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Chapter 1
Nonlinear Parabolic Equations Arising
in Mathematical Finance

Daniel Ševčovič

Abstract This survey chapter is focused on qualitative and numerical analyses of
fully nonlinear partial differential equations of parabolic type arising in financial
mathematics. The main purpose is to review various non-linear extensions of the
classical Black-Scholes theory for pricing financial instruments, as well as models of
stochastic dynamic portfolio optimization leading to the Hamilton-Jacobi-Bellman
(HJB) equation. After suitable transformations, both problems can be represented by
solutions to nonlinear parabolic equations. Qualitative analysis will be focused on
issues concerning the existence and uniqueness of solutions. In the numerical part
we discuss a stable finite-volume and finite difference schemes for solving fully
nonlinear parabolic equations.

1.1 Nonlinear Generalization of the Black-Scholes Equation
for Pricing Financial Instruments

According to the classical theory developed by Black, Scholes and Merton the
value V.S; t/ of an option in the idealized financial market can be computed from a
solution to the well-known Black-Scholes (BS) linear parabolic equation:

@tV C 1

2
�2S2@2SV C .r � q/S@SV � rV D 0; t 2 Œ0;T/; S > 0; (1.1)

derived by Black and Scholes and, independently by Merton (cf. [29, 38]). Here
� > 0 is the volatility of the underlying asset driven by the geometric Brownian
motion, r > 0 is the risk-free interest rate of zero-coupon bond and q � 0 is the
dividend rate. Similarly, as in the case of the HJB equation the solution is subject to
the terminal condition V.S;T/ D NV.S/ at t D T.

The linear Black-Scholes equation with constant volatility � has been derived
under several restrictive assumptions like e.g., frictionless, liquid and complete
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4 D. Ševčovič

markets, etc. We also recall that the linear Black-Scholes equation provides a
solution corresponding to a perfectly replicated hedging portfolio which need not
be a desirable property. In the last decades some of these assumptions have been
relaxed in order to model, for instance, the presence of transaction costs (see
e.g. Leland [18, 29] and Avellaneda and Paras [5]), feedback and illiquid market
effects due to large traders choosing given stock-trading strategies (Schönbucher
and Willmott [40], Frey and Patie [16], Frey and Stremme [15], imperfect replication
and investor’s preferences (Barles and Soner [8]), risk from the unprotected portfolio
(Jandačka and Ševčovič [22]). Another nonlinear model in which transaction costs
are described by a decreasing function of the number of shares has been derived by
Amster et al. [2]. In all aforementioned generalizations of the linear BS equation
(1.1) the constant volatility � is replaced by a nonlinear function:

� D �.S@2SV/ (1.2)

depending on the second derivative @2SV of the option price itself.
One of the first nonlinear models taking into account transaction costs is the

Leland model for pricing the call and put options. This model was further extended
by Hoggard et al. [18] for general type of derivatives. In this model the variance �2

is given by

�.S@2SV/2 D �20
�
1 � Le sgn

�
S@2SV

�� D
(
�2.1 � Le/; if @2SV > 0;

�2.1C Le/; if @2SV < 0;
(1.3)

where Le D
q

2
�

C0
�

p
�t

is the so-called Leland number, �0 is a constant historical
volatility, C0 > 0 is a constant transaction costs per unit dollar of transaction in
the underlying asset market and �t is the time-lag between consecutive portfolio
adjustments. The nonlinear model with the volatility function given as in (1.3)
can be also viewed as a jumping volatility model investigated by Avellaneda and
Paras [5].

The important contribution in this direction has been presented in the work by
Amster et al. [2], where the transaction costs are assumed to be a non-increasing
linear function of the form C.�/ D C0 � ��, (C0; � > 0), depending on the volume
of trading stock � � 0 needed to hedge the replicating portfolio. A disadvantage of
such a transaction costs function is the fact that it may attain negative values when
the amount of transactions exceeds the critical value � D C0=�. In the model studied
by Amster et al. [2] (see also Averbuj [4], Mariani et al. [33]) the volatility function
has the following form:

�.S@2SV/2 D �20
�
1 � Le sgn

�
S@2SV

�C �S@2SV
�
: (1.4)
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1 Nonlinear Parabolic Equations Arising in Mathematical Finance 5

In the recent paper [39] Ševčovič and Žitnanská investigated a model for pricing
option under variable transaction costs.

