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Preface

These lecture notes provide exercises to an introductory course dealing with analytical and numerical

methods for pricing financial derivatives. It takes the partial differential equations approach to the
models formulated in terms of stochastic processes.

Exercises collected in these notes start with the concept of options and options strategies. The second

chapter deals with random processes, which are the base of the financial models studied later. The first
such model is the Black-Scholes model, which is extensive studied in chapter 3 from both the mathe-

matical point of view (analysis of the Black-Scholes partial differential equation) and the financial point
of view (financial interpretation of the results, getting intuition about the model, sensitivities, etc.). As

an example of possible generalizations of the Black-Scholes model, Leland model for transaction costs is

given in chapter 4. The following two chapters contain application of finite difference numerical schemes
to options pricing. Firstly, in chapter 5, the European options are considered, when the numerical solu-

tion can be compared with the known exact solution. Here, a large space is given to understanding and

testing the successive over-relaxation method for solving a system of linear equations. Then, in chapter
6, American options are presented, the free boundary formulation of the pricing problem is transformed

to a linear complementarity problem, which is finally numerically solved by projected successive over-
relaxation method. The last chapter is an introduction to interest rate modelling and it presents the

basics of the Vasicek model - distribution of the short rate, bonds pricing and term structures of interest

rates.
Exercises are both theoretical and practical, requiring implementation of the algorithms and their

testing. The codes given in the notes and at the website are written for Scilab:

http://www.scilab.org

which is a free software with a syntax very similar to Matlab.

The content of these notes is based on the Financial derivatives course, as taught at Faculty of Math-
ematics, Physics and Informatics, Comenius University, Bratislava. The notes were written as a part of

the project of transforming the master study program Mathematics of Economy and Finance into English
language. There is a website to the English version of the course:

http://www.iam.fmph.uniba.sk/institute/stehlikova/fd-en.html

which will be gradually updated.

Bratislava, 31st July 2013 Beáta Stehĺıková
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Chapter 1
European vanilla options

An option gives its holder the right but not the obligation to perform the predetermined contract. So

called European options are characterized by the fact that it can be exercised only at the specified
time, which is called the expiration time. American options can be exercised at any time before their

expiration. In the first five chapters we are going to deal with European options. Unless stated otherwise,
we assume that the stock does not pay dividends.

1.1 Payoff and profit diagrams

1.1.1 BASIC DEFINITIONS. The two basic types of European options, which are referred to as plain (or

vanilla) options, are the following:

• The European call option is a derivative contract in which the holder of the option has the right

but not the obligation to purchase the underlying stock at the specified expiration time t = T for

the predetermined exercise price (also called strike price) E

• The European put option is a derivative contract in which the holder of the option has the right
but not the obligation to sell the underlying stock at the specified expiration time t = T for the

predetermined exercise price (also called strike price) E

The value of an option or an option strategy at the time of expiration is called the payoff. After sub-
tracting the initial investment (in the case of nonzero interest rates, we subtract its value at expiration)

we obtain the profit. Graphs of payoff and profit as a function of the price of the underlying asset at the

expiration time are referred to as payoff diagram and profit diagram respectively.

1.1.2 PAYOFF AND PROFIT DIAGRAMS FOR A CALL OPTION. Let us consider a call option with exercise

price E. Its value at the expiration time depends on the price S of the underlying stock at this time:

• If S is lower than or equal to the expiration price E of the option, the option is worthless and hence
the payoff is zero in this case.

• If S is greater than the expiration price E, we obtain the profit S−E by exercising the option (i.e.,

paying the amount E and receiving the asset which has the value S), therefore which makes its
value in this case is S − E.

Hence, we can write the call option price at expiration in a compact form as max(0, S − E). Profit

diagram of the call option expiring in T years, is then obtained by subtracting V e−rT , where V is the
price of the option and r is the interest rate per annum.

Figure 1.1 shows payoff and profit diagrams for a call option. It has been generated by the Scilab

code1 below:

1The full code, including formatting of the graph (setting the white background, defining fonts, etc.) can be found on the
companion website, see Preface for the link.
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S=0:20; // range of stock prices

E=10; // exercise price

T=1; // time to expiration

V=3; // price of the option

Payoff=max(0,S-E); // payoff of the option

r=0; Profit1=Payoff-V*exp(-r*T); // profit for r=0

r=0.1; Profit2=Payoff-V*exp(-r*T); // profit for r=0.1

figure; // new figure window

subplot(1 ,2 ,1);

plot(S,Payoff );

xlabel("underlying stock at the expiration time");

ylabel("payoff of the option");

subplot(1 ,2 ,2);

plot(S,Profit1);

plot(S,Profit2 ,"r");

xlabel("underlying stock at expiration time");

ylabel("profit from the option");

legend("r=0","r=0.1 (i.e., 10%)");

Figure 1.1: Left: Payoff diagram of a call option with the exercise price 10 USD. Right: Profit diagram of

such an option which costs 3 USD and expires in one year, for two possible values of the interest rate.

