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Goals

• study a flow of curves on a given two dimensional surface M in R3

where normal velocity V of a curve G on M is a linear function of its
geodesic curvature Kg and external force F:

V = Kg + F

A surface curve G ⊂M (left). Its vertical projection to a plane curve
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• Show how the flow of curves on a given surface driven by the

geodesic curvature and external force can be reduced to the flow of

curves in the plane driven by the normal velocity

v = β(x, k, ν)

where k, ν, x are the curvature, tangential angle and position vector

of transversally projected planar curve Γ
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• Represent the flow of plane curves by a solution to the geometric

equation

∂tx = β ~N + α ~T

for the position vector x ∈ R2 representing a curve Γ = Image (x).

• Reduce the problem to solution of a system of parabolic PDEs for

the curvature, angle and local length of a curve. Analyze qualitative

behavior of solutions and stability of closed stationary curves on a

surface.

• Suggest a suitable tangential velocity functional α yielding a uniform

grid point redistribution along the evolved curve. Compute the flow

of curves on various complex surfaces.
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Outline

• Transformation of the flow of surface curves to the flow of vertically
projected planar curves satisfying v = β(x, k, ν)

• Link between the geodesic flow and the edge detection problem in
the theory of image segmentation

• Derivation a governing system of PDEs describing the evolution of
plane curves satisfying v = β(x, k, ν)

• Qualitative aspects of solutions like existence and their limiting
behavior. Lyapunov functionals

• Dynamical theory point of view. Closed geodesic curves and their
stability.

• Numerical approximation of the geodesic curvature driven flow of
surface curves.
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Projection of a flow of surface curves to the plane

We consider a flow of surface curves Gt ⊂ M, t ≥ 0, driven by the

geodesic curvature Kg and external force

V = Kg + F

where M = Graph (φ), φ : Ω ⊂ R2 → R is a surface in R3, V is the

normal component of the velocity, Kg is the geodesic curvature of Gt
relative to M and F is the normal component of a gravitational like

external force

~G = −(0,0, γ)
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• the geodesic curvature Kg for a curve G = {(x, φ(x)) ∈ R3, x ∈ Γ}
on a surface M = {(x1, x2, φ(x1, x2)) ∈ R3, (x1, x2) ∈ Ω} can be

expressed as a function of the curvature k of its projection to the

plane, position vector x and the angle ν.

• The external vector field ~G is assumed to be perpendicular to the

plane R2 and it depends on the vertical coordinate z = φ(x) only, i.e.

~G(x) = −(0,0, γ)

where γ = γ(z) = γ(φ(x)) is a given scalar ”gravity” functional
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• taking the normal component of such an external force we obtain

expression for the driving term F = ~G. ~N

F = −
γ(φ(x))(

(1 + |∇φ|2)(1 + (∇φ.~T )2)
)1

2

∇φ. ~N

• ~N ⊂ Tx(M) is the unit inward normal vector to the surface curve

Gt relative to the surface M

• ~N, ~T are unit inward normal and tangent vectors to the projected

planar curve Γt.
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• the flow of surface curves Gt ⊂M fulfills V = Kg +F iff the normal

velocity v of the flow of planar curves Γt, t ≥ 0, satisfies the geometric

equation

v = β(x, k, ν) ≡ a(x, ν) k − b(x, ν)∇xφ(x). ~N

where ~T = (cos(ν), sin(ν)), ~N = ~T⊥, and a, b : Ω ⊂ R2 × R→ R

a(x, ν) =
1

1 + (∇φ.~T )2

b(x, ν) =
1

1 + |∇φ|2

(
γ −

~TT∇2φ ~T

1 + (∇φ.~T )2

)
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Image segmentation - link to the flow on a surface

geometric flow of curves on surfaces driven by geodesic

curvature and external force

l linked to

edge detection in the theory of image segmentation

• In image segmentation, detection of image silhouettes plays an

important role. An image is represented by a given intensity function

u0 : R2 → [0,1].

• The problem is to detect edges of the image, i.e. planar curves on

which the gradient ∇u0 is very large.
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• The idea is to construct an evolving family of planar curves con-

verging to an edge of the image according to the normal velocity

β(x, k, ν) = εφ(x)k−∇φ(x). ~N

where φ(x) = h(|∇u0(x)|), h is a suitable image contrast function,

e.g. h(s) = e−s

• (Caselles et al 1997; Kichenassamy et al. 1996)
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The image intensity function u0 (top left) and its density plot (bot-

tom left). 3D plot of Casseles’ functional φ (bottom-right) and the

corresponding vector field −∇φ(x) (top-right)
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Governing equations and tangential velocity functional

• An embedded regular plane curve Γ can be parameterized by a
smooth function x : S1 → R

2, i.e. Γ = Image(x) := {x(u), u ∈ S1}

• We represent the flow of plane curves by a solution x to the
geometric equation

∂tx = β ~N + α ~T

for the position vector x ∈ R2 representing a curve Γ = Image (x).

