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Abstract. In this paper we study spectral properties of graphs which are

constructed from two given invertible graphs by bridging them over a bipar-
tite graph. We analyze the so-called HOMO-LUMO spectral gap which is the

difference between the smallest positive and largest negative eigenvalue of the

adjacency matrix of a graph. We investigate its dependence on the bridging
bipartite graph and we construct a mixed integer semidefinite program for

maximization of the HOMO-LUMO gap with respect to the bridging bipartite

graph. We also derive upper and lower bounds for the optimal HOMO-LUMO
spectral graph by means of semidefinite relaxation techniques. Several compu-

tational examples are also presented in this paper.

1. Introduction. The spectrum σ(G) of an undirected graph G consists of eigen-
values of its adjacency symmetric n × n matrix A(G), i.e. σ(G) = {λk(G), k =
1, · · · , n, λk(G) is an eigenvalue of A(G)}, where λ1(G) ≥ · · · ≥ λn(G) (cf. [6, 5]).
If the spectrum does not contain zero there exists the inverse matrix A−1 of the
adjacency matrix A = A(G), and the graph GA is called invertible.

The concept of an inverse graph has been introduced by Godsil [10]. In addition
to invertibility of the adjacency matrix it is required that A−1 is diagonally similar
to a nonnegative or nonpositive integral matrix (cf. Godsil [10], Pavĺıková and
Ševčovič [23]). Notice that the least positive eigenvalue of a graph is the reciprocal
value of the maximal eigenvalue of the inverse graph. Therefore properties of inverse
graphs can be used in estimation of the least positive eigenvalue (cf. Pavĺıková et
al. [21, 22, 23]).

In many applied fields, e.g. theoretical chemistry, biology, or statistics, spectral
indices and properties of graphs representing structure of chemical molecules or
transition diagrams for finite Markov chains play an important role (cf. Cvetković
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[6, 7], Brouwer and Haemers [5] and references therein). In the last decades, various
graph energies and indices have been proposed and analyzed. For instance, the sum
of absolute values of eigenvalues is referred to as the matching energy index (cf.
Chen and Liu [16]), the maximum of the absolute values of the least positive and
largest negative eigenvalue is known as the HOMO-LUMO index (see Mohar [19, 20],
Li et al. [15], Jaklić et al. [13], Fowler et al. [9]), their difference is the HOMO-
LUMO separation gap (cf. Gutman and Rouvray [11], Li et al. [15], Zhang and An
[27], Fowler et al. [8]).

In computational chemistry, eigenvalues of a graph describing an organic molecule
are related to energies of molecular orbitals. Following Hückel’s molecular orbital
method [12] (see also Pavĺıková and Ševčovič [24]), the energies Ek, k = 1, · · · , n,
are the eigenvalues of the Hamiltonian matrix H and its eigenvectors are orbitals.
The square symmetric matrix H has the following elements:

Hii = α for the carbon C atom at the i-th vertex, and Hii = α+hAβ for other
atoms A, where α < 0 is the Coulomb integral and β < 0 is the resonance
integral;
Hij = β if both vertices i and j are carbon C atoms, Hij = kABβ for other
neighboring atoms A and B;
Hij = 0 otherwise.

The atomic constants hA, kAB have to be specified (hC = kCC = 0). For instance,
the molecule of pyridine contains one atom of nitrate N and five atoms of carbon
C. Clearly, in the case of pure hydrocarbon we have H = αI + βA where I is
the identity and A is the adjacency matrix of the molecular structural graph G.
Hence Ek = α + βλk. Now, the energy EHOMO of the highest occupied molecular
orbital (HOMO) corresponds to the eigenvalue λHOMO = λk where k = n/2 for n
even and k = (n + 1)/2 for n odd. The energy ELUMO of the lowest unoccupied
molecular orbital (LUMO) corresponds to the subsequent eigenvalue λLUMO = λk+1

for n even, and λLUMO = λk for n odd. The HOMO-LUMO separation gap is
the difference between ELUMO and EHOMO energies, i.e. ELUMO − EHOMO =
−β(λHOMO − λLUMO) ≥ 0 because β < 0. The so-called properly closed shells
have the property λHUMO > 0 > λLUMO containing either zero or two electrons
are called closed shells for which n is even (cf. Fowler and Pisanski [9]). For such
orbital systems, the HOMO-LUMO separation gap is equal to the energy difference
ELUMO − EHOMO = −βΛHL(GA) where

ΛHL(GA) = λ̌+(GA)− λ̂−(GA). (1)

Here λ̌+(GA) = λk is the smallest positive eigenvalue, and λ̂−(GA) = λk+1 is the
largest negative eigenvalue of the adjacency matrix A of the structural molecular
graph GA (cf. [9]). According to Aihara [1, 2] the large HOMO-LUMO gap implies
high kinetic stability and low chemical reactivity of the molecule, because it is
energetically unfavorable to add electrons to a high-lying LUMO orbital. Notice
that the HOMO-LUMO energy gap is generally decreasing with the size n of the
structural graph (cf. Bacalis and Zdetsis [3]).

