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Goals

• To study evolution of plane curves obeying the geom. equation

v = β(k) (1)

where v is normal velocity and k is the curvature of a plane curve and
β : R+

0 → R+
0 is a smooth function, e.g. β(k) = km, m > 0.
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• To suggest a new computational method for solving geometrical
eq (1)
• To represent eq (1) by a so-called intrinsic heat equation governing the
evolution of plane curves with the normal velocity obeying eq (1)
• To present numerical simulations and experiments

Motivation

• Morphological image and shape multiscale analysis of Alvarez, Guichard,
Lions and Morel (1993)

β(k) = k1/3

• Affine invariant scale space of curves introduced by Sapiro and Tan-
nenbaum (1994)

β(k) = k1/3



• Isotropic motions of plane phase interfaces studied by Angenent and
Gurtin (1989)

β(k) = k, β(k) = k1/2

• Numerical approximation of solutions of the intrinsic heat equation (i.e.
space mesh size independent form) due to Dziuk (1994)

β(k) = k

Parametrization

• parametrization of a smooth curve Γ the plane R2, by a C2 smooth
function x : R/Z → R2 such that

Γ = {x(u), u ∈ [0, 1]}

• time evolution {Γt}, t ∈ [0, Tmax) of a curve Γ0 we adopt the notation

Γt = {x(u, t), u ∈ [0, 1]}, t ∈ [0, Tmax)

where x : C2(R/Z × [0, Tmax), R2).
• Γ admits various other parametrization! Henceforth, the parameter s
will always refer to the arc-length parameter

Intrinsic heat equation

• The goal is to describe the evolution of plane curves {Γt} undergoing
the intrinsic heat equation

∂x

∂t
=

∂2x

∂s2
∗

(2)

where s∗ is a new parametrization of a curve Γt obeying the law

ds∗ = ϑ(s)ds

• we seek for a function ϑ such that the normal component of the curve-
flow velocity v satisfies the equation v = β(k).
• using the arc-length parametrization we obtain

∂x

∂t
=

1

ϑ(s)

∂

∂s

(

1

ϑ(s)

∂x

∂s

)

=
1

ϑ2(s)
kN −

ϑ′(s)

ϑ3(s)
T



• Normal velocity v = (xt, N) fulfills equation v = β(k) iff

ϑ =
k1/2

β(k)1/2

• Tangential velocity v = (xt, T ) (Does not change the shape of a curve!)

xt = β N + α T

where, for β(k) = km,

α =
m − 1

2
km−1ks

• Example ”Finger”



General intrinsic heat equation

• In terms of time dependent arc-length parametrization

∂x

∂t
=

1

θ1

∂

∂s

(

1

θ2

∂x

∂s

)

• In terms of fixed domain time parametrization

∂x

∂t
=

1

θ1|xu|

∂

∂u

(

1

θ2|xu|

∂x

∂u

)

(u, t) ∈ [0, 1] × [0, Tmax)

where θ1, θ2 depend on the curvature

k = |xss| =
xu ∧ xuu

|xu|3

such that

θ1(k) θ2(k) =
k

β(k)

The fully nonlinear system of PDE’s is subject to the initial condition
x(u, 0) = x0(u), u ∈ [0, 1] and periodic boundary conditions at u = 0, 1.
• Example (Dziuk ’94) If β(k) = k and θ1 = θ2 = 1 we obtain

∂x

∂t
=

1

|xu|

∂

∂u

(

1

|xu|

∂x

∂u

)

• Example (Deckelnik ’97) If β(k) = k and θ1 = |xu|, θ2 = |xu|
−1

∂x

∂t
=

xuu

|xu|2

• Example (Skokan ’98) If β(k) = km, m > 0 or β(k) = −1 + εk the
appropriate choice of θ2 is θ2 = 1 + |k|3



Eqs. for the curvature and length functions

• Fully nonlinear system of degenerate parabolic PDE’s

∂k

∂t
=

1

|xu|

∂

∂u

(

1

|xu|

∂

∂u
β(k)

)

+ α(k)
1

|xu|

∂k

∂u
+ k2β(k)

∂|xu|

∂t
= − |xu|kβ(k) +

∂α(k)

∂u

where

α(k) =
1

θ1|xu|

∂

∂u

(

1

θ2

)