1.1.3 EXERCISE: PAYOFF AND PROFIT DIAGRAMS FOR A PUT OPTION. Deduce the payoff of a put option

to be equal to max(0, E − S), where E is the exercise price of the option and S is the price of the

underlying stock at the expiration time. Graph the payoff and profit diagram for a put option with
selected parameters.

1.1.4 EXERCISE: PRACTICE WITH PAYOFF AND PROFIT DIAGRAMS. Consider buying the call option with
the expiration price E = 60 USD with expires in one month (i.e., T = 1/12), which costs 10 USD. Assume

that the interest rate is zero.

• Plot your payoff and profit diagram.
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• Is your possible profit bounded? If so, what is the higher possible profit? If no, what behaviour of

the underlying stock leads to profit increasing without any bound?

• Suppose that the price of the underlying asset at expiration is 65 USD. Does your position lead to
a positive profit or to a loss?

• Determine all the prices of the underlying asset at expiration, for which the positive profit is

achieved.

Repeat the same questions for the case when the option considered is a put option. The other parameters
remain the same.

1.1.5 REAL MARKET DATA ON OPTIONS PRICES. Firstly, we should note that in practice the options traded
on the individual stocks are American options, which means that can be exercised at any time before the

expiration time (not only at the expiration time). Options traded on indices are usually European type

options, although some are traded as American options).
Nevertheless, we show the data of options traded on individual stocks as well, to present the notation

used. We use the site http://finance.yahoo.com, where we start by writing the name of the company

or directly the stock symbol, as shown in Figure 1.2.
Unless we deal with pricing American derivatives, we take the option prices given online as the prices

of the European style options. Let us remark that later we will show that in the case of a non-dividend
paying stock, the prices of a European and an American option are equal.

Figure 1.2: Searching options on Toyota Motor Corporation stocks at finance.yahoo.com.

Figure 1.3 shows an excerpt from the option chain (obtained by clicking on Options in the left
column), a list of option prices available at the given time. There are options with different exercise

prices and such an option chain is available for each expiration time.

As indicated in the header, these options expire on Saturday, 20th July 2013. American options
typically expire the third Saturday of the month and they are closed for trading the preceding Friday2.

Therefore the options with other expiration dates are indicated only by the month of the expiration. The

options not following this format can be distinguished by their symbol which will be explained in the
following paragraphs.

The options are characterized by their symbol, see the column Symbol in the table. The format of
option symbols was created by the Options Clearing Corporation. The option symbol is made up of 17

to 21 characters, depending on the length of the symbol representing the underlying security. Symbols

are constructed as follows:

symbol of the underlying + expiration date + call/put + exercise price

The symbol of the underlying has 2 to 6 characters, which results in different lengths of the option

symbols. The expiration date is written in the form YYMMDD and the type of the option is given by C
(call) or P (put). The strike price is given in dollars to three decimal places and consists of 8 digits: the
first 5 digits give the dollar value (the first digits are set to zero if necessary) and the last 3 digits give

the cents.

2However, there are also weekly options which are traded for a week and then expire on Friday, quarterly options which expire
on the last trading day of the quarter, etc.
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Figure 1.3: Options on Toyota Motor Corporation stocks at finance.yahoo.com

As an example, let us take the symbol TM130720C00100000. This is an option traded on TM, i.e.,

the Toyota Motor Corporation stocks. The expiration time is given by 130720 which stands for 20th
July 2013. The letter C indicates a call option. Finally, the expiration price, deciphered as 00100000, is

00100,000 USD, i.e., 100 USD.

In practice, the options are not traded individually, i.e., one does not get the right to buy one un-
derlying stock. Typically, they are traded in hundreds. There is an exception, so called mini options on

selected underlyings, which are traded in tens. Their symbol is distinguished by the number 7 following

the symbol of the underlying asset, see Figure 1.4

Figure 1.4: Regular and mini options at finance.yahoo.com.

For our exercises in this and the following chapters, we are going to use the current stock price (in
the boldface in the top, here 120.66 USD), the last traded option price (in the Last column), the price for

which we are able to buy the option immediately (so called ask price, column Ask in the table) and the

price for which we are able to dell the option immediately (so called bid price, column Bid in the table).

1.1.6 EXERCISE: USING REAL MARKET OPTIONS PRICES. Find he current prices of the call and put

options for a selected stock. Based on your expected evolution of the stock decide on buying a call or

put option with a suitable exercise price. Alternatively, consider a protection against a certain movement
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of the stock price (for example, if you have stocks in your portfolio, you might want to protect yourself

against the possibility that the stock price declines).
Plot the payoff and profit diagrams for the chosen strategy, taking the interest rate equal to the

Treasure Bills yield with a maturity close to the exercise time of the option. For what values of the

underlying stock at expiration time is your strategy profitable?