�.S@2SV/2 D �20

 

1 �
r
2

�
QC.�Sj@2SVjp�t/

sgn.S@2SV/

�
p
�t

!

(1.5)

where QC is the mean value modification of the transaction cost function C D C.�/
defined as follows: QC.�/ D R1

0
C.�x/x e�x2=2dx. As an example one can consider

the piecewise linear transaction cost function of the form:

C.�/ D
8
<

:

C0; if 0 � � � ��;
C0 � �.� � ��/; if �� � � � �C;
C0; if � � �C:

(1.6)

Bakstein and Howison [7] investigated a parametrized model for liquidity effects
arising from the asset trading. In their model � is a quadratic function of the term
H D S@2SV:

�.S@2SV/2 D�20
 

1C N�2.1 � ˛/2 C 2�S@2SV C �2.1 � ˛/2 �S@2SV
�2

C 2

r
2

�
N� sgn

�
S@2SV

�C 2

r
2

�
�.1 � ˛/2 N� ˇˇS@2SV

ˇ
ˇ
!

:

(1.7)

The parameter � corresponds to a market depth measure, i.e. it scales the slope of the
average transaction price. Next, the parameter N� models the relative bid-ask spreads
and it is related to the Leland number through relation 2 N�p2=� D Le. Finally, ˛
transforms the average transaction price into the next quoted price, 0 � ˛ � 1.

The risk adjusted pricing methodology (RAPM) model takes into account the
risk from the unprotected portfolio was proposed by Kratka [28]. It was generalized
and analyzed by Jandačka and Ševčovič [22]. In this model the volatility function
has the form:

�.S@2SV/2 D �20

�
1C 	

�
S@2SV

� 1
3

�
; (1.8)

where �0 > 0 is the constant historical volatility of the asset price return and
	 D 3.C2

0R=2�/
1
3 , where C0; R � 0 are non-negative constants representing the

transaction cost measure and the risk premium measure, respectively.
If transaction costs are taken into account perfect replication of the contingent

claim is no longer possible and further restrictions are needed in the model. By
assuming that investor’s preferences are characterized by an exponential utility

sevcovic@fmph.uniba.sk



6 D. Ševčovič

function Barles and Soner (cf. [8]) derived a nonlinear Black-Scholes equation with
the volatility � given by

�.S@2SV; S; t/2 D �20
�
1C 
.a2er.T�t/S2@2SV/

�
(1.9)

where 
 is a solution to the ODE:


 0.x/ D 
.x/C 1

2
p

x
.x/ � x
; 
.0/ D 0;

and a > 0 is a given constant representing risk aversion. Notice that 
.x/ D O.x
1
3 /

for x ! 0 and 
.x/ D O.x/ for x ! 1.
All the nonlinear volatility models mentioned in this section can be written in the

form of a solution to the fully nonlinear parabolic equation:

@tV C 1

2
�.@2SV/2S2@2SV C .r � q/S@SV � rV D 0; t 2 Œ0;T/; S > 0: (1.10)

Jandačka and Ševčovič [22] proposed the method of transformation of equation
(1.10) into a quasi-linear parabolic equation for the second derivative @2SV (the so-
called Gamma of an option) of a solution. Indeed, if we introduce the new variables
H.x; �/ D S@2SV.S; t/, x D ln S and � D T � t then Eq. (1.10) can be transformed
into the so-called Gamma equation:

@�H D @2xˇ.H/C @xˇ.H/C .r � q/@xH � qH; x 2 R; � 2 .0;T/; (1.11)

where

ˇ.x;H/ D 1

2
�.H/2H

(cf. [10, 22]). Recall that the Gamma equation can be obtained by twice differentia-
tion with respect to x of the Black-Scholes equation (1.18) with the volatility of the
general type (1.2). A solution H.x; �/ to the Cauchy problem for (1.11) is subject to
the initial condition H.x; 0/ D H0.x/.

