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Abstract. We investigate a non-local geometric flow preserving surface area
enclosed by a curve on a given surface evolved in the normal direction by the

geodesic curvature and the external force. We show how such a flow of surface

curves can be projected into a flow of planar curves with the non-local normal
velocity. We prove that the surface area preserving flow decreases the length of

the evolved surface curves. Local existence and continuation of classical smooth

solutions to the governing system of partial differential equations is analysed as
well. Furthermore, we propose a numerical method of flowing finite volume for

spatial discretization in combination with the Runge–Kutta method for solving

the resulting system. Several computational examples demonstrate variety of
evolution of surface curves and the order of convergence.

1. Introduction and model description. This article introduces the evolution
of the family {Gt}t≥0 of closed, non-selfintersecting curves evolving on a given two
dimensional surface M ⊂ R3. It is assumed that the surface M is represented by
the graph of a smooth function ϕ : R2 → R defined in a domain Ω ⊂ R2, i.e.,

M = {(x, ϕ(x))T , x ∈ Ω} ⊂ R3.

The family of curves {Gt}t≥0 evolves according to the following geometric law:

VG = −KG + F , where F =
1

L(Gt)

∫
G
KGdS on Gt ⊂M, (1)

Gt|t=0 = Gini, (2)

where Gini ⊂ M is the initial curve, KG is the geodesic curvature and F is the
prescribed external scalar force, L(Gt) =

∫
G dS is the length of a surface curve Gt.
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A particular choice of the forcing term F in (1) corresponds to the area-preserving
curvature flow for planar curves Γt, t ≥ 0, in which the normal velocity has the form:

V = −κΓ + F, where F =
1

L(Γt)

∫
Γ

κΓds =
2π

L(Γt)
, (3)

Γt|t=0 = Γini. (4)

It is known that the flow (3) preserves the area A(Γt) enclosed by the curve Γt, i.e.,
A(Γt) = A(Γini) for all t ≥ 0 (c.f. Gage [14]). In what follows, we show that the
analogous conservation property holds for the flow (1), i.e., the area A(Gt) enclosed
by the curve Gt on the surface M is preserved for all t ≥ 0.

Geometric evolution equations of the form (3) were studied by Gage, Dolcetta et
al., McCoy, Esedoḡlu et al., Kublik et al. and Dallaston et al. (see e.g., [14, 11, 20,
13, 17, 9]). Recently, in [16] Kolář, Beneš and Ševčovič investigated the geometric
law (3) for motion of open planar curves with fixed ends. In the context of the
modified Allen-Cahn equation (c.f. [8, 1]) approximating the curvature driven flow
(3) (see [3]), the constrained curvature driven flow was also studied in [25, 7, 15, 6]
by Rubinstein and Sternberg, Bronsard and Stoth, Henry et al., and Beneš et al.

Motivation for studying the area-preserving constrained motion (3) driven by the
mean curvature has its origin in physics of phase transitions, e.g. in recrystallization,
where a previously melted, fixed volume of the liquid phase solidifies again (see [19]).
It is natural to generalize the area preserving flow of planar curves to the case when
the curves are evolved on a given two dimensional surface.

In this paper, problem (1) for closed curves is mathematically treated by the
parametric (or also called direct or Lagrangian) method, which has been applied
for planar curve motion by various authors. We refer the reader to papers [10, 4, 5]
by Deckelnick and Beneš et al. where the basics of this approach and its applica-
tions are elaborated. In [24] Pauš et al. compared the direct approach and other
interface-capturing methods, such as the level-set method or the phase-field method.
In the paper [24] by Pauš et al., the approximate algorithmic approach for handling
topological changes (like self-intersecting) was proposed and analyzed. Concerning
some of the drawbacks of the direct method, the problem of tangential redistribu-
tion was analyzed in [27] by Ševčovič and Yazaki. The application of the direct
approach to the flow (1) results into a system of degenerate parabolic equations for
the parametrization of the curve Gt. The system of governing equations is solved
numerically to provide an information about the behavior of a solution of (1). The
numerical approximation scheme is based on the flowing finite volume method which
was proposed by Mikula and Ševčovič in [21] for curvature driven flows of planar
curves.

The paper is organized as follows. Next section recalls the direct Lagrangian
approach for solving curvature driven flows of curves. In Section 3 we derive a
system of nonlocal partial differential equations for parametrization of evolving
curves. Next in Section 4 we briefly discuss the role of the tangential velocity and
we present a class of the curvature adjusted tangential velocities. Local existence,
uniqueness and continuation of Hölder smooth classical solutions is shown in Section
5. Section 6 is devoted to the area preserving flow of surface curves. We show
that the enclosed area of a family of evolving curves driven in normal direction by
the velocity (1) is preserved and their length is shortened. In Section 7 we use the
numerical method of flowing finite volumes combined with the Runge–Kutta method
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for solving governing PDEs. Finally, in Section 8 we present several computational
examples of area preserving flow of curves evolving on a given surface.

2. Projection method. In the direct parametric (or Lagrangian) approach, a
planar time-dependent curve Γt ⊂ R2, t ≥ 0, is described by the position vector:

X = X(u, t), u ∈ [0, 1],

where u is the parameter from a fixed interval. Since we are concerned with closed
curves for which X is 1-periodic in the u variable, we will identify the interval [0, 1]
with R/Z ≡ S1. Then the curve Γt is given by:

Γt = {X(u, t) = (X1(u, t), X2(u, t))T , u ∈ [0, 1]},

where X1(u, t) and X2(u, t) are the components of the position vector X(u, t). Now
let us consider a closed curve Gt on a surface M, which is a graph of a function
ϕ : Ω ⊂ R2 → R. Such a curve can be uniquely represented by its vertical projection
to the plane Ω ⊂ R2, i.e.,

Gt = {(X, ϕ(X))T : X ∈ Γt)},

where Γt is a planar curve in Ω ⊂ R2 (see Figure 1). Our approach is to analyze the
flow of curves Gt ∈M on a surface driven by (1) by means of the flow of projected
curves Γt ∈ R2 in the plane.