SAMPLE SOLUTION. We provide a sample solution using the options shown earlier in this chapter in Table

1.6.
Consider buying the call option with exercise price of 100 USD, expiring in July 2013, i.e., on 20th

July. It can be bought for its ask price which is equal to 22.80 USD. The data shown in Figure 1.3 come

from the beginning of the trading on July 1st which leaves 14 trading days3 until the expiration of the
option. Considering the convention of 252 trading days a year, we have T = 14/252. As the interest

rate we take the four-week Treasury Bills rate4 from the previous trading day which equals 0.02%, i.e.,
r = 0.0002. This enables us to plot the diagrams shown in Figure 1.5

Figure 1.5: Payoff diagram (left) and profit diagram (right) of the option.

Since the profit is a piecewise linear function, it is easy to explicitly compute its intersection with the

horizontal axis. This value of the stock is called a breakeven price; at this price the profit is exactly zero.
Having computed this price, we are able to answer the question, when our profit would be positive.

The profit equals

profit(S) =

{

−22.80× e−0.0002×14/252 for S ≤ 100,

S − 100− 22.80× e−0.0002×14/252 for S > 100.

Hence the breakeven price equals

S∗ = 100 + 22.80 e−0.0002×14/252

and the strategy results in a profit if the stock price at expiration is higher than S∗.

1.1.7 EXERCISE. Take a look on a selected options chain. Typically, the options are ordered so that they

start with the smallest exercise price and continue with options with increasing exercise price. What
pattern do you notice for call and put options? How does the prices of call and put options depend on

the exercise price? Why?

1.1.8 EXERCISE: SELLING (OR WRITING) OPTIONS. In the same way we can analyze the situation when

we write an option. This means we have an obligation to perform the determined contract if the holder

3Note that this time interval includes the Independence day (4th July), when the stock market is closed in the USA. A useful
site for determining public holidays in different countries is, for example, http://calendar.retira.eu.

4Taken from http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.

aspx?data=billrates
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of the option chooses to exercise his right. Simple strategies of writing a call or put option are known

as naked call and naked put respectively. The term naked refers to the fact that the risk resulting from
writing the options is not covered by buying/selling another financial instrument. We will return to this

when discusing combined strategies.

For now, plot payoff and profit diagrams for these strategies. Is the highest possible profit bounded?

Is the highest possible loss bounded?

1.1.9 EXERCISE. In the preface to the book Options Math for Traders: How To Pick the Best Option

Strategies for Your Market Outlook5, the author writes:

One strategy that you won’t see discussed at all, even though logically extending some of
the phenomena might make one think it would be a profitable strategy, is naked call selling.

Please don’t do it, even if your broker will let you. Little good and much regret can come of

it. I’ll explain naked put selling, which some might say is being hypocritical, but even when
we discuss selling naked puts they’re not really naked. ... On the other hand, it’s impossible

to set aside enough cash to cover the risk from selling naked calls.

Can you explain this reasoning? What is the difference between a naked call and a naked put? Why is

”a naked put not really naked” and why is it ”impossible to set aside enough cash to cover the risk from
selling naked calls”?

1.1.10 INTRINSIC VALUE AND TIME VALUE OF AN OPTION. The price of an option can be decomposed

into so called intrinsic value and time value. The intrinsic value of an option is the value of the option

if exercised immediately. The rest of the value is called the time value.

For example, suppose that the stock price is 100 USD. Let us consider the put option with the exercise
price of 105 USD which costs 9.50 USD. Then the intrinsic value of the option is 5 USD and the time

value is 4.50 USD. If we consider another put option with exercise price of 90 USD which costs 2.60

USD, then its intrinsic value is zero and the time value is 2.60 USD.

1.1.11 MONEYNESS. The term moneyness refers to the relation of the exercise price of the option to
the current stock price. If an option would make a profit if exercised now, it is said to be in-the-money
(abbreviated as ITM). If exercising an option immediately would lead to a loss, the option is said to be
out-of-the-money (OTM). If the current price of the stock and exercise price of an option are equal, the

option is said to be at-the-money (ATM).

In the tables presenting the options chains, the ITM and OTM options are often distinguished graph-

ically, for example on both finance.yahoo.com and finance.google.com the ITM options are high-
lighted, see Figure 1.6.

Figure 1.6: Highlighted ITM options at finance.yahoo.com; the current stock price is 25.47 USD.

1.1.12 EXERCISE. What is the time value and the intrinsic value for each of the alternatives - an OTM,

an ITM and an ATM option?