In this paper, our goal is to investigate extremal properties of the HOMO-LUMO
spectral gap ΛHL(GA). We show how to represent ΛHL(GA) by means of the opti-
mal solution to a convex semidefinite programming problem (Section 2). We study
spectral properties of graphs which can be constructed from two given (not neces-
sarily bipartite) graphs by bridging them over a bipartite graph (Section 3). We an-
alyze their HOMO-LUMO spectral gap of such a bridged graph and its dependence



BOUNDS FOR THE HOMO-LUMO SPECTRAL GAP 55

on the bridging bipartite graph. Finding an optimal bridging bipartite graph leads
to a mixed integer nonconvex optimization problem with linear matrix inequality
constraints (Section 4). We prove that the optimal HOMO-LUMO spectral gap can
be obtained by solving a mixed integer semidefinite convex program. The optimiza-
tion problem is, in general, NP hard (Section 5). This is why we also derive upper
(Section 6) and lower (Section 7) bounds for the optimal HOMO-LUMO spectral
graph by means of semidefinite relaxation techniques which can be solved in a fast
and computationally efficient way. Various computational examples of construction
of the optimal bridging graph are presented in Section 8.

2. Semidefinite programming representation of the HOMO-LUMO spec-
tral gap. The HOMO-LUMO spectral gap of a graph GC is defined as follows:

ΛHL(GC) = λ̌+(GC)− λ̂−(GC),

where λ̌+(GC) ≥ 0 is the smallest nonnegative eigenvalue, and λ̂−(GC) ≤ 0 is the
largest nonpositive eigenvalue of the adjacency matrix C. Notice that the spectrum
σ(GC) = σ(C) of a nontrivial graph GC without loops must contain negative as
well as positive eigenvalues because the trace Tr(C) =

∑
λ∈σ(C) λ = 0. Clearly, if

the graph GC is invertible then λ̌+(GC) > 0 and λ̂−(GC) < 0 and so ΛHL(GC) > 0,
otherwise ΛHL(GC) = 0.

2.1. Semidefinite representation of the HOMO-LUMO gap. Suppose that
a graph GC is invertible. Following [23] the smallest positive and largest negative
eigenvalues of GC can be expressed as follows:

λ̌+(GC) =
1

λmax(C−1)
, λ̂−(GC) =

1

λmin(C−1)
,

where λmax(C−1) > 0 and λmin(C−1) = −λmax(−C−1) < 0 are the maximum and
minimum eigenvalues of the inverse matrix C−1, respectively. We denote by � the
Löwner partial ordering on symmetric matrices, i.e. A � B iff the matrix B − A
is a positive semidefinite matrix, that is B − A � 0. The maximal and minimal
eigenvalues of C−1 can be expressed as follows:

0 < λmax(C−1) = min
C−1�tI

t, 0 > λmin(C−1) = max
sI�C−1

s,

(see e.g. [4], [7]). Since {t, C−1 � tI} ⊂ (0,∞) and {s, sI � C−1} ⊂ (−∞, 0)
then, by using the substitution µ = 1/t, η = −1/s, we obtain the following char-
acterization of the lowest positive and largest negative eigenvalues of the graph
GC :

λ̌+(GC) = max
µC−1�I

µ, λ̂−(GC) = − max
−ηC−1�I

η. (2)

As a consequence, we obtain the following semidefinite representation of the
HOMO-LUMO spectral gap for a vertex labeled invertible graph GC without loops.
Then the HOMO-LUMO spectral gap ΛHL(GC) of the graph GC is the optimal
value of the following semidefinite programming problem:

ΛHL(GC) = max
µ,η≥0

µ+ η (3)

s.t. µC−1 � I,
−ηC−1 � I.

(cf. Pavĺıková and Ševčovič [24]).
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3. Graphs bridged over a bipartite graph. In this section we introduce a
notion of a graph which is constructed from two given graphs GA and GB by
bridging vertices of GA to vertices of GB . More, precisely, let GA and GB be two
undirected vertex-labeled graphs on n and m vertices without loops, respectively.
In general, we do not assume that GA and GB are bipartite graphs. Let GK be a
(n,m)-bipartite graph on n+m vertices with the adjacency matrix:

A(GK) =

(
0 K
KT 0

)
, (4)

where K is an n×m matrix containing {0, 1}-elements only.

GA
GB

GK

GC

Figure 1. A bridged graph GC = BK(GA, GB) through a bipar-
tite graph GK .

By BK(GA, GB) we shall denote the graph GC on n+m vertices which is obtained
by bridging the vertices of the graph GA to the vertices of GB through the (n,m)-
bipartite graph GK , i.e. its adjacency matrix C = A(GC) of the graph GC has the
form:

C =

(
A K
KT B

)
, (5)

In what follows, we will assume that the adjacency matrices A and B are sym-
metric n× n and m×m invertible matrices, respectively.

Theorem 3.1. Let GA and GB be two undirected vertex-labeled invertible graphs
on n and m vertices, respectively. Let GK be a (n,m)-bipartite graph. Let GC =
BK(GA, GB) be the graph which is constructed by bridging the graphs GA and GB
through the bipartite graph GK .

Then the graph GC is invertible if and only if the n×n matrix S = A−KB−1KT

is invertible. In this case we have

C−1 =

(
A K
KT B

)−1

=

(
S−1 −S−1KB−1

−B−1KTS−1 B−1 +B−1KTS−1KB−1

)
.

