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Abstract

The classical Black-Scholes equation for options pricing exhibits several limitations
when applied to real markets in certain conditions. In many settings, the considera-
tion of a constant volatility is no more realistic. In the present paper, we consider the
case where the volatility is assumed to depend on the product of the asset price and
the second derivative of the option with respect to the asset price (an option Greek
which is known as Gamma). This hypothesis has been made in models that incorporate
transaction costs, market feedback effects related to stocks trading strategies or illiquid
markets, risks related to unprotected portfolios, etc. In these settings, the correspond-
ing nonlinear Black-Scholes equation can be transformed into a quasilinear equation
(Gamma equation) in a new unknown variable related to the Gamma of the option.

Once this semilinear Gamma equation has been obtained, we propose a duality
method, combined with a characteristics scheme and finite elements methods. The
duality method is applied to the maximal monotone operator that governs the nonlinear
term in the Gamma equation. By a suitable numerical integration technique the value of
the European option can be recovered. Finally, we present some examples of European
options to show the good performance of the new numerical global strategy.

Key words: option pricing, option gamma, nonlinear Black–Scholes, duality meth-
ods, finite elements

1 Introduction

The classical linear Black–Scholes presented in 1973 establishes that the price V of an option
can be obtained as the solution of the parabolic equation:

∂tV +
σ2

2
S2 ∂2

SV + rS∂SV − rV = 0 , (1)

c©CMMSE ISBN: 978-84-617-8694-7Page 131 of  2288



Numerical solution of a nonlinear pricing model

where r > 0 denotes the risk–free interest rate and σ is the (constant) volatility of the
underlying asset, the price of which is assumed to be a stochastic process that follows the
stochastic differential equation

dSt = µSt dt+ σSt dWt ,

the constant µ being the drift and the process Wt a geometric Brownian motion. Note that
the option price, Vt, is a process that is obtained from the solution V of (1), by the expression
Vt = V (t, St). Equation (1) has been derived under several restrictive assumptions.

However, from the analysis of market data, the need of more realistic models arises.
For example, in several setting, different models assume nonconstant volatility expressions
that depend on the gamma of the option in the form:

σ = σ̂(S ∂2
SV ) ,

so that the following nonlinear Black–Scholes equation is posed:

∂tV +
1

2
σ̂(S∂2

SV )2S2 ∂2
SV + rS∂SV − rV = 0. (2)

For example, this kind of dependency arises in option pricing models that take into account
non-trivial variable transaction costs related to assets buying and selling [1, 2, 10], market
feedback effects due to large traders choosing given stock–trading strategies [6, 7], risk from
volatile and unprotected portfolios [8], or investor preferences [4], among others.

2 Mathematical model

In this section, we just remind a result by Ševčovič and Žitňanská [11] that establishes the
equivalence between the nonlinear Black–Scholes equation (2) and a quasilinear parabolic
equation. For this purpose, we introduce the function

β(H) =
σ̂(H)2

2
H .

Proposition (Ševčovič–Žitňanská, [11]) Assume the function V = V (S, t) is a solution
to the nonlinear Black–Scholes equation

∂tV + S β(S∂2
SV ) + rS∂SV − rV = 0 , S > 0 , t ∈ (0, T ) . (3)

Then the transformed function H = H(x, τ) = S∂2
SV (S, t), where x = ln(S/E), τ = T − t,

is a solution to the quasilinear parabolic (Gamma) equation:

∂τH = ∂2
xβ(H) + ∂xβ(H) + r∂xH . (4)
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On the other hand, if H is a solution to (4) such that H(−∞, τ) = ∂xH(−∞, τ) = 0 and
β′(0) is finite, then the function

V (S, t) = aS + b exp(−r(T − t)) +

∫ +∞

−∞

(S − E exp(ξ))+H(ξ, T − t) dξ (5)

is a solution to the nonlinear Black–Scholes equation (3) for any a, b ∈ R.

Moreover, if we consider the initial condition

H(x, 0) = δ(x) , (6)

where δ(x) denotes the Dirac delta function with basis point x, then we can recover the
payoffs of the European vanilla options with the choices:

• a = b = 0, for the call option (i.e. V (S, T ) = (S − E)+),

• a = −1, b = E, for the put option (i.e. V (S, T ) = (E − S)+),

the constant E being the strike price. As the analytical expression for the solution of (4) is
not available, in next section we propose a set of numerical techniques for its approximation
(see e.g. [8, 9, 11] for other numerical strategies).

3 Numerical solution of the quasilinear parabolic equation

In order to solve numerically the nonlinear equation (4) jointly with the initial condition (6),
we note the main difficulties: the possibility of advection term dominating diffusion one, the
nonlinear diffusion term, the presence of an unbounded domain and the Dirac delta function
in the initial condition. First, as in other problems in which advection can dominate over
diffusion, we propose the characteristics method for the time discretization. Secondly, as the
nonlinear term can be related to maximal monotone operators [3], we make use of a duality
method based on a result in [5]. In order to deal with the unbounded domain, as usually in
financial problems, we propose a domain truncation in the asset variable by taking S∞ = 4E,
which corresponds to x∞ as the upper finite boundary of the computational domain in x.
Also we consider x0 as the lower boundary of this domain Ω = (x0, x∞). Concerning to
the Dirac delta function, we approximate it by a Gaussian density. Finally, a finite element
method is proposed for the discretization in the spatial-like variable x at each time step.