1.1.13 EXERCISE. Select a stock and consider the option chain for a selected expiration time. You are

asked to buy an in the money call option. List some alternatives which you have. For each of them plot
the profit diagram and compute the breakeven price.

5S. Nations,s Options Math for Traders. How To Pick the Best Option Strategies for Your Market Outlook. John Wiley & Sons,
2012, p. xii
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1.2 Combined strategies

1.2.1 EXAMPLE. Consider the part of the option chain presented in Figure 1.6 and suppose the investor

buys the call option with the strike price of 23 USD, anticipating the higher value of the stock at the

exercise time. On the other hand, he does not expect the price to rise so sharply that, for example, the
call option with the strike price 28 USD would be useful. However, he sees that there is a demand for

these options, so he sells such an option. In this way, he receives a certain cash at the beginning and

expects no payments at the expiration time.
Let us compare these two strategies (to simplify the computations we consider zero interest rate, note

that the expiration time is close and the interest rates are low):

• Buying the call option with the strike price of 23 USD has the profit

profit1(S) = max(0, S − 23)− 2.78 =

{

−2.78 for S ≤ 23,
S − 25.78 for S > 23.

• Buying the call option with the strike price of 23 USD and selling the call option with the strike

price of 28 USD has the profit

profit2(S) = max(0, S − 23)−max(0, S − 28)− 2.78 + 0.31 =







−2.47 for S ≤ 23,
S − 25.47 for 23 < S ≤ 28,
2.53 for S > 28.

At this point it is useful to define functions in Scilab for a payoff of call and put options as functions

of the stock price S and the exercise price E:

function [cp]=CallPayoff(S,E)

cp=max(0,S-E);

endfunction

function [pp]=PutPayoff(S,E)

pp=max(0,E-S);

endfunction

Their use makes the subsequent code more readable:

function [p1]=profit1(S)

p1=CallPayoff(S,23) -2.78;

endfunction

function [p2]=profit2(S)

p2=CallPayoff(S,23)- CallPayoff(S ,28) -2.78+0.31;

endfunction

S=10:35;

figure;

plot(S,profit1(S));

plot(S,profit2(S));

The profit diagrams are shown in Figure 1.7. Based on them, we can make several observations:

• The first strategy is profitable if the stock price at the time of the expiration exceeds 25.78 USD.

The second strategy is profitable it exceeds 25.47. Hence a smaller value of the stock price is
required for the profitability of the second strategy. This is caused by selling the option which

brought certain cash at the beginning.

• The first strategy brings higher profit than the second one if the stock price exceeds 28.31 USD,

i.e., for a high value of the stock. Again, this is caused by selling the option with the strike price 28

13



Figure 1.7: Comparison of the option strategies.

USD, which gets exercised. For high value of the stock, the cash received at the beginning is not

sufficient to make up for the lost caused by having to sell the option for the predetermined price of

28 USD.

• The profit of the second strategy is bounded. If the stock price exceeds 28 USD, both options are
exercised. This means that the investor buys the stock for 23 USD (because he uses his option) and

at the same time sells it for 28 USD (the holder of the option exercises it too). This brings him the

payoff of 5 USD, but we need to subtract the initial investment to receive the profit (he payed 2.78
USD and received 0.31 at that time).

The strategy of buying an ITM call option and selling an OTM call option is known as bullish call
spread. The term bullish refers to the expectation of a rise of the stock price, contrary to so called bearish

strategies which are based on the expected fall of the price.

1.2.2 EXERCISE: BULLISH PUT SPREAD. Show that a similar strategy can be constructed using put
options. Construct a bullish put spread which is constructed by buying an OTM put option and selling

an ITM put option. Why is it a bullish strategy?

Figure 1.8: Profit from the options strategy.

14



1.2.3 EXERCISE. Consider a strategy which consists of buying one call option with exercise price of

25 USD and one with exercise price of 26 USD, while selling one call option with with exercise price of
23 USD and one with exercise price of 28 USD. The profit diagram of this strategy, taking option prices

from Figure 1.3 and assuming zero interest rate, is presented in Figure 1.8. What does it say about

the investor’s expectation about the stock price? When is it reasonable to have such an expectation?
Compute the prices for which the strategy brings profit.

REMARK ON NUMERICAL COMPUTATION. Instead of an exact breakeven price, a numerical solution
suffices and its computation might be more convenient in the cases like this one, where the strategy

involves more options.

We define profit as a function of the stock price at expiration and compute the value for which it
equals zero using the Scilab function fsolve6, which finds, in general, a zero of a system of nonlinear

equations. Our profit function is ”problematic” in some ways - there are points where it is not differ-
entiable and intervals where it has constant values - but when the starting value for the optimization is

chosen to be close to the solution we can avoid these problems and use fsolve also in this case. The

initial point can be chosen from the graph, see Figure 1.8.
Firstly, we define the function

function [p]=profit(S)

init_inv= -2.75+1.42+0.92-0.31 // initial investment

p=-CallPayoff(S,23)+ CallPayoff(S,25)+ CallPayoff(S,26) -...