• these equations imply curve shortening and area decreasing properties

d

dt
Length(Γt) +

∫

Γt

kβ(k) ds = 0

d

dt
Area(Γt) +

∫

Γt

β(k) ds = 0



Self-similar solutions

• we seek for a solution x(u, t) having the form

x(u, t) = φ(t)x̃(u)

Proposition. Assume that β(k) = k1/α, α > 0. A
function x ∈ C2,1(R/Z × [0, T ), R2) of the form x(u, t) =
φ(t)x̃(u) is a solution of (1.10) iff
• Γ = Image(x̃) is a circle for 0 < α 6= 3, or
• Γ = Image(x̃) is an ellipse for α = 3.

In other words, the only self-similar solutions of (1.10) are
either shrinking circles (0 < α 6= 3) or shrinking ellipses
(α = 3).

• Blow-up times.
Shrinking circles The case 0 < α 6= 3. If the initial curve Γ0 is a circle
with radius a then the solution blows up at

Tmax = α
α+1a

α+1

α

Shrinking ellipses The case α = 3, i.e. β(k) = k1/3. If the initial curve
Γ0 is an ellipse with halfaxes a, b then the solution blows up at

Tmax = 3(ab)
2
3

4

A-priori estimates

• Curve shortening property

Proposition. Let x be a nondegenerate classical solution
of equation (3.1), ε ≥ 0. Then, for each t ∈ (0, Tmax),

d

dt

∫ 1

0

|xu(., t)| +

∫ 1

0

kβ(k)|xu(., t)| = 0

where k = k(xu, xuu)



d

dt
Length(Γt) +

∫

Γt

kβ(k) ds = 0

• the length |Γt| of the curve Γt decreases along the time, i.e. {Γt}, t ∈
[0, Tmax), is a curve shortening flow.

Numerical scheme

• Let [0, T ] be an interval and let τ = T/n, n ∈ N , denote the time
discretization step. By xi, i = 0, 1, ..., n, we denote the approximation of
a true solution at time t = iτ , i.e. xi(.) = x(., iτ).
• time discretization scheme is based on approximation of the intrinsic
heat equation by the backward Euler method

xi − xi−1

τ
=

∂2xi

ds2
∗

where the parameterization s∗ is computed from the previous time step
xi−1. The ’Eulerian form’ of the above scheme reads as follows

xi −
τ

gi−1

∂

∂u

(

1

gi−1

∂xi

∂u

)

= xi−1

i = 1, 2, ..., n, where gi−1 = |xi−1
u |θβ(xi−1

u , xi−1
uu ) and x0 is the initial

condition.
• full space-time discretization scheme. We use the uniform spatial grid
uj = jh (j = 0, ..., m) with h = 1/m. The smooth solution x is then
approximated by the discrete values xi

j corresponding to x(jh, iτ). Using
quite natural finite difference approximations of spatial differential terms
we end up with semi-implicit difference scheme

1

2
(gi−1

j + gi−1
j+1)

xi
j − xi−1

j

τ
=

xi
j+1 − xi

j

gi−1
j+1

−
xi

j − xi
j−1

gi−1
j

i = 1, ..., n, j = 1, ..., m, where

gi−1
j = hi−1

j

(

ki−1

j

β(ki−1

j
)

)1/2

, hi−1
j = |xi−1

j − xi−1
j−1|



and the curvature can be approximated as

ki−1
j =

1

hi−1
j
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j−1
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j−1|
,
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j−2
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)
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• Intrinsic property.

The ’intrinsic property’ of the governing equation causes

that the spatial parametrization step is not involved in

the approximation scheme and therefore only the spatial

position of points of a curve Γ and the curvature of Γ play

the role in the discretization scheme suggested

Conclusions

In this paper we have

• proposed a governing equations capable of describing evolution of plane
curves having the normal component of the velocity equal to β(k)

• studied special self-similar solutions of the governing equations and
their blow-up times

• shown some a-priori estimates yielding, in particular, curve shortening
property

• designed semi-implicit full time-space discretization scheme for numer-
ical approximating of solutions

• obtained a scheme which is intrinsic, only the spatial position of points
of a curve Γ its the curvature of Γ occur in the scheme

This document and the paper are available at

http://www.iam.fmph.uniba.sk/institute/sevcovic


