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Abstract

Poverty represents a major theme in development practice. Most of the researchers try

to understand, measure and predict this phenomenon. The main goal of this paper is to

suggest models that effectively predict poverty levels. In order to accomplish this task we

also present a way how to measure poverty through a poverty index that we created. The

data that we use come from Indonesia and therefore the outcomes mirror condition in this

country.

We view poverty as a multidimensional concept. In other words, we do not consider

income as a sole predictor of poverty, but incorporate information such as education, health

and household condition that all influence whether a person is poor or not. We apply machine

learning methods. Our first set of models – multiple correspondence analysis and K-Means -

clusters respondents based on the poverty levels. The second set of models – Binary logistic

regression, Neural networks, Decision Trees and Random Forests – predicts poverty levels.

When comparing the different predictive models we conclude that Neural networks per-

form best in terms of accuracy. However the trade-off for that is limited interpretability. It is

almost impossible to state the effect of an individual predictor on poverty level. Binary logis-

tic regression and Decision trees can be interpreted quite well but they have lower predictive

power.

Key words: machine learning, poverty prediction, poverty measurement, neural networks,

decision trees, binary logistic regression, random forests, multiple correspondence analysis,

k-means



Abstrakt

Chudoba reprezentuje hlavnú tému v rozvojovej práci. Vedci sa snažia porozumiet’,

zmerat’ a predpovedat’ tento fenomén. Hlavným ciel’om tejto práce je navrhnút’ modely,

ktoré budú efektívne predpovedat’ chudobu. Na uskutočnenie tejto úlohy taktiež prezentu-

jeme spôsob ako zmerat’ chudobu cez index chudoby, ktorý sme sami vyvinuli. Dáta, ktoré

sme použili na testovanie, pochádzajú z Indonézie a preto odzrkadl’ujú podmienky v tejto

krajine.

Chudobu vnímame ako viacdimenziálny koncept. Inými slovami, nepovažujeme príjem

za jediný indikátor chudoby, ale snažíme sa zahrnút’ aj informácie ako je vzdelanie, zdravie

a podmienky v domácnosti, ktoré spoločne ovplyvňujú, či je jednotlivec chudobný alebo

nie. Aplikujeme metódy strojového učenia. Náš prvý súbor modelov – viacrozmerná ko-

rešpondenčná analýza a algoritmus k-priemerov – zhlukuje respondentov podl’a chudoby.

Náš druhý súbor modelov – binárna logistická regresia, neurálne siete, rozhodovacie stromy

a náhodné lesy – predpovedajú hodnoty chudoby.

Pri porovnaní rôznych metód konštatujeme, že neurálne siete sú najlepšie, čo sa týka

presnosti predpovede. Avšak, cenou za túto presnost’ je obmedzená schopnost’ interpretá-

cie. Je takmer nemožné určit’ efekt individuálneho prediktora na hodnotu indexu chudoby.

Binárna logistická regresia a rozhodovacie stormy sa dajú dobre interpretovat’, avšak majú

nízku predikčnú schopnost’.

Kl’účové slová: strojové učenie, predpoved’ chudoby, meranie chudoby, neurálne siete,

rozhodovacie stormy, binárna logistická regresia, náhodné lesy, viacrozmerná korešpon-

denčná analýza, algoritmus k-priemerov.
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Introduction

Poverty is a multidimensional problem that has a variety of definitions. For some authors

it is measured by income, while other researchers include also health, education, social status

and political rights into the picture. However, what connects all researchers is their work in

the field of identification of factors that cause poverty, classification of population according

to different views of poverty and prediction of future poverty levels (Asselin & Ahn. 2008,

Mathiassen. 2008, Vella. 1997)

Our original motivation for this thesis was to use different statistical and machine learn-

ing methods, to address the last problem stated above, and to create a poverty prediction

model. However, after reviewing the literature on different methods and understanding the

nature of our data we decided to slightly change our approach. Prediction still remains in the

center of our attention but instead of one model we decided to choose four distinct models

and compare their performance, advantages and disadvantages. In this way we answer the

following research questions:

1. What advantages and disadvantages are there for different prediction methods?

2. Which models perform best in terms of predictive ability and what is the trade-off for

this precision?

The data for this thesis comes from Indonesia. RAND Corporation in collaboration with

The Demographic Institute of The University of Indonesia conducted a longitudinal study

under the name Indonesian Family Life Surveys. These surveys are unique as they track

individuals and households in four consecutive waves and capture their livelihoods for fif-

teen years. Despite the richness of these datasets we encountered a major limitation which

impacted our outcome heavily. The data contains very detailed information about household

conditions but has major gaps in the area of household economy. Due to the large number of

missing values for numerical variables such as income or expense we had to omit them from

our analysis. We believe that this is a reason for the lower predictive power of our models

since income is an important, although not exclusive, poverty predictor.

The preliminary step to our analysis was to determine the poverty levels in Indonesia. We

have decided to use a multidimensional concept of poverty and for that purpose we needed

to find a suitable method that would cluster respondents based on their household condition,

levels of education, health and other characteristics that we associate with poverty. The

nature of our data which was purely categorical imposed another limitation as we had to

seek methods designed for that type of data.

In the end, the thesis combined two main aspects. First, we incorporated the multidimen-

sional concept of poverty and used methods that classified respondents accordingly. Second,

we chose four commonly used methods for prediction, created four distinct poverty predic-

tion models and compared how well each of them performed.
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The thesis is organized in various sections. In the first section we provide a brief the-

oretical background on our view of poverty. The second section describes our data and

the limitations applicable to this thesis. The third section gives a brief introduction to the

methodology. It describes the nature of the used methods, gives a theoretical background of

certain methods’ specifics and introduces our way of measuring accuracy. The fourth sec-

tion dives into each particular method. It first provides the theoretical background which is

followed by an explanation of the results that were obtained when the respective algorithm

was run on our data. All these sections work with the data from Wave 1, i.e. from 1993. Our

last section describes the results that were obtained when the created models were run on the

Wave 2 data from 1997.
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1 Understanding the concept of poverty

For the purposes of this study we view the concept of poverty through the lens of the

Sustainable Livelihood Approach. Such types of framework first emerged in the context of

rural development but have been widely adapted also to urban conditions (Scoones 2009:

172). The most commonly used definition comes from Chambers and Conway (1992:6):

A livelihood comprises the capabilities, assets (...) and activities for a means of living. A

livelihood is sustainable when it can cope with and recover from stresses and shocks, main-

tain or enhance its capabilities and assets, and provide sustainable livelihood opportunities

for the next generation; and which contributes net benefits to other livelihoods at the local

and global levels and in the short and the long term.

Basically, the perspective takes into consideration various dimensions of livelihood. These

dimensions constitute five different forms of capital that each individual possesses and which

contribute to their wellbeing. These include:

• Human capital - education, skills, health

• Financial capital - income, remittances, savings, credits and debts

• Social capital - social network, trust, relations

• Physical capital - infrastructure, technology

• Natural capital - natural resources such as wood or land

The ownership of these assets is shaped by the outside conditions over which an individual

has limited power. These include the political, economic and environmental situation as well

as the cultural and social context.

Aligned with this framework is also our approach to poverty. However, since we rely on

existing datasets, we could identify variables reflecting only three of these dimensions - hu-

man assets (education and health), financial assets (savings) and physical assets (household

assets, physical conditions of the household).

3



2 Data and Limitations

The data that was used and analyzed comes from the Indonesian Family Life Surveys

(ILFS). These represent a longitudinal sociological study that was conducted in Indonesia in

four waves in the years 1993/94, 1997/98, 2000 and 2007/2008. All surveys were conducted

by a research organization, the RAND Corporation, in collaboration with The Demographic

Institute of The University of Indonesia. Based on their selection criteria, the survey is

83% representative of the population and contains information about the household and its

members; household conditions and economy; individual education and health conditions;

and community data (RAND Labor and Population).

Our analysis is twofold. First, we use the rich dataset to determine which individuals are

poor. Then we use the other set of variables to create a model for poverty prediction. We

were inspired by various articles dedicated to this problem (Mathiassen. 2008, Vella. 1997).

However we see a major limitation to their approach, namely in how they described the

poverty level. They took the household income and based on some threshold value (typically

the World Bank definition of poverty) determined which households are poor. According to

our view of poverty, income is not a sufficient poverty descriptor. Therefore we decided to

extract all the information from the available data and use models that identify patterns in

the current dataset.

As mentioned above, we used two almost distinct datasets. Our first dataset served to

create an indicator of poverty and we had to use other data for predictions. Otherwise we

would be predicting poverty with the same variables that were used to describe poverty

which would bring conceptual problems. In reality, the income data is often not available as

it represents sensitive information which respondents frequently refuse to give. Our dataset

is a great example of this problem as for income variables we had about 60% missing values.