In what follows, we will derive a system of governing equations for parametriza-
tion X(u, t) of Γt provided that Gt is evolved in the normal direction by (1). To this
end, we have to find the normal velocity vΓ of the curve Γt in terms of geometric
quantities corresponding to Γt.

Figure 1. Illustration of a curve Gt on a given surface M and its
projection Γt to plane.

Assume the parametrization of a closed curve Γt is oriented anticlockwise, and the
periodic boundary conditions at u = 0 and u = 1 are imposed, i.e., X|u=0 = X|u=1

and ∂uX|u=0 = ∂uX|u=1. Then, the geometric quantities such as the unit tangential
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vector tΓ, the outer unit normal vector nΓ, and the curvature κΓ can be expressed
in terms X as follows:

tΓ =
∂uX

|∂uX|
and nΓ =

∂uX
⊥

|∂uX|
=

1

|∂uX|

(
∂uX2

−∂uX1

)
, where X =

(
X1

X2

)
.

Notice that the choice of the normal vector in the outer direction is in accordance
with the rule det(nΓ, tΓ) = 1. Let us denote the arc-length variable by s. Then
ds = |∂uX(u, t)|du. The Frénet formulas yield ∂stΓ = −κΓnΓ, ∂snΓ = κΓtΓ, where
the curvature κΓ is given by the inner product:

κΓ = − 1

|∂uX|
∂

∂u

(
∂uX

|∂uX|

)
· nΓ.

Here a · b stands for the Euclidean inner product in R2.
Having a surface curve Gt ⊂ M, we consider the important geometrical quan-

tities, such as the unit tangent and outer normal vectors T ,N belonging to the
tangent space Tx(M) to Gt ⊂ M, and the geodesic curvature KG . Our aim is
to express them in terms of the quantities: nΓ, tΓ, κΓ, and ∇ϕ. If the surface
M = {(x, ϕ(x)) ∈ R3 : x ∈ Ω} is a graph of the function ϕ then the unit normal
vector to M is given by:

NM =
(∇ϕ,−1)T

(1 + |∇ϕ|2)1/2
.

The vector NM together with the unit tangent T and outer normal N to Gt define
the moving orthonormal frame. We can express the vectors T and N as follows:

T =

(
tΓ,∇ϕ · tΓ

)T
(1 + (∇ϕ · tΓ)2)1/2

, (5)

N =

(
(1 + (∇ϕ · tΓ)2)nΓ − (∇ϕ · tΓ)(∇ϕ · nΓ)tΓ,∇ϕ · nΓ

)T
((1 + |∇ϕ|2)(1 + (∇ϕ · tΓ)2))1/2

. (6)

Finally, the geodesic curvature KG of the curve G on the surface M is given by

KG =
(1 + |∇ϕ|2)1/2κΓ − tTΓ∇

2ϕ tΓ

(1+|∇ϕ|2)1/2 (∇ϕ · nΓ)

(1 + (∇ϕ · tΓ)2)3/2
, (7)

where κΓ is the curvature of the projected planar curve Γt (see [22, Eq. (6)] where
the authors considered the inner normal vector instead).

3. Planar motion law. Our aim is to derive a system of equations for the position
vector X(u, t) provided that the corresponding family of surface curves Gt satisfies
the geometric equation (1). We seek the geometric equation for the normal velocity
vΓ of the planar curve Γt in the form

vΓ = β(X,nΓ, κΓ) (8)

such that Γt is the vertical projection of Gt. For description of the time evolution
of the position vector X(u, t) ∈ Γt, we consider the following geometric equation:

∂tX(u, t) = βnΓ + αtΓ, (9)

where β = β(X,nΓ, κΓ) and α are the normal and the tangential components of the
velocity of the planar curve Γt. Notice that the presence of a tangential velocity
does not change the shape of evolving closed curves. But it has a strong impact on
redistribution of points along the curve (see, e.g., [21]).
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The normal velocity VG of a surface curve Gt is a projection of the speed of the
position vector (X(u, t), ϕ(X(u, t)))T on Gt into the normal direction N , i.e.,

VG = ∂t(X(u, t), ϕ(X(u, t)))T ·N = (∂tX(u, t),∇ϕ · ∂tX(u, t))T ·N

= β(X,nΓ, κΓ) (nΓ,∇ϕ · nΓ)
T ·N =

(
1 + |∇ϕ|2

1 + (∇ϕ · tΓ)2

) 1
2

β,
(10)

(see [22]). It follows from (1) and (7), that the velocity β is given by:

β = − κΓ

1 + (∇ϕ · tΓ)2
+

tTΓ∇2ϕ tΓ(∇ϕ · nΓ)

(1 + (∇ϕ · tΓ)2)(1 + |∇ϕ|2)
+

(
1 + (∇ϕ · tΓ)2

1 + |∇ϕ|2

) 1
2

F . (11)

Since the arc-length parametrization S of the surface curve Gt satisfies dS =√
1 + (∇ϕ · tΓ)2 ds, we obtain

F =
1

L(Gt)

∫
G
KGdS =

1

L(Gt)

∫
Γ

KG
√

1 + (∇ϕ · tΓ)2ds,

and KG is given by (7) and L(Gt) =
∫

Γ

√
1 + (∇ϕ · tΓ)2ds. Now it follows from

equations (6), (7) and (11) that the curve Gt evolves on the surfaceM according to
law (1) provided that the vertically projected planar curve Γt satisfies the geometric
equation (8) in the form:

vΓ = β(X,nΓ, κΓ) = −aκΓ + b+ cF ,

where the coefficients a > 0, b and c are smooth functions defined as

a =
1

1 + (∇ϕ · tΓ)2
, (12)

b =
tTΓ∇2ϕ tΓ(∇ϕ · nΓ)