CallPayoff(S,28)- init_inv;

endfunction

and then we can use for example the following initial values

b1=fsolve (23.5 ,profit );

b2=fsolve (27.5 ,profit );

to compute the two breakeven prices.

1.2.4 A ”HERBARIUM” OF OPTIONS STRATEGIES. For a variety of options strategies, we refer to the web-

site http://www.theoptionsguide.com/. It lists option strategies according to the expectation about

the stock price: bullish, bearish, non-directional. In the last case we distinguish whether we expect the
price to stay at about the same level as it is now, or we anticipate a big change in the price but we are

unsure about its direction (for example depending on the results of the company which are to be an-

nounced). Note that when constructing some of the strategies, there may not be an exactly ATM option
available; in such a case, an option with the strike price close to the stock price should be used.

The website provides profit diagrams of the strategies, method of their construction, maximum profit
and loss, examples. You should get an overview about different possible strategies, understand their

analysis and possible use.

1.2.5 EXERCISE. Find a combination of options which has a payoff diagram equal to each of those
shown in Figure 1.9. Furthemore, answer the following questions:

• Why would anyone consider the strategies from the bottom row, which never have positive payoff?

• Why are the strategies in the first row, which always have nonnegative payoff (especially the strat-
egy in the right, which has a positive payoff, regardless of the stock price at expiration time), not

arbitrage7?

1.2.6 EXERCISE. Give an example of an option strategy which has a limited loss and is profitable if there
is a small change in stock price in either direction.

1.2.7 EXERCISE. Consider the strategy of selling an ATM call and an ATM put option.

• Sketch the payoff diagram and show that the possible loss is not bounded.

6See http://help.scilab.org/docs/5.4.1/en US/fsolve.html
7An arbitrage is a strategy which leads to a riskless profit.
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Figure 1.9: Payoffs of the strategies.

• Add an option to the portfolio, so that the possible loss is bounded, while the character of the
strategy (bearish, bullish, a given type of an non-directional strategy) is preserved.

1.2.8 EXERCISE: COVERED CALL. So far we considered strategies which involved selling and buying
options. However, we can include also stocks into out portfolio.

In the previous section we have shown a warning against the naked call strategy - selling a call option
alone. Now we consider the covered call strategy, which consists of selling a call option, while holding

the underlying asset. Sketch the payoff diagram of this strategy and explain how the unlimited risk
(which was present when selling the call) is covered.

1.3 Put-call parity

1.3.1 PUT-CALL PARITY. From a construction of a certain portfolio we can deduce an important property

of the options. It relates the price of a call and a put option with the same expiration price, the same

expiration time, written on the same underlying asset; if it was not satisfied, it would create an arbitrage
opportunity - a certain strategy leading to a riskless profit.

In what follows, the interest rate is denoted by r, the common expiration price of the options by E,

the current time by t and the expiration time by T . We assume that the bid and ask prices coincide. A

further assumption is, that the short selling8 is permitted.

Consider a portfolio consisting of one put option, minus one call option (i.e., selling one call option)
and one stock. The payoff of such a portfolio is

max(0, E − S)−max(0, S − E) + S = E,

8Short selling a stock means borrowing a stock to sell it immediately, thus creating ”debt” of one stock which needs to be
returned at a later time to clear the short position; mathematically it means having ”minus one stock” in the portfolio.
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regardless of the price of the stock at the expiration time. If we receive E USD with certainty, the price

of this portfolio today (at time t) has to be equal to Ee−r(T−t), otherwise there would be an arbitrage. It
means that

price(put) − price(call) + S = Ee−r(T−t). (1.1)

1.3.2 EXERCISE. Assume the following prices on the market, for which the put-call parity (1.1) does
not hold: The interest rate is zero. The current price of the stock is 10 USD and there are options with

exercise price 12 USD which expire in one month. The call option costs 3 USD, while the put option

costs 4 USD. Show that this situation would lead to an arbitrage.

HINT. Let us consider the portfolio from the derivation of the put-call parity, i.e., one put option, minus

one call option and one stock. Its price today should be equal to Ee−r(T−t) = 10. However, in reality,
its price is 4 − 3 + 10 = 11. The portfolio is more expensive than it should be, hence it is natural that

the arbitrage strategy includes selling this portfolio. Finish this idea by explicitly stating the strategy and

showing that it indeed produces a riskless profit.

1.3.3 EXERCISE. Make your own example violating the put-call parity, where the arbitrage is present

only for certain positive interest rates (choose a particular value) and show how the arbitrage strategy
looks like.