Therefore the added value of our approach is that we rely on data that is easily collected.

Some of the variables, like those about the household conditions, are easily observable by

the interviewer and so represent a valuable and easily obtained information.

One important advantage of our dataset is its longitudinal character. We have informa-

tion about the same household across fifteen years. This introduces ’time’ to the prediction

problem which might provide a valuable insight for tracking and predicting poverty across

multiple years. Although the scope of this work does not fully acquire this advantage, we

propose ways how this research could be expanded.

We provide the overview of the variables that were used. Table 1 describes the descriptors

of poverty (a total of 6388 households included) while table 2 describes poverty predictors

(a total of 4493 households included).
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Table 1: Poverty descriptors
Dimension Variable name Values Frequency

Human

capital

Education grade school 3205

higher education 1975

unschooled 1208

Health healthy 5571

unhealthy 831

Insurance yes 791

no 5597

Physical

capital

Surface water yes 978

no 5410

Tap water yes 1007

no 5381

Creek toilet yes 1630

no 4758

Own toilet yes 1993

no 4395

Running sewage yes 2866

no 3522

Garbage collector yes 1435

no 4953

Vehicles yes 2015

no 4373

Financial assets Savings yes 1477

no 4911

2.1 Limitations

There are multiple limitations to this work. First is the scope of this thesis. The topic

we chose is very wide and far from exhausted. During our work we had to identify results

that are feasible to obtain within the limited time frame that was dedicated to the creation

of this work. We especially believe that conceptual broadening of the topic could introduce

interesting insights which might be translated into new inputs integrated within our models.

The time frame also influenced the size of this work. Since our aim was a comparison of

multiple models, we could not delve into the details of each algorithm. Still, for an interested

reader, all applicable theorems and proofs can be found in the respective literature.

Thirdly, we were limited by the nature of our data. All of our predictors were categorical

variables. Although they contain valuable information, the predictive strength of our algo-

5



Table 2: Poverty predictors
Dimension Variable name Levels Frequency

Human

capital

Education - elementary 1-yes 2300

0-no 2193

Education - higher 1-yes 1208

0-no 3285

Healthy 1-yes 3693

0-no 800

Can write a letter in Bahasa 1-yes 2970

0-no 1523

Can read a newspaper in Bahasa 1-yes 3043

0-no 1450

Physical

capital

Has electricity 1-yes 3178

0-no 1315

Has household appliances 1-yes 3215

0-no 1278

Can buy meat 1-yes 898

0-no 3595

Financial

assets

Savings 1- yes 1080

0-no 3413

Employed 1-yes 3794

0-no 699

Unemployed 1-yes 411

0-no 4082

Household shocks Experienced hardship 1-yes 1323

0-no 3170

rithm could be improved greatly if the income and expense variables were used. Our dataset

contained almost 60% missing values for income and expense variables and we could not ex-

tract any valuable information from these. Since we worked with panel data, we also had to

identify those variables that were common across the years which again limited the number

of predictors that we could use.
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3 Methodology Overview

We decided to approach our research problem through machine learning methodology.

Machine learning provides effective solutions for understanding data patterns and predic-

tions. The main goal of prediction is to accurately determine the outcome based on the

causality relationships in the data. (Shalew-Schwartz & Ben-David, 2014) In our case, we

wanted to use the household data from Indonesia to determine and predict poverty levels.

There are two main groups of machine learning algorithms that are frequently used to pro-

vide insights on similar problems:

• unsupervised learning algorithms

• supervised learning algorithms

The unsupervised learning algorithms do not presume any structure of the data and

their added value is to help understand patterns in the data. We used these types of algorithms

to understand and explain the concept of poverty and to consequently determine who are poor

households in our dataset.

The supervised learning algorithms, as their name suggests, already presume certain

pattern in the data. Typically we split the variables to predictors and outcomes. To teach the

algorithm we first need to feed it both types of variables. Throughout the learning process

the algorithms tune their parameters. With known parameters the algorithms can be used for

predictions of the future data. In our case, we used the obtained levels of poverty to teach the

algorithm when the household is poor and test how well it predicts the poverty in the future.

3.1 Unsupervised learning

The unsupervised machine learning uses all available data to understand the patterns and

relationships in the data (Ng. 2015). A typical example is clustering the data into objects

that have some common features or compressing the data set into a lower dimension while

still keeping as much information as possible.

The first part of our analysis attempts to identify whether the individual is poor or not,

which is a suitable task for unsupervised learning method. We tried various clustering mod-

els but our data contained too many missing values for numeric variables such as income or

expense. Therefore we decided to use a method which works well with categorical variables

- Multiple correspondence analysis (MCA). The output from MCA includes weights or load-

ings for each level of each categorical variable. We used these weights to create a numerical

index “poverty”.

Consequently we applied a K-means algorithm to determine which of the households

were poor and non-poor. A K-means algorithm is a widely used method for clustering nu-

merical data. It uses Euclidean distance to calculate how close individuals are to each other

7



and clusters them based on their proximity. The disadvantage of this algorithm is that the

user needs to identify the number of clusters, here denoted by K. There is not one way how

to determine the number of clusters. The decision can be based on the theory (i.e. number of

social classes) or experience and could vary according to the research problem (Ng. 2015).

Our decision for the number of clusters was based on the algorithm itself. We chose to ex-

amine the scree plot according to which we chose four clusters. The scree plot shows the

number of clusters on the x-axis and the within groups sum of squares on the y-axis. Logi-

cally, with the increasing number of clusters, the within groups sum of squares decreases as

we split the dataset into smaller groups. The aim is to have few clusters with small within

groups sum of squares which would correspond to well defined distinct groups in our dataset

(Ng. 2015). We will describe in more detail how scree plot helped us in our decision in the

section dedicated to the K-means algorithm.

Our last step was to categorize the group with the lowest values of our poverty index as

"poor".

3.2 Supervised learning

Supervised learning algorithms are suitable for predictions. Generally, there are multiple

choices for prediction models widely used by statisticians and data scientists (Breiman 2001).

In this thesis we chose four methods and we discuss their strengths and weaknesses. The

chosen models were Binary logistic regression, Neural networks, Decision trees and Random

forests.

The idea of the supervised learning algorithms is that we provide it with a learning envi-

ronment. The learning environment consists of the cases where both predictors and outcomes

are available to the algorithm, called the training dataset. Its parameters are then tuned to

correctly predict this training data. We measure the correctness by comparing the predicted

values, i.e. calculated outcomes and the real values, i.e. those outcomes that we identified in

our data.

The second step of the supervised machine learning is to determine whether the obtained

model performs well also on the “unseen” data. We therefore feed it with a dataset of predic-

tors, called the test dataset. For this dataset we know the true levels of our outcome variable.

The algorithm gives us predicted outcome levels which we compare with the true outcomes.

When we reach high levels of accuracy we can claim that our model predicts the concept

well. If we obtain poor accuracy levels, we might have overtrained our model and need to go

back and update the algorithm accordingly. Thus, the methodology for supervised learning

requires first to split our dataset into two parts: training and test which we have done in a

60:40 ratio (Shalev-Schwartz & Ben-David. 2014).

Typically, the learning task involves an iterative method that either minimizes or maxi-

mizes a function that represents our problem. We continue with explaining a method that is

8



widely used for the minimization problems.

3.2.1 Gradient Descent

This section describes the basic idea behind the method called Gradient Descent. It is

an iterative method that is widely used in machine learning algorithms. The theoretical per-

spectives in this chapter are based on Shalev-Schwartz & Ben-David (2014) and Ng (2015).

Gradient Descent (GD) is a widely used iterative technique for minimizing risk (also

called cost) functions. The algorithm is based on the fact that the direction of the gradient of

a particular function points to the direction where the function grows most rapidly. Therefore

at each iteration the algorithm takes a small step in the negative direction of the gradient

which ensures the convergence at the local minimum. We will now describe the mathematical

notation for this algorithm. To illustrate the idea we limit ourselves to only convex functions

however the literature explains in detail how the concept can be extended to any function.