(1 + (∇ϕ · tΓ)2)(1 + |∇ϕ|2)
, (13)

c =

(
1 + (∇ϕ · tΓ)2

1 + |∇ϕ|2

) 1
2

. (14)

The curve Γt then evolves according to the geometric evolution law (8) pro-
vided that its parametrization X(u, t) satisfies the following system of degenerate
parabolic equations:

∂tX = a
1

|∂uX|
∂

∂u

(
∂uX

|∂uX|

)
+ (b+ cF)

∂uX
⊥

|∂uX|
+ α

∂uX

|∂uX|
, (15)

X|t=0 = Xini, (16)

where the coefficients a, b and c are given by (12), (13) and (14), and the non-locally
defined force term F , is expressed as follows:

F =
1

L(Gt)

∫
G
KGdS, L(Gt) =

∫
G

dS. (17)

4. Tangential velocity. We will briefly discuss the choice of a suitable tangential
velocity functional α. To construct a stable numerical computational scheme, sev-
eral nontrivial choices of α have been proposed in the literature. We refer the reader
to papers by Mikula and Ševčovič [22, 23], Beneš et al. [5, 16, 24] and references
therein. A general framework yielding the so-called curvature adjusted tangential
velocity has been proposed by Ševčovič and Yazaki in [27]. This approach takes into
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account variations in the curvature as well as the necessity of uniform or asymp-
totically uniform redistribution of points along evolved curves. More precisely, we
shall define the so-called curvature adjusted relative local length quantity:

r(u, t) =
g(u, t)

L(Γt)

Φ(κΓ(u, t))

〈Φ(κΓ(., t))〉
, where g(u, t) = |∂uX(u, t)|, u ∈ [0, 1], (18)

and 〈F 〉 = (1/L(Γt))
∫

Γ
F (s) ds is the arc-length average of a quantity F over the

curve Γt. Here Φ : R → R is a suitable nonnegative shape function depending on
the curvature. In [27] it was shown that

lim
t→Tmax

r(u, t) = 1 (19)

uniformly with respect to u ∈ [0, 1] provided that the tangential velocity α is a
solution to the following equation:

∂s(Φα)

Φ
=
f

Φ
− 〈f〉
〈Φ〉

+ (k1 + k2〈κΓβ〉)
(
r−1 − 1

)
, f = κΓβΦ− (∂2

sβ + κ2
Γβ)Φ′(κΓ),

(20)
where Φ = Φ(κΓ) and k1, k2 > 0 are some constants. To construct a unique solution
α, we assume the renormalization condition 〈Φ(κΓ)α〉 = 0, (c.f. [28, Eq. (10)]).

In the case Φ ≡ 1 we obtain the so-called asymptotically uniform redistribution
proposed and studied by Mikula and Ševčovič in [22, 23]. If k1 = k2 = 0 then α
becomes uniform redistribution that yields r(u, t) = r(u, 0) for all u ∈ [0, 1], t ≥ 0.
On the other, if Φ(κΓ) = |κΓ| then α corresponds to tangential velocity which is
implicitly built in the so-called crystalline curvature flow. For practical purposes of
numerical implementation, we can take Φ(κΓ) =

√
δ2 + κ2

Γ where 0 < δ � 1 is a
small regularization parameter (c.f. Yazaki [29]).

The following lemma deals with properties of the tangential velocity functional
and it is due to Ševčovič and Yazaki [28]. To formulate its statement we need to
introduce the scale of Banach spaces E1 ⊂ E 1

2
⊂ E0:

Ek = c2k+ε(S1)× c2k+ε
∗ (S1)× c1+ε(S1)×

(
c2k+ε(S1)

)2
for k = 0, 1/2, 1.

Here c2k+ε(S1) is the so-called little Hölder space (c.f. Angenent [2]). It is the
closure of C∞ smooth 1-periodic functions in the norm of the Hölder space C2k+ε

for some positive 0 < ε < 1. By c2k+ε
∗ we denoted the space c2k+ε

∗ = {ν : R →
R , tΓ = (cos ν, sin ν)T ∈ (c2k+ε)2}.

Lemma 4.1. [28, Lemma 1] Let α = α(κΓ, ν, r,X) be the tangential velocity func-
tion given as a unique solution to (20) satisfying the renormalization condition
〈Φ(κΓ)α〉 = 0. Then α ∈ C1(O 1

2
, cε(S1)) where O 1

2
is an open subset of E 1

2
such

that r > 0 for (κΓ, ν, r,X) ∈ O 1
2
.

5. Local existence and continuation of classical solutions. In this section
we prove local existence, uniqueness and continuation of classical Hölder smooth
solutions to the system of governing PDEs (21) below. Throughout this section we
shall assume that the mapping φ : Ω ≡ R2 → R is at least C5 smooth and it has
bounded derivatives up to the second order,

|φ(x)|, |∇φ(x)|, |∇2φ(x)| ≤ C0, for all x ∈ R2,

where C0 > 0 is a constant.
First, we prove a useful lemma giving us an a-priori estimate of the external

force F term (1).
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Lemma 5.1. Let Gt, 0 ≤ t ≤ T, be a flow of surface curves with the normal velocity
VG given by (1). Then there exists a constant C1 > 0 depending on the area A(Gini)
enclosed by the initial curve Gini only, and such that∣∣∣∣ 1

L(Gt)

∫
Gt
KGdS

∣∣∣∣ ≤ C1,

for all t ∈ [0, T ].