= QT
(
S−1 0

0 B−1

)
Q, (6)

where Q is an invertible matrix with the inverse Z = Q−1 given by:

Q =

(
I −KB−1

0 I

)
, Z =

(
I KB−1

0 I

)
.



BOUNDS FOR THE HOMO-LUMO SPECTRAL GAP 57

P r o o f. The proof is a direct consequence of the Schur complement theorem (see

e. g. [18, Theorem A.6]). Indeed, C

(
x
y

)
=

(
0
0

)
if and only if Ax+Ky = 0 and

KTx+By = 0, that is, Sx = (A−KB−1KT )x = 0. As x 6= 0⇔ y 6= 0 we have C
is invertible if and only if S is invertible. The rest of the proof is a straightforward
verification of the form of the inverse matrix C−1. ♦

3.1. Semidefinite representation of the HOMO-LUMO gap for a bridged
graph. Now, let GC = BK(GA, GB) be the graph obtained from graphs GA and
GB by bridging them through a bipartite graph GK with adjacency matrix K (4).

Then, for any µ ≥ 0, we have µC−1 � I if and only if µZTC−1Z � ZTZ, i.e.,

µ

(
S−1 0

0 B−1

)
� ZTZ =

(
I KB−1

B−1KT I +B−1KTKB−1

)
.

Therefore,

µC−1 � I ⇔
(
I − µS−1 KB−1

B−1KT I − µB−1 +B−1KTKB−1

)
� 0. (7)

Similarly,

− ηC−1 � I ⇔
(
I + ηS−1 KB−1

B−1KT I + ηB−1 +B−1KTKB−1

)
� 0. (8)

With regard to (4) we obtain the following representation of the HOMO-LUMO
spectral gap ΛHL(GC) for a the bridged graph:

ΛHL(GC) = max
µ, η ≥ 0

µ+ η (9)

s.t.

(
I − µS−1 KB−1

B−1KT I − µB−1 +B−1KTKB−1

)
� 0,(

I + ηS−1 KB−1

B−1KT I + ηB−1 +B−1KTKB−1

)
� 0.

Since for the Schur complement we have S = A − KB−1KT then the matrix
inequality constraints appearing in (9) represent, in general, nonconvex constraints
with respect to the matrix K. To overcome this difficulty we further restrict the
class of bipartite graphs GK bridging GA to GB to those turning (9) to a convex
semidefinite program in the K variable.

Definition 3.2. [23] Let GB be an undirected vertex-labeled graph on m vertices
with an invertible adjacency matrix B. We say that GB is arbitrarily bridgeable
over the first {1, · · · , kB} vertices of GB if the kB × kB upper principal sub-matrix
of B−1 is a null matrix, i.e. EB−1ET = 0 where E = (I, 0) is a kB × m block
matrix and I is a kB × kB identity matrix.

A graph GB is said to be arbitrarily bridgeable over the subset {i1, · · · , ikB} of
vertices of GB if there exists a permutation P of its vertices such that ik 7→ k, k =
1, · · · , kB , and EB̃−1ET = 0 where B̃ = PTBP .

Notice that if GB is arbitrarily bridgeable then kB ≤ m/2 because there is no
regular m×m matrix B−1 such that EB−1ET = 0 for kB > m/2.

Using the notion of an arbirtarily bridgeable graph we conclude the following
theorem:
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Theorem 3.3. Let GA and GB be undirected vertex-labeled invertible graphs on n
and m vertices without loops, respectively. Assume that GB is arbitrarily bridgeable
over the first {1, · · · , kB} vertices of GB. If the n×m matrix K has zero last m−kB
columns, i.e. Kij = 0 for j = kB + 1, · · ·m, then KB−1KT = 0, and, consequently,
for the Schur complement S we have S = A−KB−1KT = A, and S−1 = A−1.

Moreover, the HOMO-LUMO spectral gap ΛHL(GC) for the bridged graph GC =
BK(GA, GB) through the bipartite graph GK is the optimal value of the following
semidefinite programming problem:

ΛHL(GC) = max
µ, η ≥ 0

µ+ η (10)

s.t.

(
I − µA−1 KB−1

B−1KT I − µB−1 +B−1KTKB−1

)
� 0,(

I + ηA−1 KB−1

B−1KT I + ηB−1 +B−1KTKB−1

)
� 0.

4. Construction of an optimal bridging bipartite graph by means of a
mixed integer nonlinear programming problem. In this section we focus our
attention on extremal properties of the HOMO-LUMO spectral gap for bridged
graphs. Given an invertible graph GA and arbitrarily bridgeable invertible graph
GB , over the first {1, · · · , kB} vertices of GB , our goal is to find an optimal bridging
graph GK (see (4)) such that Kij = 0 for j = kB+1, · · · ,m and the HOMO-LUMO
spectral gap ΛHL(GC) is maximal, where GC = BK(GA, GB).

Using representation of ΛHL(GC) for the graph GC = BK(GA, GB) (see Theo-

rem 3.3), the maximal HOMO-LUMO gap ΛoptHL = ΛoptHL(GA, GB) with respect to
a bipartite matrix K is given as the optimal value of the following mixed integer
nonlinear optimization problem:

ΛoptHL = max
µ, η ≥ 0
K,W

µ+ η (11)

s.t.