• The curvature k, tangential angle ν and position vector x satisfies

g = |∂ux|
~T = (cos ν, sin ν) = ∂sx = g−1∂ux

k = ∂sx ∧ ∂2
s x = g−3∂ux ∧ ∂2

ux
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• Straightforward calculations using Frenet’s formulae yield the fully

nonlinear system of governing parabolic PDEs

∂tk = ∂2
s β + α∂sk + k2β

∂tν = β′k∂
2
s ν + (α+ β′ν)∂sν +∇xβ.~T

∂tg = −gkβ + ∂uα

∂tx = β ~N + α~T

where β = β(x, k, ν) and α are the normal and tangential velocities,
~T = (cos(ν), sin(ν)), ~T ⊥ ~N ,

g = g(u, t) = |∂ux(u, t)| is the local length element,

ds = g du is the arc-length parameterization, (u, t) ∈ QT = S1× [0, T ).
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• A solution is subject to initial and periodic boundary conditions

corresponding to an initial curve and is searched in the functional

space

Ek = c2k+δ(S1)× c2k+δ(S1)× c1+δ(S1)× (c2k+δ(S1))2

k ν g x

where k = 0, 1
2,1, and c2k+% = c2k+%(S1) is the ”little” Hölder space,

i.e. the closure of C∞(S1) in the topology of the Hölder space

C2k+%(S1)
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Theorem. Assume that Φ0 = (k0, ν0, g0, x0) ∈ E1 where k0 is the

curvature, ν0 is the tangential vector and g0 = |∂ux0| > 0 is the

local length element of the initial regular curve Γ0 = Image (x0). If

β = β(x, k, ν) is a C4 smooth function such that

minΓ0
β′k(x0, k0, ν0) > 0

and α is an admissible tangential velocity functional. Then there

exists a unique classical solution

Φ = (k, ν, g, x) ∈ C([0, T ], E1) ∩ C1([0, T ], E0)

of the governing system of equations defined on some small time

interval [0, T ] , T > 0. If Φ is a maximal solution defined on [0, Tmax)

then either Tmax = +∞ or lim inf
t→T−max

minΓt β
′
k(x, k, ν) = 0 or Tmax <

+∞ and maxΓt |k| → ∞ as t→ Tmax.

• Consequence of the abstract theory of fully nonlinear parabolic
equations due to Angenent (1990) and Lunardi.
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Review of numerical aspects of tangential velocity functional

• usual choice of the tangential velocity α = 0 fails and may lead to
serious numerical instabilities

Merging of numerically computed grid points in the case α = 0 (left).
Impact of a suitable tangential velocity functional α defined as:

∂sα = kβ − 〈kβ〉Γ

on enhancement of the spatial grids redistribution (right). (Hou et al
in ’94, K.Mikula and D.Ševčovič in 1999, 2001).
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Qualitative behavior of solutions

• General function β(x, k, ν)

d

dt
L(Γt)+

∫
Γt
kβ ds = 0,

d

dt
A(Γt)+

∫
Γt
β ds = 0

where L(Γ) and A(Γ) denote the length and enclosed area of Γ

• Casseles’ functional in the image segmentation

β(x, k, ν) = a(φ)k − b(φ)∇xφ(x). ~N

d

dt

∫
Γt
H(φ) ds+

∫
Γt

H(φ)

a(φ)
β2 ds = 0

where H = H(φ) is a solution to: H ′ = b
aH.
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• General first integral for the flow driven by the geodesic curvature
on a surface

d

dt
Lt +

∫
Gt
KgV dS = 0

It is a Lyapunov functional if F = 0. Then VKg = K2
g

• Flow driven by the geodesic curvature V = Kg + F on a surface
M = Graph(φ). Then vertically projected planar curves have the
normal velocity β(x, k, ν) = a(x, ν)k − b(x, ν)∇xφ(x). ~N and

d

dt

∫
Gt
H(φ(x)) dS+

∫
Gt
H(φ(x))V2 dS = 0

where H ′ = γH (γ is the vertical component of the gravitational like
external force ~G = −(0,0, γ)
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Stationary solution. Closed geodesic curves on a surface

• Goal is to analyze stationary surface curves with respect to the

normal velocity V = Kg+F, i.e. surface curves satisfying Kg+F = 0.

• Motivation

• Construction of closed geodesic curves (Kg = 0)

• Analysis of stability of resolved edges in the image

• V = 0 on M iff v ≡ β(x, k, ν) = 0 in the plane

Definition A closed C2 smooth planar curve Γ̄ = Image(x̄) is called a

stationary curve with respect to the normal velocity β iff β(x̄, k̄, ν̄) = 0

on Γ̄ where x̄, k̄ and ν̄ are the position vector, curvature and tangential

angle of the curve Γ̄.
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Principle of linearized stability

• Tangential velocity functional in the system of governing equa-

tions has no impact on the shape of evolving curves. For α = 0 the

governing system of equations reduces to:

∂tk = g−1∂u(g−1∂uβ) + k2β

∂tν = g−1∂uβ

∂tg = −gkβ
∂tx = β ~N

• In order to analyze stability of Γ̄ we have to investigate the behavior

of infinitesimal variations of k, ν, g and x
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• δk, δν, δg and δx satisfy the linearized system

∂tδk = ḡ−1∂u(ḡ−1∂uδβ) + k̄2δβ

∂tδν = ḡ−1∂uδβ

∂tδg = −ḡk̄δβ
∂tδx = δβ ~̄N

where

δβ = β(x̄+δx, k̄+δk, ν̄+δν)−β(x̄, k̄, ν̄)+h.o.t.

