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Abstract. This paper presents results of computational studies of the evolution
law for the constrained mean curvature flow. The considered motion law originates
in the theory of phase transitions in crystalline materials. It describes the evolution
of closed embedded curves with constant enclosed area. In the paper, the motion
law is treated by the parametric method, which leads into the system of degener-
ate parabolic equations for the parametric description of the curve. This system is
numerically solved by means of the flowing finite volume method enhanced by tan-
gential redistribution. Qualitative and quantitative results of computational studies
are presented.

1 Introduction

The objective of this article is to investigate the numerical solution of non-
local, area preserving curvature flow for closed planar curves. The flow is
given by the following geometric evolution equation

vΓ = −κΓ + F, where F =
1

L(Γt)

∫
Γt

κΓds, (1)

Γt|t=0 = Γini. (2)

Here, Γt is a C1 smooth Jordan curve of the length L(Γt) =
∫
Γt

ds evolving in
time. It is evolved in the direction of the outer normal with velocity vΓ and
driven by the curvature κΓ and the particular non-local force term F . Our
objective is to find a family {Γt : t ∈ (0, Tmax)} of closed nonselfintersecting
planar curves evolving from the initial curve Γini according to (1). Although
the evolution equation (1) does not involve a tangential redistribution term,
any parametrization of the initial curve in (2) inherently incorporates initial
redistribution of grid points which is then propagated along curve evolution.
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Equation (1) belongs to a family of constrained curvature driven flows
described by general evolution law

vΓ = −κΓ +G,

where G is a possibly non-local force term preserving some quantity. In our
case, the particular choice of the force term as

∫
Γt
κΓds

/
L(Γt) leads to the

area preserving curvature flow. Such geometric motion laws similar to (1)
are discussed in the literature (see, e.g., [1–5]). Another geometric evolution
laws similar to (1) treating, e.g., the length preserving curvature flow or the
isoperimetric ratio gradient flow are studied and discussed in, e.g., [6].

The constrained motion driven by the curvature has also been investi-
gated, in [7,8] within the context of a modification of the Allen-Cahn equa-
tion (see [9,10]). The non-local character of the geometric governing equation
(1) is strongly connected with the studies of the recrystallization phenomena,
where a fixed, previously melted volume of the liquid phase solidifies again
(see [11]).

2 Parametric Method

The method presented in this paper is based on parametric description of the
smooth time-dependent curve Γt (t ≥ 0) by means of the vectorial mapping
X(u, t) = (X1(u, t), X2(u, t)), where u ∈ [0, 1] is a dimensionless parameter
in a given fixed interval. Throughout this paper, the parametrization is ori-
entated counter-clockwise and periodic boundary conditions at u = 0 and
u = 1 are imposed, i.e., X(0, t) = X(1, t) and ∂uX(0, t) = ∂uX(1, t).

Consequently, geometrical quantities of interest can be prescribed by the
parametrization X. The unit tangent and normal vectors tΓ and nΓ are
defined straightforwardly, and the curvature is given by Frenet formulae:

tΓ =
∂uX

|∂uX|
, nΓ =

∂uX
⊥

|∂uX|
, κΓ (X) = − 1

|∂uX|
∂u

(
∂uX

|∂uX|

)
· nΓ .

Here X⊥ = (X2,−X1). This choice is in accordance with the rule det(nΓ , tΓ ) =
1. Notice that in our case the curvature of the unit circle is κΓ = 1. The nor-
mal velocity is just a projection of the point velocity vΓ = ∂tX to the normal
direction nΓ , i.e., vΓ = vΓ ·nΓ . Finally, the curve Γt evolves according to the
law (1) provided the parametric mapping X satisfies the following system of
degenerate parabolic equations

∂tX =
1

|∂uX|
∂u

(
∂uX

|∂uX|

)
+ F

∂uX
⊥

|∂uX|
, (3)

X|t=0 = Xini, (4)
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for t ∈ (0, Tmax) and u ∈ [0, 1]. The driving force F of flow (1) written by
means of the parametrization X becomes

F =

∫
Γt

κΓds
/
L(Γt) =

∫ 1

0

κΓ (X)|∂uX|du
/∫ 1

0

|∂uX|du.

For details on this approach, we refer he reader to, e.g., [12–15]. Another
approach dealing with area preserving flows is based on the tangential ve-
locity dependent on the Laplace-Beltrami operator acting on the curvature.
For such geometric flows (see [16]) is well known that they describe area
preserving geometric flows. The main advantage of this approach is in fast
and straightforward numerical treatment, which is noticeable especially when
comparing to other interface capturing methods, such as the level-set method
[17] or the phase-field method [18]. However, this approach itself is not able
to treat the cases, where changes in curve topology occurs (like merging or
splitting). For such a task, separate algorithms have to be developed [19].