(
I − µA−1 KB−1

B−1KT I − µB−1 +B−1WB−1

)
� 0,(

I + ηA−1 KB−1

B−1KT I + ηB−1 +B−1WB−1

)
� 0,

W = KTK, Kij ∈ {0, 1} for all i, j,
∑
k,l

Kkl ≥ 1,

Kij = 0 for j = kB + 1, · · · ,m, i = 1, · · · , n.

Notice that the condition K 6= 0 for a binary matrix K is equivalent to the condition∑
k,lKkl ≥ 1. The objective function as well as the first two matrix inequality

constraints in the optimization problem (11) are linear1 in the variables µ, η,K,W .
However, the last two constraints in (11) make the problem considerably harder
to solve because of the nonconvex constraint W = KTK and the binary constraint

1Convex semidefinite problems with linear matrix inequality constraints can be solved by means
of computational Matlab toolboxes available for semidefinite programming, e.g. SeDuMi solver

developed by J. Sturm [26] with Yalmip Matlab programming framework due to J. Löfberg [17].
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Kij ∈ {0, 1}. It means that (11) is a mixed integer nonconvex programming problem
which is, in general, NP-hard to solve.

5. Construction of upper bounds for the HOMO-LUMO spectral gap by
semidefinite relaxation techniques. In the field of solving mixed integer non-
convex problems various techniques have been developed in the last decades. We
refer the reader to the book [4] by Boyd and Vanderberghe on recent developments
on semidefinite relaxation methods for solving nonconvex and mixed integer non-
linear optimization problems. In general, semidefinite relaxations of an original
nonconvex problem can be constructed by means of the second Lagrangian dual
problem which is already a convex semidefinite problem (see e.g. Ševčovič and
Trnovská [25]).

5.1. Mixed semidefinite-integer relaxation. In order to construct a suitable
convex programming relaxation of (11) we have to enlarge the domain of variables
µ, η,K,W . Notice that the integer constraint Kij ∈ {0, 1} is equivalent to the
equality: Kij = K2

ij . Moreover, from the constraint W = KTK we deduce Wij ∈
N+

0 and Wjj =
∑
lK

2
lj =

∑
lKlj . The nonconvex constraint W = KTK can be

relaxed by a convex matrix inequality constraint W � KTK. Using the Schur
complement theorem (cf. [18]), it can be rewritten as a linear matrix inequality
constraint:

W � KTK ⇔
(
W KT

K I

)
� 0.

Hence the nonconvex-integer programming problem (11) can be relaxed by means
of the following mixed integer semidefinite programming problem with linear matrix
inequality constraints and integer constraints for the upper bound approximation

Λ
sir

HL = Λ
sir

HL(GA, GB):

Λ
sir

HL = max
µ, η ≥ 0
K,W

µ+ η

s.t.

(
I − µA−1 KB−1

B−1KT I − µB−1 +B−1WB−1

)
� 0,(

I + ηA−1 KB−1

B−1KT I + ηB−1 +B−1WB−1

)
� 0, (12)(

W KT

K I

)
� 0,

Kij ∈ {0, 1}, Wij ∈ N+
0 , Wjj =

∑
l

Klj for all i, j,
∑
k,l

Kkl ≥ 1.

Kij = 0 for j = kB + 1, · · · ,m, i = 1, · · · , n.

It is worth noting that if (µ̂, η̂, K̂, Ŵ ) is the optimal solution to the mixed integer

semidefinite programming problem (12) then (µ̂, η̂, K̂, Ŵ ) is also feasible for (11)

because Ŵ = K̂T K̂. Indeed, if we denote L = Ŵ − K̂T K̂ then L � 0 and Ljj =

Ŵjj −
∑
l K̂

2
lj = Ŵjj −

∑
l K̂lj = 0. Hence diag(L) = 0 and so L = 0, as claimed.

Consequently, the HOMO-LUMO gap ΛHL(BK̂(GA, GB)) = Λ
sir

HL(GA, GB). Hence

ΛoptHL(GA, GB) = Λ
sir

HL(GA, GB).
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Next we present a sample code for solving the mixed integer semidefinite pro-
gramming problem (12) for construction of the optimal bridging for maximal HOMO-

LUMO spectral gap Λ
sir

HL(GA, GB) = Λ
opt

HL(GA, GB). We employed the Matlab pro-
gramming environment Yalmip which is capable of solving mixed integer problems
with semidefinite linear matrix inequality constraints due to Löfberg [17]). The
structure of the code is shown in Table 5.1. After declaring classes of variables
and setting the constraints, then the main solver routine solvsdp is executed. It
is designed for solving minimization problem. It employs SeDuMi semidefinite pro-
gramming solver (cf. Sturm [26]) as the lower solver and branch and bound integer
rounding solver as the upper solver.

Table 1. A sample Matlab code for computing mixed integer
semidefinite programming problem (12). The output of the pro-

gram is the optimal value ΛoptHL(GA, GB) = Λ
sir

HL(GA, GB).

mu=sdpvar(1); eta=sdpvar(1); W=intvar(m,m); K=binvar(n,m);

ops=sdpsettings(’solver’,’bnb’,’bnb.maxiter’, bnbmaxiter);

Fconstraints=[...

[[W, K’];

[K, eye(n,n)]

]>=0, ...

mu>=0, eta>=0, ...