1.2 Nonlinear Hamilton-Jacobi-Bellman Equation
and Optimal Allocation Problems

Optimal allocation and optimal investment problems with state constraints attracted
a lot of attention from both theoretical as well as application point of view. The main
purpose is to maximize the total expected discounted utility of consumption for the
optimal portfolio investment consisting of several stochastic assets, over infinite or

sevcovic@fmph.uniba.sk



1 Nonlinear Parabolic Equations Arising in Mathematical Finance 7

finite time horizons. It is known that the value function of the underlying stochastic
control problem is the unique smooth solution to the corresponding Hamilton-
Jacobi-Bellman (HJB) equation and the optimal consumption and portfolio are
presented in feedback form (Zariphopoulou [44]).

Let us consider the stylized financial market in which the aim of a portfolio
manager is to maximize the expected value of the terminal wealth of a portfolio,
measured by a prescribed utility function U. In particular, if n is the number of
assets entering the portfolio, T the investment horizon, the goal is to find an optimal
trading strategy f�g D f�t 2 R

n j t 2 Œ0;Tg belonging to a set A D A0;T of strategies
At;T D ff�gj�s 2 Sn; s 2 Œt;Tg, where Sn D f�t 2 R

nj�t 2 Œ0; 1n; 1T�t D 1g is a
convex compact simplex such that f�g maximizes the expected terminal utility from
the portfolio:

max
f�g2A

E
�
U.X�T/jX�0 D x0

�
: (1.12)

Here Xt D ln Yt represents a stochastic process governed by the following stochastic
differential equation

dX�t D
�
	.�/ � 1

2
�.�/2

�
dt C �.�/dWt

for a logarithmic portfolio value, where x0 is its initial value at the time t D 0. Here
	.�/ and �.�/ are the expected return and volatility of the portfolio. As a typical
example, one can consider functions 	.�/ D 	T� and �2.�/ D �T˙� , where 	 is
a vector of mean returns and ˙ is a covariance matrix. It is known from the theory
of stochastic dynamic programming that the so-called value function

V.x; t/ WD sup
f�g2At;T

E
�
U.X�T/jX�t D x

�
(1.13)

subject to the terminal condition V.x;T/ WD U.x/ can be used for solving the
stochastic dynamic optimization problem (1.12) (cf. Bertsekas [9], Fleming and
Soner [14]). Moreover, it is also known, that the value function V D V.x; t/ satisfies
the following Hamilton-Jacobi-Bellman equation:

@tV C max
�2Sn

��
	.�/ � 1

2
�.�/2

�
@xV C 1

2
�.�/2@2xV

	
D 0 ; (1.14)

for all x 2 R; t 2 Œ0;T/ and it satisfies the terminal condition V.:;T/ WD U.:/ (see
e.g. [20, 32]).

In general, explicit solutions to HJB equations are not available and this
is why various numerical approaches have to be adopted. Regarding numerical
approaches for solving HJB equations associated with portfolio optimization, we
can mention and refer to finite difference methods for approximating its viscosity
solution developed and analyzed by Tourin and Zariphopoulou [42], Crandall
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8 D. Ševčovič

et al. [12], Nayak and Papanicolaou [36]. Other approach based on Markov chain
approximation techniques was investigated by Song [41] and Fleming and Soner
[14]. Classical methods for solving HJB equations are discussed by Benton [44].
In [34], Musiela and Zariphopoulou applied the power-like transformation in order
to linearize the non-linear PDE for the value function in the case of an exponential
utility function. Muthamaran and Sunil [35] solved a multi-dimensional portfolio
optimization problem with transaction costs. They used finite element method and
iterative procedure that converts a free-boundary problem into a sequence of fixed
boundary problems. Peyrl et al. [37] applied a successive approximation algorithm
for solving the corresponding HJB equation. The fixed point-policy iteration scheme
for solving discretized HJB equations is discussed in Huang et al. [19]. Witte and
Reisinger [43] presented a penalty approach for the numerical solution of discrete
continuously controlled HJB equations.