Proof. First we recall the Gauss-Bonnet formula:∫
Int(G)

KdX +

∫
G
KGdS = 2π

which is satisfied by any closed non-selfintersecting curve G on a simple surface M
where K is the Gaussian curvature of M (c.f. [26, Chapter 2]). Hence,∣∣∣∣∫

Gt
KGdS

∣∣∣∣ ≤ 2π +KmaxA(Gt) = 2π +KmaxA(Gini),

where Kmax = maxM |K| is the maximum of the modulus of the Gaussian curvature
of the surface M which is bounded due to the assumptions made on the function
φ. Since

A(Gini) = A(Gt) =

∫
Int(Gt)

dX =

∫
Int(Γt)

√
1 + |∇φ(x)|2dx ≤

√
1 + C2

0A(Γt),

then, by using the isoperimetric inequality L2 ≥ 4πA in the plane R2, we obtain
the lower bound for the length L(Gt):

L(Gt) =

∫
Gt

dS =

∫
Γt

√
1 + (∇φ · tΓ)2ds ≥ L(Γt) ≥

√
4πA(Γt) ≥

√
4πA(Gini)

(1 + C2
0 )

1
4

.

Hence, there exists a constant C1 > 0 depending on the initial area A(Gini) only
and such that ∣∣∣∣ 1

L(Gt)

∫
Gt
KGdS

∣∣∣∣ ≤ C1,

as claimed.

We can state the following local existence and uniqueness result.

Proposition 1. Assume the parametrization Xini of an initial surface curve Gini
is at least C4+ε smooth. Suppose that the tangential velocity α belongs to the class
of curvature adjusted tangential velocities introduced in Section 4 or α = 0. Then
there exists T > 0 and the unique family of surface curves Gt, t ∈ [0, T ], evolving in
the normal direction with the velocity VG given by (1) and such that its parametriza-
tion Gt = Image((X(., t), ϕ(X(., t)))T ) satisfies X ∈ C([0, T ]), E1) ∩ C1([0, T ]), E0)
where Ek = c2k+ε(S1), k ∈ {0, 1}. If the maximal time of existence is finite,
Tmax < +∞, then lim supt→Tmax

max |KGt(Gt)| = +∞.

Proof. Recall that the normal velocity β(X,nΓ, κΓ) of the projected planar curve
Γt in the outer normal direction nΓ can be written in the form β = −aκΓ + b+ cF .
The coefficients a, b, c depends on the position vector X and the unit outer normal
nΓ and the tangent vector tΓ, where nΓ = t⊥Γ (see (12), (13) and (14)).

In [28, Theorem 1] Ševčovič and Yazaki proved a rather general result on local
existence and uniqueness and continuation of classical Hölder smooth solutions to
the non-local flow driven by the normal velocity which is the sum of local and
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nonlocal parts provided that the nonlocal part is however independent of X and
nΓ. This is why we have to slightly modify the proof of [28, Theorem 1] in order to
handle the case when the nonlocal part has the form: c(X,nΓ)F .

The method of the proof of [28, Theorem 1] is based on analysis of the closed
system of differential equations

∂tκΓ = ∂2
s β̃ + κ2

Γβ̃ + α∂sκΓ,

∂tν = β̃′κΓ
∂2
sν + (α+ β̃′ν)∂sν +∇Xβ̃ · tΓ,

∂tr = (r − 1)(k1 + k2〈κΓβ̃〉), (21)

∂tX = a∂2
sX + (b+ cF)nΓ + αtΓ,

where β̃ = −β = aκΓ − b − cF represents the velocity in the inner normal di-
rection −nΓ (c.f. [28, Eqs. (11)–(14)]). Here ν is the tangent angle such that
tΓ = (cos ν, sin ν)T and nΓ = (sin ν,− cos ν)T . Since the arc-length parametriza-
tion can be expressed in terms of the relative local length r via ds = |∂uX|du =
rL(Γt)(〈Φ(κΓ)〉/Φ(κΓ))du the system (21) is indeed closed.

The system of equations (21) can be rewritten as an abstract differential equation:

∂tY = H(Y ), Y (0) = Yini,

in the space E0 where Y = (κΓ, ν, r,X). Notice that Yini ∈ E1 provided that the
parametrization Xini is C4+ε smooth.

The mapping H : E1 → E0 defined by the right-hand side of (21) is C1 smooth
on some open neighborhood of the initial condition Yini ∈ E1. More precisely,

H(Y ) = H0(Y ) +H1(Y ).

Here the principal part H0(Y ) has the form:

H0(κΓ, ν, r,X) =

(
a

g2

∂2κΓ

∂u2
,
a

g2

∂2ν

∂u2
, 0,

a

g2

∂2X

∂u2

)T
,

where g = |∂uX| = rL(Γt)〈Φ(κΓ)〉/Φ(κΓ). The remaining part H1 = H − H0

consists of lower order terms, i.e.

H1(κΓ, ν, r,X)

=


a∂u(g−1)∂sκΓ + 2∂sa∂sκΓ + κΓ∂

2
sa− ∂2

sb−F∂2
sc+ κ2

Γβ̃ + α∂sκΓ

a∂u(g−1)∂sν + (α+ β̃′ν)∂sν +∇Xβ̃ · tΓ

(r − 1)(k1 + k2〈κΓβ̃〉)
a∂u(g−1)∂sX + (b+ cF)nΓ + αtΓ

 .

Indeed, since β̃ = aκΓ− b− cF where a, b, c are given as in (12), (13), (14), we have

∂2
sβ = a∂2

sκΓ + 2∂sa∂sκΓ + κΓ∂
2
sa− ∂2

sb−F∂2
sc,

because the nonlocal term F does not depend on s and the nonlocal term F is
bounded by Lemma 5.1. With regard to the Frenét formulas we have ∂stΓ =
−κΓnΓ, ∂

2
stΓ = −∂sκΓ nΓ−κΓ∂snΓ = −∂sκΓ nΓ−κ2

ΓtΓ and ∂2
sX = ∂stΓ = −κΓnΓ.