[[eye(n,n) - mu*inv(A), K*inv(B)];

[inv(B)*K’, eye(m,m) - mu*inv(B) + inv(B)*W*inv(B)]

] >= 0, ...

[[eye(n,n) + eta*inv(A), K*inv(B)];

[inv(B)*K’, eye(m,m) + eta*inv(B) + inv(B)*W*inv(B)]

] >= 0, ...

sum(K(:,:))==diag(W)’, sum(K(:))>=1, ...

vec(W(:))>=0, 0<=vec(K(:))<=1, ...

sum([[A, K]; [K’, B] ])<=maxdegree*ones(1,n+m), ...,

K*[zeros(kB,m-kB); eye(m-kB,m-kB)] == zeros(n, m-kB), ...

];

solvesdp(Fconstraints, -mu-eta, ops)

LambdaSIR = double(mu + eta)

5.2. Full semidefinite relaxation. Next, we further relax the binary and in-
teger constraints appearing in (12). The integer constraint Kij ∈ {0, 1} can be
relaxed by the box convex inequality constraints: 0 ≤ Kij ≤ 1 for all i, j. Clearly,
such a relaxation may lead to a non-integer optimal matrix K. The maximiza-
tion problem for the full semidefinite relaxation of the HOMO-LUMO spectral gap

Λ
sdp

HL = Λ
sdp

HL(GA, GB) can be formulated as follows:

Λ
sdp

HL = max
µ, η ≥ 0
K,W

µ+ η

s.t.

(
I − µA−1 KB−1

B−1KT I − µB−1 +B−1WB−1

)
� 0,
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I + ηA−1 KB−1

B−1KT I + ηB−1 +B−1WB−1

)
� 0, (13)(

W KT

K I

)
� 0,

0 ≤ Kij ≤ 1, Wjj =
∑
l

Klj , Wij ≥ 0 for all i, j,
∑
k,l

Kkl ≥ 1,

Kij = 0 for j = kB + 1, · · · ,m, i = 1, · · · , n. (14)

In order to compute Λ
sdp

HL(GA, GB) the full semidefinite relaxation (13) we have
to change the specification of real variables, i.e. W=sdpvar(m,m); K=sdpvar(n,m)

and add the box constraint 0<=vec(K(:))<=1 in the code shown in Table 5.1.

Remark 1. Following the recent paper by Kim, Kojima and Toh [14] the box
constraint 0 ≤ Kij ≤ 1 can be further enhanced by introducing a slack variable

K̃ where K̃ij = 1 −Kij . Then Kij ∈ {0, 1} if and only if KijK̃ij = 0 for all i, j.

It is equivalent to the condition Vjj = 0 for each j, where V = K̃TK. Next, the

nonconvex matrix constraints W = KTK, W̃ = K̃T K̃, can be relaxed in the form
of the following linear matrix inequality:(

W V T

V W̃

)
�
(
KT

K̃T

)(
K K̃

)
⇐⇒

 W V T KT

V W̃ K̃T

K K̃ I

 � 0,

Wij , W̃ij , Vij ≥ 0, Vjj = 0 for all i, j.

Theorem 5.1. Let GA and GB be undirected vertex-labeled invertible graphs on n
and m vertices without loops, respectively. Assume GB is arbitrarily bridgeable over
the first kB vertices {1, · · · , kB}. Then

ΛHL(GC) ≤ ΛoptHL(GA, GB) ≡ Λ
sir

HL(GA, GB) ≤ Λ
sdp

HL(GA, GB) ≤ ΛHL(GA),

for any graph GC = BK(GA, GB) which is constructed from graphs GA, GB by
bridging the vertices of GA to the first kB vertices of GB through an (n,m)-bipartite
graph GK such that Kij = 0 for j = kB + 1, · · · ,m.

P r o o f. The set

{(K,W ), Kij ∈ {0, 1}, Wij ∈ N+
0 , Wjj =

∑
l

Klj for all i, j,

∑
k,l

Kkl ≥ 1,W � KTK}

of feasible integer matrices K,W for (12) is a subset of the set:

{(K,W ), 0 ≤ Kij ≤ 1, Wij ≥ 0, Wjj =
∑
l

Klj , for all i, j,

∑
k,l

Kkl ≥ 1,W � KTK},

of real matrices K,W that are feasible for (13). From this fact we conclude

the inequality Λ
sir

HL(GA, GB) ≤ Λ
sdp

HL(GA, GB). The inequality Λ
sdp

HL(GA, GB) ≤
ΛHL(GA) follows from the fact that(

I − µA−1 KB−1

B−1KT I − µB−1 +B−1WB−1

)
� 0 =⇒ I − µA−1 � 0,

Administrator
打字机
\[\{ (K,W),{K_{ij}} \in \{ 0,1\} ,\;\;{W_{ij}} \in {\mathbb{N}}_0^ + ,\;\;{W_{jj}} = \sum\limits_l {{K_{lj}}} {\rm{\;\;\;\;for\;\;all\;\;}}i,j,\]
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that is 1/µ ≥ λmax(A−1) and so µ ≤ λ̌+(GA). Similarly, we obtain I + ηA−1 � 0

and, consequently, η ≤ −λ̂−(GA). Therefore, µ+ η ≤ ΛHL(GA), as claimed. ♦
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Figure 2. Simple graphs GA and GB (left) and the bridged
graph GC with the maximal HOMO-LUMO spectral gap which
can be constructed by bridging GA and GB over the vertex 1 of
GB (kB = 1) to the vertices of GA (right).

