.02 2.50e−08 2.02 2.50e−08 2.02
3.26e−05 1.875 5.00e−09 2.32 5.00e−09 2.32 5.00e−09 2.32
8.14e−06 0.9375 1.25e−09 2.00 1.25e−09 2.00 1.25e−09 2.00

Table 1. Experimental order of convergence for the Frey and Patie model with the l∞ maximum norm.

Δτ ΔS ErrNM1 aNM1 ErrNM2 aNM2 ErrFrozen aFrozen
0.00833 30 2.93e−05 — 2.93e−05 — 2.93e−05
0.00208 15 1.79e−06 4.03 1.79e−06 4.03 1.79e−06 4.03
5.21e−04 7.5 1.39e−07 3.68 1.39e−07 3.68 1.39e−07 3.68
1.30e−04 3.75 4.46e−08 1.64 4.46e−08 1.64 4.46e−08 1.64
3.26e−05 1.875 1.25e−08 1.83 1.25e−08 1.83 1.25e−08 1.83
8.14e−06 0.9375 4.32e−09 1.53 4.32e−09 1.53 4.32e−09 1.53

Table 2. Experimental order of convergence for the Frey and Patie model with the l2 integral norm.

4.1 Comparison of Numerical Methods with Explicit Invariant Solution

In order to ensure all the numerical solvers mentioned in Section 3 are accurate, the explicit invariant solu-

tions for the Frey and Patie model derived by Bordag in [6, (86), (87)] with parameters c = −0.05, d1 = 0 and
d2 = 30 were computed and taken as reference solutions for evaluating experimental order of convergence.
The boundary conditions and initial conditions were generated from these invariant solutions.

The table containing the experimental order of convergence (or convergence ratio) is constructed from

the convergence rate of the error defined as follows:

a = log((Err)m+1/(Err)m)
log((ΔS)m+1/(ΔS)m) .

Here the error Err is defined as Err = ‖V(S, τ) − V̂(S, τ)‖/‖V̂(S, τ)‖ for S ∈ [0.5E, 1.5E], where V(S, τ) is the
solution from the numerical solver, and V̂(S, τ) is from the invariant solution. The ratio (ΔS)2/Δτ is fixed to
be 108000, and (ΔS)m+1/(ΔS)m = 0.5. Tables 1 and 2 show results for the l∞ maximum norm and l2 integral

norm. Both results demonstrate that all the solvers converge to the same solution which converges to the

explicit invariant solution with refined grid points.

4.2 Comparison of Accuracy of Newton’s Method and the Asymptotic Analytic
Formula

In Figure 2 errors between different methods were plotted in order to analyze the changes of the numerical

approximationwith respect to thedifferentmodel parameters ρ in theFrey andPatiemodel and μ in theRAPM

model. The error ‖V(S, τ) − Ṽ(S, τ)‖/‖Ṽ(S, τ)‖ for S ∈ [0.5E, 1.5E]was computedwith the l∞maximumnorm

where V was calculated from Newton’s method and Ṽ was evaluated by the asymptotic formula.

The difference between Newton’s method and the asymptotic formula can be reduced by taking smaller

values of the model parameters as shown in Figure 2. When ρ and μ become larger, the difference increases.

Notice that in the asymptotic formula, higher order terms such as O(ρ2) and O(μ2) are ignored. These terms
can not be neglected when considering larger values of the model parameters.
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Figure 2. Difference between the analytic asymptotic approximation formula and Newton’s methods NM1 (left), NM2 (right) for
the Frey and Patie model (top row) and the RAPM model (bottom row). The circled blue line corresponds toM = N = 50, the red
line with stars corresponds to grid sizes M = N = 100, and the green line with diamonds corresponds to M = N = 200.

4.3 Time Complexity Comparison of Newton’s Method and the Analytic Asymptotic
Formula

The comparison of time complexity is based on the implementation under the same Matlab computing envi-

ronment in order to ensure fair comparison. Since the CPU time depends on the software implementation, the

comparison is chosen to be based on calculating the so-called experimental order of time complexity (eotc) as

defined by

Computation Time = c̃ × Δτeotc
and can be expressed as

eotc = − log((Time)n+1/(Time)n)
log((Δτ)n+1/(Δτ)n) .

The model parameters were chosen as ρ = 0.005 and μ = 0.005. For all Newton-based methods the spatial
variable S was stored in a vectorized form in order to speed up computation. The ratio of grid sizes was taken

as ΔS/Δτ = 3600 and (Δτ)n+1/(Δτ)n = 0.5.
Tables 3, 4, 5 and 6 show the computation times and the values of the experimental order of time com-

plexity. NM1,2(Fo) corresponds to computing the analytic form of the Jacobian matrix and the coefficients.