1.3.4 EXERCISE. Consider a call and a put option on a stock, which both have the exercise price of 55

USD and both expire in one year. The current price of the stock is 53 USD and the price of the call is 0.1
USD higher than the price of the put option. What is the interest rate?

1.3.5 EXERCISE. Suppose that the interest rate is in fact higher than computed in the previous question.
What arbitrage would it cause?

1.3.6 EXERCISE. Consider a call and a put option on a stock, which have the same expiration price and

both expire at the same time. Suppose that the stock price is higher than the present value of the exercise
price of the option. Prove that the price of the call option is higher than the price of the put option.

1.3.7 EXERCISE. [1] Consider the following chooser option: At time t = 1, the holder will choose whether
the option becomes a call option or a put option with a strike price of 100 USD and expiration at time

t = 3. Today, at time t = 0, the price of the stock is 95 USD and the price of the chooser option is 20

USD. The interest rate is zero.

Denote by C(T ) the price of a call option with exercise price 100 USD at time t = 0 which expires at

time t = T . We are given that C(1) = 4. Determine C(3).

HINT. Let C(S, t, T ) be the price at time t of a call option with exercise price of 100 USD which expires

at time T , if the stock price at time t is S; define P (S, t, T ) analogously for a put option. The value of the

chooser option at time t = 1 is max(C(S(1), 1, 3), P (S(1), 1, 3)), which can be expressed as C(S(1), 1, 3)+
max(0, P (S(1), 1, 3)− C(S(1), 1, 3)). Explain why and use the put-call parity.

1.3.8 EXERCISE: STOCK PAYING DIVIDENDS. How does the put-call parity change if the stock pays

continuous dividends with a dividend rate q?

HINT. Use the same portfolio as in 1.3.1. What is the effect of dividends on its valuation?

1.3.9 PUT-CALL PARITY AND THE REAL DATA. Use the real data of option prices and use the last traded
price for the price of stock and options. Verify the put-call parity using these data - for example, compute

the theoretical price of a put option from the remaining data and compare it with its real price.

Why are there differences and why it does not mean that there are many arbitrage opportunities on
the market? One reason is, that we took the last traded prices, and these last trades did not necessarily

happen at the same moment. Hence at any moment, the real bid and ask prices might have values which
did not permit arbitrage. Also, the stock might be paying dividends, but then they are not the continuous

dividends considered in the previous question (it is only an approximation). Moreover, in practice there

are transaction costs associated with trading.
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1.4 Bounds on options prices

1.4.1 EXAMPLE FROM THE LECTURES. The price of a call option is a nonincreasing function of the
expiration price (when the expiration time is kept fixed). If this was not satisfied, there would be an

arbitrage.

The main idea of deriving this property was a construction of two portfolios. If it holds that

price(portfolio I.) ≤ price(portfolio II.)

at the expiration time of the options, the same inequality has to be satisfied also today when trading the

options. Otherwise there would be an arbitrage.

1.4.2 NOTATION AND ASSUMPTIONS. In what follows, we denote c(E) and p(E) the prices of call and

put options with expiration price E respectively. We do not distinguish bid and ask prices, we assume
that there is only one option price and one stock price for which any number of options and stocks (also

fractional) can be both sold and purchased. In particular, short selling of stocks is permitted. The options

considered expire in τ years. The interest rate per annum is r and we can borrow any amount of cash for
this interest, as well as give any amount of cash to a bank account and receive the interest.

1.4.3 EXAMPLE: CONVEXITY OF THE CALL PRICE AS A FUNCTION OF THE EXPIRATION PRICE. We need to

show that for E1 < E2 and λ ∈ (0, 1) the following inequality holds:

c(λE1 + (1 − λ)E2) ≤ λc(E1) + (1− λ)c(E2). (1.2)

Hence we consider the two portfolios:

1. call option with expiration price λE1 + (1− λ)E2 which we denote by E,

2. λ call options with expiration price E1 and 1− λ call options with expiration price E2.

We write their values at the time of the expiration into Table 1.1.

stock at expiration portfolio I. portfolio II. comparison

S ∈ [0, E1) 0 0 0 = 0
S ∈ [E1, E) 0 λ(S − E1) 0 ≤ λ(S − E1)
S ∈ [E,E2) S − E λ(S − E1) S − E ≤ λ(S − E1)
S ∈ [E2,∞) S − E S − E S − E = S − E

Table 1.1: Values of the portfolios at the time of expiration.

Most of the entries in the table are straightforward; some comments might be useful in the following

cases:

• The payoff of the portfolio I. in the case S ∈ [E2,∞) is λ(S − E1) + (1− λ(S − E2) = S − (λE1 +
(1− λ)E2 = S − E, as stated in the table.

• The comparison S − E ≤ λ(S − E1) for S ∈ [E,E2) follows from writing its left hand side as

S − E = λ(S − E1) + (1− λ)(S − E2) and taking into account the interval in which S lies.