We denote

A(Γt) =
1

2

∫ 1

0

det(X, ∂uX)du. (5)

Then the flow (1) preserves the quantity A = A(Γt), i.e., A(Γt) = A(Γini)
for all t ≥ 0. For a closed curve, the quantity A(Γt) represents the enclosed
area. Here we remind the following result, which is known for the case when
Γt is the Jordan curve (see e.g., [20]).

Remark 1. Let {Γt}t≥0 be a family of C1 smooth Jordan curves evolving in
the normal direction according to (1) and parametrized by the mapping X
satisfying (3 – 4). Then

dA(Γt)

dt
= 0.

3 Tangential Effects

By nature of law (1), the tangential terms do not affect the shape of the curve.
Hence they are not important from the analytical point of view. However,
considering numerical treatment of (1), properly chosen tangential terms can
significantly affect the solution. Discussion on the concept of the so called
tangential redistribution can be found in, e.g., [21]. For technical details of
the tangential redistribution for our parametric model, we refer the reader
to [6,12]. Notice that these papers are concerned with non-locally dependent
tangential velocities. As far as locally dependent tangential velocities are con-
cerned, we mention a tangential velocity proposed and analyzed by Dziuk and
Deckelnick in [22]. Resulting parametric model (3) enhanced by tangential
redistribution has the following form

∂tX =
1

|∂uX|
∂u

(
∂uX

|∂uX|

)
+ α

∂uX

|∂uX|
+ F

∂uX
⊥

|∂uX|
, (6)
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where α is a possibly non-local function of time and curvature. In our model,
we use the tangential redistribution discussed and applied in [6], which forces
the discretization points to be placed asymptotically uniformly along the
curve. In this case, the tangential term α satisfies

1

|∂uX|
∂uα = κΓ vΓ −

1

L(Γt)

∫
Γt

κΓ vΓds+ ω

(
L(Γt)

|∂uX|
− 1

)
,

where ω is a given scalar parameter. To ensure the uniqueness of the solution,
α is required to fulfill the condition

∫
Γt
αds

/
L(Γt) = 0.

4 Numerical Solution

In our approach, the time evolving curve Γt is approximated as a piece-wise
linear curve, and for the spatial discretization of governing equations (6), the
flowing finite volume method is used. For technical details and discussion on
the method, we refer the reader to, e.g., [5,6,12,13,21]. The discrete nodes
Xi = X(t, ui) for i = 0, . . .M are placed along the curve Γt, and linear
segments connecting the neighboring nodes represent the finite volumes. We
denote dj = |Xj −Xj−1| for j = 1, . . .M , where X0 = XM . Similarly to the
discrete nodes Xi, we consider discretized tangential coefficients αi. For the
way how to appropriately calculate the redistribution coefficients αi within
the context of used numerical scheme see, e.g., [12], where the problem of tan-
gential redistribution is analyzed in detail. Finally, our semi-discrete scheme
for solving (6) within the context of the motion law (1) is the following

dXi

dt

di + di+1

2
=

(
Xi+1 −Xi

di+1
− Xi −Xi−1

di

)
+ F

(X⊥i+1 −X⊥i−1)

2

+αi
(Xi+1 −Xi−1)

2
, (7)

κi = − 2

di + di+1

(
Xi+1 −Xi

di+1
− Xi −Xi−1

di

)
·
X⊥i+1 −X⊥i−1
di + di+1

(8)

F =
1∑M
l=1 dl

M∑
l=1

κl
dl+1 + dl

2
, (9)

Xi(0) = Xini(ui), (10)

for i = 1, . . . ,M. This system is solved by means of the 4th-order explicit
Runge-Kutta-Merson scheme with the automatic time step (denoted as ∆tk)
control and the tolerance parameter ε = 10−6. The initial time step was
chosen as h2, where h = 1/M is the mesh size dividing the parameter range
[0, 1].
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5 Computational Studies

We present some results of our qualitative and quantitative computational
studies for the closed curves dynamics driven by (6) and treated by numerical
scheme (7 – 10). In the following examples, we demonstrate how a solution
of (6) evolves in time and approaches the circular shape.

We have measured the experimental orders of convergence (EOC) for
our scheme. The measurements were performed indirectly – as the testing
parameter for computation of EOC, the quantity A(Γt) representing the area
of the enclosed curve was chosen. We measured the differences given by the
area at the initial time A(Γini), and the areas A(ΓTi) at given data output
times Ti, i = 1, . . . , N . For given mesh with M segments, we evaluate the
maximum and the discrete L1 (with time steps ∆tk) norms, i.e.,

error1(M) = maxi=1,2,...N |A(Γini)−A(Ti)|,

error2(M) =
1

TN

N∑
k=1

|A(Γini)−A(Ti)|∆tk.