NM1,2(Nu) corresponds to using a finite difference approximation of the Jacobianmatrix and the coefficients.

The abbreviation ‘Asym’ stands for results computed bymeans of the analytic approximation formula derived

in Section 2, and ‘Frozen’ stands for results obtained by the frozen coefficient method instead of the Newton

one.
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Δτ ΔS NM1(Fo) (sec) eotc NM2(Fo) (sec) eotc Asym (sec) eotc

0.00208 7.5 0.053 — 0.041 — 0.291
0.00104 3.75 0.121 1.190 0.101 1.300 0.467 0.682
5.21e−04 1.875 0.524 2.114 0.292 1.531 0.826 0.822
2.60e−04 0.9375 4.748 3.179 1.544 2.402 1.845 1.159
1.30e−04 0.4687 70.32 3.888 17.06 3.465 4.549 1.301

Table 3. Experimental order of time complexity for the Frey and Patie model.

Δτ ΔS NM1(Nu) (sec) eotc NM2(Nu) (sec) eotc Frozen (sec) eotc

0.00208 7.5 0.170 — 0.220 — 0.040
0.00104 3.75 0.541 1.670 0.503 1.193 0.095 1.247
5.21e−04 1.875 4.308 2.993 1.791 1.832 0.301 1.663
2.60e−04 0.9375 25.84 2.584 11.09 2.630 1.653 2.457
1.30e−04 0.4687 230.0 3.153 95.69 3.108 17.91 3.437

Table 4. Experimental order of time complexity for the Frey and Patie model.

Δτ ΔS NM1(Fo) (sec) eotc NM2(Fo) (sec) eotc Asym (sec) eotc

0.00208 7.5 0.060 — 0.133 — 0.353
0.00104 3.75 0.157 1.387 0.613 2.204 0.580 0.716
5.21e−04 1.875 0.585 1.897 3.360 2.454 1.104 0.928
2.60e−04 0.9375 4.918 3.071 27.31 3.023 2.488 1.172
1.30e−04 0.4687 66.76 3.762 224.5 3.039 6.171 1.310

Table 5. Experimental order of time complexity for the RAPM model.

Δτ ΔS NM1(Nu) (sec) eotc NM2(Nu) (sec) eotc Frozen (sec) eotc

0.00208 7.5 0.457 — 0.426 — 0.032
0.00104 3.75 1.612 1.818 1.717 2.010 0.090 1.491
5.21e−04 1.875 10.56 2.711 9.280 2.434 0.306 1.765
2.60e−04 0.9375 58.95 2.480 70.59 2.927 1.735 2.503
1.30e−04 0.4687 465.2 2.980 588.4 3.059 16.95 3.288

Table 6. Experimental order of time complexity for the RAPM model.

The results from evaluating the computational complexity and the experimental order of time complexity

show that the analytic approximation formula has the advantage when considering smaller time steps Δτ.

Hence it can be successfully adopted formodel calibration using high frequency data.When all the numerical

methods converge, Newton’smethod seems to haveworse performancewhen compared tomethods based on

freezing of coefficients as can be seen from Figure 3 which shows the number of iterates for the example with

grid points M = N = 200 and ρ = 0.01. Clearly, for the first few time levels, the method of frozen coefficients

requires a higher number of iterates to ensure convergence. However, since the solution from previous time

level is taken to be the initial guess for the new time level, it helps to reduce the number of iterates for the

subsequent time levels. Newton-based methods spent most of the time by evaluating Jacobian matrices. A

possible improvement is to combine Newton’s method and the frozen coefficients method, or by implement-

ing Broyden’s type of updates for the Jacobian matrix.
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Figure 3. Number of iterations (vertical axis) for using NM1 (blue), NM2 (green) and frozen coefficient (red) in the Frey and Patie
model for different times (horizontal axis).

Figure 4. Different option prices for ρ = 0, 0.025, 0.05 in the Frey and Patie model (left) and for μ = 0, 0.025, 0.05 in the RAPM
model (right).

5 Calibration of the Frey and Patie Model to Market Quotes Data
Numerical results from Section 4 have demonstrated that the asymptotic formula can be used for accurate

approximation of a solution to the nonlinear Black–Scholes equation if the parameters ρ and μ are sufficiently

small. From Figure 4, it is important to notice that the option price increases for asset prices close to E when

these parameters are increasing. In fact, ρ and μ can be calibrated using market data to observe whether the

market of underlying asset has high or low liquidity.