Therefore all the terms ∂sa, ∂
2
sa, ∂

2
sb, ∂

2
sc can be expressed in terms of κΓ, ∂sκΓ, the

tangent angle ν and the position vector X.
According to Lemma 4.1 we have α ∈ C1(O 1

2
, cε(S1)) where O 1

2
is an open subset

of E 1
2

such that r > 0 for (κΓ, ν, r,X) ∈ O 1
2
. Hence the mappingH1 : O 1

2
⊂ E 1

2
→ E0

is C1 smooth, as well.
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Following the proof of [28, Theorem 1], the linearization H′0(Ȳ ) of the principal
part at Ȳ = (κ̄Γ, ν̄, r̄,X) can be written in the form H′0(Ȳ ) = D̄(Ȳ )∂2

u + C̄(Ȳ ),
where

D̄(Ȳ ) = diag(āḡ−2, āḡ−2, 0, āḡ−2) ∈ cε(S1)

and C̄(Ȳ ) is a 5× 5 matrix with coefficients smoothly depending on κ̄Γ, ν̄, r̄,X and
thus belonging to cε(S1). The rest of the proof is similar to that of [28, Theorem
1]. The principal part D̄∂2

u is a generator of an analytic semigroup on E0 with the
domain E1 and it belongs to the maximal regularity class M(E1, E0) on the pair
of spaces (E1, E0). Since H1 ∈ C1(E 1

2
, E0) the remaining operator C̄ + H′1(Ȳ ) has

the zero relative norm with respect to the principal part (c.f. [2]). Indeed, for
the linear operator B = C̄ + H′1(Ȳ ) we have B ∈ L(E 1

2
, E0). Taking into account

the interpolation inequality between cε and c2+ε spaces we conclude the following
inequality:

‖BY ‖E0 ≤ C0‖Y ‖E 1
2

≤ C0‖Y ‖1/2E1 ‖Y ‖
1/2
E0 ,

where C0 > 0 is a generic positive constant. Using Young’s inequality ab ≤ δa2 +
b2/(4δ), δ > 0, we can conclude that the linear operator B (now considered as a
linear operator from E1 into E0) has the relative zero norm, i.e. for any δ > 0
there exists a constant Kδ > 0 such that ‖BY ‖E0 ≤ δ‖Y ‖E1 + Kδ‖Y ‖E0 . With
regard to [2, Lemma 2.5] the maximal regularity class M(E1, E0) is closed with
respect to perturbations by linear operators with the zero relative norm. Thus
H′(Ȳ ) ∈ M(E1, E0). Applying the abstract theory due to Angenent [2, Theorem
2.7] the proof of the local existence and continuation follows.

Remark 1. In Proposition 1 we assumed that the initial curve is C4+ε smooth
which might be considered as restrictive when compared to standard assumptions
requiring less smoothness on initial data (c.f [12]). However, as the nontrivial cur-
vature adjusted tangential velocity α depends on the curvature and tangent angle
we had to consider the full governing system equations (21) including equations for
the curvature, tangent angle. Following the methods based on maximal regularity
we have to assume higher smoothness on the initial data as both the curvature
and tangent angle should belong to the space c2+ε(S1) and so the initial curve is
assumed to be C4+ε.

Integrating equation (20) with respect to s, the tangential velocity α is a smooth
mapping with values in cε(S1) provided that the curvature k belongs to the space
c1+ε(S1) only. Following the theory due to Lunardi [18] (see also [2, Theorem 2.11]),
one can expect that the optimal regularity assumption that the initial curve is C3+ε

smooth only.

6. Preservation of the surface area. The area A(Γt) enclosed by a curve Γt
evolved in the normal direction with the velocity vΓ satisfies the following identity:

d

dt
A(Γt) =

∫
Γt

vΓds (22)

(c.f. [14], see also [16]). If the normal velocity is given by (3) we obtain

d

dt
A(Γt) = 0,

i.e. the enclosed area of planar curves Γt, t ≥ 0, is preserved (c.f. Gage [14]).
Let us consider evolution of closed curves Gt, t ≥ 0, on a given surface M ⊂ R3

according to the geometric equation (1). The surface M is prescribed as a graph
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of a function ϕ = ϕ(x),x ∈ Ω ⊂ R2, and the curve Gt is parametrized by means of
the vector valued mapping X(u, t) as Gt = {(X, ϕ(X))T : X ∈ Γt}, where Γt is the
vertical projection of Gt to R2. The resulting governing equations for the unknown
parametrization are given by system (15) and with coefficients a, b, c given by (12),
(13), (14).

Next we prove an analogous identity to (22) for evolving surface curves Gt, t ≥ 0.
As a consequence we will prove that the flow (1) preserves the surface area enclosed
by Gt. This area is denoted as A(Gt) and it can be expressed as follows:

A(Gt) =

∫
Int(Gt)

dX =

∫
Int(Γt)

√
1 + |∇ϕ(x)|2dx. (23)

We extend the identity (1) to the case of surface curves Gt evolving on the surface
M given by function ϕ. Although the proof is straightforward, we present it for
reader’s convenience.

Proposition 2. Suppose {Gt}t≥0 is a family of C1 smooth, non-selfintersecting
closed curves evolving on a surface M ⊂ R3 with the normal velocity VG, which is
a graph of a smooth function ϕ = ϕ(x). Then the identity

d

dt
A(Gt) =

∫
Gt
VGdS (24)

holds for all t ≥ 0. In particular, if the normal velocity VG is given by (1) then the
area A(Gt) = A(Gini) is preserved for all t ≥ 0.

Proof. According to (23), the area of the surface on M enclosed by Gt is given

by A(Gt) =
∫
Int(Gt) dX =

∫
Int(Γt)

√
1 + |∇ϕ(x)|2dx. Let F1, F2 : Ω → R be any

smooth functions and such that

∂F2

∂x1
− ∂F1

∂x2
=
√

1 + |∇ϕ|2.

