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Goals

• To study evolution of plane curves obeying the geometric equation

v = β(k, ν)

where v is the normal velocity k and ν are the curvature and the tangential
angle of a plane curve
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β(k, ν) = γ(ν)|k|m−1k

where m > 0 and γ(ν) is a given anisotropy function.
• To represent flow of plane curves by a solution of the intrinsic heat
equation

∂x

∂t
=

1

θ1

∂

∂s

(

1

θ2

∂x

∂s

)

• To suggest a suitable tangential velocity function α preserving a uniform
redistribution of points along the evolution

∂tx = β N + α T

• To suggest a computational method for solving geometrical equation
and present numerical simulation



Motivation

• Morphological image and shape multiscale analysis of Alvarez, Guichard,
Lions & Morel ’93 and affine invariant scale space of curves introduced by
Sapiro, Tannenbaum & Angenent ’94, ’98

β(k) = k1/3

• Bifurcation analysis of selfsimilar solutions of the geometric equation
by Matano and Ushijima & Yazaki ’98.

β(k) = km

where m = 1/(n2 − 1), n = 2, 3, ... are bifurcation values.

• Motions of plane phase interfaces and contact conditions studied by
Angenent & Gurtin ’89 where the normal velocity v = β(k, ν) is given by

µ(ν, v)v = h(ν)k − g

• Numerical approximation of solutions of the intrinsic heat equation in
isotropic and anisotropic case suggested by Dziuk ’94, ’98

β(k, ν) = γ(ν)k



Generalized intrinsic heat equation

• The goal is to describe the evolution of plane curves Γt = {x(u, t), u ∈
S1}, t ∈ [0, T ) by a solution x = x(u, t) of the intrinsic heat equation
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which can be rewritten in terms of a fixed domain time parametrization
as (ds = |xu|du) as
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(u, t) ∈ S1 × [0, T )

where θ1, θ2 are geometric quantities, i.e they may depend on the signed
curvature

k =
∂ux ∧ ∂2

ux

|xu|3

and/or the tangential angle ν.

The fully nonlinear system of PDE’s is subject to the initial condition
x(u, 0) = x0(u), u ∈ S1 representing the initial curve Γ0.

• Notice that the tangential velocity α = ∂tx.T does not change the
shape of a curve and

∂tx = β N + α T
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• There is still freedom in choice of the geometric quantitities θ1, θ2



• Example (Abresch & Langer ’86, Dziuk ’94)
If β(k) = k and θ1 = θ2 = 1 (implying α = 0) we obtain
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• Example (Deckelnik ’97) If β(k) = k and θ1 = |xu|, θ2 = |xu|
−1
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• Example (Skokan ’98) For β(k) = km, 0 < m ≤ 1, choose θ2 = 1+ |k|3

• Example (Mikula & Ševčovič ’97)

β(k) = km and θ1 = θ2 = θ = |k|
m−1
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2
|k|m−3k∂sk

if 0 < m ≤ 1 (fast diffusion) maintains redistribution whereas
if m > 1 the tangential velocity yields bad redistribution of grid points

• Example (zero tangential velocity)
β(k) = km and θ1 = k

β(k) , θ2 = 1 (implying α = 0)
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Evolution o plane curves
with zero tangential velocity

β(k) = k β(k) = k1/3

Affine invariant motion of ellipse



β(k) = k1/4

Anisotropic evolution o plane curves
with zero tangential velocity

β(k, ν) = (1 − 7
9 cos(3ν))k1/2 β(k, ν) = (1 − 0.8 cos(4ν − π))k



Eqs. for the curvature and the local length

• Fully nonlinear system of degenerate parabolic PDE’s
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• these equations imply curve shortening and area decreasing properties

d

dt
Length(Γt) +
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Area(Γt) +
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Tangential velocity preserving uniform redistribution

• The idea is to keep the relative local length constant, i.e.

|xu(u, t)|

Length(Γt)
=

|xu(u, 0)|

Length(Γ0)

for all (u, t) ∈ QT = S1 × [0, T )
• Combining the total and local length equations we obtain α is the
tangential velocity preserving relative local length iff it is a solution of
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α can be determined uniquely assuming normalization of θ2.