In the calibration experiments the parameter ρ for the Frey and Patie model was calibrated by using the

call option time series from Apple Inc. (AAPL) in NASDAQ quotes market. The bisection method was used

in the search algorithm as described in Algorithm 3. The parameters in the calibration process were fixed as

r = 0.01, E = 106, q = 0, and σ̃ = σimpl was computed as the implied volatility from themarket quotes prices.

As for the solution method (‘Solver’) both the analytic approximation formula and Newton-based methods

were used. Table 7 shows similar calibration results for both methods when the parameter ρ is not large

using these market data. This means that the analytic approximation formula has a benefit of performing

fast calibration when compared to Newton’s method.
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Algorithm 3:Model calibration with bisection search algorithm
Input: Solver, Vask, tol, a = 0, b = 0.1
Output: ρ
for i = 1 : 100 do

1. ρ = a+b
2
;

2. if ‖Solver(S, τ, r, σimpl, ρ) − Vask‖ < tol then
break;

else
if Solver(S, τ, r, σimpl, ρ) − Vask > 0 then

b = ρ;

else
a = ρ;

end
go back to 1.

end
end

end
end

τ S Vbid Vask σimpl ρAsym ρNewton
0.0753 107.67 6.100 6.200 0.443 3.807e−03 3.956e−03
0.0674 107.14 4.925 5.000 0.389 2.848e−03 2.934e−03
0.0595 112.37 8.225 8.300 0.401 3.492e−03 3.584e−03
0.0515 111.70 7.625 7.700 0.419 3.383e−03 3.347e−03
0.0436 109.01 6.225 6.300 0.506 2.939e−03 3.030e−03
0.0357 107.58 4.525 4.600 0.455 2.875e−03 2.995e−03
0.0277 110.37 5.950 6.000 0.458 2.228e−03 2.247e−03
0.0198 113.28 8.300 8.350 0.569 2.847e−03 2.912e−03

Table 7. Calibration results.

6 Conclusion
In this paper two different linearization numerical methods for solving the nonlinear Black–Scholes equa-

tion are proposed and analyzed. Numerical results are compared in their accuracy and time complexity for

the Frey and Patie illiquid market model and the risk-adjusted pricing methodology model. It turns out that

the analytic approximation formula is more suitable for computation when the model parameters are suffi-

ciently small. In particular, it can be applied in calibrating parameters using market data efficiently as it is a

time consumingprocess for a full temporal-spatial finite difference approximation schemebased onNewton’s

method. On the other hand, the analytic approximation formula becomes restrictive as the error increases

when the parameters become larger. Newton’s method is easy to implement and suits various types of non-

linear Black–Scholes equations. There are different approaches to implement Newton’s method and two of

them are discussed in this paper. Although time complexity is a general problem, it can be improved by com-

bining other techniques or by using the so-called Newton-like methods to approximate the Jacobian matrix

in order to reduce the number of iterates. Both techniques in fact can be extended to solve other types of non-

linear option pricing models, and the resulting numerical solutions may also be considered as a benchmark

solution when exact solutions do not exist.
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A Proof of Theorem 1
A solution u(x, τ) to the non-homogeneous parabolic PDE

{{
{{
{

∂u

∂τ
− a2

∂2u

∂x2
= f(x, τ), (x, τ) ∈ ℝ × (0,∞),

u(x, 0) = 0, x ∈ ℝ
is given by the variation of constant formula

u(x, τ) =
τ

∫
0

∞

∫
−∞

G(x − ξ, τ − s)f(ξ, s)dξ ds, where G(x, τ) = 1

√4πa2τ e
− x2

4a2τ .

The solution of equation (2.9) can be written as

u(x, τ) =
τ

∫
0

∞

∫
−∞

1

√2πσ̃2(τ − ξ)
e
− (x−s)2

2σ̃2(τ−ξ)
E𝛾

(2πσ̃2ξ)δ/2 A(ξ)e
− δ

2σ̃2 ξ
s2+[𝛾−δ−α(1−δ)]s−[β+qδ+ δ

2
(1−α)2 σ̃2]ξ

ds dξ.

Let us consider the change of variables in (2.9) and introduce the function

R(ξ) = [β + qδ + δ

2
(1 − α)2σ̃2]ξ.