So, first following [3, 5], we introduce the parameter ω > 0 and a new variable θ given
in terms of the function βω by:

θ = βω(H) = β(H)− ωH . (7)

c©CMMSE ISBN: 978-84-617-8694-7Page 133 of  2288



Numerical solution of a nonlinear pricing model

As β(H) = θ + ωH, equation (4) can be equivalently written as:

Hτ − (ω + r)Hx − ωHxx = θx + θxx . (8)

Next, in order to apply the method of characteristics, we introduce the material derivative
of function H:

DH

Dτ
= Hτ − (ω + r)Hx , (9)

which represents the derivative associated to the constant scalar velocity field −(ω + r), so
that (8) turns into:

DH

Dτ
− ωHxx = θx + θxx . (10)

Note that (10) is still a nonlinear problem, as θ and H are related by (7).

In order to discretize (10) in time by the characteristics (also known as semilagrangian)
method, we introduce the time stepsize ∆τ > 0 and mesh points in time τn = n∆τ for
n = 0, 1, 2, . . ., so that we consider the following final value problem:







dχ

dτ
= −(ω + r)χ(τ)

χ(τn+1) = x ,

that provides the characteristics curve (associated to the scalar velocity field) passing
through the point x at time τn+1. Its analytical solution provides the position at time
τn to be used in the characteristics method:

χn(x) = χ(x, τn+1; τn) = x exp((ω + r)∆τ) .

We can now approximate the material derivative in (10) by a first order upwinded
quotient. If we denote Hn(·) = H(·, τn), then (10) is approximated by:

Hn+1 −Hn ◦ χn

∆τ
− ωHn+1

xx = θn+1
x + θn+1

xx . (11)

We will consider homogeneous Dirichlet boundary conditions on ∂Ω, i.e. H(x0) = H(x∞) =
0. Thus, the variational formulation of (11) consists in finding Hn+1 ∈ W 1,2

0 (Ω), such that:
∫

Ω
Hn+1ϕ−∆τω

∫

Ω
Hn+1

xx ϕ =

∫

Ω
(Hn◦χn)ϕ+∆τ

∫

Ω
θn+1
x ϕ+∆τ

∫

Ω
θn+1
xx ϕ , ∀ϕ ∈ W 1,2

0 (Ω)

where W 1,2
0 (Ω) stands for the classical notation of Sobolev spaces. Next, using Green’s

theorem, we get:
∫

Ω
Hn+1ϕ+∆τω

∫

Ω
Hn+1

x ϕx =

∫

Ω
(Hn ◦ χn)ϕ+∆τ

∫

Ω
θn+1
x ϕ−∆τ

∫

Ω
θn+1
x ϕx

+∆τω

∫

∂Ω
Hn+1

x ϕ+∆τ

∫

∂Ω
θn+1
x ϕ .
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Taking into account the homogeneous boundary conditions, the two integrals on ∂Ω vanish
and we get:

∫

Ω
Hn+1ϕ+∆τω

∫

Ω
Hn+1

x ϕx =

∫

Ω
(Hn ◦ χn)ϕ+∆τ

∫

Ω
θn+1
x ϕ−∆τ

∫

Ω
θn+1
x ϕx , (12)

jointly with the relation:

θn+1 = βω(Hn+1) . (13)

We propose the following fixed point algorithm to solve (12)-(13) at each time instant
τn+1. Assume (Hn+1,0, θn+1,0) is given. Then, for k = 0, 1, . . .

• For given (Hn+1,k, θn+1,k), we search Hn+1,k+1 as the solution of the linear problem

∫

Ω
Hn+1,k+1ϕ+∆τω

∫

Ω
Hn+1,k+1

x ϕx =

∫

Ω
(Hn◦χn)ϕ+∆τ

∫

Ω
θn+1,k
x ϕ−∆τ

∫

Ω
θn+1,k
x ϕx

(14)
for all ϕ ∈ W 1,2

0 (Ω).

• We update θn+1,k+1 by solving the nonlinear equation (13). As the exact solution is
not available in most cases, we make use the theory of maximal monotone operators
as in [5] and propose the updating:

θn+1,k+1 = βω
λ (H

n+1,k+1 + λθn+1,k) , (15)

where βω
λ denotes the Yosida regularization of function βω with parameter λ:

βω
λ (H) = inf

G

(

βω(G) +
(G−H)2

2λ

)

.

Moreover, for convergence reasons, we choose λ = 1/(2ω).

