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Abstrakt v štátnom jazyku

KOŠÍK, Matúš: Viacfaktorové modely úrokových mier a prínos dodatočného faktora

[Diplomová práca], Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a

informatiky, Katedra aplikovanej matematiky a štatistiky; školiteľ: doc. RNDr. Beáta

Stehlíková, PhD., Bratislava, 2017.

Úrokové miery podliehajú množstvu vplyvov v súčasnej ekonomike. Modely short

rate sú populárnym nástrojom modelovania vývoja časovej štruktúry úrokových mier

a oceňovania derivátov. V posledných dekádach vzniklo mnoho modelov s rozličným

levelom komplexnosti. Komplexnosť však prichádza so stratou prehľadu a jednodu-

chosti riešenia. Venujeme sa CKLS short rate modelom s jedným, dvomi alebo tromi

nezávislými stochastickými faktormi. Analyzujeme výsledky aplikácie týchto modelov

na generované a aj reálne dáta. Cieľom je porovnanie týchto modelov na základe ich

schopnosti popisovať a predpovedať dáta.

Kľúčové slová: Úrokové miery, Short rate, CKLS model, Viacfaktorové modely,

Metóda priamok, Nelder-Mead optimalizácia.
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Abstract

KOŠÍK, Matúš: Multifactor models of interest rates and gain from an additional factor

[Master’s thesis],Comenius University in Bratislava, Faculty of Mathematics, Physics

and Informatics, Department of Applied Mathematics and Statistics; Supervisor: doc.

RNDr. Beáta Stehlíková, PhD., Bratislava, 2017.

There are many influences that determine development of interest rates in nowadays

economy. Short rate models are very popular tool of modelling term structure of interest

rates and pricing derivatives. Various models were created in last several decades with

various level of complexity. Complexity comes with price of losing tractability and the

results become harder to explain. We focus on CKLS short rate models with one, two

or three independent stochastic factors. We aim to analyse the results of application

of these models to simulated and real datasets. The goal is to compare these models

based on their ability to fit and predict data.

Keywords: Interest rates, Short rate, CKLS model, Multi-factor models, Method of

lines solution, Nelder-Mead optimization.
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Introduction

Introduction

Bond, one of the most common asset, is derivative of interest rate, meaning the price

of the bond depends on the underlying interest rate. Understanding of interest rate

is very desirable and modelling interest rate is important part of quantitative finance.

Various models were developed throughout the history, each more complex than the

previous one. The more complex models are able to capture wider range of interest rate

behaviours and often explain reality better. However the added complexity comes with

lower tractability of the model. Often analytical mathematics is no longer sufficient for

more complex models and numerical approach is needed.

In this paper we focus on short rate models with various number of independent

stochastic factors. These models estimate interest rates based on short rate, which is

modelled by stochastic factors. One-factor short rate model is considered as the basic

model. Multi-factor model uses more factors to describe short rate and is generally

much more complex model. The advantage is that each factor may represent different

influence on the interest rates.

In current global economy a single local event like elections can influence foreign

countries and global development. Many seemingly uncorrelated areas become connec-

ted through globalization. With that in mind, are simple short rate models sufficient to

describe the development of interest rates? Multi-factor models are better equipped to

simulate various influences at once, but is it worth the added difficulty? How big of an

improvement is the addition of another factor to the model? These are the questions

we aim to answer in this paper.
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TERM STRUCTURE MODELLING

1 Term structure modelling

Let us briefly introduce the theory behind modelling of term structures using stochas-

tic differential equations. There are many assumptions that these models require and

neglecting them can lead to misleading information or incorrect pricing. Theory gives

us much needed insight in this problem, which will be useful for model calibration later

on.

1.1 Term structure and short rate

Bonds are one of the most common and most traded securities on the market. Often

they represent safe and stable investment, which makes them desirable for many under-

takings. Bonds are customizable and various forms of bonds occurred throughout the

history. However, this study is focused on the simple bonds without coupon payments

- zero-coupon bonds. The issuer writes bonds with an expiration day - maturity, which

are then bought by investors by providing money to issuer. The issuer has bound him-

self to pay the same value back with some additional value upon the expiration day.

The additional value is usually predetermined and is called interest rate or yield. The

price of the bond depends on its interest rate and the interest rate depends on expira-

tion date and the probability of issuer’s inability to pay back - default. The dependency

of yields over time to expiration is called term structure of interest rates.

Relation between bond price and bond’s yield is described by formula

𝑃 (𝑡, 𝑇 ) = exp−𝑅(𝑡,𝑇 )(𝑇 −𝑡), (1)

where 𝑃 (𝑡, 𝑇 ) is the bond price, 𝑅(𝑡, 𝑇 ) is the interest rate of the bond and 𝑇 − 𝑡

represents time to bond’s maturity. From now on we will denote time to maturity by

𝜏 = 𝑇 − 𝑡. Taking logarithm of equation (1) leads to the formula for yields

𝑅(𝑡, 𝜏) = −𝑃 (𝑡, 𝜏)
𝜏

. (2)

Bonds are emitted with various maturities depending mostly on the current market

situation and the needs of the issuer. Many government bonds have maturity measu-

rable by decades, but there are also many short term investments. The shortest ma-

turity of money market investment is one day, for example EURIBOR overnight rate.
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1.2 Short rate models - One-factor models TERM STRUCTURE MODELLING

Obr. 1: Zero-coupon yield curve of United States government bonds. Source [11].

Short rate is defined as instantaneous interest rate. It is interest rate for infinitesimally

short time period. Mathematically it is defined as a limit

𝑟(𝑡) = lim
𝜏→0+

𝑅(𝑡, 𝜏), (3)

where 𝑟(𝑡) is short rate. In Figure 1 short rate would be depicted by intersection of

yield curve and Y-axis. Short rate is unobservable as the shortest traded maturity is

one day. The short rate can be either approximated by a short term yield like the

overnight rate or estimated by a model.

1.2 Short rate models - One-factor models

Modelling term structure of interest rate is subject of many studies as it is very useful for

predicting future development or even better understanding of the present development.

Various models and methods were created throughout the last decades. In this paper

we focus on short rate models, where the short rate is assumed to follow stochastic

differential equation (SDE)

𝑑𝑟 = 𝜈(𝑟, 𝑡)𝑑𝑡 + 𝜎(𝑟, 𝑡)𝑑𝑊, (4)

where 𝑑𝑊 is differential of Wiener process 𝑊 . Wiener process is stochastic process

where each increment of the process is independent and normally distributed with zero

11



1.3 Bond pricing TERM STRUCTURE MODELLING

Tabuľka 1: Table of basic short rate models and their stochastic differential equations.

Third column shows whether the modelled short rate needs to be positive and fourth column

whether the explicit solution exists. Table is based from [7].

Model SDE 𝑟𝑡 > 0 Explicit

Vasicek 𝑑𝑟𝑡 = 𝜅(𝜃 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 No Yes

CIR 𝑑𝑟𝑡 = 𝜅(𝜃 − 𝑟𝑡)𝑑𝑡 + 𝜎
√

𝑟𝑡𝑑𝑊𝑡 Yes Yes

Hull & White 𝑑𝑟𝑡 = 𝜅(𝜃𝑡 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 No Yes

CKLS 𝑑𝑟𝑡 = 𝜅(𝜃 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑟𝛾
𝑡 𝑑𝑊𝑡 Yes No

mean value 𝑊𝑡+𝑑𝑡 − 𝑊𝑡 ∼ 𝑁(0, 𝑑𝑡). Variable 𝜈(𝑟, 𝑡) denotes drift of the process, which

defines the trend of the process over time. Variable 𝜎(𝑟, 𝑡) stands for volatility of the

process, which defines the variance of the process and range of fluctuations around the

trend. The models differ mainly by different choices of drift or volatility variables. See

Table 1 for examples of basic short rate models and their corresponding SDEs.

In Table 1 the models are also divided by their two properties. From these four

models only Vasicek and Hull & White are able to model negative rates. Difference

between these two is the time dependency of model’s drift, in this case parameter 𝜃.

CKLS model (see [3]) is generalization of Vasicek and CIR model for any 𝛾, but there

is no closed form solution for bond price of CKLS model short rate.

There is common drift pattern in these models and it is called mean-reversion. Mean-

reverting drift ensures that the average short rate converges towards parameter 𝜃 in

the long term scale, while 𝜅 determines the speed of the convergence.

The CIR and CKLS model’s volatility terms depend on the value of short rate. The

volatility term is decreasing as the short rate is moving towards zero. Even if the short

rate would happen to be zero, the positive trend and zero volatility would only lead

to increase. Under specific conditions the zero short rate is unobtainable and we will

address this topic later in chapter 1.5.

1.3 Bond pricing

In this section we derive partial differential equation for bond price of one-factor short

rate model same as in [7]. Bond price 𝑃 depends on the the time 𝑡, time till expiration

12



1.3 Bond pricing TERM STRUCTURE MODELLING

𝜏 and short rate 𝑟𝑡. Short rate 𝑟𝑡 is defined as stochastic markovian process and if the

drift and volatility are ℱ𝑊
𝑡 -measurable, Itô lemma may be applied.

Lemma 1.1. Let 𝑋 be stochastic markovian process following

𝑑𝑋 = 𝜈(𝑥, 𝑡)𝑑𝑡 + 𝜎(𝑥, 𝑡)𝑑𝑊,

where W is Wiener process and 𝜈(𝑥, 𝑡) and 𝜎(𝑥, 𝑡) are ℱ𝑊
𝑡 -measurable. If 𝑓(𝑥, 𝑡) is

twice-differentiable transformation of process 𝑋, then the first differential of transfor-

med process is described

𝑑𝑓 = 𝛿𝑓

𝛿𝑥
𝑑𝑥 +

(︃
𝛿𝑓

𝛿𝑡
+ 1

2𝜎2(𝑥, 𝑡)𝛿2𝑓

𝛿𝑥2

)︃
𝑑𝑡.

Substituting 𝑥 = 𝑋 and 𝑑𝑥 = 𝑑𝑋 leads to

𝑑𝑓 =
(︃

𝛿𝑓

𝛿𝑡
+ 𝜇(𝑥, 𝑡)𝛿𝑓

𝛿𝑥
+ 1

2𝜎2(𝑥, 𝑡)𝛿2𝑓

𝛿𝑥2

)︃
𝑑𝑡 + 𝜎(𝑥, 𝑡)𝛿𝑓

𝛿𝑥
𝑑𝑊.

Similarly bond price 𝑃 is function of short rate, time and maturity 𝑃 (𝑟, 𝑡, 𝜏). Using

Itô lemma for 𝑥 = 𝑟 and 𝑓 = 𝑃 leads to

𝑑𝑃 =
(︃

𝛿𝑃

𝛿𝑡
+ 𝜇(𝑟, 𝑡)𝛿𝑃

𝛿𝑟
+ 1

2𝜎2(𝑟, 𝑡)𝛿2𝑃

𝛿𝑟2

)︃
⏟  ⏞  

𝜇B(r ,t)

𝑑𝑡 + 𝜎(𝑟, 𝑡)𝛿𝑃

𝛿𝑟⏟  ⏞  
𝜎B(r ,t)

𝑑𝑊, (5)

where 𝜇𝐵(𝑟, 𝑡) and 𝜎𝐵(𝑟, 𝑡) denotes drift and volatility of the process for the bond price.

Consider a portfolio comprised of one bond with maturity 𝜏1 and Δ bonds with

maturity 𝜏2. The total value of portfolio is

Π = 𝑃 (𝑟, 𝑡, 𝜏1) + Δ𝑃 (𝑟, 𝑡, 𝜏2).

Change in the portfolio value

𝑑Π = 𝑑𝑃 (𝑟, 𝑡, 𝜏1) + Δ𝑑𝑃 (𝑟, 𝑡, 𝜏2)

= (𝜇𝐵(𝑟, 𝑡, 𝜏1) + Δ𝜇𝐵(𝑟, 𝑡, 𝜏2)) 𝑑𝑡 + (𝜎𝐵(𝑟, 𝑡, 𝜏1) + Δ𝜎𝐵(𝑟, 𝑡, 𝜏2)) 𝑑𝑊

This equation holds for any given Δ and taking

Δ = −𝜎𝐵(𝑟, 𝑡, 𝜏1)
𝜎𝐵(𝑟, 𝑡, 𝜏2)

eliminates the stochastic term 𝑑𝑊 and thus change of portfolio value 𝑑Π becomes

deterministic. At the same time due to no-arbitrage principle, yield of a riskless portfolio

13



1.4 Risk-neutral probability measure TERM STRUCTURE MODELLING

Π has to be equal to riskless instantaneous short rate 𝑟, i.e. 𝑑Π = 𝑟Π𝑑𝑡. This leads to

equation

𝜇𝐵(𝑟, 𝑡, 𝜏1) − 𝜎𝐵(𝑟, 𝑡, 𝜏1)
𝜎𝐵(𝑟, 𝑡, 𝜏2)

𝜇𝐵(𝑟, 𝑡, 𝜏2) = 𝑟Π.

Substituting Π into equation gives

𝜇𝐵(𝑟, 𝑡, 𝜏1) − 𝜎𝐵(𝑟, 𝑡, 𝜏1)
𝜎𝐵(𝑟, 𝑡, 𝜏2)

𝜇𝐵(𝑟, 𝑡, 𝜏2) = 𝑟

(︃
𝑃 (𝑟, 𝑡, 𝜏1) + −𝜎𝐵(𝑟, 𝑡, 𝜏1)

𝜎𝐵(𝑟, 𝑡, 𝜏2)
𝑃 (𝑟, 𝑡, 𝜏2)

)︃
,

which implies

𝜇𝐵(𝑟, 𝑡, 𝜏1) − 𝑟𝑃 (𝑟, 𝑡, 𝜏1)
𝜎𝐵(𝑟, 𝑡, 𝜏1)

= 𝜇𝐵(𝑟, 𝑡, 𝜏2) − 𝑟𝑃 (𝑟, 𝑡, 𝜏2)
𝜎𝐵(𝑟, 𝑡, 𝜏2)

.

This equality holds for any 𝜏1 and 𝜏2, therefore the ratio on each side of the equation

does not depend on the maturity. The ratio is called market price of risk

𝜆(𝑟, 𝑡) = 𝜇𝐵(𝑟, 𝑡, 𝜏) − 𝑟𝑃 (𝑟, 𝑡, 𝜏)
𝜎𝐵(𝑟, 𝑡, 𝜏) (6)

and it describes the added value for taking risk of the investment. Rational investor

would never invest in riskier assets unless they provide higher yield. Substituting 𝜇𝐵

and 𝜎𝐵 from (5) into (6) gives

𝛿𝑃

𝛿𝑡
+ (𝜇(𝑟, 𝑡) − 𝜆(𝑟, 𝑡)𝜎(𝑟, 𝑡))𝛿𝑃

𝛿𝑟
+ 1

2𝜎2(𝑟, 𝑡)𝛿2𝑃

𝛿𝑟2 − 𝑟𝑃 = 0. (7)

This partial differential equation (PDE) for bond price 𝑃 is core foundation of this

paper. The zero-coupon bond’s payoff is its face value when it reaches its maturity

date. Without consequences we normalize the payoff to a unit 1 and use it as an initial

condition for the PDE.