One can easily construct such functions, e.g. F1 = F1(x1) and F2 = F2(x1, x2) is a

primitive function to
√

1 + |∇ϕ(x1, x2)|2 in the x1 variable. Having such a pair of
functions F = (F1, F2)T , the area A(Gt) is given by

A(Gt) =

∫
Int(Γt)

∂F2

∂x1
− ∂F1

∂x2
dx =

∫
Γt

F1dx1 + F2dx2 =

∫ 1

0

F · ∂uXdu. (25)

Differentiating (25) with respect to t and taking into account that Gt is a closed
curve we obtain

d

dt
A(Gt) =

d

dt

∫ 1

0

F · ∂uXdu =

∫ 1

0

(∇F · ∂tX) · ∂uX + F · ∂2
tuXdu

=

∫ 1

0

(∇F · ∂tX) · ∂uX− (∇F · ∂uX) · ∂tXdu

=

∫ 1

0

(∇F · (βnΓ + αtΓ)) · ∂uX− (∇F · ∂uX) · (βnΓ + αtΓ)du

= −
∫

Γt

β[(∇F · tΓ) · nΓ − (∇F · nΓ) · tΓ]ds.

(26)

The terms containing the tangential velocity α canceled out because ∂uXdu =
tΓ|∂uX|du = tΓ ds.
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Let us denote fij = ∂Fi

∂xj
, i, j = 1, 2. Then we calculate the scalar products in (26)

as follows:

(∇F · tΓ) · nΓ = f11t1t2 + f12t
2
2 − f21t

2
1 − f22t1t2,

(∇F · nΓ) · tΓ = f11t1t2 − f12t
2
1 + f21t

2
2 − f22t1t2,

where tΓ = (t1, t2)T , nΓ = (t2,−t1)T . Then, (∇F · tΓ) · nΓ − (∇F · nΓ) · tΓ =

f12−f21 = ∂F1

∂x2
− ∂F2

∂x1
=
√

1 + |∇φ|2. Since dS =
√

1 + (∇ϕ · tΓ)2 ds and due to the

fact that the normal velocity VG is related with β by (10), equation (26) becomes

d

dt
A(Gt) =

∫
Γt

β
√

1 + |∇ϕ|2ds =

∫
Gt
VGdS, (27)

which is an analogy to the identity (22). Hence

d

dt
A(Gt) = 0, (28)

provided that VG = −KG + F , i.e. VG is given by the geometric equation (1). The
surface enclosed by the curve Gt remains constant for all t ≥ 0.

Proposition 3. The flow of surface curves Gt, t ≥ 0, with the normal velocity VG
given by (1) is the length shortening flow, i.e. d

dtL(Gt) < 0 unless Gt = Gini is a
stationary curve having a constant geodesic curvature.

Proof. If the family of the surface curves Gt, t ≥ 0, evolves in the outer normal
direction by the velocity VG then, by [22, Eq. (32)], the length L(Gt) satisfies the
identity:

d

dt
L(Gt) =

∫
Gt
VGKGdS.

For VG = −KG + F = −KG +
∫
G KGdS/L(Gt) we obtain

d

dt
L(Gt) = −

∫
Gt
K2
GdS +

1

L(Gt)

(∫
Gt
KGdS

)2

≤ 0

due to the Cauchy-Schwarz inequality
(∫
Gt KGdS

)2

≤
∫
Gt 1dS

∫
Gt K

2
GdS = L(Gt)

∫
Gt

K2
GdS. Clearly, the equality occurs if and only if KG is constant on G which implies
VG = 0, i.e. G is a stationary curve.

7. Numerical approximation. The spatial discretization of (15) is based on the
method of flowing finite volumes, which was applied and analyzed by Mikula and
Ševčovič in [21]. The principle of the method is that the discrete nodes Xi = X(ui, t)
for i = 0, . . . ,M , X0 = XM , and X1 = XM+1, and the dual nodes Xi± 1

2
=

X(ui± 1
2
, t) for ui± 1

2
= ui ± h/2, i = 1, . . . ,M − 1, h = 1/M , are placed along the

curve Γt as illustrated in Figure 2.
Then parametric equations (15) are integrated over the dual segment between

ui− 1
2

and ui+ 1
2
, which surrounds the discrete node Xi, i = 1, . . . ,M − 1. This

integration results into the following expressions:∫ u
i+ 1

2

u
i− 1

2

∂tX|∂uX|du =

∫ u
i+ 1

2

u
i− 1

2

a∂u

(
∂uX

|∂uX|

)
+ [b+ cF ] ∂uX

⊥ + α∂uXdu. (29)
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di + 1di

Figure 2. Discretization of a segment of a curve by flowing finite volumes.

Evaluation of the first integral on the right-hand side yields:∫ u
i+ 1

2

u
i− 1

2

∂tX|∂uX|du = a|ui

 ∂uX

|∂uX|

∣∣∣∣
u
i+ 1

2

− ∂uX

|∂uX|

∣∣∣∣
u
i− 1

2


+

∫ u
i+ 1

2

u
i− 1

2

[b+ cF ] ∂uX
⊥ + α∂uXdu,

(30)

where we have assumed a is constant on [ui− 1
2
, ui+ 1

2
]. We denote the following

discrete quantities

ϕi = ϕ(Xi), dj = |Xj −Xj−1|, Dj = |(Xj , ϕj)− (Xj−1, ϕj−1)| (31)

where X0 = XM and XM+1 = X1 in the case of closed curve Γt. Then, the
curvature κΓ is approximated as

κi = − 2

di + di+1

(
Xi+1 −Xi

di+1
− Xi −Xi−1

di

)
·
X⊥i+1 −X⊥i−1

di + di+1
. (32)

The approximation of the unit tangent a normal vectors is as follows:

tj =
Xj+1 −Xj−1

dj+1 + dj
, nj =

X⊥j+1 −X⊥j−1

dj+1 + dj
.