Let f be a convex function and let w denote the vector representing the parameters which

we want to learn. The gradient of function f is a function4 f : Rd → R such that

4 f (w) = (∂ f (w)
∂w1

, ∂ f (w)
∂w2

, · · · , ∂ f (w)
∂wd

)

Since gradient descent is an iterative algorithm, we first define a starting point, for exam-

ple w(1) = 0. Each following iteration is taking a small step in the negative direction of the

gradient:

w(t+1) = w(t)−η4 f (w(t))

After T iterations we stop the algorithm based on some stopping criteria and we obtain

the result which is close to the local minimum. In the equation above, η > 0 is a positive

parameter which influences the speed of convergence. The proof of convergence is not in

the scope of this thesis but can be found in Shalev-Schwartz & Ben-David (2014). The

simplified algorithm is shown below (Ng. 2015):

1. parameters: Scalar η > 0, integer T > 0

2. initialize: w(1) = 0

3. for t = 1,2, · · · ,T :

• calculate w(t+1) = w(t)−η4 f (w(t))

• if
∥∥wt+1−wt

∥∥< ε return "Converged"

• if f (wt+1)> f (wt) return "Diverged"

4. return f (wt+1)
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3.2.2 Overfitting and regularization

The frequent problem that occurs with learning algorithms is overfitting. Overfitting hap-

pens when the parameters which we obtained as the best fit perform greatly on the training

set but poorly on the testing set. That means that our parameters only reflect the unique

situation of the training set and cannot be used for further generalizations.

One way to overcome this problem is through regularization. Regularization introduces

greater stability to the algorithm. We loosley define the term stability as ’slightly changing

the input causes only minor changes in output’ (Shalev-Schwartz & Ben-David.2014).

The most frequently used regularization function is Tikhonov regularization defined in

the following way (Shalev-Schwartz & Ben-David.2014):

R(w) = λ ‖w‖2

After we have trained the model we need to evaluate its accuracy. The next section is dedi-

cated to this topic.

3.3 Determining accuracy

There are many ways how to determine the accuracy of the predictive model. We chose

to compare the calculated outcomes and the true outcomes in three different ways explained

below. The theory that was used for this section is based on Stojanovic et.al (2014)

Our dependent variable is coded as 0 for the non-poor and 1 for the poor. When we

compare the predicted values obtained from our models and the true values of poverty we

can get four possible scenarios (Table 3):

Table 3: Crosstabulation of true and calculated outcomes
True Poor(1) True Non-poor(0)

Predicted Poor(1) True positives False positives

Predicted Non-poor(0) False negatives True negatives

1. True positives (TP) - these are all the cases where our model predicted the household

is poor and the household indeed was poor.

2. True negatives (TN) - these are all the cases where our model categorized the house-

hold as non-poor and indeed it was non-poor.

3. False positives (FP) - these are all the cases where our model categorized the household

as poor but it was not.

4. False negatives (FN) - these are all the cases where our model classified household as

non-poor but indeed it was poor.
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When it comes to accuracy, there are three ways how we can look at this table:

1. Error rate. Error rate is simply a ratio of the cases which were identified wrongly.

For the purposes of this thesis and to better compare the methods, we calculate its

opposite, i.e. ratio of all those cases that were classified correctly. In mathematical

terms:

Errorrate = 1
n ∑(yi 6= y′i) Accuracy = 1

n ∑(yi = y′i)

Where yi is the observed value and y′i is the predicted value of our poverty indicator.

2. Sensitivity. Sensitivity is the probability that we will classify the poor among those

that are truly poor. In mathematical terms, sensitivity can be calculated as follows:

Sensitivity = T P
(T P+FN)

3. Specificity. Specificity is the fraction of how many of the non-poor were classified as

non-poor. In mathematical terms, specificity can be calculated as follows:

Speci f icity = T N
(T N+FP)
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4 Algorithms and results

This part of the thesis is divided into several sections. The first part of each section

explains the theory on which the algorithms are based. The second part of each section

describes the results obtained when the algorithms were run on our dataset. The whole

chapter is chronologically ordered and illustrates the process of how we obtained our results.

4.1 Multiple correspondence analysis

Multiple correspondence analysis (MCA) is a proper technique for the construction of

poverty indices (Asselin & Anh. 2008). The technique comes from the family of ‘facto-

rial’ techniques which aim to decrease the dimension of the dataset and understand the data

patterns. The idea is the same as Principal Component Analysis (PCA). While PCA works

well with numerical data, MCA is a proper technique to use for categorical and ordinal data

(Asselin & Anh. 2008).

To understand the MCA technique, we first need to explain its predecessor - Correspon-

dence analysis (CA). MCA is actually an extension of CA and the computational details will

be described below. The definitions are inspired by Abdi & Valentin (2007) and Greenacre

(2010).

4.1.1 Correspondence analysis

Let K be the amount of nominal variables, each having Jk levels so that ∑
K
k=1(Jk) = J.

Let I denote the number of observations. We create a IxJ indicator matrix X . Let N denote

the grand total of observations, such that N = ∑i ∑ j(xi j).

The first step is to compute a correspondence matrix Z by dividing X by N, Z = N−1X .

This corresponds to standardizing all the variables in the matrix. Next, we will be using the

following notation: r denotes the vector of row totals of Z and c the vector of column totals

of Z, Dr denotes the diagonal matrix of vector r, Dr = diag{r} and Dc the diagonal matrix

of vector c, Dc = diag{c}.
The second step is to obtain the factor loadings. To do that, we have to calculate the

singular value decomposition (SVD) from matrix S which represents the standard residuals:

S = D
− 1

2
r (Z− rcT )D

− 1
2

c = P∆QT

Singular value decomposition is a frequently used technique in ‘factorial’ methods such as

correspondence analysis. The decomposition lies in representing any matrix by the product

of three matrices, such that P and Q are the matrices of left and right singular vectors re-

spectively, and the middle matrix ∆ contains singular values which are in decreasing order

α1 ≥ α2 ≥ α3 ≥ ·· · . The benefit of using SVD is linked to the Eckhart-Young theorem

(Greenacre. 2010). According to this theorem, if we only choose m vectors from P and
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Q matrices and corresponding m singular values in ∆, the matrix S(m) = P(m)∆(m)QT (m)

which we obtain, is the least-squared rank m approximation of S (Greenacre. 2010). In other

words, SVD is a computationally effective method for finding low-dimensional subspace

that best fits the original space represented by the original matrix.

The output that we wish for is some kind of representation of our data in the low di-

mensional space. Therefore we need to calculate the projections of our data to the identified

subspace. The third step of the algorithm does exactly this. We denote the row and column

standard coordinates as Φ and Γ respectively; and the row and column principal coordinates

as F and G respectively. The row and column coordinates contain the information of how

our variables are represented in the new subspace. In other words, the row coordinates rep-

resent the rows of the matrix, i.e. our observations and the columns of the matrix represent

the principal axes, i.e. dimensions. There are min{I−1,J−1} of these axes.

Φ = D
− 1

2
r P

Γ = D
− 1

2
c Q

F = D
− 1

2
r P∆

G = D
− 1

2
c Q∆

The last step of the algorithm that is important for our cause is calculating the total inertia.

This corresponds to the variance that explains our data. The principal inertias λ1,λ2, · · · are

actually squared singular values: λi = α2
i , i = 1, · · · ,k; where k = min{I−1,J−1}.

The total inertia of the data matrix is then the sum of squares of the matrix S

inertia = trace(SST )

Another interesting information that can be obtained from MCA is the distance of the

observations from the barycenter. Unlike PCA which is based on Euclidean distance, CA

and MCA are based on χ2 distance from the barycenter. We use this distance to visualize the

output from MCA which can be calculated in the following way:

Distance from rows: dr = diag{FFT} Distance from columns: dc = diag{GGT}

4.1.2 Extending to multiple correspondence analysis

Multiple correspondence analysis is an extension of the correspondence analysis. There

are two forms of MCA that differ in the initial preparation of the data. Suppose that now

our original set consists of KxQ categorical variables. The first type of MCA computes the

indicator matrix by transforming the categorical data into dummy variables (i.e. variables

with only two levels), then performing the CA algorithm. The second type uses the Burt

matrix B = ZT Z. The Burt matrix gives the same factor results while being more efficient.

Eigenvalues obtained from the Burt matrix are also a better estimation of intertia (Abdi &

Valentin. 2007). The algorithm runs in the same manner as in the case of an indicator matrix

but used with the Burt matrix.
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4.1.3 Creating poverty indicators

We have performed MCA on the variables from three types of assets (human, physical,

financial) that were all coded as factor variables with two or three levels. The MCA was

performed on the dataset of 6,388 respondents (households). The results show that dimension

1 explains 53.574% of total inertia. We visualize the output in figure 1. The chart represents

the scatterplot where on x-axis we show Dimension 1 and on y-axis we show Dimension 2.

The values for these dimensions represent the distances from the columns, i.e. the principal

axes.

Upon visual inspection it is clear that there exists a pattern in our data. The categories

which we associate with non-poverty (i.e. garbage collection, running sewage, hygienic

toilet, savings, etc.) are clustered on the right side of the chart. The indicators which we

associate with poverty are clustered in the left part of the dimension plot. We can see that to

explain the poverty pattern it is enough to use the first dimension.