𝑃 (𝑟, 0) = 1 (8)

1.4 Risk-neutral probability measure

In real world each asset is subject to risk, even government bonds to some extent. Real

probability measure does not disregard these risks, but pricing assets becomes difficult.

Each asset has different risks and each investor differently averse to risk. It is much

easier to price assets in risk-neutral probability measure and then add the cost of risk.

Similarly as we priced the bonds in previous section. In last step we introduced market

price of risk to the equation, which basically added the cost of risk.
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1.4 Risk-neutral probability measure TERM STRUCTURE MODELLING

The drift 𝜇 in the PDE (7) is in real probability measure, thus the market price

of risk needs to be subtracted. This means that some form of market risk is present.

Our goal is the estimation of drift and volatility, while the bond prices are observable.

Therefore the unknown market price of risk makes the estimation more difficult.

Defining a risk-neutral drift and volatility would lead to much more convenient PDE.

Under risk-neutral probability measure each asset is priced based on discounted future

payoffs, while the discount factor is equal to the risk free interest rate. Under this

measure the price does not reflect any underlying risk and thus riskier assets may have

same price as safer assets. This is equivalent to the existence of no-arbitrage principle,

since two differently priced assets with same payoff would lead to arbitrage.

So to decrease the difficulty of estimation it is convenient to formulate PDE with

risk-neutral parameters

𝛿𝑃

𝛿𝑡
+ ̃︀𝜇(𝑟, 𝑡)𝛿𝑃

𝛿𝑟
+ 1

2𝜎2(𝑟, 𝑡)𝛿2𝑃

𝛿𝑟2 − 𝑟𝑃 = 0, (9)

where ̃︀𝜇(𝑟, 𝑡) is risk-neutral drift. Instead of subtracting the market price of risk from

the real drift 𝜇, we introduce risk-neutral drift ̃︀𝜇. The risk-neutral drift will be different

as it will assume no risks are present. Consider real drift 𝜇 of CKLS model

𝜇(𝑟, 𝑡) = 𝜅(𝜃 − 𝑟),

where both 𝜅, 𝜃 are real parameters. Then risk-neutral drift ̃︀𝜇 is

̃︀𝜇(𝑟, 𝑡) = ̃︀𝜅(̃︀𝜃 − 𝑟),

where ̃︀𝜅, ̃︀𝜃 are risk-neutral parameters. To avoid confusion we will use 𝜅(𝜃 − 𝑟) as risk-

neutral drift for the rest of this paper and when changing to real probability measure

we add the market price of risk to the risk-neutral drift 𝜅(𝜃 − 𝑟) + 𝜆(𝑟, 𝑡)𝜎(𝑟, 𝑡).

Using PDE (9) estimation of risk-neutral parameters can be done based on observed

bond prices. The advantage, compared to using PDE(7), is that we do not have to

estimate market price of risk. The disadvantage is that the resulting short rate model

will not produce correct predictions. The observations will be correctly estimated, but

the predictions have to be done in real probability measure. Later we show how to

estimate market price of risk and use risk-neutral drift to predict future data.
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1.5 Fichera theory

Recall Table 1 and the drift of CKLS model. Together with CIR model the are restricted

to positive short rate only. Volatility decreases as short rate decreases and the mean-

reverting drift term becomes more dominant and push the short further from zero.

Even if short rate reaches zero, the SDE for short rate simplifies to only 𝑑𝑟 = 𝜅𝜃𝑑𝑡,

where the right hand side is positive. Nevertheless, under specific conditions there is

zero probability that the random process reaches zero.

For example consider CIR model, where the coefficient 𝛾 determining the power of

short rate is 0.5. If the short rate randomly decreases towards zero, the volatility of

next random „jump“ decreases too, since it depends on the value of current short rate.

Unless the „jumps“ are too big, the zero remains unreachable. If the condition

2𝜅𝜃 > 𝜎2 (10)

is met, it can be shown, that the probability of zero short rate is zero (Feller condition).

In previous section we derived PDE for bond price (9) with its initial condition.

However, we haven’t mentioned any boundary conditions for the PDE. Behaviour of

bond price at 𝑟 = 0 and 𝑟 = ∞, which are the boundaries of short rate, is not easily

described. There is no clear indication how the bond price behaves at the bounda-

ries. It becomes even harder for multi-factor models, where the boundaries are more

complicated and the behaviour is even less clear. That is why we need Fichera theory.

Fichera theory focuses on the question of boundary conditions for parabolic PDE,

which degenerate at a boundary. The parabolic PDE for bond price degenerates at

boundary 𝑟 = 0, since it becomes hyperbolic. Under specific conditions the boundary

condition may be obsolete and thus does not need to be described. On the other hand, if

the condition is violated, the boundary conditions must be supplied. The core principle

of the theory is based on whether there is an inflow or an outflow at the boundary.

Naturally inflow boundaries needs to be described by the boundary conditions, since

it will directly impact the behaviour in the interior of the boundaries. To determine

inflow and outflow boundaries one has to calculate Fichera function.

In article [1] authors describe the basics of the theory and propose its application
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in short rate models. The Fichera function for one-factor model reads

𝑏(𝑟) = 𝛽(𝑟, 𝜏) − 𝛿𝛼(𝑟, 𝜏)
𝛿𝑟

, (11)

where 𝛽(𝑟, 𝜏) and 𝛼(𝑟, 𝜏) are the terms in front of spatial derivatives 𝛿𝑃
𝛿𝑟

and 𝛿2𝑃
𝛿𝑟2 in PDE

for bond price (9). Specially for CKLS model 𝛽(𝑟, 𝜏) = 𝜅(𝜃 − 𝑟) and 𝛼(𝑟, 𝜏) = 1
2𝜎2𝑟2𝛾.

Substituting in (11) the Fichera function for CKLS model reads

𝑏(𝑟) = 𝜅(𝜃 − 𝑟) − 𝜎2𝛾𝑟2𝛾−1. (12)

The Fichera function at 𝑟 → 0+ determines whether the boundary condition are needed.

Based on the sign two cases are possible:

∙ if lim𝑟→0+ 𝑏(𝑟) > 0 the outflow is present at the boundary and we must not define

boundary condition.

∙ if lim𝑟→0+ 𝑏(𝑟) < 0 the inflow is present and we need to supply boundary condi-

tion.

Calculating the limit of (12) for 𝑟 → 0+ leads to three possible cases:

∙ if 𝛾 = 0.5 ⇒ Boundary conditions are not needed if 𝜅𝜃 − 1
2𝜎2 > 0.

∙ if 𝛾 > 0.5 ⇒ Boundary conditions are not needed if 𝜅𝜃 > 0.

∙ if 0 < 𝛾 < 0.5 ⇒ Boundary condition are needed always, since the lim𝑟→0+ 𝑏(𝑟) =

−∞.

Not supplying boundary conditions when they are needed leads to incorrect solution

of PDE and thus incorrect bond pricing. Since we want to avoid that, we need to follow

Fichera theory. At the same time, we are unable to provide boundary conditions and

thus we imply restrictions of parameters such that no boundary conditions are needed.

For example 𝛾 < 0.5 violates these restrictions and therefore we are limited only to

CKLS models with 𝛾 > 0.5. Each time we estimate parameters of CKLS model we

need to check if they satisfy all restrictions mentioned above.
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1.6 Multi-factor models

In section 1.2 we described one-factor short rate models. One-factor models are quite

simple and the parameters are easily explainable. However, one-factor models often

over-simplify the problem leading to poor results.

Possible solution are multi-factor short rate models. There are various types of the

multi-factor models, but the general idea is to add another random process. Each

random process counts as one factor, hence the name. In addition to short rate process,

models can have random process to describe volatility, drift or another short rate. For

example, multi-factor models are widely used for convergence models, when one interest

rates is converging towards another and each one is modelled with a different factor

(more information in [10]).

In this paper we focus on models where short rate is described as sum of multiple

factors. Each factor is defined as a CKLS short rate with different parameters and

Wiener processes.

Consider a two-factor CKLS model

𝑑𝑟1 = 𝜅1(𝜃1 − 𝑟1)𝑑𝑡 + 𝜎1𝑟
𝛾1
1 𝑑𝑊1

𝑑𝑟2 = 𝜅2(𝜃2 − 𝑟2)𝑑𝑡 + 𝜎2𝑟
𝛾2
2 𝑑𝑊2,

where 𝑐𝑜𝑟(𝑊1, 𝑊2) = 𝜌.

The bond price 𝑃 (𝑟1, 𝑟2, 𝑡, 𝜏) now depends on each factor 𝑟1, 𝑟2, time 𝑡 and maturity

𝜏 . Itô lemma (1.1) is applicable also when process 𝑑𝑋 is multivariate, as is in the case

of multi-factor models. The PDE of bond price is constructed similarly as for one-

factor model - using Itô lemma and eliminating randomness. To eliminate randomness

one has to consider a portfolio of three bonds with various maturities and volumes.

Under specific volumes of these bonds, the stochastic term gets eliminated. Applying

no-arbitrage principle the PDE reads

𝛿𝑃

𝛿𝑡
+ (𝜇1 − 𝜆1Σ1)

𝛿𝑃

𝛿𝑟1
+ (𝜇2 − 𝜆2Σ2)

𝛿𝑃

𝛿𝑟2
+ 𝜌Σ1Σ2

𝛿2𝑃

𝛿𝑟1𝛿𝑟2
+

+1
2Σ2

1
𝛿2𝑃

𝛿𝑟2
1

+ 1
2Σ2

2
𝛿2𝑃

𝛿𝑟2
2

− 𝑟1𝑃 − 𝑟2𝑃 = 0,

where 𝜇1, 𝜇2 are drifts of corresponding factors, Σ1, Σ2 volatilities and 𝜆1, 𝜆2 market

prices of risk of each factor.
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It can be seen from the PDE, that if the factors are independent 𝜌 = 0, the bond

price is product of prices calculated for each of the model separately. Similarly after

taking logarithm, the total yield is sum of yields calculated separately for each model:

𝑃 = 𝑃1𝑃2 𝑅 = 𝑅1 + 𝑅2,

where 𝑃1, 𝑃2 are prices calculated as for one-factor model and 𝑃 is price of bonds

for two-factor model with independent factors. The bond price 𝑃1 satisfies one-factor

PDE (7) with parameters 𝜅1, 𝜃1, 𝛾1, 𝜎1. Similarly 𝑃2 with parameters of second factor.

Therefore Same with the yields 𝑅1, 𝑅2. This makes calculating bond price easier, since

instead of solving different and more complicated PDE, it is possible to solve bond

price for each factor using the easier PDE (7) and summing up results. Problem of

solving bond price PDE of model with any number of factors reduces to problem of

solving bond price PDE of one-factor CKLS model.
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2 Theory in practice

In previous section we briefly introduced basic theory and terminology needed for our

work with the short rate models. Purpose of this work is to compare various models

and naturally, the obvious comparison is based on how well the models describe the

real data. Many factors influence the fit of the model such as model quality or correct

model calibration and parameters estimation. As a building stone of our practice, we

chose CKLS one-factor short rate model, which is one of the more sophisticated models

and basically includes CIR and Vasicek model.

Since we would like to objectively compare various models, we need to design a robust

algorithm, which could correctly calibrate not only CKLS model, but also multi-factor

models. This way we avoid using various methods for various models, which would lead

to subjective comparison.

The final algorithm must be able to solve each of these tasks:

∙ Calculate the correct bond price for given parameters based on the PDE.

∙ Evaluate the measure of difference between the real and estimated yield curve

for given parameters.

∙ Effectively optimize parameters with aim to minimise the measure of difference.

∙ Predict future short rate and yields based on the model with optimized parame-

ters.

In following chapters we describe each of these tasks and propose our solution, while

demonstrating each used method on showcase data. The showcase data are theoretically

ideal for CKLS model and therefore the base problem, our algorithm should easily solve.

The data are simulated based on CKLS process with known parameters.

2.1 Bond pricing

Each short rate model is representing bond prices differently. Models like CKLS define

partial differential equation (PDE) for bond price, which is simple transformation of

interest rate (2). Closed form solution of the PDE is available only for Vasicek and CIR

model. As for CKLS model, other methods must be used, often leading to approximate
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solutions. Recall PDE for bond price (7). Later we show that under risk-neutral pro-

bability measure the parameter 𝜆 is part of the risk-neutral drift. In other words the

PDE can be rewritten

𝑃𝜏 (𝑟, 𝜏) = 𝜅(𝜃 − 𝑟)𝑃𝑟(𝑟, 𝜏) + 1
2𝜎2𝑟2𝛾𝑃𝑟𝑟(𝑟, 𝜏) − 𝑟𝑃 (𝑟, 𝜏) (13)

𝑃 (𝑟, 0) = 1, (14)

where the parameters of CKLS model 𝜅, 𝜃, 𝛾, 𝜎 are risk-neutral parameters. The bond

price 𝑃 (𝑟, 𝜏) depends on time left until maturity of the bond 𝜏 and on the actual value

of short rate 𝑟. The initial condition is in reality a terminal condition described by

bond nominal value. The important thing to notice is the absence of the boundary

conditions. The boundaries would be very useful, but they are very hard to construct.

The behaviour of short rate at the boundaries is not clear, even less in case of multi-

factor models. We either find a way to construct the boundaries or find solution without

them. Already mentioned Fichera theory in section 1.5 proposes conditions, under

which the lower boundary is reached with zero probability and therefore makes the

boundary condition mathematically redundant. Basically the solution has to satisfy

the Fichera conditions.

There are many available numerical tools for solving similar PDE. The basic is

the method of finite difference. The core of the method is approximating differentials

with finite differences and using discretization of time and spatial variable - short

rate variable. The solution is then obtained for defined discrete set of time and space

variables. Using both forward and backward differences as differential approximates is

known as Crank-Nicholson method and has higher degree of precision, but is costly in

terms of computing power.

Upgrade of the basic finite difference method is Method of lines using Exponential

time integration (ETI) method described in [8]. It still uses differences for spatial

differential approximation and discretization of spatial variable. This part is common

with the basic method and leads to ordinary differential equation

𝑃𝜏 (𝑟, 𝜏) = 𝐴𝑃 (𝑟, 𝜏), (15)

where 𝐴 is tridiagonal matrix and 𝑃𝜏 is time differentiation of bond price. However,

instead of approximating time differential the method simply solves ordinary differential
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equation

𝑃 (𝜏, 𝑟) = 𝑒𝐴𝜏 𝑃 (0, 𝑟). (16)

For the solution the term 𝑒𝐴𝜏 is needed and for the calculation following definition

is essential.

Definition 2.1. Let 𝑋 be 𝑛 × 𝑛 matrix. Exponential matrix is 𝑛 × 𝑛 matrix defined by

infinite series

𝑒𝑋 =
∞∑︁

𝑘=0

𝑋𝑘

𝑘! , (17)

while 𝑋0 = 𝐼.

Task of solving the PDE breaks down to calculating infinite series defined by (17).