Finally, the discrete geodesic curvature (7) can be computed as:

Ki =
(1 + |∇ϕi|2)1/2κi − tTi ∇

2ϕiti
(1+|∇ϕi|2)1/2 (∇ϕi · ni)

(1 + (∇ϕi · ti)2)3/2
. (33)

The quantities (12), (13), (14) from the parametric equation (15) are given by:

aj =
1

1 + (∇ϕj · tj)2
, (34)

bj =
tTj ∇2ϕjtj(∇ϕj · nj)

(1 + (ϕj · tj)2)(1 + |∇ϕj |2)
, (35)

cj =

(
1 + (∇ϕj · tj)2

1 + |∇ϕj |2

) 1
2

, (36)

and the nonlocal scalar force F becomes

F =
1∑M

j=1Dj

M∑
j=1

Kj
Dj+1 +Dj

2
.
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Notice that in the former expression, we approximated the integral along the surface
curve Gt. Approximating the integrals in equation (30) by means of the finite-volume
method along the planar curve Γt, we have∫ u

i+ 1
2

u
i− 1

2

∂tX|∂uX|du =
dXi

dt

di+1 + di
2

,

∫ u
i+ 1

2

u
i− 1

2

b∂uX
⊥du = b|ui

(
X⊥i+1 −X⊥i−1

2

)
,

F
∫ u

i+ 1
2

u
i− 1

2

c∂uX
⊥du = Fc|ui

(
X⊥i+1 −X⊥i−1

2

)
,

where we considered ∂tX, ∂uX, b, c to be constant in the dual finite volume
[ui− 1

2
, ui+ 1

2
].

Finally, the semi-discrete scheme for solving (15) within the context of the scalar
motion law (1) can be written as follows:

dXi

dt

di+1 + di
2

= ai

(
Xi+1 −Xi

di+1
− Xi −Xi−1

di

)
+ (bi + ciF)

(X⊥i+1 −X⊥i−1)

2

+αi
(Xi+1 −Xi−1)

2
, (37)

F =
1∑M

j=1Dj

M∑
j=1

Kj
Dj+1 +Dj

2
, (38)

Xi(0) = Xini(ui), (39)

for i = 1, . . . ,M . The quantities ϕi, dj and Di are given by (31). The discrete
curvature κi and geodesic curvature Ki are calculated according to (32) and (33),
respectively. The coefficient ai, bi and ci are defined by (34), (35), and (36). Sys-
tem (37) – (39) of ODEs is solved numerically by means of the 4th-order explicit
Runge-Kutta-Merson scheme with the automatic time step control (and the toler-
ance parameter 10−6) ( see [16] or [5]). We have chosen the initial time-step as 4h2,
where h = 1/M is the mesh size dividing the parameter range [0, 1].

8. Computational examples. In this section we present qualitative and quanti-
tative results of several computational examples showing the behavior of solutions
to (1) which were computed by means of the numerical scheme (37) – (39). In the
forthcoming examples, we demonstrate how a numerical solution of (1) evolves in
time approaching the stable shape on the surface M while the area of the surface
on M enclosed by the curve Gt is preserved.

We also present the experimental order of convergence (EOC) for all computa-
tional examples. As a testing measure we chose the enclosed area A(Gt) of the
surface M. We measured errors given by the difference between the initial area
A(Gini) enclosed by the initial curve Gini, and the areas A(GTi

) enclosed by curves
GTi

at chosen times T1, T2, . . . , TN .
Here we denote ∆ti = Ti−Ti−1, i = 1, 2, . . . , N . The quantity A(GTi

) represents
the area of a polygonal domain enclosed by a piece-wise linear approximation of
GTi given by the scheme (37) – (39) at the time level Ti for a given mesh with M
elements.
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Table 1. Settings of computational examples

Ex. Xini, u ∈ [0, 1] ϕ

1 Xini = ( 1
4 +r(u) cos(2πu),− 1

4 +r(u) sin(2πu))T ϕ(x, y) =
√

4− x2 − y2

2 Xini = (cos(2πu), 1
10 + sin(2πu))T ϕ(x, y) = y2

3 Xini = (cos(2πu), 1
5 + sin(2πu))T ϕ(x, y) = sin(πy)

4 Xini = ( 1
2 cos(2πu), sin(2πu))T ϕ(x, y) = x2 − y4

The area A(Gt) is calculated by means of equation (23) and the Green formula
(see (25)). Having a pair of functions F1 and F2 such that√

1 + |∇ϕ|2 =
∂F2

∂x1
− ∂F1

∂x2
,

the area A(Gt) becomes

A(Gt) =

∫ 1

0

F1∂uX1 + F2∂uX2 du.

The differences between the quantities A(Gini) and A(GTi) are evaluated by
means of the maximum norm

errormax(M) = max
i=1,2,...,N

|A(Gini)−A(GTi)|,

and the discrete L1 norm

errorL1
(M) =

1

TN

N∑
k=1

|A(Gini)−A(GTk
)|∆tk,

both of them depending on the number M of finite volumes. Assuming that both
error estimates are depending on the number of finite volumes as follows:

errormax/L1
= const

(
1

M

)EOC
,

then, the value of the Experimental order of convergence (EOC) between two levels
of meshes with M1 and M2 finite volumes is given by:

EOC =
log
(
errormax/L1

(M1)

errormax/L1
(M2)

)
log
(
M2

M1

) .

In Table 1 we summarize the parametric forms of initial conditions Xini and
functions ϕ describing surfaces M for the following computational examples. The
motion of the initial curve is driven by the normal velocity VG given by (1) and
for each of the following examples we present how the curve Gt asymptotically
approaches the stable position, while the area enclosed by Gt is preserved. The
computations were performed for the number of segments in the flowing finite vol-
ume method ranging from 100 to 500. For each example we calculated EOC’s which
are summarized in their respective tables.