In the recent paper [23] Kilianová and Ševčovič transformed the fully nonlinear
HJB equation (1.14) into the Cauchy problem for the quasi-linear parabolic
equation:

@t' C @2xˇ.'/C @xŒ.1 � '/ˇ.'/ D 0; x 2 R; t 2 Œ0;T/; (1.15)

'.x;T/ D 1 � U00.x/
U0.x/ ; x 2 R: (1.16)

To this aim we introduced the following transformation:

'.x; t/ D 1 � @2xV.x; t/

@xV.x; t/
:

It is referred to as the Riccati transformation and it has been proposed and studied
in [1, 32] and further analyzed by Ishimura and Ševčovič in [20]. The resulting
equation was solved numerically by an iterative method based on the finite volume
approximation. Furthermore, it follows from the analysis [23] by Kilianová and
Ševčovič that the diffusion function ˇ.'/ is the value function of the following
parametric optimization problem:

ˇ.'/ D min
�2Sn

f�	.�/C '

2
�.�/2g : (1.17)

The dispersion function � 7! �.�/2 is assumed to be strictly convex and
� 7! 	.�/ is a linear function. Therefore problem (1.17) belongs to a class of
parametric convex optimization problems (cf. Bank et al. [6], Hamala and Trnovská
[17]). Useful generalization of the HJB equation (1.14) in case the covariance matrix
˙ belongs to some set P of (e.g. ellipsoidal sets) of covariance matrices was studied
by Kilianová and Trnovská in [24] with regard to application to the so-called “worst
case variance” portfolio model in which the diffusion function (1.17) has the form:

ˇ.'/ D min
�2Sn

max
˙2P

�	T� C '

2
�T˙� :

sevcovic@fmph.uniba.sk



1 Nonlinear Parabolic Equations Arising in Mathematical Finance 9

They showed this problem can be analyzed by the methods of semidefinite
programming. The value function ˇ.'/ need not be sufficiently smooth and its
second derivative can have jumps.

In fact, the Riccati transformation is the logarithmic derivative of the derivative of
the value function. In the context of a class of HJB equations with range constraints,
the Riccati transformation has been analyzed recently by Ishimura and Ševčovič
in [20] where a traveling wave solution to the HJB equation was constructed.
Concerning numerical methods for solving the quasi-linear parabolic PDE obtained
from the HJB equation by means of the Riccati transformation we mention recent
papers by Ishimura et al. [21, 25]. In [25], Koleva considered a similar nonlinear
parabolic equation, obtained by means of a Riccati-like transformation of the HJB
equation, arising in pension saving management. In contrary to our model problem,
she considered a problem without constraints on the optimal decision. She applied
two iterative numerical methods, namely the fully implicit Picard method and the
mixed Picard-Newton method and discussed their accuracy and effectiveness.

In summary, the nonlinear volatility generalization of the Black-Scholes equation
as well as the Hamilton-Jacobi-Bellman equation can be transformed into the
quasilinear parabolic equation for the unknown function H D H.x; �/ representing
either the Gamma of the portfolio H D S@2SV (nonlinear volatility Black-Scholes
models) or the relative risk aversion function H D 1 � @2xV=@xV (Hamilton-Jacobi-
Bellman equation). The resulting quasilinear parabolic equation has the form:

@�H D @2xˇ.H/C f .x;H; @xH/; x 2 R; � 2 .0;T/; (1.18)

where ˇ is a suitable nonlinear function.