Fortunately algorithm for such infinite series is available in R package expm, which uses

several methods including Higham’s algorithm described in his book [5]. Thanks to this

package implementing ETI method into code is very easy. Understandably calculation

of such series can be computation power demanding especially for large matrices 𝐴,

but using basic finite difference method like Crank-Nicholson proves to be much more

time consuming. In case the expm takes too much time, authors in article [8] propose

simplified approximation of infinite series and even less demanding algorithm.

Implementation of ETI method consists of two steps:

∙ Construct fully-discretized space and matrix 𝐴

∙ Compute 𝑒𝐴𝜏 with expm.

As mentioned before, the implementation of expm is straightforward with the built

in functions. For any given matrix 𝐴 and maturity 𝜏 the expm() function returns a

vector of bond prices, where each price corresponds to short rate from the discretized

set.

The first step can be more troublesome. In addition to (13) and (14) we need to

know the boundary behaviour of bond price 𝑃 (𝑟, 𝜏). Since we are using CKLS model,

the short rate is restricted by model to interval 𝑟 ∈ ⟨0, inf⟩. Practically we bound the

short rate to interval 𝑟 ∈ ⟨0, 𝑟𝑚𝑎𝑥⟩ since we are not interested in cases with too high

short rate, which are useless in reality. Nevertheless, the parameter 𝑟𝑚𝑎𝑥 should still be

large enough to represent infinity and shall be adjusted according to data. Using step
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of length ℎ, discrete set for space variable is created with length 𝑁 , where 𝑁 and ℎ is

chosen to match 𝑟𝑁 = 𝑟𝑚𝑎𝑥. The choice of parameter ℎ greatly impacts precision and

time consumption of expm. Let us denote discrete short rate points and bond prices

corresponding to each of those points for any given maturity 𝜏 :

𝑟 = {𝑟𝑖|𝑟𝑖 = 𝑖ℎ, 𝑖 = 0, 1, 2, ..., 𝑁} 𝑃 (𝑟, 𝜏) = {𝑃𝑖|𝑃𝑖 = 𝑃 (𝑟𝑖, 𝜏), ∀𝜏}.

Method of finite difference is using the PDE, its initial and boundary conditions to

approximate solution for any point in time and space. Initial and boundary conditions,

if we know them, serve as known building blocks from which we can derive solution for

points around them using the PDE with differential approximations. Iteratively one

can derive solution for whole set of points providing image about the solution. The

differential approximations are given by central difference formulas:

𝑃𝑟(𝑟𝑖, 𝜏) ≈ 𝑃𝑖+1 − 𝑃𝑖−1

2ℎ
, ∀𝑖 = 1, 2, ..., 𝑁 − 1 (18)

𝑃𝑟𝑟(𝑟𝑖, 𝜏) ≈ 𝑃𝑖+1 − 2𝑃𝑖 + 𝑃𝑖−1

ℎ2 , ∀𝑖 = 1, 2, ..., 𝑁 − 1 (19)

If Fichera conditions are satisfied, the boundaries are redundant. However, there

still have to be something happening on boundaries 𝑃0 = 𝑃 (𝑟0, 𝜏) and 𝑃𝑁 = 𝑃 (𝑟𝑁 , 𝜏).

Inspired by [4] we describe these bounds based on the values of 𝑃𝑖 = 𝑃 (𝑟𝑖, 𝜏), 𝑖 =

1, 2, ..., 𝑁 − 1, which are known from the PDE. In other words, we apply the behaviour

of the PDE also to the boundaries. To obtain sufficient approximations of the spatial

differentials on boundaries, we use formulas derived from Taylor series expansion. De-

tailed guide and theory is well studied for example in [6] in the first chapter. Derived

formulas needed for boundary behaviour are

𝑃𝑟(𝑟0, 𝜏) ≈ −3𝑃0 + 4𝑃1 − 𝑃2

2ℎ
(20)

𝑃𝑟(𝑟𝑁 , 𝜏) ≈ 3𝑃𝑁 − 4𝑃𝑁−1 + 𝑃𝑁−2

2ℎ
(21)

𝑃𝑟𝑟(𝑟𝑁 , 𝜏) ≈ 2𝑃𝑁 − 5𝑃𝑁−1 + 4𝑃𝑁−2 − 𝑃𝑁−3

ℎ2 . (22)

All three approximation formulas have precision of order 𝑂(ℎ2) and for higher accuracy

longer Taylor series expansion is needed.

Combining (18) and (19) with the PDE (13) gives

𝑃𝜏 (𝑟𝑖, 𝜏) = 𝜅(𝜃 − 𝑟𝑖)
𝑃𝑖+1 − 𝑃𝑖−1

2ℎ
+ 1

2𝜎2𝑟2𝛾
𝑖

𝑃𝑖+1 − 2𝑃𝑖 + 𝑃𝑖−1

ℎ2 − 𝑟𝑖𝑃𝑖, ∀𝑖 = 1, ..., 𝑁 − 1.

(23)
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This system of linear equations forms core rows of matrix 𝐴 giving tridiagonal matrix

𝐴* = 1
2ℎ2 𝜎2𝑟2𝛾𝑡𝑟𝑖𝑑𝑖𝑎𝑔(1, −2, 1) + 1

2ℎ
𝜅(𝜃 − 𝑟)𝑡𝑟𝑖𝑑𝑖𝑎𝑔(−1, 0, 1) − 𝑟𝐼, (24)

where 𝐼 is identity matrix and 𝐴* represents matrix 𝐴 without first and last row, where

the boundary behaviour has to be defined by (20), (21) and (22). Next two equations

define first and last row of matrix 𝐴.

𝑃𝜏 (0, 𝜏) = 𝜅𝜃
−3𝑃0 + 4𝑃1 − 𝑃2

2ℎ
(25)

𝑃𝜏 (𝑟𝑁 , 𝜏) = 1
2𝜎2𝑟2𝛾

𝑁

2𝑃𝑁 − 5𝑃𝑁−1 + 4𝑃𝑁−2 − 𝑃𝑁−3

ℎ2

+ 𝜅(𝜃 − 𝑟𝑁)3𝑃𝑁 − 4𝑃𝑁−1 + 𝑃𝑁−2

2ℎ
− 𝑟𝑁𝑃𝑁

(26)

All approximations of differentials are second order accurate and thus precision of

this procedure should be no less than 𝑂(ℎ2). However, accuracy of the whole method

depends also on precision of solving ordinary differential equation (15), which depends

on spatial step ℎ.

Either we use the Crank-Nicholson finite difference method, where the principle is

similar, but with time discretization and the resulting precision will depend also on the

length of time step. Or we proceed with ETI method, which is much faster.

The algorithm for ETI method for given parameters 𝜅, 𝜃, 𝛾 and 𝜎 follows:

1. Perform discretization of interval < 0, 𝑟𝑚𝑎𝑥 > into 𝑁 points with spatial spacing

ℎ.

2. Construct the inside elements of matrix 𝐴 using (24).

3. Add first and last row of matrix 𝐴 based on (25) and (26).

4. Calculate value of Fichera function. This is optional, but lets us know when the

boundaries become incorrect.

5. With matrix 𝐴, maturity (e.g. 1 year) and terminal condition (bond’s nominal

value or simply 1 as a unit nominal value) calculate (16) using exponential matrix

expm().

6. For given short rate 𝑟 find the two closest 𝑟𝑖 from the spatial discretization and

interpolate between corresponding bond prices.
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7. Transform bond price to yield by relation (2).

The input of this algorithm are the parameters of the CKLS model𝜅, 𝜃, 𝛾, 𝜎, maturity

𝜏 , short rate 𝑟 and numerical parameters of the spatial discretization ℎ, 𝑟𝑚𝑎𝑥. The

interpolation is done by R function approx(), which performs linear interpolation and

is very fast.

To test which of the methods is better, we created simple experiment with simu-

lation. For CIR model exact solution of the price 𝑃 (𝑟, 𝜏) is known and therefore CIR

model is suitable to test both numerical methods. Accuracy is not the only concern.

During optimization this pricing procedure has to run countless times, so the proce-

dure must be as fast as possible. Following Table 2 shows comparison between exact

solution, ETI method and Crank-Nicholson method for selected points of short rate

and maturity equal to 5 years.

r Exact P Error expm Error CN

0.000 0.8819199 4.216906e-07 3.239927e-05

0.065 0.7838823 2.994203e-07 3.205034e-05

0.195 0.6192903 1.495321e-06 3.026675e-05

0.260 0.5504477 1.888429e-06 2.910039e-05

0.455 0.3865282 2.440998e-06 2.512872e-05

Tabuľka 2: Comparison of exact CIR price and prices obtained from ETI or Crank-Nicholson

numerical methods for selected points of short rate.

Of course Crank-Nicholson method in Table 2 uses time step 0.001 and same spatial

spacing as ETI method. Taking smaller time step would result to higher accuracy, but

also more time consumption, which is already much higher than with ETI method as

we can in Table 3.

ETI CN𝑎 CN𝑏

Time step [years] - 0.1 0.0001

Avg. error 1.531e-06 3.035e-03 1.618e-06

Max error 2.465e-06 3.227e-03 4.775e-06

Time elapsed [s] 0.0205 0.0234 20.1985

Tabuľka 3: Comparison of ETI and Crank-Nicholson methods. Error is averaged over all

observed short rate points and time elapsed is averaged by repeating the procedure multiple

times.
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Obr. 2: Dependence of precision on spatial step ℎ.

This experiments confirms the superiority of ETI method over basic finite difference

method. Under same conditions ETI performs with higher precision and less time

consumption. To match ETI’s precision, Crank-Nicholson method would need more

than 20 seconds. On the other hand to match ETI’s speed, Crank-Nicholson would be

1000 times less accurate.

It is smart to know the effect of the numerical parameters like ℎ and 𝑟𝑚𝑎𝑥 on the

whole procedure. In Figure 2 is plotted dependence of average precision and maximum

error on choice of spatial step ℎ. Naturally smaller ℎ gives more accurate results, but

the time consumption rises non-linearly (see Figure 3). We can observe unexpected

slight rise of maximal error for smaller ℎ, which is probably caused by the change in

source of the maximum error, for example from one boundary to another.

The parameter 𝑟𝑚𝑎𝑥 is closely connected with ℎ, so to separate the effect of ℎ, we

always take ℎ = 𝑟𝑚𝑎𝑥/100 for all values of 𝑟𝑚𝑎𝑥 we tested. The ℎ is different, but the

number of points in spatial discretization remains the same. In Figure 4 we see that the

optimal choice of 𝑟𝑚𝑎𝑥 is around 0.2, which could be explained as a compromise between

satisfying large enough bound to practically represent infinity and small enough spatial

discretization. Choosing too small 𝑟𝑚𝑎𝑥 offsets the solution, because doing so inputs
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Obr. 3: Dependence of time consumption on spatial step ℎ.

Obr. 4: Dependence of precision on spatial bound 𝑟𝑚𝑎𝑥.

initial error into the boundary, which by nature of the PDE diffuses to whole solution.

The deciding factor for choosing correct 𝑟𝑚𝑎𝑥 is to fit the data correctly. Parameter 𝑟𝑚𝑎𝑥

needs to be few times bigger than parameter 𝜃, because otherwise there is high chance
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the short rate will exceed these bounds. Same with parameter 𝜎, which represents the

volatility of short rate. Too big volatility can lead to significant jumps in short rate,

which can easily jump above the bound 𝑟𝑚𝑎𝑥. Therefore in case of incorrect pricing it

is important to take larger 𝑟𝑚𝑎𝑥 to prevent it. In Figure 5 the time elapsed fluctuates

around the 0.025 seconds and does not appear to be dependent on 𝑟𝑚𝑎𝑥.

Obr. 5: Dependence of time consumption on spatial bound 𝑟𝑚𝑎𝑥.

Thanks to ETI method we are able to effectively solve PDE for any parameters that

satisfy condition from Fichera theory. It is important to correctly choose numerical

parameters 𝑟𝑚𝑎𝑥 and ℎ to prevent incorrect solutions. The output of the method is

vector of prices 𝑃𝑖 for each short rate 𝑟𝑖 from spatial discretization. From these we

can simply interpolate for any value of short rate, which is not directly present in the

discretization.

2.2 Parameter optimization

In previous section we described method to calculate bond price for given parameters

𝜅, 𝜃, 𝛾 and 𝜎. In reality these parameters are unknown, but they can be estimated from

data about term structures.

There is no general or standard approach to calibration of short rate models. For
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simpler models, such as Vasicek or CIR, it is possible to derive the probability distri-

bution of the short rate processes and use method of maximum likelihood to estimate

parameters. Other estimation techniques may be based on methods of moments, where

the estimation uses the information about the statistical moments of random variable,

in this case short rate. For example since it is mean-reverting process, the first moment

- mean value can be used. Even more complex statistical tools are used for estimation

like Kalman filter, which has the advantage of modelling both current term structure

and the dynamics of the rates. One of the simpler methods is basic regression, in other

words optimizing the parameters so estimated yield curves fit real dataset as much as

possible. More information regarding these methods and their use for term structure

modelling can be read in thesis [9].

Our goal is to compare various models and for that we need a versatile calibration

method, which is able to calibrate more than just specific model. This motivation led us

to use regression method, since it does not require knowledge of probability distribution

and is able to estimate even multi-factor models.

To find the optimum one must first be able to evaluate the optimality, the goodness

of the fit. This evaluation must capture differences between estimated and observed

yield curve and its dynamics over time. Standard 𝐿2 regression uses sum of square

residuals, which corresponds to searching for mean value within the data. We use same

principle, except we have to capture both residuals in yield curves and residuals in

development over measured time period. Let us define the function to evaluate the

goodness of fit as a loss function 𝐹 equal

𝐹 = 1
𝑚𝑛

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑤𝑖𝑗(𝑅𝑒𝑠𝑡(𝜏𝑗, 𝑟𝑖) − 𝑅𝑟𝑒𝑎𝑙
𝑖𝑗 )2, (27)

where 𝑚 is the number of observed maturities, 𝑛 number of observed time points and

𝑤𝑖𝑗 constants representing weights of each residuals. For example, if we want to fit

long-term rates, we can use weights 𝑤𝑖𝑗 = 𝜏𝑗.

The objective is to minimize the loss function by changing 𝑅𝑒𝑠𝑡, which is done by

changing parameters 𝜅, 𝜃, 𝛾 and 𝜎. These parameters are technically restricted only by

condition of non-negativity, but in real world some values are unrealistic. Using common

sense it is easy to restrict these parameters, which can sometimes prevent cases when the

optimization diverges. Implementing these restrictions for parameters is quite simple
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using penalization function. Penalization function checks each restriction and returns

value, which is then added to the objective function. For example restriction 𝛾 > 0.5

could be evaluated in form Λ𝑚𝑖𝑛(0, 𝛾 − 0.5)2, where Λ is coefficient of strictness of the

penalization. In some cases wrong Λ may impede convergence, so in general, it is better

to run optimization multiple times with different Λ. The mentioned restriction for 𝛾

rises from condition of Fichera theory (section 1.5). Other restrictions, such as non-

negativity and reasonable upper bounds for parameters, are formulated in same fashion

and in the end all penalizations are added together. One way to ensure not violating

Fichera conditions is to implement whole condition into penalization function, but due

to complexity of this condition that could have negative effect on convergence. We keep

only the obvious restriction for 𝛾 > 0.5.