Example 1. The first example is presented in Figure 3. It illustrates, how an initial
5-leaf shape curve projected on the surface of the sphere evolves in the time interval
[0, 10]. Considering M = 200 finite volumes, the initial curve Gini encloses the area
of A(Gini) = 4.71841, while the area enclosed at the final time T = 10 is A(GT ) =
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Table 2. Table of EOCs for Example 1

M errormax EOC errorL1 EOC
100 3.2397 · 10−2 – 3.2516 · 10−2 –
200 8.2467 · 10−3 1.9740 8.2767 ·10−3 1.9740
300 3.6408 · 10−3 2.0165 3.6542 ·10−3 2.0164
400 2.0411 · 10−3 2.0118 2.0485 ·10−3 2.0117
500 1.3033 · 10−3 2.0103 1.3081 ·10−3 2.0102

Table 3. Table of EOCs for Example 2

M errormax EOC errorL1 EOC
100 1.4812 · 10−3 – 1.4839 · 10−3 –
200 3.7049 · 10−4 1.9993 3.7092 · 10−4 2.0002
300 1.6453 · 10−4 2.0019 1.6471 · 10−4 2.0022
400 8.2431 · 10−5 2.0045 9.2525 · 10−5 2.0046
500 5.9055 · 10−5 2.0077 5.9114 · 10−5 2.0077

4.72273. The coefficient r(u) in Table 1 is given as r(u) = (1 + 0.65 cos(10πu)). In
Table 2 we present the values of EOC for the enclosed area.
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Figure 3. Left: the initial curve Gini (dashed) and the final curve
GT at T = 10 (solid) and several intermediate curves Gt (dotted).
The underlying surface M is plotted in gray color. Right: time
evolution of the projected planar curves Γt (see Example 1).

Example 2. The second example is presented in Figure 4. In this example, evo-
lution of an initial curve projected to the surface with parabolic profile is shown.
The time interval of this motion was [0, 30]. The initial curve Gini with M = 200
finite volumes encloses a surface with the area of A(Gini) = 4.34939, while the area
enclosed at the final time T = 30 is A(GT ) = 4.34973. In Table 3 we present the
values of EOC for the enclosed area.
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Figure 4. Left: the initial curve Gini (dashed) and the final curve
GT at T = 30 (solid). The underlying surfaceM is plotted in gray
color. Right: time evolution of the projected planar curves Γt (see
Example 2).

Table 4. Table of EOCs for Example 3

M errormax EOC errorL1 EOC
100 4.3505 · 10−3 – 4.7156 · 10−3 –
200 9.4649 · 10−4 2.2005 9.5944 · 10−4 2.2972
300 4.1813 · 10−4 2.0149 4.2481 · 10−4 2.0082
400 2.3506 · 10−4 2.0021 2.3885 · 10−4 2.0015
500 1.5050 · 10−4 1.9980 1.5293 · 10−4 1.9980

Example 3. In the third example presented in Figure 5, evolution of the curve
Gt projected to the surface with sinus profile is illustrated. In this case, the time
interval was [0, 8]. With M = 200 finite volumes, we calculated that the initial
curve Gini encloses the area of A(Gini) = 7.15954, while the area enclosed at the
final time T = 8 is A(GT ) = 7.15838. In Table 4 we present the values of EOC for
the enclosed area.

Example 4. The fourth example is presented in Figure 6, and it shows evolution
of the curve Gt projected to the surface with saddle profile. In this case, the time
interval was [0, 15]. With M = 200 finite volumes, we calculated that the initial
curve Gini encloses the area of A(Gini) = 2.30099, while the area enclosed at the
final time T = 15 is A(GT ) = 2.30145. In Table 5 we present the values of EOC for
the enclosed area.

9. Conclusion. We analyzed a non-local geometric flow preserving surface area
enclosed by a closed curve on a given surface evolved in the normal direction by
the geodesic curvature and the external force. We derived the form of the normal
velocity of a nonlocal geometric flow that preserves the initial enclosed area. It
was shown that the surface area preserving flow decreases the length of evolved



AREA PRESERVING GEODESIC CURVATURE FLOW 3687

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2-1.5 -1 -0.5  0  0.5  1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

Figure 5. Left: the initial curve Gini (dashed) and the final curve
GT at T = 8 (solid) are presented. The surface M is plotted in
gray color. Right: time evolution of the projected planar curves Γt
(see Example 3).
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Figure 6. Left: the initial curve Gini (dashed) and the final curve
GT at T = 15 (solid) are shown. The surface M is plotted in
gray. Right: Time evolution of the projected planar curves Γt (see
Example 4).

surface curves. Local existence and continuation of classical smooth solutions to
the governing system of partial differential equations were also shown. As a numer-
ical approximation scheme we proposed a method of flowing finite volumes method
for spatial discretization in combination with the Runge–Kutta method for solv-
ing resulting system of ODEs. The scheme exhibited 2nd order of experimental
convergence. Several computational examples of evolution of surface curves were
presented.
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Table 5. Table of EOCs for Example 4

M errormax EOC errorL1 EOC
100 1.8882 · 10−3 – 1.9422 · 10−3 –
200 4.7176 · 10−4 2.0009 4.8494 · 10−4 2.0018
300 2.0979 · 10−4 1.9986 2.1563 · 10−4 1.9988
400 1.1808 · 10−4 1.9978 1.2136 · 10−4 1.9980
500 7.5628 · 10−5 1.9966 7.7728 · 10−5 1.9968
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[22] K. Mikula and D. Ševčovič, Computational and qualitative aspects of evolution of curves
driven by curvature and external force, Comput. Vis. Sci., 6 (2004), 211–225.
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