Figure 1: MCA Dimension plot for variables

Multiple correspondence analysis was crucial for us to determine whether the household

is poor or not. We used the package FactoMineR and function MCA. The syntax for the

function is the following:

MCA(X, ncp = 5, ind.sup = NULL, quanti.sup = NULL, quali.sup = NULL,

graph = TRUE, level.ventil = 0, axes = c(1,2), row.w = NULL, method = "

Indicator", na.method = "NA", tab.disj = NULL)

We used the following function arguments:
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• X - matrix or data frame of categorical variables coded as factors

• ncp - the number of dimensions, we have kept the default value

• method - either Indicator or Burt matrix to use for computation. We have used the

Burt option.

The important part of the output includes the factor loadings for each category and the

total inertia captured by our model. The full output from the MCA analysis is included in

the Appendix. To compute the poverty index, we used the factor loadings in the following

equation:

PI = ∑ j(Xi jWj),

where PI stands for Poverty Indicator and Wj stands for the weight of the jth variable ob-

tained from MCA. The weight is actually a factor loading from Dimension 1. The poverty

index has distribution visualized by histogram in figure 2.

In other words, the MCA output represents the weights that we give to each category. We

have seen on the variable map that the negative scores are associated with the poor and the

positive scores with the non-poor.

Figure 2: Histogram of the poverty index

Our next step was using the K-means algorithm to recode the poverty index into a binary

variable.
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4.2 K-means

The second step of our analysis is to determine the poverty levels. K-means clustering

is a suitable solution for this problem. The method divides and partitions the data into K

clusters which are not overlapping. The criterion for good clustering output is when the

within-cluster variation is as small as possible. The definitions that follow are based on

James et al. (2013).

Let C1, · · · ,CK represent sets which contain indices of our observations. These sets satisfy

two conditions:

1. Unification of all sets Ci covers every observation. C1∪C2∪·· ·∪CK = {1, · · · ,n}

2. The sets Ci are not overlapping, i.e. Ci∩Ck = /0, for all i 6= j

In other words the sets are such that every observation belongs to exactly one cluster.

We denote the within cluster variation as W (Ck). W (Ck) represents a measure by which

observations in one cluster differ from each other. Thus our goal is to find

min
C1,...,CK

{∑n
k=1W (Ck)}

When we work with numeric data it is wise and also most common to use the squared Eu-

clidean distance as a measure of the within cluster variance (Ng. 2015). We first calculate

the squared Euclidean distances of all pairs of observations in the kth cluster. Secondly, we

sum these and divide by the number of observations found in the kth cluster. Mathematically

we can write it in the following way (James et al. 2013):

W (Ck) =
1
|Ck| ∑

i,i′∈Ck

∑
p
j=1(xi j− xi′ j)

2

The algorithm for finding the minimum of the function above is very simple and follows

three steps:

1. Initialize cluster membership of each observation by random assignment.

2. Iterate until no further change in cluster assignments

• Compute the centroid of each of the K clusters. The centroid is calculated as a

feature mean of all observations in the respective cluster.

• Assign each observation to the centroid which is closest, as defined by the Eu-

clidean distance

This algorithm is suitable for finding not the global, but the local optimum and has proved

to work well in practical exercises. To make sure that the good enough local optimum was

found it is important to run the algorithm more times with different initializations.
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4.2.1 Determining the poor

One problem with this algorithm is that we need to determine the number of clusters.

This is not something that we are always aware of right from the beginning. One way to

resolve this problem is to make a scree plot with different choices of K and their respective

within cluster variance (Ng. 2015). The scree plot for our data in figure 3 shows how the

within cluster variance decreases when more clusters are added. The logical and suitable

choice for K is the point after which the variance decreases only minimally. We can spot this

point by visual inspection of the scree plot as it resembles an elbow (Ng. 2015).

As we can notice on the scree plot for our dataset, there is a large decrease of variance

already by choosing 2 clusters, but after four clusters the slope starts to even out. Therefore

we have chosen four groups.

Figure 3: Scree plot for poverty index

We used the K-Means Clustering algorithm in R. The function syntax is the following:

kmeans(x, centers, iter.max = 10, nstart = 1, algorithm =

c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"), trace=FALSE)

We used the following arguments for the function as they are sufficient to give us the

output which we want.

• x - matrix of data, must be numeric; poverty index in our case

• centers - number of clusters, we used the value 4

We also include a scatter plot for our poverty index in figure 4. The x-axis represents an

index for all observations and the y-axis shows the poverty index. The color coding is based

on the clustering obtained through K-Means. We categorize the poor as those who belong to

the black group. In this way we classified about 20% of our dataset as poor.
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For the following set of algorithms we create an extra variable called "poverty" which

has two values: 0 for non-poor and 1 for poor. This section thus concludes the overview of

the algorithms of unsupervised learning.

Figure 4: Clusters based on the poverty index

4.3 Binary logistic regression

Logistic regression is a convenient method to use when we have a qualitative dependent

variable. The requirement for this method is that the dependent variable is coded as binary,

i.e. reaches values of 0 when the characteristic is not present and 1 when the individual

has the characteristic. The desired outcome for such scenario would be the probability with

which the person has the characteristic. The logistic regression model is thus based on the

logistic function:

p(X) = eB0+B1x1+···+Bnxn

1+eB0+B1x1+···+Bnxn

Where p(X) is the probability that a person has the characteristic and Bi are the unknown

parameters. The best estimate for the unknown parameters is such that will associate a low

probability to respondents which do not possess the feature and vice versa will assign high

probability to individuals who have the feature.

There are more ways how we can obtain the best estimate of the parameters. One method

is through maximum likelihood which uses the following function

l(Bi) = ∏ p(xi)∏(1− p(xi′))
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To obtain the best fitted parameters we maximize this function (James et al. 2013).

However we will show an approach that uses the Gradient Descent (Ng. 2015). Firstly, we

define our hypothesis function which reflects the learning problem that we wish to solve. For

logistic regression we use the sigmoid function hw(x) = 1
1+e−wt x . We can observe that this

function has the properties that we want, i.e. with rising x the function reaches values close

to 1 and with decreasing x the function reaches values close to 0. Let y denote the vector of

outputs and m the number of cases. The cost function can then be defined in the following

way (Ng. 2015):

f (w) =− 1
m [∑

m
i=1 y(i) loghw(xi)+(1− y(i)) log(1−hw(xi))

Finding the best estimate for logistic regression is then equivalent to finding the minimum

of the cost function. We can use the Gradient Descent algorithm for finding the minimum.

Typically a regularization parameter will also be added to the equation and the final function

to minimalize will be min{ f (w)+R(w)}, where R(w) = λ ‖w‖.

4.3.1 Interpretation of the output

Scrutinizing the logistic function we may notice that it always reaches values between 0

and 1 which was what we desired. The output is typically interpreted either through odds

ratio or probabilities. The odds ratio can be calculated easily from the function above where

we get:

Oddsratio = p(X)
1−p(X) = eB0+B1x1+···+Bnxn

The odds ratio reaches values between 0 and infinity. Values that are close to zero, i.e. the

odds ratio is very small, will receive very low probabilities while values that are very high,

i.e. odds ratio is very high, will receive high probability rates. The interpretation through

odds ratio or probabilities is equivalent. For example, imagine the probability p(X) = 0.2.

Calculating the odds ratio will produce 0.2
1−0.2 =

1
4 . This would mean that 1 in 5 people (which

corresponds to the odds ration of 1/4) has the observed feature.

Interpreting the impact of the individual variables is more complex for logistic regression

due to its non-linearity in X . With a little bit of manipulation, by taking a logarithm of the

odds ratio, we obtain the log-odds. The log-odds are now linear in X and we can interpret

the impact of the variables. If xi changes by one unit and all the other x j, j 6= i are kept

constant, the log-odds increases by Bi. Still, the explanation is rather obscure. The sign of

the coefficient is typically enough to give us an idea about the direction of the relationship.

If the coefficient is positive, we may say that with increasing values of xi, the probability of

a feature rises. The negative coefficients are associated with decreasing probability.

log p(X)
1−p(X) = B0 +B1x1 + · · ·+Bnxn
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4.3.2 Fitting the logistic model

We have run the logistic regression on our training set which contains 60% of all data.

We used the glm function in R which has the following syntax:

glm(formula, family = gaussian, data, weights, subset, na.action,

start = NULL, etastart, mustart, offset, control = list(...), model =

TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, ...)