The inputs for the calculation of objective function consist of parameters 𝜅, 𝜃, 𝛾 and

𝜎 in form of vector 𝑥, vector of maturities, input short rate time series, dataset of bond

prices for each observation and maturity, numerical parameters for ETI method and

penalization function. First we perform the ETI algorithm to obtain estimated yields

for each observation and each maturity. The resulting matrix of estimations is compared

with observed yields and the loss function is calculated as in equation (27). Afterwards

penalizations are added if any bounds are breached. The result is the objective value.

There is no indication whether the loss function is convex, which means there might

be multiple local minima along with global minimum. Therefore using traditional con-

vex programming algorithms might not converge correctly. Let us introduce few possible

algorithms which are widely used for non-convex problems.

Multi-start BFGS In convex programming one of the top performance algorithm

is BFGS, which is based on numerically estimating gradient and using it to find the

way towards minimum. In non-convex problems the convergence is very limited with

the choice of starting point. As a workaround one can run the algorithm from various

starting points and hope one converges correctly. Advantage of BFGS method are its

known convergence properties.

Nelder-Mead Widely used non-convex problem method is Nelder-Mead heuris-

tics. Its convergence properties are unknown, but in many cases it outperforms other

methods like BFGS. Especially for functions that are very flat and the approximated
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gradient would basically be zero. The core of the algorithm is based on systematic and

reasonable simplex manipulations in the space of feasible solutions. Advantage of this

method is the simplicity and instead of calculating complicated multivariate gradients,

Nelder-Mead only needs to evaluate objective function few times in each iteration,

depending on the number of parameters to optimize.

Genetic algorithm Genetic algorithm (also known as evolution algorithm) belongs

to class of stochastic optimization methods, more specifically a population heuristics.

Since the method works with multiple points, it has bigger chance of finding global

minimum instead of local minima. There are many variations of genetic algorithms,

but the core remains same. Create population of points from set of feasible solutions

and evaluate loss function for each of them. Order them by the loss function and

combine the points between them, while the better points combine more frequently.

Last step is to mutate whole population, which means slight adjustment to the points.

Mutation can lead to better points as well as to worse points, but the better points will

combine more. In the end we keep only the best points and repeat whole procedure. The

advantage of genetic algorithm is the ability to explore completely new points, which

enables the solution to jump from local minima to another potential global minimum.

Each of these methods looks for ideal combination of parameters differently and each

has different advantages. To pick one we tested each of these methods on simulated

data. The objective is to find most precise and fastest method, even though the speed

of method mainly depends on the speed of ETI method for bond pricing.

Short rate is simulated using CKLS process with know parameters 𝜅 = 0.5, 𝜃 =

0.04, 𝛾 = 0.7 and 𝜎 = 0.1 and the interest rates are estimated for maturities 𝜏 =

1, 2, 3, 4, 5, 10 years. In practice the short rate time series is always unknown, but at

the moment we are interested in comparison of these methods. In case of Nelder-Mead

and BFGS we use the R built-in function optim, which covers both of these methods.

Genetic algorithm is designed by us and uses basic recombination based on the best

points and mutation using normal distribution. We test these methods on same data,

same starting point (except genetic algorithm, which does not require starting point)

and same termination criteria (except genetic algorithm, which is terminated after 𝑁

iterations). The results are in Table 4.
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Exact Nelder-Mead BFGS Genetic algorithm

𝐹 0 1.7e-17 4.8e-13 1.3e-09

𝜅 0.50 0.5000016 0.5007356 0.0388817

𝜃 0.04 0.0399999 0.0400058 0.0719658

𝛾 0.70 0.6995516 0.5040209 1.6749183

𝜎 0.10 0.0998374 0.05461255 0.0950745

time - 216s 400s 15min

Tabuľka 4: Comparison of results with different parameters optimization approaches.

Of course the time elapsed for each algorithm depends on the computing power of

machine on which it is running, but this is irrelevant for the purpose of comparison.

From Table 4 its obvious that our genetic algorithm is the worst choice for this task.

Performance of genetic algorithms hugely depends on choice of recombination and mu-

tation methods, which basically fill out the core of the algorithm. Poor choice of these

can lead to under-performance or even failure. Therefore we can not deny possibility

where a different genetic algorithm would perform much better. The stochastic muta-

tion can be very effective in some cases, but in continuous space with four dimensions

(one for each parameter) is rather ineffective and requires huge amounts of iterations.

Reasonable combination of genetic algorithm and convex methods is proposed in [9]

with good results. BFGS cost less iterations to find the optimal 𝜅 and 𝜃, but converged

to suboptimal result. Most of the time elapsed BFGS algorithm moved in tiny steps

and even then struggled to find the optimal 𝛾 and 𝜎. Keep in mind, that BFGS and

Nelder-Mead have same starting point and same termination criteria, meaning that

the algorithm stops, if the relative change in objective function is less than 1 × 10−18.

Nelder-Mead algorithm proves to be the best option out of these three and so all

optimization in following sections will be using Nelder-Mead algorithm.

At this point we only need to provide the bond yields for various maturities and

corresponding short-rate as inputs for the optimization algorithm. The algorithm finds

the best estimates ̂︀𝜅, ̂︀𝜃, ̂︀𝛾, ̂︀𝜎 for which the objective function (27) is minimized. In case

the objective value equals zero, the estimated bond yields would fit perfectly the real

values. Since we are dealing with numerical approach and numerics, absolute zero

32



2.3 Short rate optimization THEORY IN PRACTICE

is impossible to accomplish. Next figures show simulated data points together with

estimates based on the optimized parameters and short-rate time series. The data

were simulated based on CKLS process with parameters same as the exact parameters

specified in Table 4.

Obr. 6: Exact yield curve and estimated yield curve for 3 different observations.

Figure 6 shows how well the estimation fits the data for all observed maturities and

Figure 7 for all observed points. The estimation captures all shifts in the yield curve

and looks like its a perfect fit. Although there are differences on some level as we can

see in Table 5. These differences are on average 10−7 of percentage point and that is

negligible. Such small differences rise up from numerical approach in both bond pricing

equation and parameter optimization.

2.3 Short rate optimization

Short rate is an abstract time series and unknown in real world. Not knowing the short

rate makes all previous paragraphs about optimization worthless since the algorithm’s

key input is the short rate. We already mentioned choosing the yield with shortest
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Obr. 7: Exact time series of 5 year yield and its estimate.

maturity as proxy for short rate could avoid this issue. This workaround can work for

some cases, but often it does not. Therefore we propose alternate solution using, once

again, computing power.

Pricing the bonds numerically provides whole set of prices each valid for different

short rate value based on short rate discretization. Instead of providing short rate value

as outside variable, we let the algorithm choose the bond price, that leads to best fit

possible over all maturities. In other words, we let the algorithm choose the unknown

short rate value for each observation point. With this upgrade the algorithm requires

only yield data. However, this adds to level of freedom during the optimization and

could impair the ability to find the correct parameters. Meaning that even incorrect

parameters can become relevant if the short rate is incorrect, which can happen easily

when we choose bad starting point for the optimization. So there is possibility this

upgrade correctly optimizes short rate and then converges to correct parameters, but

also possibility that it adjusts the short rate for incorrect parameters and justifies them.

Therefore it is important to try both short maturity proxy and short rate optimization

34



2.3 Short rate optimization THEORY IN PRACTICE

Y1 Y2 Y3

Min. :6.868e-10 Min. :1.853e-09 Min. :5.958e-09

1st Qu.:4.029e-07 1st Qu.:5.170e-07 1st Qu.:4.886e-07

Median :7.197e-07 Median :8.620e-07 Median :7.849e-07

Mean :7.155e-07 Mean :9.036e-07 Mean :8.984e-07

3rd Qu.:9.618e-07 3rd Qu.:1.168e-06 3rd Qu.:1.214e-06

Max. :1.890e-06 Max. :2.610e-06 Max. :2.811e-06

Y4 Y5 Y10

Min. :1.314e-10 Min. :4.827e-09 Min. :9.122e-10

1st Qu.:4.111e-07 1st Qu.:3.402e-07 1st Qu.:2.583e-07

Median :6.854e-07 Median :5.878e-07 Median :4.452e-07

Mean :8.319e-07 Mean :7.517e-07 Mean :4.795e-07

3rd Qu.:1.143e-06 3rd Qu.:1.052e-06 3rd Qu.:6.698e-07

Max. :2.713e-06 Max. :2.496e-06 Max. :1.333e-06

Tabuľka 5: Summary of absolute residuals between exact and estimated yields in [%].

approaches and compare them. For example, if we see that the optimized short rate

looks completely out of place by comparing it with the yield data, we then incline

towards rejecting the short rate optimization approach. On the other hand if we see

that the optimized short rate looks similar as the short maturity proxy, except some

parts of the curve, we then incline towards using optimized short rate, rather than

proxy.

We use following algorithm to optimize short rate and parameters in R:

1. For initial parameters calculate estimated yields without interpolating for the

short rate (the ETI algorithm omits the 6th task).

2. For each observation separately:

∙ For each maturity subtract the observed yield from all estimated yields.

∙ Square the results and aggregate them into a vector of same length as is the

number of discretization points.

∙ Find which two discretization points lead to the smallest square difference

and interpolate between them based on the squared difference.

∙ The interpolated point is the optimized short rate for given observation.

3. Calculate objective function with given parameters and optimized short rate.

4. Find new parameters and repeat until minimum is obtained. This is achieved by

Nelder-Mead optimization.
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To showcase the situation we use same simulated data as before, but this time we

know only 6 months yield as approximate short rate instead of the correct short rate.

As expected the original optimization does not find the optimum and stops at very bad

parameters. Sure we can argue that it can be coincidence and maybe a different choice

of starting point or density of space grid in ETI method could perform much better.

To test this we set the starting point to correct parameters and run the optimization

again. But even under such perfect conditions the algorithm fails and we have no other

choice than using short rate optimization.

The disadvantage is that the upgraded algorithm takes little bit longer, which mul-

tiplied by hundreds of iterations can prolong the process by few minutes. But for those

few minutes we get the correct parameters and optimized short rate, which is impor-

tant for our following work. In Table 6 we show the result of these two approaches,

while the proxy approach did not even converged and stopped far away from solution,

the optimal short rate approach found the correct solution with precision as good as

in case of known short rate.

Exact 6m proxy Opt. short rate

𝐹 0 8.5e-09 2.2e-18

𝜅 0.5 0.390684 0.5000008

𝜃 0.04 0.040142 0.0399999

𝛾 0.7 1.351749 0.6996681

𝜎 0.1 0.883663 0.0998904

Tabuľka 6: Comparison of optimization using 6 month yield as short rate and optimizing

short rate each iteration. Data are simulated from CKLS process.

As we mentioned in the beginning of this section it is important to compare the

optimized short rate with the proxy short rate, in this case 6 month yields. From this

view we can atleast guess if the optimization of the short rate is meaningful and does

not deviate from the actual yields too much. As we see in Figure 8 the optimial short

rate mimics 6 month yields most of the time and since this dataset is simulated we

can easily compare them to the exact short rate. The difference between exact and

optimized short rate is so small, that it is not visible in Figure 8. In numbers the
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difference is on average 8.5 × 10−9. Still we need to emphasize the significance of the

starting point and the fact that these data are theoretically ideal for CKLS process.

We have yet to see if this methods will be of any use in practice.

Obr. 8: Difference between 6 month yields, exact and optimized short rate. Optimized is so

close to exact, that its not visible on the graph.

2.4 Market price of risk

All previous calculations and optimizations are done in risk-neutral probability me-

asure, meaning that we disregard the parameter market price of risk 𝜆(𝑟, 𝑡) in bond

pricing Equation (7). Optimized parameters are risk-neutral and even though they fit

the data perfectly, they will not produce correct predictions for future. The reason is

that the mean value of short rate defined by CKLS process equals the drift of the pro-

cess. Risk-neutral drift will produce different predictions than the real drift. Therefore

we want to estimate the market price of risk based on what we have available, which

are the yield data, optimized parameters and optimized short rate or short rate proxy.
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There are many ways to define 𝜆(𝑟, 𝑡) and how to estimate it. We tried few methods

and chose a rather simple approach, but easy to estimate. We experimented with the

form 𝜆(𝑟, 𝑡) = 𝜆𝑟𝛿, but the estimation method failed to give reasonable results for other

than 𝛿 = 0. We define market price of risk:

𝜆(𝑟, 𝑡) = 𝜆, (28)

where 𝜆 is an unknown constant.

To estimate the constant we use the fact that CKLS short rate is normally distribu-

ted. With known distribution we can perform maximum likelihood estimation (MLE),

where we maximize the likelihood function. MLE is looking for most probable para-

meter 𝜆 for given data points and distribution. The MLE estimator is biased, so the

estimation is not perfect.

The MLE estimation is based on the known distribution for the next short rate

realization, which means the probability density function for the random variable needs

to be known. The distribution for short rate is normal with these parameters:

𝑟𝑡+Δ𝑡 ∼ 𝑁(𝑟𝑡 + (𝜅(𝜃 − 𝑟𝑡) + 𝜆𝜎𝑟𝛾
𝑡 )Δ𝑡, 𝜎2𝑟2𝛾

𝑡 Δ𝑡) (29)

The Δ𝑡 stands for the time step between each observation, for example day (Δ𝑡 =

1/250). MLE estimator maximizes the likelihood function:

𝐿(𝑟, 𝜆) =
𝑛∏︁

𝑡=1
𝑓𝑡(𝑟, 𝜆)

𝐿(𝑟, 𝜆) =
𝑛∏︁

𝑡=1

1√
2𝜋𝜎2𝑟2𝛾Δ𝑡

exp(−(𝑟𝑡+Δ𝑡 − (𝑟𝑡 + (𝜅(𝜃 − 𝑟) + 𝜆𝜎𝑟𝛾
𝑡 )Δ𝑡))2

2𝜎2𝑟2𝛾Δ𝑡
)

We then take logarithm of the likelihood function since the optimum remains the

same for both, but log-likelihood function is easier to manipulate.

𝑙𝑜𝑔(𝐿(𝑟, 𝜆)) =
𝑛∑︁

𝑡=1
log( 1√

2𝜋𝜎2𝑟2𝛾Δ𝑡
) − −(𝑟𝑡+Δ𝑡 − (𝑟𝑡 + (𝜅(𝜃 − 𝑟) + 𝜆𝜎𝑟𝛾

𝑡 )Δ𝑡))2

2𝜎2𝑟2𝛾Δ𝑡

We now search 𝜆 that satisfies optimality condition.

𝛿𝐿(𝑥, 𝜆)
𝛿𝜆

= 0 (30)

̂︀𝜆 = 1
𝑛Δ𝑡

𝑛∑︁
𝑡=1

𝑟𝑡+Δ𝑡 − (𝑟𝑡 + 𝜅(𝜃 − 𝑟𝑡)Δ𝑡)
𝜎𝑟𝛾

𝑡

(31)
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The optimum is maximum, because the second order derivative is negative, which

means the log-likelihood function is concave. Equation (31) can be easily solved if the

parameters and short rate series are known. Following steps from previous sections we

have both these requirements and we simply aggregate differences between expected

short rate and actual short rate divided by the volatility and then divide it by the total

number of days multiplied by the time step.