Example 1. In Figure 2 (left) we show two simple graphs GA and GB having
the spectrum σ(GA) = σ(GB) = {1,−1}, i.e. ΛHL(GA) = 2. The graph GB is
arbitrarily bridgeable over the vertex 1. The optimal bipartite graph GK bridging
GB to GA with kB = 1 has the adjacency matrix K = (1, 1)T . The optimal
bridged graph GC is shown in Figure 2 (right) and it has the spectrum σ(GC) =

{2.1701, 0.3111,−1,−1.4812}, i.e. ΛoptHL(GA, GB) = Λ
sir

HL(GA, GB) = 1.3111. On

the other hand, it turns out that Λ
sdp

HL(GA, GB) = 1.67597. Hence we have the
strict inequalities

ΛoptHL(GA, GB) ≡ Λ
sir

HL(GA, GB) < Λ
sdp

HL(GA, GB) < ΛHL(GA),

in this example.
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Figure 3. An example of an invertible graph F0 (left) represent-
ing the chemical organic molecule of fulvene (right).

In Figure 3 (left) we show the graph F0 on 6 vertices representing the fulvene or-
ganic molecule (5-methylidenecyclopenta-1,3-diene) (right). The spectrum consists
of the following eigenvalues:

σ(F0) = {2.1149, 1, 1/q,−0.2541,−q,−1.8608},

where q = (
√

5 + 1)/2 is the golden ratio. The HOMO-LUMO spectral gap
ΛHL(F0) = 0.872134. It is easy to verify that the graph GB ≡ F0 is arbitrarily
bridgeable over the following subsets of vertices: {5}, {4}, {3}, {2}, {1} for kB = 1,
{4, 5}, {2, 5}, {3, 4}, {2, 4}, {1, 4}, {1, 3}, {1, 2} for kB = 2, and {2, 4, 5}, {1, 3, 4},
{1, 2, 4} for kB = 3 (cf. Pavĺıková and Ševčovič [23]).
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6. Lower bounds for the optimal HOMO-LUMO spectral gap. In this sec-
tion, our aim is to derive lower bounds for the optimal HOMO-LUMO separation
gap ΛoptHL(GA, GB). Similarly as in derivation of upper bounds we will construct the
lower bound by means of a solution to a certain nonlinear optimization problem.

The idea is based on construction of upper bounds for the maximal eigenvalues
λmax(±C−1) of the inverse matrices C−1 and−C−1. Here C is the adjacency matrix
of the bridged graph GC = BK(GA, GB). This way we obtain a lower bound for
the first positive and negative eigenvalues of C yielding the HOMO-LUMO spectral
gap for GC .

The maximal eigenvalue λmax(C−1) can be expressed by means of the Rayleigh
quotient, and, consequently, it can be estimated as follows:

λmax(C−1) = max
‖z‖2=1

zTC−1z = (Qz)T
(
A−1 0

0 B−1

)
Qz

= (x−KB−1y)TA−1(x−KB−1y) + yTB−1y

≤ λmax(A−1)‖x−KB−1‖2 + λmax(B−1)‖y‖2,
where z = (x, y) ∈ Rn × Rm and the matrix Q is given as in (6). Analogously,

λmax(−C−1) ≤ λmax(−A−1)‖x−KB−1‖2 + λmax(−B−1)‖y‖2.
To estimate the right hand side of the estimate for λmax(±C−1) we apply the
following auxiliary lemma proved in [23].

Lemma 6.1. [23, Lemma 1] Assume that D is an n × m matrix and α, β > 0
are positive constants. Then, for the optimal value γ∗ of the following constrained
optimization problem:

γ∗ = max α‖x−Dy‖2 + β‖y‖2
s.t. ‖x‖2 + ‖y‖2 = 1, x ∈ Rn, y ∈ Rm, (15)

we have the explicit expression:

γ∗ = max

{
γ,

(γ − α)(γ − β)

αγ
∈ σ(DTD)

}
=

α(ω∗ + 1) + β +
√

(α(ω∗ + 1) + β)2 − 4αβ

2
,

where ω∗ = max{σ(DTD)} is the maximal eigenvalue of the matrix DTD.

With help of the previous lemma we obtain the upper estimate:

λmax(±C−1) ≤
α±(ω∗ + 1) + β± +

√
(α±(ω∗ + 1) + β±)2 − 4α±β±

2

where α± = λmax(±A−1), β± = λmax(±B−1), and,

ω∗ = maxσ(B−1KTKB−1).

Indeed, for the matrix D = KB−1 we have DTD = B−1KTKB−1. The maximal
eigenvalue of the matrix B−1KTKB−1 can be expressed by means of a solution to
the semidefinite programming problem:

ω∗ = maxσ(B−1KTKB−1) = min
B−1KTKB−1�ωI

ω

= min
ω

ω (16)

s.t.