1.3 Existence of Classical Solutions, Comparison Principle

In this section we recall results on existence of classical smooth solutions to
the Cauchy problem for the quasilinear parabolic equation (1.18). Following
the methodology based on the so-called Schauder’s type of estimates (cf.
Ladyzhenskaya et al. [30]), we shall proceed with a definition of function spaces
we will work with. Let ˝ D .xL; xR/ � R be a bounded interval. We denote
QT D ˝ � .0;T/ the space-time cylinder. Let 0 < � < 1. By H �.˝/

we denote the Banach space consisting of all continuous functions H defined
on N̋ which are �-Hölder continuous. It means that their Hölder semi-norm
hHi.�/ D supx;y2˝;x 6Dy jH.x/ � H. y/j=jx � yj� is finite. The norm in the space
H �.˝/ is then the sum of the maximum norm of H and the semi-norm hHi.�/. The
space H 2C�.˝/ consists of all twice continuously differentiable functions H in N̋
whose second derivative @2xH belongs to H �.˝/. The space H 2C�.R/ consists
of all functions H W R ! R such that H 2 H 2C�.˝/ for any bounded domain
˝ � R.

sevcovic@fmph.uniba.sk



10 D. Ševčovič

The parabolic Hölder space H �;�=2.QT/ of functions defined on a bounded
cylinder QT consists of all continuous functions H.x; �/ in NQT such that H is �-
Hölder continuous in the x-variable and �=2-Hölder continuous in the t-variable.
The norm is defined as the sum of the maximum norm and corresponding Hölder
semi-norms. The space H 2C�;1C�=2.QT/ consists of all continuous functions on
NQT such that @�H; @2xH 2 H �;�=2.QT/. Finally, the space H 2C�;1C�=2.R � Œ0;T/
consists of all functions H W R � Œ0;T ! R such that H 2 H 2C�;1C�=2.QT/ for
any bounded cylinder QT (cf. [30, Chap. I]).

In the nonlinear models discussed in the previous sections one can derive useful
lower and upper bounds of a solution H to the Cauchy problem (1.18). The idea of
proving upper and lower estimates for H.x; �/ is based on construction of suitable
sub- and super-solutions to the parabolic equation (1.18) (cf. [30]).

�� � ˇ0.H/ � �C

for any H � 0 where �˙ > 0 are constants. This implies strong parabolicity of the
governing nonlinear parabolic equation.

Theorem 1.1 ([39, Theorem 3.1]) Suppose that the initial condition H.:; 0/ � 0

belongs to the Hölder space H 2C�.R/ for some 0 < � < min.1=2; "/ and H D
supx2R H.x; 0/ < 1. Assume that ˇ; f 2 C1;" and ˇ satisfies �� � ˇ0.H/ � �C for
any 0 � H � H where �˙ > 0 are constants.

Then there exists a unique classical solution H.x; �/ to the quasilinear parabolic
equation (1.18) satisfying the initial condition H.x; 0/. The function � 7! @�H.x; �/
is �=2-Hölder continuous for all x 2 R whereas x 7! @xH.x; �/ is Lipschitz
continuous for all � 2 Œ0;T. Moreover, ˇ.H.:; :// 2 H 2C�;1C�=2.R � Œ0;T/ and
0 < H.x; �/ � H for all .x; �/ 2 R � Œ0;T/.

The proof is based on the so-called Schauder’s theory on existence and unique-
ness of classical Hölder smooth solutions to a quasi-linear parabolic equation of
the form (1.18). It follows the same ideas as the proof of [23, Theorem 5.3]
where Kilianová and Ševčovič investigated a similar quasilinear parabolic equation
obtained from a nonlinear HJB equation in which a stronger assumption ˇ 2 C1;1 is
assumed.