Obr. 9: Density of MLE estimated 𝜆 for simulated 10000 short rates with 𝜆 = 1 and as

reference another 10000 short rates with 𝜆 = 0. The mean of 10000 estimations is close to

correct values.

To test this we simulated data once again, but this time we added known market

price of risk to the drift function. Since we already know the estimator will be biased

with limited number of observations we simulate the data 10000 times. On average the

estimator should hit the correct value of 𝜆. In addition we add second dataset with

zero market price of risk as a reference.

In Figure 9 we see that the estimated market prices of risk are on average very

close to correct values, but the variance of the estimation is high and in unlucky cases

the estimation gets very biased. Adding more observations points would narrow the

interval.
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2.5 Predictions

At this point we have all we need to predict future short rates and with that also

future yield curves. Equation (29) describes the distribution of future short rate and

the mean value is basically the prediction. With the variance it is possible to construct

95% confidence interval for the average of the future short rates.

Naturally the accuracy of prediction decreases for longer predictions. The mean

value basically captures only the trend of the most recent development.

To test our algorithm we leave last 50 days from simulated dataset and construct

predictions for these days, based on 350 previous observations. The predictions are fairly

easy to construct using the mean value from (29). Iteratively we calculate the mean

value, while all other parameters remain fixed. The confidence interval is calculated

using the standard formula 𝐸(𝑟)±𝑞𝑛𝑜𝑟𝑚(97.5%)
√︁

𝑣𝑎𝑟(𝑟)
𝑛

, where 𝑞𝑛𝑜𝑟𝑚(97.5%) is 97.5%

quantile of normal distribution. In this case the 𝑛 = 1 since the prediction is based

on only the last short rate value. We plot the real short rate, the prediction and

the confidence interval in Figure 10. The predicted interest rates, which are based on

predicted short rate and optimized parameters, are on average 0.1% different than the

exact values (see Table 7).

1Y 2Y 3Y

Min. :0.003485 Min. :0.002797 Min. :0.002289

1st Qu.:0.056825 1st Qu.:0.045591 1st Qu.:0.037305

Median :0.149360 Median :0.119834 Median :0.098053

Mean :0.174393 Mean :0.139918 Mean :0.114487

3rd Qu.:0.244603 3rd Qu.:0.196249 3rd Qu.:0.160579

Max. :0.501343 Max. :0.402238 Max. :0.329131

4Y 5Y 10Y

Min. :0.001909 Min. :0.001619 Min. :0.0008741

1st Qu.:0.031102 1st Qu.:0.026387 1st Qu.:0.0142415

Median :0.081750 Median :0.069356 Median :0.0374333

Mean :0.095452 Mean :0.080981 Mean :0.0437077

3rd Qu.:0.133881 3rd Qu.:0.113584 3rd Qu.:0.0613041

Max. :0.274410 Max. :0.232809 Max. :0.1256544

Tabuľka 7: Summary of absolute residuals between exact and predicted interest rates for

50 days in [%].

It is obvious the predictions of short rate are not too good, where the third prediction

is already far from the reality. The confidence interval is getting wide fast due to
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Obr. 10: Prediction of short rate for 50 days with 95% confidence interval in comparison

with exact short rate.

increasing variance. To fix this, we try different approach.

Instead of predicting all 50 days at once, we predict only 1 day ahead, wait one

day to obtain real data for that day and then again predict 1 day ahead. This way we

always use the correct information from previous point and prevent accumulating of

errors. The parameters 𝜅, 𝜃, 𝛾 and 𝜎 remain fixed, the market price of risk is iteratively

estimated based on all days previous of the prediction, so even the 𝜆 is estimated only 1

day ahead. This prediction should be much more accurate than the 50 days predictions

above and Figure 11 and Table 8 confirm it. The confidence interval is much more

narrow since the errors are not accumulating and predictions are much more precise.

The interest rates are on average 0.03% different than the exact values.

Being able to predict interest rates with precision around few basis points is good

enough for us. However, we have to keep in mind that this dataset was simulated by

CKLS process and therefore ideal for CKLS one-factor model. Later we use different

datasets, which may not be suited for this model and the predictions may serve as

an indication whether the model is appropriate for the dataset. The objective is to

compare predictions of various models and finding out whether adding more stochastic
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Obr. 11: Prediction of short rate 1 day ahead 50 times with 95% confidence intervals in

comparison with exact short rate.
1Y 2Y 3Y

Min. :0.001141 Min. :0.0009149 Min. :0.0007482

1st Qu.:0.027792 1st Qu.:0.0222975 1st Qu.:0.0182444

Median :0.047485 Median :0.0380982 Median :0.0311737

Mean :0.054328 Mean :0.0435882 Mean :0.0356658

3rd Qu.:0.082232 3rd Qu.:0.0659757 3rd Qu.:0.0539841

Max. :0.126187 Max. :0.1012427 Max. :0.0828422

4Y 5Y 10Y

Min. :0.0006236 Min. :0.000529 Min. :0.0002854

1st Qu.:0.0152108 1st Qu.:0.012905 1st Qu.:0.0069649

Median :0.0259907 Median :0.022050 Median :0.0119012

Mean :0.0297360 Mean :0.025228 Mean :0.0136162

3rd Qu.:0.0450084 3rd Qu.:0.038185 3rd Qu.:0.0206094

Max. :0.0690693 Max. :0.058598 Max. :0.0316275

Tabuľka 8: Summary of absolute residuals between exact and predicted interest rates 1 day

ahead 50 times in [%].

factors is worth to achieve better predictions.

2.6 Two factor model

Previous sections described core methods for calculating bond price, optimizing para-

meters and predicting future observations. These core methods are easily applicable to

one-factor CKLS model with great results. For the ideal dataset the algorithm finds

correct parameters and short rate and the predictions are relatively precise. However,
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for other datasets, not simulated exactly for CKLS one-factor model, the model might

produce worse results.

That is what multi-factor models may improve. Introducing another random factor

into the equation the process becomes more complex, but can describe more complex

behaviour of interest rates. For example, two-factor models are widely used for conver-

gence models, when one interest rates is converging towards another and each one is

modelled with a different factor (more information in [10]). We are interested in the

difference between the one-factor and multi-factor models, while using the same data-

set. How many factors is the optimal number to get the best fit or predictions? What

are the costs and benefits of adding additional factors? To answer these questions, we

must first be able to calibrate such models. Calibrating one-factor model in previous

sections is core of how we want to approach calibration of multi-factor models. Lets

begin with two-factor CKLS model.

In section 1.6 we reduced the problem of solving multi-factor bond price PDE to

one-factor bond price PDE if the factors are independent. Thanks to that we are able

to use the ETI method from section 2.1 again. We perform discretization of each factor

separately and compute the bond prices for each. Product of these prices equals prices

under two-factor model with independent factors. Basic logarithm transformation leads

to yields for the two factor model.

Same as before comparing estimated yields with the observed is done by calculating

objective function 𝐹 , which is the same as in Equation(27). The difference is that, the

estimations come from a different model.

Optimizing parameters 𝜅1, 𝜃1, 𝛾1, 𝜎1, 𝜅2, 𝜃2, 𝛾2, 𝜎2 is done by minimizing the objective

function using again Nelder-Mead algorithm. The convergence is highly influenced by

the choice of the starting point and from our empirical results the objective function

does not appear to be convex at all. Often times the optimization converges only to

local minima depending on the initial point, but even such initial points that are close

to optimum does not ensure convergence to optimum.

There are many options how to deal with incorrect convergence. As mentioned be-

fore, other algorithms, like genetic heuristics, are capable to explore the objective func-

tion and find new local minima until it reaches global minima. These methods are
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usually worse at exploiting the current minima, meaning they are much less effective

when it comes to precision of the optima. A solution could be combination of both

exploring and exploiting methods.

Simpler way to reach global minima instead of local minima using Nelder-Mead

algorithm is resetting the algorithm. Nelder-Mead algorithm works with a simplex in

the space of parameters which are to be optimized. Using clever manipulations the

simplex test new points and if they lead towards better objective value, the simplex

moves to the new points. If none manipulation leads to better objective value, the

simplex shrinks its volume until termination criteria. Theoretically and with a bit

of luck the simplex manipulations are able to explore new local optima instead of

stopping at first local optimum. However, if the simplex shrinks too much, the reach

of the simplex manipulations decreases and chances to explore new optimum with it.

It is convenient to reset the volume of the simplex after sufficient amount of iterations

to improve the reach of the simplex manipulations. This volume resetting can be done

simply by optimizing again, while taking the result of previous optimization as a new

starting point. However, it is unknown how many local optimums the function has and

thus how many times the optimization has to be reset.

We use data simulated by a two factor CKLS model as an example. These data

are ideal for the model and optimal parameters should not be hard to find. The data

are generated by independent Wiener processes, added to two CKLS factors and then

summed up. From short rate of each factor yields are estimated using ETI method. The

exact parameters used for simulation are shown in Table 9. To demonstrate the effect

of restarting Nelder-Mead optimization again from previous optimum, we show results

both after first optimization and after second optimization using the first optimum. The

starting point we used for results shown in the Table 9 is 𝜅
(0)
1 = 0.60, 𝜃

(0)
1 = 0.07, 𝛾

(0)
1 =

0.6, 𝜎
(0)
1 = 0.15, 𝜅

(0)
2 = 0.50, 𝜃

(0)
2 = 0.01, 𝛾

(0)
2 = 0.8, 𝜎

(0)
2 = 0.13.

Table 9 shows the achieved optimum for two-factor model together with exact values

and optimum achieved by one-factor model. The objective value for exact parameters

is 8.3 × 10−16, while theoretically it should be zero. This difference originates from

numerics and possibly is bottlenecked by the precision of the ETI method for solving

PDE. It is almost negligible, but creates an issue, when another slightly different set of
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𝜅1 𝜃1 𝛾1 𝜎1 𝜅2 𝜃2 𝛾2 𝜎2 𝐹

Exact 0.50 0.06 0.50 0.10 0.40 0.02 0.70 0.08 8.3e-16

2F 1st opt. 0.500 0.060 0.583 0.121 0.398 0.021 0.568 0.085 2.0e-13

2F 2nd opt. 0.500 0.060 0.500 0.100 0.400 0.020 0.918 0.169 1.7e-15

1F 0.498 0.081 0.684 0.172 - - - - 7.3e-10

Tabuľka 9: Results of parameters optimization for simulated data for two-factor CKLS mo-

del. First row contains true parameters and value of objective function with exact parameters.

Second and third row contain results of first and second optimizations of two-factor CKLS

model parameters. Last row serves as a comparison between two-factor and one-factor CKLS

model, for which the optimization approach from previous sections is used.

parameters might achieve slightly better objective value 𝐹 . For example if 𝛾2 equal to

0.9 instead of 0.7 leads to lower values of 𝐹 because of the numerics error and precision

of ETI method. Looking at the second optimization run for two-factor CKLS model it

appears that the situation from previous example is very much possible. Indeed after

resetting optimization few more times, new optimum with 𝛾2 = 0.9 and 𝜎2 = 0.175

occurs with objective value slightly lower than the 8.3×10−16. Therefore the parameters

are slightly different, but the objective value difference is very small and both sets of

parameters fit data almost equally.

It is interesting to see the difference between using two-factor and one-factor model

for the same dataset. While certainly the fit of one-factor model is not bad with ob-

jective value 7.3 × 10−10 it is worse than two-factor model. This is the expected effect

of two-factor models, since the more parameters model has, the better precision it will

achieve. Similar logic as in basic linear regression. This simulated dataset is ideal for

two-factor model and so the one-factor model can not fit the data perfectly. Following

figure compare these two models and how well they fit the data.

Figure 12 proves that two-factor model is better suited for this dataset, but for

example in the 20th observation the difference between the two models is barely vi-

sible. Of course the fact that one-factor model is relatively good is influenced by the

parameters we chose for the data simulation. Different choice of parameters to simulate

could lead to more distinct short rate processes which would be harder to estimate for

one-factor model. The mean value of error between estimated yields in % and observa-
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Obr. 12: Exact yields with two-factor and one-factor CKLS model estimates for 3 separate

observations.

tions over all maturities is 4.2×10−6 for two-factor model and 1.9×10−3 for one-factor

model. The difference is significant, even though it is not as visible in Figure 12. The

estimation from one-factor model seems to have troubles with shortest and longest ma-

turities, while the middle maturities seem to have better precision. This phenomenon

is common when using one-factor models on datasets, which are not ideal for it. Using

different weights in objective function (27) could lead to different estimations, where

for example long term yields are more precise. Following Table 10 shows detailed sum-

mary of absolute differences between observed yields and estimations of the two-factor

CKLS model.

In previous paragraphs we omitted the fact that short rate is unknown. In case of

two-factor models we need knowledge of both short rates of each factor to be able

to estimate bond yields. In reality we do not know these short rates and we need to

estimate them. For one-factor model we simply picked the best possible estimated yield

and corresponding short rate value for each observation. However, similar approach for

two-factor models becomes more or less impossible. Instead of vector of yields as in one-

factor model we now have matrix of yields, where each element corresponds to different

combination of two short rates. Therefore the computability becomes costly. Adapting
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1Y 2Y 3Y

Min. :1.866e-07 Min. :5.770e-08 Min. :4.895e-09

1st Qu.:2.501e-06 1st Qu.:1.854e-06 1st Qu.:2.352e-06

Median :4.834e-06 Median :3.900e-06 Median :3.326e-06

Mean :4.819e-06 Mean :3.869e-06 Mean :3.419e-06

3rd Qu.:6.772e-06 3rd Qu.:5.177e-06 3rd Qu.:4.611e-06

Max. :1.581e-05 Max. :1.157e-05 Max. :7.290e-06

4Y 5Y Y10

Min. :1.494e-07 Min. :8.917e-08 Min. :1.569e-07

1st Qu.:2.974e-06 1st Qu.:1.780e-06 1st Qu.:2.029e-06

Median :4.166e-06 Median :4.392e-06 Median :3.554e-06

Mean :4.313e-06 Mean :4.766e-06 Mean :4.160e-06

3rd Qu.:5.807e-06 3rd Qu.:7.086e-06 3rd Qu.:5.938e-06

Max. :9.289e-06 Max. :1.203e-05 Max. :1.313e-05

Tabuľka 10: Summary of absolute differences between observed and estimated yields in [%].

Estimation with known short rates.

this approach for two-factor model would require searching huge matrix for closest

match with the data point for each maturity and each observation. Sure the matrix

consist of points, which are impossible or unlikely to even be relevant, but even striping

matrices of these points does not help enough. The method is still time consuming and

the precision is very bad, even if we implement interpolations between 2 or more closest

matches. In Figure 13 we visualize the problem in three dimensions - first short rate,

second short rate and the corresponding yield. The gray points represent matrix of

bond prices resulting form all possible combinations of short rates from discrete set

𝑟𝑖 coming from ETI method. The red point represents correct observation of given

maturity. The black line segment highlights all estimates with yield closest to the

observed yield. Luckily with correct parameters of model the black line is not constant

and it is possible to find out which point on the line is closest to the correct red point

just by looking at the yields. However, the precision of this estimation highly depends

on the discretization step in each factor and desired precision would require too much

time.