We have used the following arguments:

• formula - formula in the form ’poverty’ ’predictors’

• family - we used ’binomial’ to indicate the binary regression

From the obtained probabilities we chose a threshold of 0.5. That means that any case

which had a probability lower than 0.5 was classified as non-poor (0) and vice versa all

individuals with a probability higher than 0.5 were classified as Poor (1). Comparing the

predicted values and real values we have constructed the following confusion matrix (Table

4.3.2)

Predicted / Truth Non-poor(0) Poor (1)

Non-poor(0) 2009 370

Poor (1) 123 193

From the first look we can see that the model does quite a good job when correctly

assigning households as not poor (94% for specificity) but does rather poorly when predicting

the poverty with only 34% sensitivity. This may be caused by the disproportion of poor and

non-poor in our data. The total accuracy for the training set is around 82%. We now use this

model to predict poverty on the testing ("unseen") dataset (Table 4.3.2).

Predicted / Truth Non-poor(0) Poor (1)

Non-poor(0) 1354 255

Poor (1) 84 105

The specificity for the testing set is around 94%, sensitivity is 29% and accuracy is 81%. The

low values for sensitivity raise concerns as the model does not accurately assign the poor.

We will now continue with a different algorithm to see how changing the model can improve

the accuracy.

4.4 Neural networks

Neural networks is a supervised machine learning method which mirrors how biological

neurons work in a human brain. The architecture consists of neurons which are connected
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through communication lines that transmit the information. We will describe the neural

network through a graphical representation where neurons are shown as nodes and commu-

nication networks are shown as lines connecting neurons together. The theoretical grounding

for this chapter is based on Shalev-Schwartz & Ben-David. 2014.

Figure 5: Visualization of neural network

The network is represented by the graph G = (V,E), the weight function w : E → R

and scalar function σ : R→ R which models each neuron. An example of the graph G is

visualized in figure 5. σ is called the activation function of the neuron. Neurons are typically

concentrated in layers Vt , t = 1, · · ·T , which represent an organization of the neurons into

disjoint subsets. The first layer, V0 is called an input layer. Every neuron from the input layer

connects to every neuron in the following layer V1. If n is the number of predictors, then the

dimensionality of V0 is n+1. The last neuron in the layer is called a constant and outputs to

1. The input for any neuron from layer V1 is calculated as the weighted sum of the output

of the neurons from the preceding layer. The weighting that applies is given by the function

w. In the same manner we continue the calculations to the following layers until we reach

the last layer - the output layer. Typically, in simple prediction scenarios the output layer

VT consists of one neuron. Layers V1, · · ·VT−1 are called hidden layers (Shalev-Schwartz &

Ben-David. 2014).

In mathematical notation, let vt,i denote the ith neuron in the tth layer. By ot,i(x) we

denote the output of the vt,i fed by the input vector x. Let w(vt,i,vt+1, j) denote the weight or

the line that connects the ith neuron in layer t with the jth neuron in layer t +1.

Suppose now that we have calculated the network for some tth layer. We want to calculate
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the output for a fixed neuron in the t +1th layer, i.e. neuron vt+1, j. First we need to calculate

the input to this particular layer, here denoted as at+1, j(x). We simply sum across the outputs

from the neurons of the preceding layer considering their particular weight (Shalev-Schwartz

& Ben-David. 2014):

at+1, j(x) = ∑i:(vt,i,vt+1, j)∈E w(vt,i,vt+1, j)ot,i(x)

By x we denote the input vector that is fed to the algorithm of neural networks. When we

have calculated the input to the vt+1, jth neuron, we apply our σ function to calculate the

output (Shalev-Schwartz & Ben-David. 2014):

ot+1, j(x) = σ(at+1, j(x))

The σ function is typically signum, threshold or sigmoid function. Our model used the

sigmoid function, which is the following (Shalev-Schwartz & Ben-David. 2014):

σ(t) = 1
1+e−t

The steps described above are steps of the forward propagation algorithm for neural

networks. The learning aspect of neural nets is to tune the weights over the edges. The next

part explains how the learning of neural networks takes place.

4.4.1 Learning of Neural Networks - Backpropagation

The task of learning neural nets is equivalent to finding a minimum of the risk function

fw(x). Let us denote our hypothesis function of w as hw(x) ∈ RK where hw(x))i represents

the ith output. Then the cost function is as follows (Ng. 2015):

fw(x) =− 1
m [∑

m
i=1 ∑

K
k=1 y(i)k log(hw(x(i)))k +(1− y(i)k ) log(1− (hw(x(i)))k)]

Finding the minimum of the cost function is again suitable for the Gradient Descent

method. One important improvement to the algorithm is the initialization. Recall that fre-

quently the initialization is assigning w(0) = 0. However, this will result in having the same

weights for neurons in the hidden layer. Consequently, the input to the following layer will

be the same and our model will not provide accurate estimates (Ng. 2015, Shalev-Schwartz

& Ben-David. 2014). We want to avoid this scenario which is easily done by random initial-

izations. Random initialization is tricky as it might converge in some local minimum which

is far away from the result we wish to obtain. We avoid this by repeating the algorithm

multiple times each with different initialization and taking the best estimate (Ng. 2015).

The Gradient descent method is dependent on calculating the gradient. Since neural

networks is rather a complex method, we will dedicate some space to explaining how the

gradient descent is computed. However we will not delve into the details as it is not in the

scope of this thesis and we will explain only the main idea.
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We introduce another bias term which we denote as δi, j referring to the bias at jth node

in ith layer. We compute the bias term in a backward fashion, i.e. first we calculate all

the outputs up to the last layer. The bias term in the last layer is calculated first as δT − yi.

Consequently by using the inverse of our activation function we can calculate all the bias

terms down to the first - input layer. Finally, when these are updated we calculate the gradient

in the following way (Ng. 2015):

4t,i j :=4t,i j +ot, jδt+1,i

4 fw(x) := 1
m4t,i j +λwt,i j where wt,i j = w(vt−1,i,vt, j).

We see that the gradient is actually computed by using the bias terms. This is repeated

in an iterative manner to obtain the best estimates. The backpropagation serves also another

important role. It replaces the regularization function. The details of the backpropagation

algorithm can be found in Shalev-Schwartz & Ben-David (2014) or Ng (2015).

4.4.2 Fitting neural networks

Neural networks was the second algorithm tested on our dataset. We have used the R

package nnet which has the following structure. Since the call function has an option to

choose many arguments, we include only those that were important to us and describe their

meaning. nnet(x, x, y, size, Wts, lineout, ...)

1. x - matrix or data frame of predictors

2. y - matrix or data frame of outcomes, for our case this was the created binary ’poverty’

indicator

3. size - number of neurons in a hidden layer, we used 10 nodes.

4. Wts - initial parameter vector by default random

5. lineout - determining the type of outputs by default set at logistic

There are more R packages that can calculate neural networks but we find this the most

suitable one. Firstly, it enables data to be input through a matrix of predictors - x and matrix

of targets - y; secondly it initializes the weights at random and thirdly, by default if calculates

the logistic (sigmoid) output. The disadvantage is that it does not allow for visualizations and

that it allows only one hidden layer. To overcome the visualization problem we used the code

created by Beck (2016). The limited number of hidden layers was not considered a problem

to us since commonly one hidden layer is enough to achieve high levels of accuracy (Ng.

2015).

23



Figure 6 shows the actual output that we obtained. The thickness of the line represents

the strength of the association. The color represents whether the input is negative (grey) or

positive (black).

Figure 6: Neural networks

We can observe that the output is rather hard to read. Therefore we show an alternative

view on the importance of the variables which is again inspired by the program created by

Beck (2016). Firstly, all connections that go from the input variable all the way through

the hidden layers to the output layer are identified. Secondly, all the respective weights are

scaled relative to all other inputs. Then, the single value is obtained for each input variable.

The interpretation will only tell us which of the variables are more important in comparison

to the other variables. Figure 7 should not be viewed in light of this explanation.

Lastly, we test the accuracy of our model. The accuracy measures for the testing set are

given in the Table 4.4.2.

Predicted / Truth Non-poor(0) Poor (1)

Non-poor(0) 1330 226

Poor (1) 108 134

The sensitivity measure is around 37%, specificity is 93% and accuracy is 81%. Typi-

cally, neural networks provide higher accuracy than logistic regression and we see that mea-
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Figure 7: Relative importance of variables in neural networks

sures have increased slightly. To correct the model we could gain more data or re-define

input variables.

4.5 Decision Trees

Decision trees represent a simple method for prediction which is easy to interpret and

suitable for classification. As the name suggests, composition of the model can be defined as

a set of logical decisions that segment the predictor space into simple regions. There are two

types of trees that can be constructed - regression and classification trees. Classification trees

are suitable to predict a qualitative outcome, as our dependent variable ’poverty’. Therefore

we will limit ourselves to defining these. Definitions and explanations in this chapter are

based on Shalev-Schwartz & Ben-David (2014) and James et. al (2013).