1.4 Numerical Full Space-Time Discretization Scheme
for Solving the Gamma Equation

In this section we present an efficient numerical scheme for solving the Gamma
equation. The construction of numerical approximation of a solution H to (1.18) is
based on a derivation of a system of difference equations corresponding to (1.18) to
be solved at every discrete time step. We make use of the numerical scheme adopted
from the paper by Jandačka and Ševčovič [22] in order to solve the Gamma equation
(1.18) for a general function ˇ D ˇ.H/ including, in particular, the case of the

sevcovic@fmph.uniba.sk



1 Nonlinear Parabolic Equations Arising in Mathematical Finance 11

model with variable transaction costs. The efficient numerical discretization is based
on the finite volume approximation of the partial derivatives entering (1.18). The
resulting scheme is semi-implicit in a finite-time difference approximation scheme.

Other finite difference numerical approximation schemes are based on dis-
cretization of the original fully nonlinear Black-Scholes equation in non-divergence
form. We refer the reader to recent publications by Ankudinova and Ehrhardt [3],
Company et al. [11], Düring et al. [13], Liao and Khaliq [31], Zhou et al. [45].
Recently, a quasilinearization technique for solving the fully nonlinear parabolic
equation was proposed and analyzed by Koleva and Vulkov [26]. Our approach is
based on a solution to the quasilinear Gamma equation written in the divergence
form, so we can use existing finite volume based numerical scheme to solve the
problem efficiently (cf. Jandačka and Ševčovič [22], Kútik and Mikula [27]).

For numerical reasons we restrict the spatial interval to x 2 .�L;L/ where L > 0
is sufficiently large. Since S D Eex 2 .Ee�L;EeL/ it is sufficient to take L � 2 in
order to include the important range of values of S. For the purpose of construction
of a numerical scheme, the time interval Œ0;T is uniformly divided with a time step
k D T=m into discrete points �j D jk, where j D 0; 1; : : : ;m. We consider the
spatial interval Œ�L;L with uniform division with a step h D L=n, into discrete
points xi D ih; where i D �n; : : : ; n.

The proposed numerical scheme is semi-implicit in time. Notice that the term
@2xˇ; can be expressed in the form @2xˇ D @x .ˇ

0.H/@xH/, where ˇ0 is the derivative
of ˇ.H/ with respect to H. In the discretization scheme, the nonlinear terms ˇ0.H/
are evaluated from the previous time step �j�1 whereas linear terms are solved at the
current time level.

Such a discretization scheme leads to a solution of a tridiagonal system of linear
equations at every discrete time level. First, we replace the time derivative by the
time difference, approximate H in nodal points by the average value of neighboring
segments, then we collect all linear terms at the new time level �j and by taking
all the remaining terms from the previous time level �j�1. We obtain a tridiagonal
system for the solution vector Hj D .Hj

�nC1; : : : ;H
j
n�1/T 2 R

2n�1:

a j
i Hj

i�1 C b j
i Hj

i C c j
i Hj

iC1 D d j
i ; Hj�n D 0; Hj

n D 0 ; (1.19)

where i D �n C 1; : : : ; n � 1 and j D 1; : : : ;m. The coefficients of the tridiagonal
matrix are given by

a j
i D � k

h2
ˇ0

H.H
j�1
i�1/C k

2h
r c j

i D � k

h2
ˇ0

H.H
j�1
i /� k

2h
r ; b j

i D 1 � .a j
i C c j

i / ;

d j
i D Hj�1

i C k

h



ˇ.Hj�1

i / � ˇ.Hj�1
i�1/

�
:

It means that the vector Hj at the time level �j is a solution to the system of linear
equations A. j/ Hj D dj;where the .2n�1/�.2n�1/matrix A. j/ D tridiag.a j; b j; c j/.

sevcovic@fmph.uniba.sk



12 D. Ševčovič

In order to solve the tridiagonal system in every time step in a fast and effective way,
we can use the efficient Thomas algorithm.