Closed system of governing equations

∂k

∂t
=

1

|xu|

∂

∂u

(

1

|xu|

∂

∂u
β(k)

)

+ α
1

|xu|

∂k

∂u
+ k2β(k)

∂|xu|

∂t
= − |xu|kβ(k) +

∂α

∂u

where α is a nonlocal geometric functional satisfying
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• Initial conditions for k(., 0) and |xu(., 0)| correspond to the initial curve
• If β = β(k, ν) the third parabolic equation for ν must be added into
the system of governing equations



Evolution o plane curves
with uniform tangential redistribution

β(k) = k β(k) = k1/3

Affine invariant motion of ellipse



β(k) = k1/4

Anisotropic evolution o plane curves
with tangential redistribution

β(k, ν) = (1 − 7
9 cos(3ν))k1/2 β(k, ν) = (1 − 0.8 cos(4ν − π))k



Isotropic and anisotropic motion
with tangential redistribution

β(k, ν) = (1 − 7
9 cos(3ν))k3/4 β(k, ν) = (1−0.8 cos(4ν−π))k3/4

The sequence of evolving spirals for β(k, ν) = k1/3 using redistribution. The

limiting curve is an ellipse rounded point.



Local existence of classical solutions
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Regular case

0 < λ− ≤ β′

k(k, ν) ≤ λ+ < ∞

• Using the general theory due to Angenent ’90 we can prove the existence
of a classical solution

(k, |xu|) ∈ C([0, T ], E1) ∩ C1([0, T ], E0)

where E0 = cσ(S1) × c1+σ(S1), E1 = c2+σ(S1) × c1+σ(S1), 0 < σ < 1.



Singular case

β(k) = |k|m−1k

• We must go through a regularization argument β ↔ βε, 0 < ε � 1
• We have to establish a uniform in ε bound for the gradient of β, i.e.

|∂uβε| ≤ Mt−
3
4

This can be done similarly as in Angenent et al ’98 by using the Nash-
Moser iterative technique for estimating

Xp(t) =

∫

Γt

|∂sβ
ε|pds

for p = 2, 22, ..., 2k → ∞.
• The case 0 < m < 1 (fast diffusion) is similar to the particular case

β(k) = k
1
3 studied by Angenent.

• The case 1 < m (slow diffusion) is more involved. To prove the
required a-priori bound we have to assume the initial curve Γ0 satisfies
the structural condition

∫

Γ0

k

β(k)
ds < ∞ and 1 < m ≤ 2

The condition is satisfied for any nonconvex smooth curve whose inflection
points have at most 2 + 1

m−1 order contact with their tangents.

(Bernoulli lemniscate (x2
1 + x2

2)
2 = 4x1x2 and m < 2)

Theorem There exists T > 0 and a family of regular plane curves Γt =
Image(x(., t)), t ∈ [0, T ] satisfying ∂tx = βN + αT
• α is the tangential velocity preserving the relative local length.
• x, ∂ux ∈ (C(QT ))2, ∂2

ux, ∂tx, ∂u∂tx ∈ (L∞(QT ))2;



Numerical scheme

• Let [0, T ] be an interval and let τ = T/n, n ∈ N , denote the time
discretization step. By xi, i = 0, 1, ..., n, we denote the approximation of
a true solution at time t = iτ , i.e. xi(.) = x(., iτ).

• full space-time discretization scheme. We use the uniform spatial grid
uj = jh (j = 0, ..., m) with h = 1/m. The smooth solution x is then
approximated by the discrete values xi

j corresponding to x(jh, iτ). Using
quite natural finite difference approximations of spatial differential terms
we end up with semi-implicit difference scheme
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• Intrinsic property.

The ’intrinsic property’ of the governing equation causes

that the spatial parametrization step is not involved in

the approximation scheme and therefore only the spatial

position of points of a curve Γ and the curvature of Γ play

the role in the discretization scheme suggested

Conclusions

• We proposed a governing equations for the flow of plane curves capa-
ble of describing with the prescribed normal velocity and the tangential
velocity preserving the initial redistribution of flowing points

• We have shown a-priori estimates yielding local existence of a flow of
plane curves in the case when β(k) = km, 0 < m ≤ 2

• We have designed semi-implicit full time-space discretization scheme
for numerical approximating of solutions

• We obtained a scheme which is intrinsic, only the spatial position of
points of a curve Γ its the curvature of Γ occur in the scheme
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