The solution seems to be another optimization algorithm such as BFGS, since the

problem appears to be convex. Using BFGS we are able to find short rates of each

factor under reasonable time. The time obviously depends on the number of observati-

ons in the dataset, since each observation creates two short rate variables to optimize.

With correct parameters of the model we are able to estimate short rates with average
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Obr. 13: Visualization of the task to find the optimal short rate based on the observed yield

(Red). Gray points represent possible estimated yields based on all possible combinations of

short rates. The black line highlights area of points with estimated yield close to observed

yield.

precision 9.6 × 10−6 for the simulated dataset. The precision should not be underesti-

mated since even from Figure 13 we see how difficult it is to derive both short rates

just using the observed yield. With correct model parameters simply subtracting the

observed yield and taking squared differences will lead towards the correct red point

in the image. In Figure 14a we visualize the squared differences and in Figure 14b we

zoom into the squared differences on the black line from previous graphs.

Figures 14a and 14b suggests that the short rate optimization problem is convex.

Therefore using algorithm like BFGS might be very efficient and outperform the simple

search through the matrix element by element. Finding both short rates is possible,

even though we work with just one observed yield for one given maturity.

Summing up both short rates results into total short rate for both factors. It is clear

that even the the optimized short rates should result into same total short rate. Indeed

looking at the Figure 14a the best combinations of short rates, which are denoted by

black line, appear to follow this rule 𝑟2 = 𝑟𝑡𝑜𝑡𝑎𝑙 − 𝑟1. Total short rate is also unknown,

but this information can pave the way for new more sophisticated and more efficient
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(a) Squared differences of observed and possible

estimations.

(b) Detailed view of differences in area of

closest match. Red dot marks optimum.

Obr. 14: Visualization of short rate optimization problem in 3D and then detailed 2D view.

The black line denotes combinations of short rates leading to closest match with observed

yield. The problem appears to be convex under correct model parameters.

optimization methods.

So far we have worked either with known short rates or correct model parameters.

We are able to optimize parameters with known short rates and optimize short rates

with know parameters. The challenge is doing both simultaneously. At start best we can

do is roughly guess some parameters. We can even use short maturity yields as a proxy

for short rate, because we have data only about the total short rate, which is aggregate

of the two short rates, that we need. This problem is not very well documented and we

had to improvise and design at least somewhat reliable heuristics.

One option is select starting parameters for which we optimize both short rates and

then use them to estimate new parameters. Repeating this procedure iteratively would

be way to move and explore new sets of parameters, but we had very little success

with this method. The estimated short rates are very sensitive to the parameters and

the starting point would need to be close to perfect for this method to work reliably.

However, choosing perfect starting point is impossible without luck.

Another option is to just optimize short rates within parameters optimization, me-

aning in each iteration of Nelder-Mead algorithm we estimate short rates using BFGS
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for given parameters and then evaluate objective function. This may sound very time

demanding, but at this point all methods will require much more power and time than

the algorithm for one-factor model. Again the convergence is highly influenced by the

choice of the starting point, but the range of starting points is certainly wider than

in the first approach. This method quite reliably finds local minima with very low

objective value, which is what we need. Optimizing again could lead towards the glo-

bal minimum. The method is very time consuming, so each optimization reset is very

costly.

Third option is using simpler two-factor models with analytical solutions, which may

help with the short rate optimization. In article [2] they use clever linear regression to

estimate two-factor Vasicek model without correlation. The input for the regression are

only parameters 𝜅1, 𝜅2 and data about yields. The output of the model are approximate

short rates. In the article the authors prove, that the estimated short rates are biased

by a constant equal to 𝜃2. The disadvantage of using Vasicek model is possibility of

negative short rates, which are unacceptable for a CKLS model. Using this approach the

estimation of total short rate is fairly easy and precise with average accuracy 1.8×10−5.

We can use the information about total short rate as a better staring point for previous

methods or to optimize only one of the short rates and calculating the other one.

The total short rate can be also approximated by the optimized short rate using one-

factor CKLS model. Even though the model is not suitable for the data, the optimized

short rate is very close to the total short rate of the two-factor model. The difference

between them is on average 9.5 × 10−5, so the precision is little bit lower than with the

approach using two-factor Vasicek model.

We designed various algorithms each using different option of short rate optimiza-

tion. With them we are able to find suboptimal points with low objective value, but

none of them succeeded in finding the true optimum. The problem is that with so many

parameters uniqueness of the solution is in question. Parameters 𝜃1, 𝜃2 are closely tied

with the short rates of the factors. Bias in parameters 𝜃1, 𝜃2 will gen compensated with

adjusted short rates, therefore we can never obtain true optimum without knowing

either true 𝜃1, 𝜃2 or true short rates. Similar relation is also mentioned in [2] for the

case of two-factor Vasicek model, where different choices of parameters 𝛼1, 𝛼2 would
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lead to same objective value.

Without external information it is impossible to reach the true optimum except

trying various starting 𝜃1, 𝜃2 parameters. However, even these suboptimal parameters

and short rates are able to fit the data sufficiently well. After some testing we designed

two algorithms that lead to best results. Both use BFGS short rate optimization within

each iteration of Nelder-Mead parameter optimization and both use the two-factor

Vasicek model to guess parameters 𝜅1 and 𝜅2 for better starting point. The difference

is whether we optimize both short rates or only one short rate, while the second short

rate is calculated with estimated total short rate from two-factor Vasicek model. The

second methods relies on the precision of total short rate, which is often not sufficient.

However, the first method requires significantly more time, because it optimizes both

short rates. The final algorithm consists of:

1. Using linear regression estimate two-factor Vasicek model for various combi-

nations of 𝜅1, 𝜅2. The combination leading to the best fit is used for the initial

point. Using the best 𝜅1, 𝜅2 estimate total short rate as sum of both short rates,

which are estimated during linear regression.

2. Choose parameters for the initial point.

3. Evaluate estimated bond prices and yields with ETI method for the given

parameters separately for each factor. The estimated yields depend on short rates.

4. Find short rates that lead to best match between estimated and observed

yields:

A Use BFGS to optimize both short rates to the observed yields.

B Use BFGS to optimize only one short rate, while the second short rate is

calculated as 𝑟2 = 𝑟𝑡𝑜𝑡𝑎𝑙 − 𝑟1, where 𝑟1 is the optimized first short rate.

5. Calculate the objective function 𝐹 with the penalization for the boundaries

similar as in one-factor algorithm.

6. Find new parameters leading to lower objective value 𝐹 and repeat from

point 3. This is done using Nelder-Mead algorithm for all eight parameters.
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The variant B restricts the optimized short rates, while the variant A is unrestricted.

Therefore with variant A often ends up at the same point as the initial point, because

the short rates are optimized for those parameters. That may prove to be a problem

for correct predictions, which are based also on the parameters. The variant B slightly

restricts the short rates, but not enough to prevent similar phenomenon. Instead of

searching for more suitable parameters, the short rates are optimized to compensate

the error. For larger datasets the variant A becomes unusable, since the optimization

will require very long time.

𝜅1 𝜃1 𝛾1 𝜎1 𝜅2 𝜃2 𝛾2 𝜎2 𝐹

Exact 0.50 0.06 0.50 0.10 0.40 0.02 0.70 0.08 8.3e-16

initial parameters 0.60 0.04 0.60 0.15 0.50 0.04 0.80 0.13 5.1e-9

2F optimum B 0.52 0.041 0.50 0.10 0.36 0.04 0.78 0.20 4.7e-12

Tabuľka 11: Results of parameter optimization for simulated data for two-factor CKLS

model. First row contains true parameters and value of objective function using exact short

rates. Second row consists of the initial parameters entering the optimization and the objective

value using optimized short rates with method B for the initial parameters. Third row contains

optimum after parameter and short rate optimization using algorithm B.

The optimized parameters in Table 11 are obviously distant from the exact para-

meters. However, note the objective values. All objective values are relatively small

due to the short rate optimization, which optimizes short rates even for the incorrect

parameters. The objective value using algorithm with variant B uses total short rate as

input. If we use all parameters and short rates exact, the result is the objective value for

the first row in the table. But the total short rate is approximated from the two-factor

Vasicek model with precision around 1 × 10−5. With such approximated total short

rate the objective value for the exact parameters decreases to 2.8 × 10−11. The opti-

mum with incorrect parameters then appears better than the true optimum, which is

unfortunate. This means that the estimation of total short rate with two-factor Vasicek

model is not accurate enough, but is still the most robust and reliable approximation

we have when the exact parameters are unknown.

Even though the optimized parameters are incorrect and short rates with them, the

objective value is very low. Let us compare the observed yields with estimations using
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algorithm with variant B.

Obr. 15: Exact yields for 3 separate observations compared to estimated yield using two-

factor CKLS model without known short rates.

In Figure 15 we demonstrate how well the estimations fit the data for the same three

observations as in Figure 12, where we used known short rates for optimization. Even

though the optimized parameters and short rates are heavily biased the differences

between estimations and observations are almost invisible. To see full picture of the

precision we show summary of absolute differences in % for each maturity separately

in the following Table 12.

Keep in mind that all differences in Table 12 are in percentage points, so for example

for the average difference for 4 year yields is 0.00006%. The precision is worse than with

known short rates summarized in Table 10, but still the precision is sufficient for our

needs. The average absolute difference over all maturities is around 1.3 × 10−4, which

is still better than the one-factor model applied to the same data.

In Figure 16 we visualize estimated short rates with the exact short rates, that were

used for the simulation of the dataset. The graphs of estimated and exact short rates are

very similar, almost identical except the range on Y axis - yield in %. This means the

short rates are almost optimal, but each observation is shifted by an unknown constant.
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1Y 2Y 3Y

Min. :1.180e-06 Min. :4.593e-07 Min. :8.079e-06

1st Qu.:8.649e-05 1st Qu.:6.752e-05 1st Qu.:8.698e-05

Median :1.350e-04 Median :1.128e-04 Median :1.393e-04

Mean :1.551e-04 Mean :1.300e-04 Mean :1.507e-04

3rd Qu.:2.198e-04 3rd Qu.:1.803e-04 3rd Qu.:2.187e-04

Max. :4.397e-04 Max. :3.160e-04 Max. :3.549e-04

4Y 5Y Y10

Min. :3.367e-07 Min. :2.893e-06 Min. :2.373e-06

1st Qu.:2.731e-05 1st Qu.:3.810e-05 1st Qu.:1.111e-04

Median :5.088e-05 Median :5.803e-05 Median :1.742e-04

Mean :6.156e-05 Mean :5.811e-05 Mean :2.363e-04

3rd Qu.:8.670e-05 3rd Qu.:7.396e-05 3rd Qu.:3.411e-04

Max. :2.137e-04 Max. :1.248e-04 Max. :6.838e-04

Tabuľka 12: Summary of absolute differences between observed and estimated yields in [%].

Estimation without knowing correct short rates.

Obr. 16: Comparison of estimated short rates factors and the exact short rates used in

simulation.

In article [2] authors observe similar phenomenon, but for two-factor Vasicek model

with independent factors. Due to the analytical tractability of Vasicek model, authors

were possible to identify the off-set for all observations as a constant equal to ±𝜃2. This

fact comes from the direct relation between each short rate and parameters 𝛼1,2, 𝛽1,2
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(in our notation the risk-neutral parameters 𝜃1,2, 𝜅1,2). Therefore in optimization of

parameters, authors optimize only „total“ 𝛼 and can not determine 𝛼1,2 without any

additional input. Any choice of 𝛼1 and calculated corresponding 𝛼2 would lead to the

same optimum.

In our case the off-set appears to be constant over all observations as well. The offset

for the same simulation is between ± < 0.01343, 0.01527 > and on average ±0.01412.

Unlike in the case of two-factor Vasicek model, the constant offset is not equal to the

parameter 𝜃2.

So the fit appears to be fine even if the optimization did not find the correct opti-

mum. What about predictions? Will the offset of parameters and short rates become

recognizable when predicting new yields? To test this we use similar procedure as with

one-factor model in chapters 2.5.

The data are simulated with market price of risk for each factor, specifically 𝜆1 = 0

and 𝜆2 = 0.5. In chapter 2.4 we use MLE estimator for the approximate market price

of risk for one-factor CKLS model. In case of two-factor CKLS model with independent

factors, which is important, the factors are simply summed up. Therefore we estimate

market price for each factor separately based on parameters and short rate of the

corresponding factor. Of course the MLE is based on the assumption that the short

rate is normally distributed with the correct parameters (29). On the other hand the

short rates are biased too and in such way, that the incorrect parameters are correct

for the biased short rates.

The estimated market prices are ̂︀𝜆1 = −2.262 and ̂︀𝜆2 = −0.054. The MLE estimator

is biased, so the difference compared to the simulated market prices of risk is reasonable.

As a test we estimated the market prices of risk using the the exact parameters and

short rates used for simulating data. These exact market prices are 𝜆*
1 = −2.195 and

𝜆*
2 = 1.271. There is apparent difference and again the estimates appear to be shifted

by a similar constant. This might be caused by the shift in the short rates, which are

used to estimate market price of risk. Since we find no reason to reject these estimations

of market price of risk, we continue to work with them.

All is ready for constructing predictions of the model for the future yields. Using

the same simulation we generate 50 future observations, which will be used to test our
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model. Since we are unsure whether the incorrect parameters impair the prediction

ability of the model, we also construct predictions with a model with exact parameters

and short rates that were used to simulate the dataset. Therefore the prediction of the

second model are certainly correct and serve as a control group for the first model.

First we will use both models to predict 50 days ahead at once. The model para-

meters are used to construct matrices 𝐴1 and 𝐴2, which are the the result of finite

differences method of solving PDE for each of the factors separately. Each of the short

rates follow normal distribution described in (29) except now with the corresponding

parameters,

𝑟1,𝑡+Δ𝑡 ∼ 𝑁(𝑟1,𝑡 + (𝜅1(𝜃1 − 𝑟1,𝑡) + 𝜆1𝜎1𝑟
𝛾1
1,𝑡)Δ𝑡, 𝜎2

1𝑟2𝛾1
1,𝑡 Δ𝑡)

𝑟2,𝑡+Δ𝑡 ∼ 𝑁(𝑟2,𝑡 + (𝜅2(𝜃2 − 𝑟2,𝑡) + 𝜆2𝜎2𝑟
𝛾2
2,𝑡)Δ𝑡, 𝜎2

2𝑟2𝛾2
2,𝑡 Δ𝑡).

The prediction of short rates are the mean values of their distribution and the

variance is useful for calculation of confidence intervals for each of the factors. Both

parameters and short rates decide the future predictions, which means the predictions

of the two models should be different. Since the data are simulated, the exact short

rate is available for exact predictions. In Figure 17 we portrait predictions of 5 year

bond yields in % for the simulated dataset.