We note that Yosida regularization is strongly dependent on the function β and requires
the computation of the inverse of an operator. Therefore, it is not always possible to get its
analytical expression. This is the reason why we replace (15) by first order Taylor expansion:

θn+1,k+1 = βω
λ (H

n+1,k+1 + λθn+1,k)

= βω(Hn+1,k+1 + λθn+1,k − λθn+1,k+1)

= βω
(

Hn+1,k+1 + λ(θn+1,k − θn+1,k+1)
)

= βω
(

Hn+1,k+1
)

+ (βω)′
(

Hn+1,k+1
)

λ(θn+1,k − θn+1,k+1)

+ o
(

λ2(θn+1,k − θn+1,k+1)2
)

, (16)
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which does not require the computation of the Yosida regularization and is accurate enough
if λ is small. From (16), we deduce:

θn+1,k+1
[

1 + (βω)′(Hn+1,k+1)λ
]

= βω(Hn+1,k+1) + (βω)′(Hn+1,k+1)λθn+1,k

so that:

θn+1,k+1 =
βω(Hn+1,k+1) + (βω)′(Hn+1,k+1)λθn+1,k

1 + λ(βω)′(Hn+1,k+1)
.

Finally, taking into account that βω(H) = β(H)− ωH we obtain:

θn+1,k+1 =
β(Hn+1,k+1)− ωHn+1,k+1 +

[

β′(Hn+1,k+1)− ω
]

λθn+1,k

1 + λ [β′(Hn+1,k+1)− ω]

=
β(Hn+1,k+1) + β′(Hn+1,k+1)λθn+1,k − ω

[

Hn+1,k+1 + λθn+1,k
]

1− ωλ+ λβ′(Hn+1,k+1)
. (17)

The last expression is used instead of (15) to update θn+1. Let us remark that the first
derivative of β is used in (14). In practice, it is approximated by a second order central
differences formula. If the function β is not differentiable, it can be replaced by a regularized
function β̂.

For solving (14), we implement a finite element method. Thus, for a fixed natural
number M > 0, we consider a uniform mesh of the computational domain Ω = [x0, x∞], the
nodes of which are xj = x0+j∆x, j = 0, . . . ,M+1, where ∆x = (x∞−x0)/(M+1) denotes
the constant mesh step. Associated to this uniform mesh a piecewise linear Lagrange finite
elements discretization is considered.

More precisely, we search Hn+1,k+1
h ∈ W0,h such that:

∫

Ω
Hn+1,k+1

h ϕ+∆τω

∫

Ω
Hn+1,k+1

h,x ϕx =

∫

Ω
(Hn

h ◦ χn)ϕ+∆τ

∫

Ω
θn+1,k
x ϕ−∆τ

∫

Ω
θn+1,k
x ϕx ,

for all ϕ ∈ W0,h, where the space of finite elements is:

W0,h =
{

vh : Ω → R / vh|[xk,xk+1]
∈ P1 for k = 0, 1, . . . ,M, vh = 0 on ∂Ω

}

,

P1 being the space of polynomials of degree less or equal than one. The coefficients of
the matrix and right hand side vector defining the linear system associated to the fully
discretized problem are approximated by adequate quadrature formulae, when necessary.
In particular, a five nodes Gaussian formula has been used. Finally, the system of linear
equations is solved by a conjugate gradient method.

Once the function H is approximated at each time instant, we can recover the value of
the derivative by means of (5), where a = b = 0 for a call option and a = −1, b = E for a
put option.
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4 Numerical results

In this section we present a numerical result concerning Amster et al model [1, 2], in which
the nonlinear function β is given by

β(H) =
σ2

2
(H − Le|H|+ κH2) ,

with σ = 0.95, κ = 0.10 and Le = 0.30. As the function β is not differentiable due to the
presence of the absolute value, we introduce the regularized function βǫ:

βǫ(H) =
σ2

2
(H − Le fǫ(H) + κH2) .

The function fǫ is a smooth approximation of the absolute value function and its first
derivative is given by:

f ′
ǫ(H) =











−1 , if H < −ǫ

s(H) , if − ǫ ≤ H ≤ ǫ

1 , if H > ǫ

s being a cubic spline and ǫ = 10−3.
We have considered the case of European call and put options, the payoff of which is

given in terms of the strike price E = 100. Moreover, we have taken the risk-free interest
rate r = 0.05 and the maturity T = 4.

For the numerical solution, the time domain has been discretized in 800 steps, thus
∆τ = 0.005 and the spatial variable x is in [−4, 1.4], for which we have considered a
uniform mesh consisting of 1601 nodes. Figure 1 shows the payoff of the call option as well
as the solution at time t = 0 (or τ = 4), while Figure 2 shows analogous results for the put
option.

5 Conclusions

A nonlinear model for derivatives pricing is solved by a numerical strategy including duality
methods based on maximal monotone operators, characteristics methods for time discretiza-
tion and finite elements. The method is independent of the nonlinear function β.
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Figure 1: Call option. The terminal condition (payoff) and numerical solution
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[8] M. Jandačka, D. Ševčovič, On the risk adjusted pricing methodology based val-
uation of vanilla options and explanation of the volatility smile, Journal of Applied
Mathematics 3 (2005) 235-258.

[9] M. N. Koleva, L. G. Vulkov, A second–order positivity preserving numerical method
for Gamma equation, Appl. Math. Comput. 220 (2013) 722-734.

[10] H. E. Leland, Option pricing and replication with transaction costs, Journal of Fi-
nance 40 (1985) 1283-1301.
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