The way how we grow the tree is called recursive binary splitting. First we take the whole

dataset which represents the root of the tree. Based on the first predictor we split the dataset

into two regions. Typically the decision is based on some threshold criteria and depending

on the value of the feature we either move to the right or to the left node. We consider binary

predictors as can be found in our dataset. Therefore we move to the right when the answer

is 1 or to the left when it is 0. In the same manner we continue until we have built the tree

(James et. al. 2013).

A common problem to this approach is overfitting. If we do not limit the size of our

trees we can obtain an almost perfect fit for our trained dataset. However, this does not

necessarily mean that it will perform well on the testing dataset. In the next section we

describe the algorithm for a decision tree and also ways how to overcome the overfitting

problem.
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4.5.1 Decision Trees Algorithm

We will now describe a general approach to building a decision tree. First we start with

the tree that has only one single leaf. We assign this leaf a label that represents the majority

in our training set. We perform iterations in which we split the single leaf. We examine how

the split affected the single node. This is defined as a gain measure which will be discussed

later. We choose the split that achieves greatest gain and perform the split. Then the process

continues. We can also choose not to split the leaf at all. The implementation of this method

is described by ID3 (Iterative Dichotomozer 3) (Shalev-Schwartz & Ben-David. 2014).

1. input: training set S, feature set A

2. if all examples in S are labeled by 1, return a leaf 1

3. if all examples in S are labeled 0, return a leaf 0

4. A = /0, return a leaf whose value = majority of labels in S

5. else:

• Let j = argmaxi∈AGain(S, i)

• if all examples in S have the same label, return a leaf whose value = majority of

labels in S

• else

– Let T1 be the tree returned by ID3 ((x,y) ∈ S : x j = 1,A\{ j})

– Let T2 be the tree returned by ID3 ((x,y) ∈ S : x j = 0,A\{ j})

– Return the tree

4.5.2 Different approaches to Gain measure

As may be noticed from the algorithm above, the Gain measure is the most crucial aspect

of it. There are more approaches and each algorithm addresses this issue differently. Typi-

cally, they give similar results and we will discuss few of them below. The theory is based

on Shalev-Schwartz & Ben-David (2014).

Train Error: This is the simplest definition of Gain measure. The idea is to calculate

the difference between error rate before the split and error rate after the split. Before the

split, the training error of feature i is C(PS[y = 1]) where PS is the probability the event holds

considering the distribution over our sample S. Recall that we took the majority vote among

the labels of the feature. In this way we can calculate the error after splitting on feature i:

PS[xi = 1]C(PS[y = 1|xi = 1])+PS[xi = 0]C(PS[y = 1|xi = 0]).

26



The Gain measure is then the difference of the two error rates:

Gain(S, i) =C(PS[y = 1])− (PS[xi = 1]C(PS[y = 1|xi = 1])+PS[xi = 0]C(PS[y = 1|xi = 0])).

Information Gain: This Gain measure is also used in the ID3 algorithm. The idea is

similar to Train error but instead of probabilities, the Information Gain uses the entropy

function which is defined in the following way:

C(a) =−a log(a)− (1−a) log(1−a)

As can be seen from the chart below, the advantage of the entropy function is that it is

smooth and concave. These properties are convenient for some situations (Shalev-Schwartz

& Ben-David. 2014).

Figure 8: Entropy function

Gini index: The last definition of Gain measure we will explain here is the Gini index

which is calculated in the following way. It also has properties of smoothness and concave-

ness.:

C(a) = 2a(1−a)

4.5.3 Fitting the Decision Tree

The task of fitting the Decision tree is supported by various packages in R. We have

chosen the rpart package. The function for fitting the tree is the following:

rpart(formula, data, weights, subset, na.action = na.rpart, method,

model = FALSE, x = FALSE, y = TRUE, parms, control, cost, ...)

The arguments that we used were:
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formula - the formula to be fitted, we used ’poverty’ ’predictors’

data - defines data frame

method - specifies which type of decision tree should be fitted, we used ’entropy’ for the

classification tree

The results that we obtained are summarized in Table 4.5.3:

Predicted / Truth Non-poor(0) Poor (1)

Non-poor(0) 1359 259

Poor (1) 79 101

The sensitivity for this model is 29%, specificity is 94% and accuracy is 81%. There are

additions to algorithms to improve the accuracy which we will discuss in the section below.

4.5.4 Pruning of the tree

We have mentioned above that the decision trees might result in a small training error

but a large testing error. This is typically caused when we grow a very large tree that overfits

our training data. In this section we will introduce the idea of pruning of the tree based

on Shalev-Schwartz & Ben-David (2014). The idea of pruning is to reduce the size of the

tree after it is built with a much smaller tree by keeping the empirical error. The pruning

algorithm is performed from bottom to top, i.e. from leaves to the root. As the algorithm

runs, each node is replaced with either its subleaf or a leaf.

We do not perform tree pruning in this thesis. However we dedicate the next section to

another technique that improves the model.

4.6 Random Forests

As the name suggests, random forests is a technique that analyzes many decision trees.

The disadvantage of the single decision tree is its high variance and dependency on the

training dataset. This can be avoided with the increased number of trees that are considered.

In a fantasy world we could draw many samples, grow decision trees for each sample and

base our conclusions on some averaged value obtained from the individual trees. In reality,

this is not feasible since we typically do not have resources for drawing many samples.

The technique called ’bagging’ simulates this scenario using only our original sample. We

provide a brief overview derived from James et al. (2013).

Bagging is a bootstrap procedure which takes repeated samples from the single data set.

In this way we obtain B subsamples and on each we grow a decision tree. As a prediction

class for our test observation we take a majority vote (for classification problems) or average

(for regression problems).
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Growing a random forest takes one step further to the bagging procedure. When a deci-

sion split is to take a place, the algorithm takes a random sample of m predictors from the

total number of p predictors. These play the role of the split candidates for that particu-

lar split. A new sample of predictors is in this way taken at each decision split. The rule

of thumb is to take m ≈ √p. Since the sample of predictors is taken at random, we avoid

the problem of having one strong predictor present in each bagged tree. Thus we limit the

correlation of the trees.

4.6.1 Growing random forest

The R package for growing random forests is called randomForest. There are many

arguments to the function, but we show here those that are relevant for our cause.

randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500, mtry=if

(!is.null(y) && !is.factor(y)) max(floor(ncol(x)/3), 1) else

floor(sqrt(ncol(x))), replace=TRUE, classwt=NULL, nodesize = if

(!is.null(y) && !is.factor(y)) 5 else 1, importance=FALSE, ...)

• ntree - number of trees to grow, suggested not to use too small number. We keep the

default.

• mtry - number of predictors to be randomly chosen, we choose
√

p≈ 4

• replace - indicates whether the sampling of cases should be done with replacement.

We keep the default TRUE.

• nodesize - minimum size for the end nodes. By default this value is 1 for the classifi-

cation.

• importance - whether the importance of the predictors should be assessed. We set this

value as TRUE.

• ... other arguments. We do not use any other arguments.

The output of the random forest algorithm also includes the confusion matrix for the training

set shown in Table 4.6.1

Predicted / Truth Non-poor(0) Poor (1)

Non-poor(0) 2002 130

Poor (1) 377 186

The accuracy measures for the training dataset are: 58% sensitivity, 84% for specificity and

81% for accuracy. The accuracy measures for the testing dataset are: 31% for sensitivity,

93% for specificity and 81% for accuracy (Table 4.6.1)
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Predicted / Truth Non-poor(0) Poor (1)

Non-poor(0) 1347 245

Poor (1) 91 115

4.7 Predictive ability of algorithms

In this chapter we have reviewed four algorithms that are commonly used for prediction

problems. Now we will summarize their advantages and disadvantages that are inspired by

applying them to our dataset.

Logistic regression:
Binary logistic represents a convenient predictive method which can be easily applied to a

non-linear problem. Its main disadvantage is the need for the binary outcome variable. Since

we recoded our Poverty index into a binary variable we have lost certain information which

could have caused the low sensitivity. The main advantage is in its interpretability. Even

though it is not the easiest one, we can easily connect the impact of a certain predictor to the

outcome. However, we do not have much option to tuning the parameters and to improve the

model we would need to replace the predictors or include more data.

Neural networks:
The second algorithm that we used reached the highest levels of accuracy. This is the main

strength of the algorithm (Shalev-Schwartz & Ben-David. 2014). On the other hand, its

drawback lies in the interpretability. It is almost impossible to connect the input variable to

the outcome. We cannot say that by changing values of one predictor we will increase or

decrease the output variable by a certain value. This might be problematic to a problem of

poverty prediction where this connection might be interesting to the development agencies or

governments. The second problem is connected to random initialization of the model. Since

we need to run it multiple times, this can be computationally expensive, especially with large

datasets.