Both errors depend on the number of finite volumes M . We estimate the
order of convergence between two meshes with M1 and M2 volumes as

EOC = log (errori(M1)/errori(M2))
/

log (M2/M1) , i = 1, 2.

Example 1. In Figure 1, we show the qualitative behavior of the numer-
ical solution of problem (1), where the initial eight-folded curve Γini is given
as X(0, u) = rini(u)(cos 2πu, sin 2πu), u ∈ [0, 1] with rini defined as

rini(u) = 0.5 + 0.2 cos(16πu), u ∈ [0, 1].

The motion is captured in the time interval [0, 0.5] and the number of finite
volumes in Figure 1 is M = 200. The curve Γt approaches the circular shape
and the quantity A(Γt) – the area enclosed by the curve Γt is preserved. The
initial curve Γini encloses the area of 0.84823 and at t = 0.5 the curve Γt
encloses the area of 0.846215385275. The values of EOC for various meshes
are in Table 1.

Table 1. Table of EOCs for Example 1

M error1 EOC error2 EOC
100 0.007069986241 – 0.007061259667 –
200 0.002014614725 1.8112 0.002015348016 1.8089
300 0.000944083352 1.8694 0.000945069453 1.8677
400 0.000543526916 1.9192 0.000544287109 1.9180
500 0.000352173540 1.9447 0.000352741175 1.9439

Example 2. In Figure 2, we show the qualitative behavior of the numer-
ical solution of problem (1), where the initial curve Γt with high variation of
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Fig. 1. The area-preserving mean curvature flow (1) in Example 1, where the ini-
tial 8-folded curve asymptotically approaches the circular shape. The curve Γt is
depicted for time levels t = 0, t = 0.005, and t = 0.5.

curvature is given by the parametric equations

X(0, u) =
(
(1 + 0.4 cos(12πu) + 0.2 cos(6πu)) cos(2πu),

(2.5 + 0.4 sin(12πu) + 0.2 sin(4πu)) sin(2πu)
)

u ∈ [0, 1].

The motion is captured in the time interval [0, 5] and the number of finite
volumes in Figure 2 is M = 200. The curve Γt approaches the circular shape
and the quantity A(Γt) – the area enclosed by the curve Γt is preserved.
The initial curve Γini encloses the area of 7.85398 and at t = 5 the curve Γt
encloses the area of 7.863369794295. The values of EOC for various meshes
are in Table 2.
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Fig. 2. The area-preserving mean curvature flow (1) in Example 2, where the initial
curve asymptotically approaches the circular shape. The curve Γt is depicted for
time levels t = 0, t = 0.025, and t = 5.
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Table 2. Table of EOCs for Example 2

M error1 EOC error2 EOC
100 0.030290732384 – 0.029986248027 –
200 0.009389794295 1.6897 0.009293578786 1.6900
300 0.004615850440 1.7514 0.004570165389 1.7505
400 0.002751185152 1.7987 0.002724720989 1.7978
500 0.001827489090 1.8333 0.001810281006 1.8324

6 Conclusion

In this paper, we investigated the area-preserving mean curvature flow for
closed Jordan curves in terms of qualitative and quantitative behavior of the
approximate solution obtained numerically by means of the flowing finite
volume method enhanced by the tangential redistribution of discretization
points. Computational results suggest that the order of convergence of our
numerical scheme approaches 2 in space when the convergence ratio is mea-
sured for the error measured in the enclosed area. Our studies are in agree-
ment with theoretical indications that the solution of constrained problem
(1) approaches the circular shape in steady state (see [1,7]). This behavior
corresponds to real expectations in modeling of recrystallization phenomena
in solids.
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8. M. Beneš, S. Yazaki and M. Kimura, Computational studies of non-local
anisotropic Allen-Cahn equation, Mathematica Bohemica 134:4 (2011), 429–
437.

9. J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system III.
Nucleation of a two-component incompressible uid, Journal of Chemical Physics
31 (1959), 688–699.

10. S. Allen and J. Cahn, A microscopic theory for antiphase boundary mo-
tion and its application to antiphase domain coarsening, Acta Metallurgica 27
(1979), 1084–1095.

11. I. V. Markov, Crystal Growth for Beginners: Fundamentals of Nucleation,
Crystal Growth, and Epitaxy, 2 ed., World Scientific Publishing Company
(2004).
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