Note how the predictions of optimized model align with predictions of exact model

in Figure 17. The difference between them is negligible, except the confidence interval.

The confidence interval for optimized model is visible wider, which can be caused by

the small difference in the models. These small differences then accumulate over 50

days widening the gap between the confidence intervals. Same phenomenon occurs for

other maturities as well. The predictions appear to follow significantly different trend

than the future observations. The cause of such imperfect predictions can not be the

bias in optimized parameters and short rates, since both optimized and exact model

lead to same predictions.

The problem lies with the parameter 𝜆, it appears that the MLE estimates for

both optimized and exact model are greatly biased. The variance of MLE estimator

is influenced by the number of observations, so for smaller samples the bias may be a

problem. In addition to that in two-factor model we estimate two market prices of risk

and both are subject to the bias. In this case it appears the bias was too great, which
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Obr. 17: Predicted yields for 50 days ahead using model with optimized parameters and

short rates and model with exact parameters and short rates. The gray lines represent 95%

confidence intervals one for each of the models (full line for the optimized model, dashed for

the exact model).

led to poorer predictions.

Since using bigger dataset may sometimes be unavailable or significantly prolong

the procedure, we deal with poor predictions differently. Instead of predicting 50-days

ahead, we settle down for 1-day prediction. Same as we done with one-factor model

predictions. Today we predict for tomorrow using today’s observation, tomorrow we

predict again for next day using tomorrow’s observation and so on for 50 days. Figure

18 plots such predictions again comparing both exact and optimized model.

These predictions appear to be better, as it should be when predicting for shorter

periods. The predictions now basically trace the future values with 1 day lag. It is

because the predictions are unable to anticipate sudden random jumps in short rate

and thus predicting only most probable value.

We already compared estimates of one-factor and two-factor model in Table 9 and

Figure 12. The two-factor model visibly beat the one-factor model in the precision,

but as we already mentioned the fit of the one-factor model is relatively good. Are

the predictions visibly worse too? Or is one-factor model enough for predicting this
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Obr. 18: 50 predictions of yields each for 1 day ahead using model with optimized parameters

and short rates and model with exact parameters and short rates. The gray lines represent

95% confidence intervals one for each of the models (full line for the optimized model, dashed

for the exact model).

dataset.

In Figure 19 are shown mean and median errors in 1-day ahead predictions of one-

factor and two-factor model. For example average error of both models for yield with 4

year maturity is around 0.055% and the median error for one-factor model is 0.054% and

for two-factor model 0.059%. It appears that the two-factor model based predictions

bring little improvement over one-factor model. The average error of two-factor model is

slightly lower for short maturities and almost equal in other maturities, but the median

error is in favour of one-factor model. Both models produce almost same predictions.

Figure 20 shows the comparison of predictions 50 days ahead at once.

Figure 20 suggest that two-factor model indeed produces slightly better predictions

for longer periods. Both average and median residuals are slightly lower for predictions

based on two-factor optimized model. The improvement in predictions is still very small.

However, this dataset is simulated by two-factor model, which means the dataset may

still be usable for one-factor model with good precision. Dealing with more complicated

data may further impair predictions of one-factor model, while the two-factor model
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Obr. 19: Comparison of residuals in [%] between one-factor and two-factor 1 day ahead

predictions.

may perform significantly better. If one-factor model is enough to fit the data then the

added value of multi-factor models is minimal. Later we compare predictions of these

models on real datasets.

2.7 Three-factor model

The algorithm used to calibrate two-factor model is theoretically usable for any number

of independent factors. Unfortunately each added factor requires much more time. We

had some difficulties even with two-factor model, when the algorithm often converges

to local minima and needs resetting. The local optimum highly depends on the initial

point. Having another factor means having 4 more parameters and thus guessing good

initial point becomes very difficult. Based on this we are sceptical about using our

algorithm on too many factors. In this section we demonstrate the possible us of the

algorithm on three-factor model and analyse the results of its application to simulated

data.

To calibrate model with three independent factors we use same algorithm as for
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Obr. 20: Comparison of residuals in [%] between one-factor and two-factor predictions 50

days ahead.

two-factor model. First we estimate total short rate, which is the sum of all factors.

Total short rate can be estimated by one-factor model or two-factor Vasicek model.

Second we guess few initial points and use parallel optimization. In each iteration the

short rates of factor one and two are optimized and third short rate is calculated from

the total short rate. This doubles the number of optimization variables in comparison

with two-factor model. Therefore the time consumption is much higher.

The data are simulated with a three-factor CKLS model and should be ideal for

three-factor model. Due to the time requirements of the algorithm we work with smaller

dataset. Since the data are simulated, we know exact parameters and short rates.

With the simulated dataset, which should be ideal for three-factor model, we calib-

rated one-factor, two-factor and three-factor CKLS models with independent factors.

Listing all optimized parameters becomes pointless, since we do not know what each

factor represents and thus parameters lose their explanations. What matters is the

value of objective function, which should be minimal for three-factor model. Optimal

objective value for three-factor model is 9.6×10−13, for two-factor model 1.2×10−12 and

for one-factor model just 1.4×10−10. As expected three-factor model fits the data best,
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Obr. 21: Comparison of residuals in [%] between one-factor, two-factor and three-factor

model estimates.

but two-factor model is not far behind. Figure 21 shows mean and median residuals of

the estimated yields for each maturity with each of these models. Three-factor model

consistently outperforms both one-factor and two-factor model, but the difference from

two-factor model is very small.

The optimized parameters and short rates are again highly biased in comparison

with exact parameters and short rates. Same phenomenon occurred while calibrating

two-factor model, but the fit and predictions of exact and optimized model were alike.

Also for three-factor optimized model the objective value of 9.6×10−13 proves that the

fit is very good. Figure 22 compares predictions of exact and optimized three-factor

model, while the predictions are done for 50 days ahead at once. The predictions are

different, but only slightly.

At last we compare predictions of one-factor, two-factor and three-factor model

similarly as we did in previous section. Figure 23 shows the average and median errors

in 50 day predictions. Two-factor appears to provide the worst predictions for this

dataset compared to the other two models. Even though two-factor and three-factor

models fitted the data comparably well, the predictions are significantly different in
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Obr. 22: Predicted yields for 50 days ahead using three-factor model with optimized para-

meters and short rates and three-factor model with exact parameters and short rates. The

gray lines represent 95% confidence intervals one for each of the models (full line for the

optimized model, dashed for the exact model).

favour of three-factor model. However, the predictions of one-factor model appear as

the best for this dataset, while performing slightly better than three-factor model.

This is unexpected and very unintuitive result. Possible explanation is that the one-

factor model wins for this dataset, but may perform worse for other dataset, while

three-factor model would overall perform better. However, this is just a hypothesis and

requires additional simulations, proofs and tests.

Overall the general idea is that more complicated models tend to fit data much

better. When it comes to predictions, the differences in the fits of observed yields

become inferior to the randomness of the future yields. The market price of risk has

great influence on the predictions and the MLE estimator is biased. In the end it comes

down to how badly biased are the market prices of risk in the models, which is partly

random.
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Obr. 23: Comparison of 50 days ahead predictions error in [%] between one-factor, two-factor

and three-factor model.

3 Real data application

The purpose of the term structure models is to be able to describe real world problems

and interest rate development. In this section we use available theory and empirical

results from simulated datasets and apply it on real data. However, the theory is often

simplified and real data might introduce many more unanticipated issues.

Since we are limited to CKLS models, where 𝛾 > 0.5 due to the Fichera theory,

all yields have to be positive. Negative yield would lead to negative short rate, which

is unobtainable with CKLS model. At times of deflation and recession interest rates

tend to reach zero or even negative values. Such times were recently observable in

eurozone, when EURIBOR overnight interbank rate reached −0.4% last year. Massive

quantitative easing for past several months suppressed deflation and interest rates show

positive trend lately. Therefore modelling negative yields may be desirable. Technically,

substituting one of the CKLS factor in multi-factor models with Vasicek factor could

be helpful. Vasicek implies constant volatility and does not restrict itself to positive

yields only. Correctly calibrated CKLS-Vasicek two-factor model could be able to model
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negative yields should it be needed.

We chose to work with yields that are positive. Data leading to short rate equal

zero can prove to be problematic as well. Especially when estimating market price of

risk calculated by (31). Numerical evaluation of the fraction may easily end in infinite

numbers, which should be avoided.

The method for estimating yields was described in previous section on simulated

datasets, where we had the luxury of known correct answers. In case of real data there

is no such thing as correct answer. However, the method was carefully tested with the

simulated datasets, so we chose to trust the method.

3.1 US treasury bonds

The dataset we chose are US treasury bonds and their zero-coupon yield curve available

through QUANDL application or website [11]. The zero-coupon yield curve is calculated

based on the real bond market prices. The method of calculation zero coupon curve is

described on web page [11]. According to the abstract authors use smoothing method,

but the estimates fit the data very well.

The dataset is too vast for our calibration, therefore we chose to use only 1,2,5,10

and 20 year bond yields from 2016-07-01 until 2016-11-01, while leaving out last month

for predictions. The yields are quoted in percentage points and need to be converted to

decimals. In Figure 24 is boxplot of all data used for calibration of the model. Boxplots

are very informative as they capture medians, quantiles and outliers at the same time.

It seems that the yield curve is mostly increasing and that some outliers are present.

The outliers are often causing troubles for regression. Optimization will try to fit the

outliers, but doing so will worsen the fit of all other observations. In this case the

outliers are not too distinct and we leave them in the dataset.

Since the optimum is unknown we advise using various starting points for optimiza-

tion of each model. Especially for multi-factor models, where the optimum is determined

strongly by the choice of initial parameters. This can lead to huge time consumption.

Therefore we advise using R package parallel, which enables working with multiple cal-

culations at once. The parallel package enables using any number of available logical

CPU cores. For short procedures it is ineffective, since each additional core requires
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Obr. 24: Boxplot of the dataset. The points represent yields that are too distant from the

average - outliers. The lines visualize the range of the yields for each maturity (excluding the

outliers). The boxes represent areas where are half of the data points - quantiles. The thick

black lines inside the boxes represent median value.
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another initialization of R that requires constant amount of time. For costlier methods

like multiple independent optimizations it is highly effective. For example calibration

of two-factor model from previous chapter took between 40-60 minutes. The parallel

computation did it under almost same time, but for seven various starting points. Wit-

hout parallel computation we would have to optimize one by one and time would add

up to few hours.

model 𝜅 𝜃 𝛾 𝜎 𝐹

1-factor 0.11145 0.03559 0.67696 0.18080 2.1 × 10−7

2-factor
1st factor 0.00013 0.00265 0.72379 0.01851

8.2 × 10−8

2nd factor 0.06304 0.04917 0.63118 0.18594

3-factor

1st factor 0.00262 0.00117 0.66635 0.05738

1.7 × 10−82nd factor 0.83267 0.00199 0.86756 0.17024

3rd factor 0.13278 0.02752 0.73459 0.15196

Tabuľka 13: Optimized parameters of the one-factor, two-factor and three-factor CKLS

models with independent factors for US yields and the value of objective function 𝐹 .

For each model we chose seven initial points. Choose initial parameters 𝜃𝑖 reasonably,

so that in total for all factors the 𝜃 won’t exceed 𝜃 optimized from one-factor model.

It may help prevent factors that are constantly close to zero. Other initial parameters

may be random in reasonable intervals. Table 13 shows results of our optimization for

US dataset. Judging from one-factor model it appears the data are quite volatile and

the short rate slowly converges towards much higher yield. The parameters for multi-

factor models are hardly explainable, but can describe the meaning of the factors.

For example in three-factor model the second factor has 𝜅2 = 0.83 meaning its mean

reversion is very fast. Each factor adds new optimization variables and thus making

fitting easier. More factors should lead to lower objective value. Objective values in the

table indeed confirm this intuition, when the objective value of three-factor model is

1.7 × 10−8 and is the lowest of these three. The average residual in [%] over all data

points is 0.0307% for one-factor, 0.0238% for two-factor and 0.0206% for three-factor

CKLS models. As a side note, average residual for two-factor Vasicek model, which is

a side product, is 0.0331% making it worse than one-factor model. In Figure 25 the
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summarize these residuals for each maturity separately.

Obr. 25: Comparison of residuals in [%] between one-factor, two-factor and three-factor

model estimates of US yields.

For short maturities all three models fit data similarly on average. The medians

are slightly in favour of three-factor model. One-factor model has higher residuals for

longer maturities, but fits well the short maturities. Two-factor model is inaccurate for

5 and 10 year maturities. Three-factor model appears to have consistent precision over

all maturities. The medians are lower than corresponding means for most cases, which

indicates the range of residuals is wide.

Figure 26 shows development of 1 and 20 year yields and model estimates. This

image further confirms that the one-factor model does not fit the long maturities well.

The multi-factor models are able to roughly capture development of both 1 and 20 year

yields. It appears the two-factor and three-factor estimates are similar for most parts

of the time series. But around 1. August the two-factor model fist data visibly better

than three-factor model. On the other hand three-factor model performs better overall.

The optimization may be altered to specific needs. If there is need to estimate short

maturities, specific choice of weights in (27) may achieve much better performance for

short maturities. The weights may also depend on time of the observation and by doing
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Obr. 26: Development of 1 and 20 year US observed yields with estimates using optimized

one-factor, two-factor and three-factor CKLS model.

so one can give the latest observations higher significance than the older observations.

Since we don’t have such preference, we weighted all data points equally.

Since we optimized parameters and short rates for each model, we can construct

predictions. Previously we either predicted whole period at once or only 1 day ahead

repeatedly. The 1 day ahead predictions are less influenced by the market price of risk

estimation, which proved to be problematic. Figure 27 compares whole period at once

predictions for each of the model. Three-factor model predictions are very bad in most

cases and strictly worse than two-factor predictions for all maturities. Possible cause

may be the incorrect market price of risk. As we already mentioned, short rates close

to zero lead to very high market prices of risk estimations. Two optimized future short

rates of three-factor model are very close to zero, which may be the reason of the poor

predictions. On the other hand 1 day predictions are mostly in favour of multi-factor

models. The effect of market price of risk is lower when predicting just 1 day ahead

since the error is not accumulating. Figure 28 compares 1 day ahead predictions for

each model and maturity. Keep in mind that the 1 day predictions are repeated each

day forming predictions for whole period of 21 days.
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Obr. 27: Predictions of US yields for 21 days ahead for each model and maturity.

Figure 28 looks similar to Figure 25, which suggests that if model is unable to fit

particular data well, it will be unable to predict that particular data too. For example

the one-factor model fitted mid term maturities better and the predictions follow this

pattern. Also three-factor model produced more or less consistent estimates in terms

of residuals. Same can be seen for predictions, where all five average residuals are on

roughly the same level.

Figure 29 plots future development of US yields and 1 day ahead predictions of each

model for 10 year maturity. For this particular maturity and dataset three-factor model

achieves the highest accuracy, closely followed by two-factor model. One-factor model

predictions are visibly off.

The future yields follow steep positive trend at first few days, which also may be

a cause of poor predictions, especially whole period at once predictions (Figure 27).