Decision trees:
Regarding the accuracy models this algorithm performs similarly to binary logistic regres-

sion. However, unlike the logistic regression, the decision tree algorithm has very high

variance. It is prone to overfitting and pruning or other algorithm is necessary to correct for

this. On the other hand, it does not have such strict demands on the form of the outcome.

Random forests:
Like neural networks, the main disadvantage of random forests is their interpretability. How-

ever, unlike neural networks, their output includes the importance of the predictors. Random

forests were the second best algorithm that we have tried.
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5 Poverty in 1997

As the last step of our analysis we used the trained models on the data from the following

wave that was collected in 1997. This chapter is dedicated to briefly summarizing the results.

First, we have used the same variables in 1997 that were used as descriptors and predictors in

1993. In total we had 9906 household responses. Therefore our results are comparable. The

details can be found in the Appendix. We have obtained the following accuracy measures

for the distinct models in 1997 (Table 5):

Model Sensitivity Specificity Accuracy

Binary logistic regression 16% 97% 85%

Neural nets 24% 95% 84%

Decision trees 14% 98% 85%

Random Forests 18% 97% 85%

From the table above it is obvious that the prediction accuracy dropped rapidly by more

than 10%, especially when it comes to the Sensitivity measure. We can conclude that the

model itself is not accurate enough and will require certain tuning. One way would be to

include more predictors or to replace the current ones. This will require further research

on the theoretical part as the variables that are included should be conceptually accurate.

The other solution would be to tune the parameters of the respective models. There are a

few suggestions found in the literature in James et al. (2013) and in Shalev-Schwartz &

Ben-David (2014).
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6 Conclusion

The aim of this thesis was to look deeper into the problematic nature of predictive mod-

els. In order to do that, we had to take several steps to prepare our data to be suitable for

the methods that we wanted to use. In the light of this we used Multiple Correspondence

analysis to work with categorical variables and created a poverty index that is a numerical

representation of information extracted from our categorical descriptor variables. We chose

categorical variables that captured information about household conditions, education and

health of the household head. The choice of these descriptors was justified by the theoretical

framework that represents our view of poverty as a multidimensional concept. Consequently

we have applied the K-Means algorithm on the newly created numeric index of poverty to

cluster our respondents into four groups. The last group with the lowest index values was

categorized as poor.

With this new variable we could proceed with predictive modeling. Models we used be-

long to the group of supervised learning algorithms. As the name suggests, these algorithms

require that both the predictors and the outcome are included in the model. The learning then

takes place which represents the process of tuning the parameters of an algorithm. We used

four methods: Binary logistic regression, Neural networks, Decision Trees and Random For-

est. The main problem with all models was the low values of Sensitivity, i.e. the measure of

how well the model predicts the poor among those who are poor. One possible reason might

be that the predictors that we chose were not sufficient. We believe that introducing income

and expense variables would result in higher levels of sensitivity and thus also accuracy. Due

to the scope of this thesis we did not revise the original dataset as it would require broadening

our view of poverty.

Our results show that Neural networks is the most accurate method for prediction based

on our measures of accuracy. However, the trade-off for higher precision is low interpretabil-

ity. The output of this algorithm does not provide information on the importance of the pre-

dictors. We imagine there are tasks where only accuracy is important. However, if we want

to link our work with development practice, understanding how different factors influence

poverty is crucial for taking further actions. We introduced another technique which gives

information about the relative importance of predictors. However, this output has to be in-

terpreted with caution as it provides information on how strong the predictor is in relation to

other predictors.

Binary logistic regression and Decision trees are easily interpreted and provide exact

connection of the predictor to the outcome, however they had low levels of accuracy. This

was actually our expectation which stems from the nature of these techniques. Both logistic

regression and Decision trees are methods devised for linear problems, i.e. problems where

the decision boundary is linear (Ng. 2015, James et al. 2014).

Actually, Decision trees was the least performing algorithm based on accuracy. It is also
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very prone to overfitting. Therefore we conclude that they are not a suitable method for

poverty prediction. Random forests is a technique that reduces the overfitting problem of

Decision Trees. Hence, their results are more stable and accurate. Again, the trade-off is

their limited interpretability. Still, unlike Neural networks, the output for Random forests

provides also the importance of the predictors which could be highly appreciated in poverty

problems.

To conclude, we claim that Neural networks is the algorithm with the greatest predictive

ability. This was also supported when we fed the algorithms new data from Wave 2 (year

of collection 1997). However, with the results we obtained, we cannot claim that we have

created a proper model for poverty prediction. Some revision has to take place to introduce

more or better predictors. We recommend that further research takes place in this direction.
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7.1 Output from MCA in 1993

Call:

MCA(X = pover.mca, graph = FALSE, method = "Burt")

Eigenvalues
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7

Variance 0.075 0.012 0.009 0.008 0.007 0.007 0.005

% of var. 53.574 8.515 6.633 5.795 5.349 4.710 3.634

Cumulative % of var. 53.574 62.089 68.721 74.516 79.865 84.576 88.210

Dim.8 Dim.9 Dim.10 Dim.11 Dim.12

Variance 0.005 0.004 0.003 0.003 0.002

% of var. 3.244 2.797 2.151 1.888 1.711

Cumulative % of var. 91.454 94.251 96.402 98.289 100.000

Individuals (the 10 first)
Dim.1 ctr cos2 Dim.2 ctr cos2 Dim.3 ctr cos2

1 -0.636 0.023 0.274 -0.233 0.008 0.037 0.442 0.032 0.133

3 -0.777 0.035 0.543 0.201 0.006 0.036 -0.082 0.001 0.006

4 -0.351 0.007 0.315 -0.072 0.001 0.013 -0.291 0.014 0.216

6 -0.564 0.018 0.362 0.042 0.000 0.002 -0.083 0.001 0.008

8 -0.138 0.001 0.018 0.029 0.000 0.001 0.138 0.003 0.018

9 -0.850 0.041 0.423 -0.074 0.001 0.003 0.443 0.032 0.115

11 -0.491 0.014 0.133 -0.452 0.029 0.113 0.891 0.129 0.439

13 -0.132 0.001 0.020 -0.309 0.014 0.111 -0.314 0.016 0.114

15 -0.305 0.005 0.056 -0.095 0.001 0.005 0.291 0.014 0.051

17 -0.361 0.007 0.142 -0.115 0.002 0.015 -0.151 0.004 0.025

Categories (the 10 first)
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Dim.1 ctr cos2 v.test Dim.2 ctr cos2 v.test

grade sch -0.174 1.852 0.283 -13.957 -0.040 0.604 0.015 -3.178

higher sch 0.496 9.253 0.729 26.498 0.133 4.218 0.053 7.133

unschooled -0.349 2.799 0.266 -13.452 -0.113 1.850 0.028 -4.360

healthy 0.028 0.084 0.056 5.832 0.043 1.225 0.130 8.858

unhealthy -0.189 0.564 0.056 -5.832 -0.287 8.193 0.130 -8.858

insurance no -0.102 1.108 0.563 -21.658 -0.050 1.666 0.134 -10.587

insurance yes 0.721 7.840 0.563 21.658 0.352 11.787 0.134 10.587

surface.wtr no 0.098 0.984 0.447 18.360 -0.021 0.281 0.020 -3.912

surface.wtr yes -0.540 5.446 0.447 -18.360 0.115 1.556 0.020 3.912

tap.wtr no -0.104 1.104 0.477 -19.164 0.045 1.292 0.089 8.265

Dim.3 ctr cos2 v.test

grade sch -0.198 19.303 0.365 -15.856

higher sch 0.107 3.514 0.034 5.746

unschooled 0.349 22.653 0.266 13.465

healthy -0.072 4.465 0.369 -14.924

unhealthy 0.483 29.855 0.369 14.924

insurance no -0.036 1.139 0.072 -7.726

insurance yes 0.257 8.058 0.072 7.726

surface.wtr no -0.034 0.945 0.053 -6.329

surface.wtr yes 0.186 5.227 0.053 6.329

tap.wtr no 0.004 0.012 0.001 0.707

Categorical variables (eta2)
Dim.1 Dim.2 Dim.3

edu 0.418 0.080 0.481

health 0.019 0.113 0.363

insurance 0.269 0.161 0.097

surface.wtr 0.193 0.022 0.065

tap.wtr 0.211 0.098 0.001

creek.toilet 0.288 0.064 0.000

own.toilet 0.480 0.017 0.003

run.sewage 0.337 0.080 0.013

garbage.col 0.419 0.124 0.000

savings 0.254 0.190 0.016
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7.2 Binary Logistic Regression

glm(formula = pov ., family = binomial, data = train[, c(3:ncol(train))])