= ∇xβ̄.δx+ β̄′kδk + β̄′νδν
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• the total variation δ = δβ satisfies the scalar parabolic equation

∂tδ = P∂2
uδ +R∂uδ +Qδ

subject to periodic boundary conditions at u = 0,1 where

P = ḡ−2β̄′k R = ḡ−1β̄′ν + ḡ−1β̄′k∂uḡ
−1 Q = β̄′kk̄

2 +∇xβ̄. ~̄N

Functions P,Q and R are 1-periodic in u and depend on the Γ̄ only.

Definition. A stationary curve Γ̄ = Image(x̄) is called linearly stable
if the zero solution is exponentially asymptotically stable in the space
L2(S1), i.e. there exist constants M,ω > 0 such that ‖δ(., t)‖L2(S1) ≤
Me−ωt‖δ(.,0)‖L2(S1) for any initial condition δ(.,0) ∈ L2(S1).
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Lemma. Suppose P,R,Q ∈ C1(S1) , P > 0. If
∫ 1
0
R(u)
P (u)du = 0 then

the linear operator A : D(A) ⊂ L2(S1, w) → L2(S1, w), D(A) =
W2,2(S1), is selfadjoint operator in the weighted Lebesgue space
L2(S1, w) with the weight defined as: w(u) = P (u)−1 exp(

∫ u
0
R(v)
P (v)dv).

• Notice
∫ 1
0
R(u)
P (u)du = 0 if and only if

∫
Γ̄
β̄′ν
β̄′k
ds = 0

Proposition. Let β(x, k, ν) = a(x, ν)k − b(x, ν)∇φ. ~N where a, b cor-
respond to projected flow of surface curves and φ(x) is C2 smooth
function. Then ∫

Γ̄

β̄′ν
β̄′k
ds = 0

for any closed stationary curve Γ̄ = Image(x̄) where β̄ = β(x̄, k̄, ν̄).
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Theorem. Suppose that Γ̄ is a stationary curve with
respect to the normal velocity corresponding to the pro-
jected flow of surface curves, i.e. Γ̄ is a vertical projec-
tion of a stationary surface curve G. Then

• Γ̄ is linearly stable if supΓ̄Q < 0;

• Γ̄ is unstable if
∫ 1
0 Qw du > 0

where Q = β̄′kk̄
2 +∇xβ̄. ~̄N and w is the weight in L2

w(S1)

• Proof follows from selfadjoint property of the parabolic equation

for the variation δβ and analysis of the Rayleigh quotient.
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Geodesic flow on Casseles’ functional surface drives evolved curves

to the boundary of the image (left). Time evolution of the quantity

Q = β̄′kk̄
2+∇xβ̄. ~̄N (right). It eventually becomes negative when t→∞
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Flow on a surface driven by the geodesic curvature

V = Kg

• Left: Evolved curve passes through the hill and then selfsimilarly

shrinks to a point in finite time.

• Right: Evolved curve passes through both hills and then selfsimilarly

shrinks to a point in finite time
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V = Kg

Evolved curve tries to pass through equally high humps. They con-
stitute an obstacle for the evolution. The curve approaches closed
geodesic curve on the surface in infinite time
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V = Kg+F

A surface flow on a wave-let like surface driven by the geodesic cur-

vature and strong external force F. Surface curves converge to the

stable stationary circular curve with smallest radius (left) and second

smallest radius (right).
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Geodesic flow with external force. Edge detection

Intensity function I0 (left) and the Casseles’ functional surface,

φ(x) = h(|∇I0(x)|) (right)
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Gravitational-like external force drives the evolved curve towards a

narrow valley. Geodesic curvature smoothes evolution in the infinite

life-span
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Geodesic flow on Casseles’ functional surface drives evolved curves to

the boundary of the image.
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Conclusions

• The flow of curves on a given surface can be reduced to a planar
flow with the normal velocity depending on the curvature, position
and orientation.

• The geometric problem can be transformed to a fully nonlinear
parabolic system of equations for the curvature, position, orientation
and local length. Local in time existence of smooth solutions.

• Impact of a nontrivial tangential velocity functional on grid points
redistribution has been emphasized.

• Various first integrals decreasing along trajectories have been con-
structed and analyzed. Closed stationary curves have been identified.
Criterion for their linearized stability has been derived.

http://www.iam.fmph.uniba.sk/institute/sevcovic
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