In [39] the authors showed that the option price V.S;T � �j/ can be constructed
from the discrete solution Hj

i by means of a simple integration scheme:

(call option) V.S;T � �j/ D h
nX

iD�n

.S � Eexi/CHj
i ; j D 1; : : : ;m;

(put option) V.S;T � �j/ D h
nX

iD�n

.Eexi � S/CHj
i ; j D 1; : : : ;m:

1.5 Numerical Results for the Nonlinear Model with Variable
Transaction Costs

In this section we present the numerical results for computation of the option price
for the nonlinear volatility Black-Scholes model with variable transaction costs
derived and analyzed by Ševčovič and Žitnanská in the recent paper [39]. As an
example for numerical approximation of a solution we consider variable transaction
costs described by the piecewise linear non-increasing function, depicted in Fig. 1.1.
The function ˇ.H/ corresponding to the variable transaction costs function C.�/ has
the form

ˇ.H/ D �20
2

 

1 �
r
2

�
QC.� jHjp�t/

sgn.H/

�
p
�t

!

H;

where QC is the modified transaction costs function.
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Fig. 1.1 Left: The piecewise linear transaction costs function C (solid line), its mean value
modification QC (dashed line). Right: the graph of the corresponding function ˇ.H/. Source [39]
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Fig. 1.2 The call option price V.S; t/ as a function of S for t D 0 (left) and its delta �.S; t/ D
@SV.S; t/. Source [39]

In our computations we chose the following model parameters describing the
piecewise transaction costs function: C0 D 0:02, � D 0:3, �� D 0:05, �C D 0:1.
The length of the time interval between two consecutive portfolio rearrangements:
�t D 1=261. The maturity time T D 1, historical volatility � D 0:3 and the risk-
free interest rate r D 0:011. As for the numerical parameters we chose L D 2:5,
n D 250, m D 200. The parameters C0, � , �, �˙ and �t correspond to the Leland
numbers Le D 0:85935 and Le D 0:21484. In Fig. 1.2 we plot the solution Vvtc.S; t/
and the option price delta factor �.S; t/ D @SV.S; t/, for t D 0. The upper dashed
line corresponds to the solution of the linear Black-Scholes equation with the higher
volatility

O�2max D �2

 

1 � C0

r
2

�

1

�
p
�t

!

;

where C0 D C0 � �.�C � ��/ > 0, whereas the lower dashed line corresponds to
the solution with a lower volatility

O�2min D �2
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23. Kilianová, S., Ševčovič, D.: A method of solving Hamilton-Jacobi-Bellman equation for

constrained optimal investment problem via Riccati transformation. Anziam J. 55, 14–38
(2013)

24. Kilianová, S., Trnovská, M.: Robust portfolio optimization via solution to the Hamilton-Jacobi-
Bellman equation. Int. J. Comput. Math. 93, 725–734 (2016)

25. Koleva, M.: Iterative methods for solving nonlinear parabolic problem in pension saving
management. AIP Conf. Proc. 1404, 457–463 (2011)

26. Koleva, M.N., Vulkov, L.G.: Quasilinearization numerical scheme for fully nonlinear parabolic
problems with applications in models of mathematical finance. Math. Comput. Model. 57,
2564–2575 (2013)

27. Kútik, P., Mikula, K.: Finite volume schemes for solving nonlinear partial differential equations
in financial mathematics. In: Finite Volumes for Complex Applications VI Problems and
Perspectives. Springer Proceedings in Mathematics, vol. 4, pp. 643–651. Springer, Berlin
(2011)

sevcovic@fmph.uniba.sk

http://eprints.maths.ox.ac.uk/53/


1 Nonlinear Parabolic Equations Arising in Mathematical Finance 15

28. Kratka, M.: No mystery behind the smile. Risk 9, 67–71 (1998)
29. Kwok, Y.K.: Mathematical Models of Financial Derivatives. Springer, New York (1998)
30. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations

of Parabolic Type (Translated from the Russian by S. Smith. Translations of Mathematical
Monographs), vol. 23. American Mathematical Society, Providence, RI (1968)

31. Liao, W., Khaliq, A.Q.M.: High-order compact scheme for solving nonlinear Black-Scholes
equation with transaction costs. Int. J. Comput. Math. 86, 1009–1023 (2009)
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