Predictions for 1 day ahead are able to capture this trend since they always use the

data from day before.
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Obr. 28: Predictions of US yields repeatedly 1 day ahead for each model and maturity.

Obr. 29: Time development of future US yields and 1 day ahead predictions of each model

for 10 year maturity.
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3.2 Slovak government bonds

The US yields are from last year, when the interest rates were globally very low.

Therefore we chose another dataset from times with higher yields. As second real

dataset we chose Slovak zero-coupon yield curve data available at [12]. The zero coupon

yields are converted from market prices using Nelson and Siegel methodology.

The data are from year 2011 and we chose to work with 1, 2, 5, 8, 10 and 15 year

yields. Figure 30 plots time development of the mid term maturities. We leave last

observations for testing predicting ability of the models.

Obr. 30: Time development of 5, 8 and 10 year Slovak zero-coupon government yields. The

dotted line divides data for calibration and prediction.

Results in Table 14 show the objective values slightly higher than for US yields. This

suggests the SK yields were harder to fit than the previous dataset. Same as before

each added factor lowers objective value. The value 𝐹 contains information about

average squared residual over all data points. The average residual in [%] is 0.0414%

for three-factor, 0.0468% for two-factor and 0.0676% for one-factor model. Two-factor

Vasicek model performed poorly for this dataset. The three-factor model parameters

are interesting since they describe three different processes. High parameter 𝜅 implies
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model 𝜅 𝜃 𝛾 𝜎 𝐹

1-factor 0.20218 0.07058 2.53224 0.00002 7.4 × 10−7

2-factor
1st factor 0.34457 0.03247 0.51512 0.23959

3.6 × 10−7

2nd factor 0.02665 0.11302 0.74723 0.00169

3-factor

1st factor 0.50333 0.02455 0.84033 0.19683

8.7 × 10−82nd factor 0.06098 0.06378 0.89184 0.00335

3rd factor 0.14291 0.00780 0.88248 0.07133

Tabuľka 14: Optimized parameters of the one-factor, two-factor and three-factor CKLS

models with independent factors for SK yields and the value of objective function 𝐹 .

fast mean-reversion of the process. Parameter 𝜃 defines the level towards which the

short rate converges. First factor converges fast, but the 𝜃 is somewhere in middle of

other factors. Second factor has small 𝜅 and high 𝜃, which means it mostly represents

increasing long term trend. And finally third factor with the smallest 𝜃 most likely

induces decreasing trend. The volatility depends on the optimized short rate, but the

first factor appears to be the most volatile.

Obr. 31: Comparison of residuals in [%] between one-factor, two-factor and three-factor

model estimates of SK yields.
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Judging from Figure 31 the short maturities proved most problematic for all models.

The fit of two-factor and three-factor model are very similar and the precision is only

slightly in favour of three-factor model. The residuals are higher for SK yields than the

residuals for previous dataset.

Obr. 32: Precision of 1 day predictions of SK yields for each model.

The summary of residuals in Figure 32 shows the average precision of 1 day predicti-

ons. Predictions of two-factor model are the best for multiple maturities. Three-factor

model predictions are good only for 10 year yields, otherwise they are very inaccurate.

The reason is not clear. The market price of risk estimation error should be minimal for

1 day predictions, unless the error is too big. Another possible cause is „overfitting“,

this effect occurs in regression problems. Adding another variables to a regression model

improves the fit, but may impair the predictions. The model with too many variables

fits the training dataset so well, it copies the random noise in the training dataset. The

model then implies same random noise for future values, which is not correct. Same

effect can be happing in our case. Three-factors may introduce too many calibration

variables and even though the fit is better, the predictions fail. Either of these causes is

possible for the bad precisions of three-factor model. Each dataset is unique and each

may suit a different model.
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3.3 Remarks

In previous sections we calibrated various models on simulated and also real datasets.

We compared these models by the precision of fit and predictions. All results prove

that adding another factor to the model generally improves the ability to fit the data,

meaning the residuals of the fit are lower. However, predictions for simulated datasets

show that adding factor does not improve predicting ability of the model. Both short

and long period predictions are almost equal for one-factor, two-factor and three-factor

models. In case of real datasets, none of the models are able to fit data perfectly.

The residuals are much higher than for simulated datasets. It appears multi-factor

models achieve consistently better precision over all data points, while one-factor model

focuses on particular data. For example for US yields dataset (Figure 25), the one-factor

model focused mostly on short maturities, while three-factor model’s residuals remain

at roughly the same level for all maturities. This focusing on particular data seems to

transfer to predictions too (Figure 28).

The calibration of the models is not flawless. In previous sections, we often avoid

topics, which might influence result and we neglect them in our approach. In this

section, we describe these issues and propose possible improvements, which may be

helpful for further research.

The estimation of market price of risk is very simplified in our algorithm. The

form of 𝜆(𝑟, 𝑡) = 𝜆 leads to 𝜆(𝑟, 𝑡)𝜎(𝑟, 𝑡) = 𝜆𝜎𝑟𝛾. Models like CIR assume 𝜆(𝑟, 𝑡) = 𝜆
√

𝑟,

thus CKLS model should assume even more advanced form of market price of risk. As

we mentioned in chapter 2.4, we were unable to estimate market price of risk as 𝜆 = 𝜆𝑟𝛿.

But even then, it may not be a good estimate of true market price of risk.

Market price of risk causes another issue, which strongly determines the long period

predictions. The estimation is biased and the range of the bias is sensitive to parameters

𝛾, 𝜎 and short rates 𝑟. Short rates close to zero and 𝛾 > 1 lead to cases when the

denominator in (31) goes faster towards zero than the numerator. Thus even small

error in the short rate has great impact on the market price of risk. We have already

discussed the precision of short rate optimization and precision is very hard to achieve.

In multi-factor models parts of each factors are often close to zero. Which means that

even though the fit of the multi-factor model is better, the bias in market price of risk
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estimation impairs the predictions for long periods. That is the reason why we provided

also 1 day predictions, where the effect of market price of risk is smaller.

Even though we satisfy Fichera theory the optimization leads to small non-

positive short rates. Fichera theory ensures that under specific conditions the pro-

bability of zero short rate is zero. Negative short rate is restricted completely by the

CKLS model definition. Despite that, our algorithm gives small negative short rates.

The reason is the way we optimize the short rates. If 𝑁 is number of factors in mo-

del, we optimize only 𝑁 − 1 short rates and calculate the remaining factor with total

short rate, which is sum of all factors. Under perfect conditions this would be fine, but

the total short rate is also estimated from external method (two-factor Vasicek model

or one-factor model estimation) with given precision. Thus if the total short rate is

not perfect, the factors may be optimized to negative values. Perfect total short rate

is impossible to get, since it is unobservable for real datasets. To prevent failures of

solving PDE for negative short rates, we basically round the negative short rates to

zero and use it to calculate bond price. Numerically this is done instantly and does not

cause any problems. But if the short rate is zero, it has to be omitted when calculating

market price of risk. Another reason for small negative short rates is that the all is done

numerically and some form of error will always be present. If the negative yields are

the objective, one could always substitute one CKLS model factor as Vasicek model

factor, which enables estimation of negative yields.

Our results of the optimization algorithm may be fine, but there is no guarantee

that for different datasets it won’t fail. Our algorithm is basically only a heuristic.

The algorithm may not provide consistently good results and further testing needs to

be done. The choice of numerical parameters depends on the dataset and one should

always experiment with different numerical parameters like spatial spacing, Nelder-

Mead coefficients,...

The choice of starting point in our algorithm is described very vaguely. That

is because there is no straight forward guide for picking good starting point. In most

optimization problems, the choice of starting point does not matter. However for our

algorithm it does, especially for multi factor models. The only guide line we observed is

that the initial choices of 𝜃𝑖 parameters for each factors should follow ∑︀
𝑖 𝜃𝑖 = 𝜃1𝑓 , where
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𝜃1𝑓 is parameter of one-factor model. This might help to achieve better performance

and prevent having one of the factors basically constant zero. On the other hand, when

the data are following a one-factor model perfectly, the multi-factor model optimization

fails to converge to one-factor model without using starting point with only one non-

zero factor. Possible workaround is using various starting points and resetting the

Nelder-Mead optimization few times, but this is hardly a reliable solution of the issue.

Different optimization method might improve the convergence or at least save some

time. Nelder-Mead optimization often quickly finds solution and then spends large

amounts of time moving around in small steps and shrinking its volume. This can

be partly controlled by the maximum allowed iterations, but still the Nelder-Mead

algorithm may not be the most suitable for this problem. Interesting union of gene-

tic algorithm and effective convex algorithms is proposed in [9], where they test this

algorithm on one-factor models. However, it is unclear how to implement short rate

optimization into such genetic algorithms without significantly increasing time needed.

Figures 33a and 33b plot iterations of Nelder-Mead optimization for simulated and real

datasets and logarithm of objective values. In real dataset the algorithm spends most of

the iterations shrinking in optimum. Limiting maximal iterations is possible controlling

mechanism to prevent spending time uselessly. On the other hand it may prevent the

algorithm to reach better optimum as is seen in Figure 33a. The optimization needs

all iterations to reach correct optimum for simulated dataset.

(a) Simulated dataset. (b) Real dataset.

Obr. 33: Example developments of objective value during Nelder-Mead optimization of one-

factor model.

There are observable steps or stages in the process of optimization in Figure 33a
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for simulated dataset. These steps are created when Nelder-Mead algorithm explores

new minima. For example the first step comes with finding the correct parameter 𝜃

and second step comes with correct 𝜅. Afterwards the Nelder-Mead exploits the found

optimum and shrinks to achieve better precision. After each shrink the reach of Nelder-

Mead simplex manipulations decreases and thus true optimum may be invisible for the

algorithm unless it shrinks enough. When the simplex shrinks enough the third step

occurs and is already close to solution. However, to find correct 𝛾 and 𝜎, much more

shrinking is required. The sensitivity of objective value to 𝛾 and 𝜎 is complex. For some

regions the sensitivity is high, for other low. Usually the optimization ends with two

outcomes - 𝛾 > 1 and 𝜎 very low or 𝛾 < 1 and 𝜎 high. The other combinations are

quickly declined, which means the sensitivity is high in those regions.

Obr. 34: Visualization of objective value in relation to 𝛾 and 𝜎, while 𝜅 and 𝜃 are correct.

Red dot denotes correct 𝛾 and 𝜎.

The volatility parameters 𝛾 and 𝜎 are complicated to optimize. Due to the

form 𝜎𝑟𝛾, where 𝑟 is usually very small, similar volatility can be described by different

parameters. Depending on starting point the optimization may end with 𝛾 < 1 and
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big 𝜎 or 𝛾 > 1 and small 𝜎. Both lead to very similar volatilities. Figure 34 shows the

objective value in relation to volatility parameters. Different combinations of 𝛾 and

𝜎 may result to similar volatility, which can be seen in the graph as „valley“ of low

objective values. All points in the valley have similarly low objective values, but the

lowest is in correct 𝛾 and 𝜎. However, it is easy for optimization algorithm to end in a

different point in the valley and thus giving different optimal 𝛾 and 𝜎.

The mulit-factor problem is not convex and it appears to not be uniquely determi-

ned either. In case of two-factor Vasicek model authors in [2] propose relation between

drift parameters and short rates. Thus the solution of PDE may not be uniquely de-

termined without implementing similar dependency relation into CKLS multi-factor

model. Using convex programming methods like BFGS for parameters optimization

leads to bad results, which suggests that the problem has many local minima. These

properties make it very difficult to find correct optimum if not impossible.

Phenomenon overfitting occurs, when a model uses too many variables or regres-

sors. Model with too many variables may fit the data too well and copy the unwanted

random noise contained in the training dataset. Afterwards the copied noise impairs

predictions for a new dataset, which contains different random noise. We already menti-

oned overfitting when we described predictions for Slovak yields dataset in Figure 32. In

that case we were unable to determine whether the incorrect predictions of three-factor

model are due to overfitting or just bad estimation. To successfully observe overfitting

we devise experiment with one-factor CKLS model simulated dataset. We calibrate

one-factor, two-factor and three-factor CKLS model for this dataset. Usually the fit is

better for more factors in the model, but in this case it is same or worse depending

on the starting point for multi-factor models. If we choose starting point with knowing

that this data are simulated from one-factor model, we end up with all factors zero

except one. However, if we choose starting point otherwise, the optimization finds dif-

ferent optimum and the fit is slightly worse, but still very good. So either we end up

with multi-factor models reducing to one-factor model or multi-factor models trying to

fit the data otherwise. Only the latter produces different predictions of each model.

Figure 35 summarizes 50 day predictions of each calibrated model. The one-factor

model predictions are better than multi-factor model predictions, which may indicate
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Obr. 35: Comparison of 50 day predictions of each model for dataset simulated by one-factor

model. Overfitting is visible as multi-factor models perform worse.

the presence of overfitting. Although, the effect is not strong and the residuals are very

close in this case. The effect may be weak, because the data do not contain much noise

to which multi-factor models could overfit.

A better experiment could be done, where the data are simulated in same way, but

then exposed to a random noise. Such noise could then transfer to multi-factor models,

while one-factor model should remain almost unchanged. However, it is not clear what

kind of noise should be used to avoid creating completely different dataset.
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Conclusion

Modelling interest rates is widely popular and various approaches emerged throughout

the history. Our goal was to compare them and find the best one. The important

aspects to compare are the ability to fit data and ability to predict future data. We

focused on short rate models, more precisely CKLS short rate models with one, two or

three independent factors.

First we described the mathematical background of the relation between modelled

short rate and interest rates. The short rate is modelled as stochastic process with

parameters 𝜅, 𝜃, 𝛾 and 𝜎. Interest rates are calculated as a solution to partial differential

equation, which rises up from no-arbitrage principle of derivative pricing. The partial

differential equation is solved numerically using method of lines proposed in [8].

In order to calculate interest rates, the model needs parameters 𝜅, 𝜃, 𝛾 and 𝜎, which

are unknown for real datasets. We use regression to find the correct parameters. The

optimization is done using Nelder-Mead algorithm and the result are optimized para-

meters. However to estimate interest rates, the model needs short rate and maturity

of the yield. Maturity is known, but short rate is unobservable. Therefore we designed

algorithm which optimizes CKLS model parameters and short rates together. With

small changes the algorithm is applicable also for multi-factor models.

Afterwards we calibrated one-factor, two-factor and three-factor CKLS model for si-

mulated and real datasets. We measured the ability to fit the data by average differences

between estimated and observed yields. To measure predicting ability we compared pre-

dictions with exact future observations, which were left out of the calibration process.

Generally the models with more factors are fitting the data better. One-factor model

often focuses only on particular maturity or section of dataset, while multi-factor mo-

dels are able to capture all data points consistently (Fig. 25). Often this focusing effect

transfers to predictions as it was the case for US zero-coupon yields dataset (Fig. 28).

On the other hand overfitting effect may manifest and principle „less is more“ takes

place. This was probably the case for Slovak zero-coupon yields dataset (Fig. 32). In

last chapter we discussed many issues that accompanied the calibration process and

possible improvements.
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