(
ωI B−1KT

KB−1 I

)
� 0.
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Since

ΛHL(GC) = ΛHL(BK(GA, GB))

= λ̌+(GC)− λ̂−(GC) =
1

λmax(C−1)
+

1

λmax(−C−1)
,

and the optimal value γ∗ is an increasing function of ω∗ we obtain the following lower
bound ΛsirHL(GA, GB) ≤ ΛoptHL(GA, GB) for the optimal HOMO-LUMO spectral gap

ΛoptHL(GA, GB), where

ΛsirHL(GA, GB) =
2

α+(ω∗ + 1) + β+ +
√

(α+(ω∗ + 1) + β+)2 − 4α+β+

+
2

α−(ω∗ + 1) + β− +
√

(α−(ω∗ + 1) + β−)2 − 4α−β−
,

where ω∗ = min
ω,K

ω

s.t.

(
ωI B−1KT

KB−1 I

)
� 0. (17)

Ki,j ∈ {0, 1}, for each i, j,
∑
k,l

Kkl ≥ 1.

Similarly, as in the construction of the upper bound, we can relax the condition
Ki,j ∈ {0, 1} by the box constraint

0 ≤ Ki,j ≤ 1, for each i, j, (18)

to construct the full semidefinite relaxation for the lower bound ΛsdpHL(GA, GB).

Theorem 6.2. Let GA and GB be undirected vertex-labeled invertible graphs on n
and m vertices without loops, respectively. Assume GB is arbitrarily bridgeable over
the first kB vertices {1, · · · , kB}. Then

ΛsdpHL(GA, GB) ≤ ΛsirHL(GA, GB) ≤ ΛoptHL(GA, GB).

7. Additional constraints imposed on the bridging bipartite graph. In
practical applications one may impose additional constraints on the bridging bi-
partite graph GK . For example, in computational chemistry the so-called chemical
molecules play important role. The structural graph G of a chemical molecule has
all vertices of the degree less or equal to 3. If the goal is to construct a bridged graph
GC = BK(GA, GB) representing a chemical molecule with the maximal degree Md,
we can add additional constraint:∑

k

Cik ≤Md, for all i, where C =

(
A K
KT B

)
. (19)

The inequality (19) is linear in the K variable and it can be easily added to all
nonlinear optimization problems (11), (12), (13), (17), (18). The computational
results of construction of graphs with the maximal degree Md = 3 are presented in
the next section.

Another useful constraint imposed on the bridging graph GK is the min-max box
constraints:

LAi ≤
∑
k

Kik ≤ L
A

i , for all i = 1, · · · , n, (20)



BOUNDS FOR THE HOMO-LUMO SPECTRAL GAP 65

LBj ≤
∑
k

Kkj ≤ L
B

j , for all j = 1, · · · , kB , (21)

representing the box constraints for minimal and maximal number of edges in the
bridging graph GK pointing from the graph GA to GB . Again, such a box constraint
can be easily added to (11), (12), (13), (17), (18).
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Figure 4. Results of optimal bridging of the fulvene graph GB =
F0 through the vertices {1, 2} to GA = F0 a); through the vertices
{1, 4} to GA = F0 b); and through the vertices {1, 2} to GA = F1

c).

8. Computational results. In this section we present computational results. In
Table 2 we present results of construction of the optimal bridging by a bipartite
graph for various sets of bridged graphs GA and GB . First, we chose the fulvene
graph F0 as the graph GB and set kB = 2. The graph GB ≡ F0 is arbitrarily
bridgeable through the pairs vertices {1, 2}, {1, 3}, {1, 4} (cf. [23]). We show the

results of the optimal value ΛoptHL = Λ
sir

HL for target graphs GA = F0 and GA = F1

(see Figure 4). We also presented upper and lower bounds obtained by means of
the full semidefinite relaxation. Among the tested examples the maximal HOMO-
LUMO gap was attained in the case when GB = F0 was bridged to GA = F0 through
vertices {1, 4}. Solving mixed integer semidefinite program (12) is time consuming
(see Table 2). On the other hand, we provided upper and lower bounds which had
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Table 2. The computational results and comparison of various
semidefinite relaxations. The first two columns describe the graph
GA and GB with the chosen set of bridging vertices. The optimal

value ΛoptHL = Λ
sir

HL is shown in bold in the middle column. The

upper Λ
sdp

HL and lower bounds ΛsdpHL, ΛsirHL are also presented together
with computational times in seconds computed on Quad core Intel
1.5GHz CPU with 4 GB of memory.

GA GB Λsdp
HL Λsir

HL Λopt
HL = Λ

sir
HL Λ

sdp
HL bridging GB 7→ GA

F0 F0 0.233688 0.531664 0.74947 0.87214 1 7→ 3, 5; 2 7→ 6
(1, 2) (0.27s) (3.38s) (83s) (2.2s)

F0 F0 0.333126 0.72678 0.85828 0.87214 1 7→ ∅; 4 7→ 3, 5, 6
(1, 4) (0.31s) (4.75s) (36s) (2.2s)

F0 F0 0.333126 0.719668 0.81389 0.87214 1 7→ 4; 3 7→ 4
(1, 3) (0.31s) (4.27s) (75s) (2.2s)

F1 F0 0.163626 0.450022 0.56655 0.56666 1 7→ ∅; 2 7→ 9, 11, 12
(1, 2) (0.28s) (7.65s) (12470s) (2.2s)