By the relation β = − σ̃2

2
α2 − r (see (2.7)), we have

R(ξ) = −β(δ − 1)ξ.
In order to simplify further notation, let EXP denote the power of the exponential function, i.e.

EXP = − x
2 − 2xs + s2

2σ̃2(τ − ξ) − δ

2σ̃2ξ
s2 + Ps − R(ξ)

= − ξ + δ(τ − ξ)
2σ̃2(τ − ξ)ξ s

2 + [ x

σ̃2(τ − ξ) + P]s − R(ξ) − x2

2σ̃2(τ − ξ)
= − Q(τ, ξ)

2σ̃2(τ − ξ)ξ {s
2 − 2 x + Pσ̃2(τ − ξ)

Q(τ, ξ) ξs + [ x + Pσ̃2(τ − ξ)
Q(τ, ξ) ξ]2 − [ x + Pσ̃2(τ − ξ)

Q(τ, ξ) ξ]2}

− R(ξ) − x2

2σ̃2(τ − ξ)
= − Q(τ, ξ)

2σ̃2(τ − ξ)ξ {s −
x + Pσ̃2(τ − ξ)

Q(τ, ξ) ξ}2 + [x + Pσ̃2(τ − ξ)]2
2σ̃2(τ − ξ)Q(τ, ξ) ξ − R(ξ) − x2

2σ̃2(τ − ξ) .
Consider the function Λ(τ, ξ) defined in (2.9). Then the inner integral can be calculated as follows:

u(x, τ) =
τ

∫
0

E𝛾A(ξ)
Λ(τ, ξ) exp{

[x + Pσ̃2(τ − ξ)]2
2σ̃2(τ − ξ)Q(τ, ξ) ξ − R(ξ) − x2

2σ̃2(τ − ξ)}

×
∞

∫
−∞

1

√2πσ̃2(τ − ξ)ξ/Q(τ, ξ)
exp{− Q(τ, ξ)

2σ̃2(τ − ξ)ξ [s −
x + Pσ̃2(τ − ξ)

Q(τ, ξ) ξ]2}ds dξ

=
τ

∫
0

E𝛾A(ξ)
Λ(τ, ξ) exp[−

δx2

2σ̃2Q(τ, ξ) +
Pxξ

Q(τ, ξ) +
P2σ̃2(τ − ξ)ξ
2Q(τ, ξ) − R(ξ)]dξ.

Hence

u(x, τ) =
τ

∫
0

E𝛾A(ξ)
Λ(τ, ξ) exp{

ξ − [δτ + (1 − δ)ξ]
2σ̃2(τ − ξ)[δτ + (1 − δ)ξ] x

2 + [𝛾− δ − α(1 − δ)]xξ
δτ + (1 − δ)ξ

+ [𝛾− δ − α(1 − δ)]2σ̃2(τ − ξ)ξ
2[δτ + (1 − δ)ξ] + β(δ − 1)ξ}dξ.
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Now let us consider the case δ ̸= 1. Since
ξ

δτ + (1 − δ)ξ =
1

1 − δ

δτ + (1 − δ)ξ − δτ

δτ + (1 − δ)ξ = 1

1 − δ
− δτ

1 − δ

1

δτ + (1 − δ)ξ ,

we have (τ − ξ)ξ
δτ + (1 − δ)ξ = Bξ + C + D

δτ + (1 − δ)ξ ,

where B = 1
1−δ

, C = τ
(1−δ)2

and D = − δτ2

(1−δ)2
. Therefore

u(x, τ) =
τ

∫
0

E𝛾A(ξ)
Λ(τ, ξ) exp{−

δx2

2σ̃2
1

Q(τ, ξ) +
Px

1 − δ
− Pxδτ

(1 − δ)Q(τ, ξ) +
P2σ̃2ξ

2(δ − 1)

+ P2σ̃2τ

2(1 − δ)2 −
P2σ̃2δτ2

2(1 − δ)2Q(τ, ξ) + β(δ − 1)ξ}dξ

=
τ

∫
0

E𝛾A(ξ)
Λ(τ, ξ) exp{[

P2σ̃2

2(δ − 1) + β(δ − 1)]ξ

+ Px

1 − δ
+ P2σ̃2τ

2(1 − δ)2 − [
δx2

2σ̃2
+ Pxδτ

1 − δ
+ P2σ̃2δτ2

2(1 − δ)2 ]
1

Q(τ, ξ)}dξ.

Substituting the terms P, Q(τ, ξ), Λ(τ, ξ) yields the form of the solution u(x, τ) as stated in Theorem 1.
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