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Goals
• The main purpose is to study evolution of curves in the plane satisfying
the geometric equation

v = β(x, k, ν)

where v is the normal velocity k and ν are the curvature and the tangential
angle of a plane curve

• To represent flow of plane curves by a solution to the geometric equation

∂tx = β ~N + α ~T

for the position vector x ∈ R2 representing a curve Γ = Image (x)
• To suggest a suitable tangential velocity function α preserving a uniform
redistribution of points along the evolution
• To suggest a computational method for solving geometric equation and
present numerical simulation



Motivation

• Motions of plane phase interfaces and contact conditions
studied by Angenent & Gurtin ’89 where the normal velocity v = β(k, ν)
is given by

µ(ν, v)v = h(ν)k − g

where µ is a kinematic (mobility) coefficient, h is a anisotropy of the
media, g is an external force

• Flow of surface curves γt ⊂ M, t ≥ 0, driven by the geodesic
curvature Kg and external force

V = εKg + C

where M = Graph (φ), φ : Ω ⊂ R2 → R is a surface in R3, V is the
normal component of the velocity, Kg is the geodesic curvature of γt

relative to M and C is the normal component of an external force ~G,
ε > 0 is a constant.

The geodesic surface flow can be reduced to a flow of plane curves Γt ⊂
R2, t ≥ 0, with the the normal velocity v = β(x, k, ν)

β(x, k, ν) = a(x) k − b(x) (∇xφ(x). ~N)

where a, b : Ω ⊂ R2 → R are suitable functions, ~N = (cos(ν), sin(ν))



Vertical projection of a surface curve γ ⊂ M onto a plane curve Γ ⊂ R2

• In the image segmentation, detection of image silhouettes plays an
important role. Suppose that an image is represented by a given intensity
function u0 : R2 → [0, 1]. The problem is to detect edges of the image,
i.e. planar curves on which the gradient ∇u0 is very large. The idea is
to construct an evolving family of planar curves converging to an edge of
the image according to the normal velocity

β(x, k, ν) = εφ(x)k−∇φ(x). ~N

where φ(x) = h(|∇u0(x)|), h is a suitable image contrast function, e.g.
h(s) = e−s (Caselles, Kimmel, Sapiro, Sbert 1997; Kichenassamy,
Kumar, Olver, Tannenbaum, Yezzi, 1996)

The image intensity function u0 (left) and the density plot of the function
φ and corresponding vector field −∇φ(x) (right).



• Numerical aspects of approximation approximation of the mean
curvature flow. In isotropic and anisotropic case the numerical suggested
by Dziuk ’94, ’98 yields zero tangential velocity, i.e. α = 0 and

∂tx = β ~N

The numerical scheme having no tangential redistribution leads to a for-
mation of various instabilities, like e.g. swallow tails

β(k) = k β(k) = k1/3

Level set equation approaches: Osher, Sethian 1988;
Allen-Cahn equation approach: Beneš, Mikula, Chalupecký (2000)

Affine invariant motion of ellipse, β(k) = k1/3



β(k, ν) = (1− 7
9 cos(3ν))k1/2 β(k, ν) = (1− 0.8 cos(4ν − π))k

A method how overcome this difficulty has been suggested by K.Mikula
and D.Ševčovič in 1999, 2001. It consists in considering a tangential
velocity functional α satisfying some non-local equation and having the
property

|∂ux(u, t)|
Lt

=
|∂ux(u, 0)|

L0

It means that the ratio of the local length and total length of a curve is
preserved along the time.

K.Mikula and D.Ševčovič: Solution of nonlinearly curvature driven evolu-
tion of plane curves, Applied Numerical Mathematics Vol 31, No.2 (1999)
pp. 191-207

K.Mikula and D.Ševčovič: Evolution of plane curves driven by a nonlinear
function of curvature and anisotropy, SIAM J. Appl. Math., 61, (2001)
1473–1501.



Governing equations

• Fully nonlinear system of parabolic PDEs

∂tk = ∂2
sβ + α∂sk + k2β ,

∂tν = ∂sβ + αk ,

∂tg = −g kβ + ∂uα ,

∂tx = β ~N + α~T

where β = β(x, k, ν) and α are the normal and tangential velocities,
~N = (cos(ν), sin(ν)), ~T ⊥ ~N ,

k = k(u, t) is the curvature
ν = ν(u, t) is the tangential angle
g = g(u, t) = |∂ux(u, t)| is the local length element,
x = x(u, t) is the position vector of a curve Γt

ds = g du is the arc-length parameterization, (u, t) ∈ QT = S1 × [0, T ).
A solution is subject to initial and periodic boundary conditions corre-
sponding to an initial curve.