P4 P4 0.472136 0.86953 1.06418 1.23607 2 7→ 2, 4; 3 7→ 1, 3
(2, 3) (0.27s) (2.18s) (12.6s) (2.2s)

P6 P4 0.367365 0.811369 0.87366 0.89008 1 7→ 4, 6; 3 7→ 4, 6
(1, 3) (0.26s) (4.6s) (59s) (2.1s)

P6 P4 0.367365 0.737641 0.87321 0.89008 2 7→ 4, 6; 3 7→ 1, 3
(2, 3) (0.26s) (3.41s) (57s) (2.1s)

P10 P4 0.252282 0.523808 0.56837 0.56926 2 7→ 8, 10; 3 7→ ∅
(2, 3) (0.26s) (6.32s) (4109s) (2.6s)

T4 P4 0.38832 0.73094 0.93258 0.95452 2 7→ 3, 8
(2) (0.31s) (1.57s) (12s) (2.31s)

been obtained efficiently by means of the full semidefinite relaxation technique. A
graphical presentation of optimal bridging of fulvene graphs can be seen in Figure 4.
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Figure 5. Results of optimal bridging of the graph GB = P4

through the vertices {1, 3} to GA = P6 a); through the vertices
{2, 3} to GA = P6 b); and through the vertex {2} to GA = T4 c).

The next set of examples consists of bridging a simple path GB = Pm,m = 4 to
the path GA = Pn, n = 4, 6. An illustration of optimal bridging of P4 to P6 over
various pairs of vertices is shown in Figure 5.

The last example is the optimal bridging of GB = P4 to the graph GA = T2k,
where T2k is the graph consisting of the simple path Pk with attached pendant
vertices to each vertex of P4. In this case solving the optimal bridging problem
yields the bridged graph GC containing a circle C4 (see Figure 5, c)).
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Table 3. The computational results and comparison of various
relaxations. The chosen graphs and description of columns is the
same as in Table 2. In this table we present results of optimization
when additional constraint of the maximal degree 3 has been im-
posed.

GA GB Λsdp
HL Λsir

HL Λopt
HL = Λ

sir
HL Λ

sdp
HL bridging GB 7→ GA

F0 F0 0.233688 0.507678 0.720830 0.87214 1 7→ ∅; 2 7→ 6
(1, 2) (0.31s) (2.73s) (7.1s) (2.9s)

F0 F0 0.233688 0.468053 0.720830 0.87214 1 7→ 6; 4 7→ ∅
(1, 4) (0.31s) (1.1s) (2.33s) (2.85s)

F0 F0 0.333126 0.706635 0.776875 0.87214 1 7→ 6; 3 7→ 6
(1, 3) (0.35s) (2.45s) (8.4s) (2.82s)

F1 F0 0.163626 0.389941 0.493727 0.566658 1 7→ 6; 2 7→ ∅
(1, 2) (0.38s) (3.67s) (13.4s) (2.83s)

P4 P4 0.472136 0.869530 0.954520 1.23607 3 7→ ∅; 2 7→ 2
(2, 3) (0.31s) (1.86s) (7.8s) (2.86s)

P6 P4 0.367365 0.811369 0.828427 0.89008 1 7→ 4, 6; 3 7→ 2
(1, 3) (0.36s) (3.35s) (22.9s) (2.83s)

P6 P4 0.367365 0.737641 0.820751 0.89008 2 7→ 5; 3 7→ 2
(2, 3) (0.33) (2.73s) (9.21s) (2.87s)

P10 P4 0.252282 0.523808 0.559046 0.56926 2 7→ ∅; 3 7→ 11
(2, 3) (0.33s) (4.78s) (13.87s) (2.86s)

T4 P4 0.38832 0.692266 0.890084 0.95452 2 7→ 4
(2) (0.31s) (0.88s) (1.5s) (2.11s)

In Section 7 we discussed additional constraints imposed on the bridging graph
GK . In what follows, we present results of computing the optimal HOMO-LUMO
gap and its upper and lower bound under the constraint that the resulting graph
GC represents a chemical molecule with the maximal vertex degree Md = 3. The
results are summarized in Table 3 and illustrative examples are shown in Figure 6.
In Figure 6, c), we confirmed the well known fact that the comb graph T2k has the
maximal HOMO-LUMO gap among all trees on 2k vertices with perfect matchings.
It was first proved by Krč and Pavĺıková [21, Theorem 7] (see also Zhang and
An [28]). Interestingly enough, adding additional constraint on maximal degree
of vertices considerably reduced computational time for solving the mixed integer
semidefinite problem (12).
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Figure 6. Results of optimal bridging of the graph GB = P4

through the vertices {1, 3} to GA = P6 a); through the vertices
{2, 3} to GA = P6 b); and through the vertex {2} to GA = T4 c);
with the constraint of maximal degree equal to 3.
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Conclusions. We analyzed spectral properties of graphs which are constructed
from two given invertible graphs by bridging them over a bipartite graph. We
showed how the HOMO-LUMO spectral gap can be computed by means of a so-
lution to mixed integer semidefinite programming problem. We investigated the
optimization problem in which we constructed a bridging graph maximizing the
HOMO-LUMO spectral gap. We also provided upper and lower bounds to the
optimal value, again expressed as solution to relaxed semidefinite programming
problems. Various computational examples were presented in this paper.
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