We see that at the time of expiration, the value of the portfolio I. is always less than or equal to the

value of portfolio II. Hence the same has to be satisfied for their current prices, which is exactly the
inequality (1.2).

1.4.4 EXAMPLE: FINDING AN ARBITRAGE. Consider the prices of the call options given in Table 1.2.
Visualizing them in Figure 1.10 we see that they form a decreasing function (as they are supposed to)

but the exercise prices E1 = 105, E2 = 115 and E = λE1 + (1 − λ)E2 = 110 with λ = 1/2 violate
the inequality (1.2). Therefore we sell c(E) and buy λ of c(E1) and 1 − λ of c(E2), again following the

principle of buying what is cheaper that it is supposed to be and selling what is more expensive than it is

supposed to be.
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expiration price price of the call option

100 19
105 14

110 11

115 4

Table 1.2: Option prices for the arbitrage finding example.

Figure 1.10: Option prices for the arbitrage finding example.

Figure 1.11: Profit diagram of the constructed arbitrage strategy.

Multiplying the amounts by 2 removes the fractions, which may make the strategy more plausible,

although it is not necessary. The profit diagram of the resulting strategy is shown in Figure 1.11. It is

strictly positive which confirms that the strategy is indeed an arbitrage.
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1.4.5 EXERCISE. Replace the expiration price 115 in Table 1.2 by 120 and find an arbitrage in this case.

1.4.6 EXERCISE. Prove that to prevent the arbitrage possibilities, the following properties necessarily
hold.

• Price of a put option is a nonincreasing function of the expiration price.

• Price of a put option is a convex function of the expiration price.

• The following inequalities hold: S − Ee−rτ ≤ c(S) ≤ S.

• If E1 ≥ E2, then c(E2)− c(E1) ≤ (E1 − E2)e
−rτ .

For each property construct an example when it is not satisfied and find an arbitrage.
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Chapter 2
Basic concepts of the stochastic calculus

2.1 Wiener process

2.1.1 DEFINITION OF A WIENER PROCESS. A t-parametric system of random variables {w(t), t ≥ 0} is

called a Wiener process, if

1. the increments w(t+∆t)− w(t) have a normal distribution N (0,∆),

2. for any partition 0 = t0 < t1 < . . . < tn = t of the interval [0, t], the increments w(t1) −
w(t0), w(t2)− w(t1), . . . , w(tn)− w(tn−1) are independent random variables,

3. w(0) = 0 almost surely.

It follows from the Kolmogorov existence theorem that a process with these properties actually exists
(cf. the lectures). Moreover, it can be shown there is such a process for which, moreover, the sample

paths are continuous almost surely.

In what follows, w denotes a Wiener process satisfying the continuity condition.

2.1.2 SIMULATING TRAJECTORIES OF A WIENER PROCESS. We are going to simulate various random
processes so that we can observe their properties, confirm our computations, get an intuition with work-

ing with random processes, etc. The first step will be a Scilab function which allows us to generate a

trajectory (a sample path) of a Wiener process. We proceed as follows:

• We will simulate an approximation - values for a discrete set of time points, which we join.

• We will simulate the values of a Wiener process at times 0,dt, 2dt, . . ., where dt is a sufficiently
small time step.

• We know that the value at time t = 0 is zero.

• The increment on the time interval [k dt, (k + 1)dt] is a normally distributed random variable with
the mean equal to zero and the variance equal to dt.

Scilab has quite a general function for simulating random numbers, therefore we first define a simple
function which returns a random number from N (0, 1) distribution.

function [r]=randn()

r=rand(1,"normal");

endfunction

Now we can define a function which returns a trajectory of a Wiener process. The input parameters are

dt - the time step used in the simulation and n - number of time steps.
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function [w]=wiener(dt ,n)

w(1)=0;

for i=1:n

dw=sqrt(dt)*randn ();

w(i+1)=w(i)+dw;

end;

w=w’ // the output vector w will be a row vector

endfunction

Using this function we plot a trajectory:

dt =0.001;

n=1000;

time=(0:dt:n*dt);

figure;

plot(time ,wiener(dt ,n));

The result is shown in Figure 2.1.

Figure 2.1: A sample path of a Wiener process.

2.1.3 EXERCISE: SIMULATING TRAJECTORIES OF A WIENER PROCESS. Add several sample paths of a

Wiener process into one graph. Show that the probability distribution of w(t) is normal for every t and
compute its mean value and variance. To the figure with sample paths add a graph of the mean and 95%

confidence intervals (i.e., mean +/- 2 × standard deviation). See Figure 2.2 for a sample result.