Deviance Residuals:
Min 1Q Median 3Q Max

-1.8230124 -0.6849053 -0.2269555 -0.0590958 2.9770558

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.31695304 0.24917956 5.28516 0.000000125597160705 ***

health -0.79441496 0.15409565 -5.15534 0.000000253175384587 ***

electricity -1.10989773 0.11247813 -9.86768 < 0.000000000000000222 ***

appliances -0.56299005 0.11434058 -4.92380 0.000000848800063512 ***

savings -1.91093293 0.29649406 -6.44510 0.000000000115526574 ***

educationelementary -0.46285176 0.15304578 -3.02427 0.0024923 **

educationhigher -3.00786205 0.39783074 -7.56066 0.000000000000040104 ***

employmentearning -0.02397278 0.21952407 -0.10920 0.9130411

employmentunemployed -0.52598955 0.28934233 -1.81788 0.0690825 .

consume meat 0.01907007 0.17456161 0.10925 0.9130078

read.newspaper -0.58007046 0.31325099 -1.85178 0.0640581 .

write.letter 0.32372304 0.31247196 1.03601 0.3001990

hardship 0.15820996 0.11954432 1.32344 0.1856885
—

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2762.3899 on 2694 degrees of freedom

Residual deviance: 2042.2696 on 2682 degrees of freedom

AIC: 2068.2696 newline

Number of Fisher Scoring iterations: 7
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7.3 Output from Decision tree

n= 2695

node) split n loss yval (yprob)

1) root 2695 563 0 (0.79109461967 0.20890538033)

2) electricity>=0.5 1911 229 0 (0.88016745160 0.11983254840) *

3) electricity< 0.5 784 334 0 (0.57397959184 0.42602040816)

6) educationhigher>=0.5 76 4 0 (0.94736842105 0.05263157895) *

7) educationhigher< 0.5 708 330 0 (0.53389830508 0.46610169492)

14) savings>=0.5 51 7 0 (0.86274509804 0.13725490196) *

15) savings< 0.5 657 323 0 (0.50837138508 0.49162861492)

30) health>=0.5 554 253 0 (0.54332129964 0.45667870036)

60) appliances>=0.5 264 101 0 (0.61742424242 0.38257575758) *

61) appliances< 0.5 290 138 1 (0.47586206897 0.52413793103)

122) read.newspaper>=0.5 95 41 0 (0.56842105263 0.43157894737) *

123) read.newspaper< 0.5 195 84 1 (0.43076923077 0.56923076923) *

31) health< 0.5 103 33 1 (0.32038834951 0.67961165049) *
* denotes terminal node

> printcp(fit.tree)

Classification tree:

rpart(formula = f, data = train, method = "class")

Variables actually used in tree construction:

appliances, educationhigher, electricity, health, read.newspaper, savings

Root node error: 563/2695 = 0.20890538

n= 2695

CP nsplit rel error xerror xstd

1 0.01642984 0 1.00000000 1.00000000 0.037485216

2 0.01000000 6 0.88632327 0.94316163 0.036676519
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7.4 Output from Random Forest

Call:

randomForest(formula = f, data = traintree, importance = TRUE, mtry =

round(sqrt(13)), ntree = 100, nodesize = 1)

Type of random forest: classification

Number of trees: 100

No. of variables tried at each split: 4

OOB estimate of error rate: 18.81%

Confusion matrix:
0 1 class.error

0 2002 130 0.06097560976

1 377 186 0.66962699822
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7.5 Data used in 1997

Table 4: Poverty descriptors in 1997
Dimension Variable name Values Frequency

Human

capital

Education grade school 3205

higher education 1975

unschooled 1208

Health healthy 5571

unhealthy 831

Insurance yes 791

no 5597

Physical

capital

Surface water yes 978

no 5410

Tap water yes 1007

no 5381

Creek toilet yes 1630

no 4758

Own toilet yes 1993

no 4395

Running sewage yes 2866

no 3522

Garbage collector yes 1435

no 4953

Vehicles yes 2015

no 4373

Financial assets Savings yes 1477

no 4911
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Table 5: Poverty predictors
Dimension Variable name Levels Frequency

Human

capital

Education - elementary 1-yes 2300

0-no 2193

Education - higher 1-yes 1208

0-no 3285

Healthy 1-yes 3693

0-no 800

Can write letter in Bahasa 1-yes 2970

0-no 1523

Can read newspaper in Bahasa 1-yes 3043

0-no 1450

Physical

capital

Has electricity 1-yes 3178

0-no 1315

Has household appliances 1-yes 3215

0-no 1278

Can buy meat 1-yes 898

0-no 3595

Financial

assets

Savings 1- yes 1080

0-no 3413

Employed 1-yes 3794

0-no 699

Unemployed 1-yes 411

0-no 4082

Household shocks Experienced hardship 1-yes 1323

0-no 3170
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7.6 Output from MCA in 1997

Call: MCA(X = mca97[, c(3:11)], graph = FALSE, method = "Burt")

Eigenvalues
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6

Variance 0.117 0.015 0.014 0.011 0.010 0.008

% of var. 61.819 7.810 7.162 6.011 5.395 4.435

Cumulative % of var. 61.819 69.629 76.792 82.803 88.198 92.633

Dim.7 Dim.8 Dim.9 Dim.10

Variance 0.005 0.004 0.004 0.002

% of var. 2.422 2.021 1.860 1.065

Cumulative % of var. 95.055 97.076 98.935 100.000

Individuals (the 10 first)
Dim.1 ctr cos2 Dim.2 ctr cos2 Dim.3 ctr cos2

1 -0.696 0.023 0.329 -0.448 0.027 0.136 -0.065 0.001 0.003

4 -0.159 0.001 0.043 -0.053 0.000 0.005 -0.393 0.022 0.264

7 -0.985 0.046 0.470 0.040 0.000 0.001 0.304 0.013 0.045

10 -0.468 0.010 0.138 -0.556 0.041 0.196 0.369 0.019 0.086

13 -0.923 0.040 0.602 -0.529 0.037 0.198 0.003 0.000 0.000

16 -0.696 0.023 0.329 -0.448 0.027 0.136 -0.065 0.001 0.003

19 -0.923 0.040 0.602 -0.529 0.037 0.198 0.003 0.000 0.000

22 -0.493 0.012 0.142 -0.061 0.000 0.002 0.504 0.035 0.149

25 -0.772 0.028 0.312 -0.059 0.000 0.002 0.541 0.041 0.153

28 -1.061 0.053 0.449 0.429 0.025 0.073 0.910 0.116 0.331
Categories (the 10 first)

Dim.1 ctr cos2 v.test Dim.2 ctr cos2 v.test

grade school -0.195 1.812 0.285 -15.282 -0.032 0.373 0.007 -2.466

higher edu 0.506 8.154 0.703 28.139 -0.150 5.671 0.062 -8.341

unschooled -0.429 2.934 0.280 -15.092 0.394 19.544 0.235 13.845

surface wtr 0 0.109 0.968 0.488 21.368 0.059 2.303 0.147 11.713

surface wtr 1 -0.683 6.094 0.488 -21.368 -0.374 14.494 0.147 -11.713

tap wtr 0 -0.365 6.622 0.757 -29.875 -0.090 3.171 0.046 -7.349

tap wtr 1 0.396 7.184 0.757 29.875 0.098 3.441 0.046 7.349

creek tlt 0 0.261 4.527 0.780 30.991 -0.001 0.000 0.000 -0.092

creek tlt 1 -0.596 10.329 0.780 -30.991 0.002 0.001 0.000 0.092

own tlt 0 -0.376 7.576 0.841 -33.447 0.005 0.010 0.000 0.423
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Dim.3 ctr cos2 v.test

grade school -0.257 27.165 0.496 -20.142

higher edu 0.196 10.539 0.105 10.889

unschooled 0.376 19.430 0.215 13.220

surface wtr 0 -0.042 1.240 0.072 -8.229

surface wtr 1 0.263 7.801 0.072 8.229

tap wtr 0 0.060 1.556 0.021 4.929

tap wtr 1 -0.065 1.688 0.021 -4.929

creek tlt 0 -0.012 0.079 0.002 -1.394

creek tlt 1 0.027 0.180 0.002 1.394

own tlt 0 -0.005 0.014 0.000 -0.487

Categorical variables (eta2)
Dim.1 Dim.2 Dim.3

education 0.396 0.279 0.598

surface wtr 0.217 0.183 0.095

tap wtr 0.424 0.072 0.034

creek tlt 0.457 0.000 0.003

own tlt 0.532 0.000 0.000

run sweage 0.351 0.016 0.011

garbage col 0.427 0.012 0.000

health 0.013 0.389 0.105

insurance 0.257 0.139 0.201
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