Ek = c2k+δ(S1)× c2k+δ(S1)× c1+δ(S1)× (c2+δ(S1))2

Theorem Assume that Φ0 = (k0, ν0, g0, x0) ∈ E1 where k0 is the cur-
vature, ν0 is the tangential vector and g0 = |∂ux0| > 0 is the local length
element of the initial regular curve Γ0 = Image (x0). If β = β(x, k, ν) is
a C4 smooth function such that

minΓ0 β′k(x0, k0, ν0) > 0
then there exists a unique classical solution

Φ = (k, ν, g, x) ∈ C([0, T ], E1) ∩ C1([0, T ], E0)
of the governing system of equations defined on some small time inter-
val [0, T ] , T > 0. Moreover, if Φ is a maximal solution defined on
[0, Tmax) then either Tmax = +∞ or lim inft→T−max

minΓt
β′k(x, k, ν) = 0

or Tmax < +∞ and maxΓt
|k| → ∞ as t → Tmax.

Consequence of the abstract theory of fully nonlinear parabolic equations
due to Angenent (1990) and Lunardi.



Controlling tangential velocity

• In 2001, the authors showed that if α is a unique (up to an additive
constant) solution to the nonlocal geometric equation

∂α

∂s
= kβ − 1

L

∫
Γ

kβ ds

then, combining the total and local length equations, we obtain that α is
the tangential velocity preserving relative local length, i.e.

|∂ux(u, t)|
Lt

=
|∂ux(u, 0)|

L0

for any t ∈ [0, T ) and u ∈ S1. It means that the redistribution is preserved
along the evolution of curves

• More generally, if α is a unique solution to

∂α

∂s
= kβ−1 + κ

L

∫
Γ

kβ ds+
κ

g

∫
Γ

kβ ds

then

lim
t→T

|∂ux(u, t)|
Lt

= 1

for any u ∈ S1. Here β = β(x, k, ν)). It means that the redistribution
becomes uniform as time approaches maximal time of existence.



• Evolution o plane curves with uniform tangential redistribution plane
curves with uniform tangential redistribution

β(k) = k β(k) = k1/3

β(k, ν) = (1− 7
9 cos(3ν))k1/2 β(k, ν) = (1− 0.8 cos(4ν − π))k



Mean curvature flow with
a nontrivial driving force

• The following examples show computational results of mean curvature
flow with a nontrivial driving force

β(k) = εk + c

ε = 1, c = −10

ε = 1, c = −10 ε = 1, c = 10



ε = 1, c = 10 ε = 1, c = 100

ε = 1, c = 10
(no tangential redistribution)

ε = 1, c = 100
(no tangential redistribution)

β = γ(ν)k − 1 β = γ(ν)k
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Convergence of an initial curve to the edge, from outside
(left) and from inside (right).

-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Convergence to the edge of an initial curve crossing the
edge (left); the density plot of the image intensity func-
tion together with the limiting curve representing the edge
position (right).
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2D slice of a prefiltered 3D echocardiography together with
the limiting curve representing the edge. The initial curve
was an ellipse inserted into the slice.



First integrals
and conserved quantities

• General function β(x, k, ν)

d

dt
L(Γt) +

∫
Γt

kβ ds = 0,
d

dt
A(Γt) +

∫
Γt

β ds = 0

where L(Γ) and A(Γ) denote the length and enclosed area of a curve Γ

• If a flow of planar curves evolves according to the normal velocity

β(x, k, ν) = a(φ)k−b(φ)∇xφ(x). ~N

where a = a(φ), b = b(φ), φ = φ(x) are smooth functions, a(φ) > 0,
φ = φ(x) ∈ [0, 1] then

d

dt

∫
Γt

H(φ) ds +
∫

Γt

H(φ)
a(φ)

β2 ds = 0

H(φ) = e
∫

φ b(ξ)
a(ξ) dξ

In the context of the image segmentation theory one can consider either
a(φ) = εφ and b(φ) = 1

1−φ and then

H(φ) = φε(1− φ)−ε

or a(φ) = εφ and b(φ) = 1, and, then

H(φ) = φε



Conclusions

• We have studied a mean curvature flow of planar curves with the normal
velocity depending on the curvature, tangential angle and a position of
a curve. Local in time existence of smooth solutions has benn show.
Various first integrals decreasing along trajectories have been derived and
analysed.
• Governing system of equations includes a nontrivial tangential veloc-
ity functional. It has no impact on the shape of evolving curves but it
can prevent numerically computed solutions from forming instabilities like
swallow tails. Redistribution of grid points is asymtotically constant.
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