2.1.4 EXERCISE: PERFORMING SIMULATIONS. Simulating a process or a random variable associated

with it can quickly provide an insight into its properties and behaviour. For both exercises here, the

distribution can be derived analytically. This requires a certain effort and in such cases, simulations can
be used to ”numerically check” our computations.

1. Denote by tM the time, in which the sample path of the Wiener process achieved its maximum on

the time interval [0, 1]. That is,

tM = argmax{w(t), t ∈ [0, 1]},

see Figure 2.3. Plot a histogram1 by simulating the realizations of the random variable tM . A
sample result can be found in Figure 2.3 as well.

1Scilab command for plotting a histogram is histplot(N,data), where N is the number of bins.
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Figure 2.2: Sample paths of a Wiener process, expected value and confidence intervals.

Figure 2.3: Definition of the random variable tM (left) and histogram of its values (right).

2. Define the random process

M(t) = max
0≤s≤t

w(s),

which is, at time t, the maximum value of a Wiener process on the interval [0, t]. Make a similar

plot as shown in Figure 2.4, simulating a trajectory of a Wiener process and determining the
corresponding M(t). Then, plot a histogram of M(1) and estimate its expected value.

Note that by taking a maximum over a discrete set of time points instead of the whole interval [0, 1],
we are underestimating the maximum corresponding to a given trajectory of a Wiener process.

Hence, when for example estimating the expected value, in order to achieve a higher precision it is

necessary to refine the time grid, in addition to increasing the number of simulations.
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Figure 2.4: Wiener process w(t) and the running maximum M(t).

2.1.5 EXERCISE: THEORETICAL COMPUTATIONS WITH A WIENER PROCESS.

1. Compute the probability distributions of the following random variables:

• x1 = w(2)− w(1),
• x2 = 3 (w(1)− w(2)),
• x3 = 5w(2),
• x4 = w(1) + w(2),

HINT. Note that w(1) and w(2) are not independent. Write x4 as x4 = [w(2)−w(1)]+2w(1) =
[w(2)− w(1)] + 2 [w(1)− w(0)] and use the independence of increments of a Wiener process.

• x5 = 2w(1) + 3w(2),
• x6 = w(1) + w(2) + w(3).

2. Let w be Wiener process. Show that the following processes are also Wiener processes (i.e., check

that they satisfy the properties from the definition):

• w1(t) = −w(t),
• w2(t) = cw(t/c2), where c > 0 is a constant.

3. Replace the distribution of the increments w(t+∆t)−w(t) by N (0,
√
∆t), while leaving the other

properties from the definition on a Wiener process unchanged.

• Show that there is no process satisfying the new conditions.

• Where does an attempt to apply the Kolmogorov existence theorem (used to establish the

existence of a Wiener process) fail?

4. Show that the covariance between the values of the Wiener process are given by Cov(w(t), w(s)) =
min(t, s). Plot the behaviour of the correlation Cor(x(t), x(s)) for a fixed t as a function of s.

2.1.6 EXERCISE. For t ∈ [0,∞) define the process

x(t) =
w(t)

1 + t
.
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• Plot some trajectories of the process. How does the variance change in time? A sample graph

showing five trajectories is shown in Figure 2.5. Plot more trajectories, so that the typical behaviour
of the process can be better observed.

• Compute the mean and variance of the process analytically. At which time achieves the variance

its maximum? What is its limit as time approaches infinity? Compare these results with the simu-
lations of the trajectories.
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Figure 2.5: Trajectories of the process x(t) = w(t)/(1 + t).

2.1.7 EXERCISE: BROWNIAN BRIDGE. For t ∈ [0, 1] define the process x(t) = w(t)− tw(1). This is known

as Brownian bridge.

• Plot some trajectories of the process. Where does its name come from?

• Compute the mean and the variance of the process at each time. When is the variance minimal
(why?) and when is it maximal?

• Show that the covariance is given by Cov(x(t), x(s)) = min(t, s) − ts. Plot the behaviour of the

correlation Cor(x(t), x(s)) for a fixed t as a function of s.

2.2 Brownian motion

2.2.1 DEFINITION OF A BROWNIAN MOTION If w is a Wiener process, then the process

x(t) = µt+ σw(t),

where µ and σ are constants, is called a Brownian motion.

2.2.2 EXERCISE. Consider the process x(t) = x0 + µt+ σw(t).
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• Plot some trajectories of the process and note how its typical behaviour depends on the parameters

µ, σ, x0

• The processes in Figure 2.6 are typical trajectories of the following processes:

1. x1(t) = 2w(t),
2. x2(t) = 0.5w(t),
3. x3(t) = 3 + 2w(t),
4. x4(t) = 3− 2w(t),
5. x5(t) = −3 + 2w(t).

Add the process to the corresponding trajectory.

Figure 2.6: Trajectories of the processes of the kind x(t) = x0 + µt+ σw(t)

2.3 Geometrical Brownian motion

2.3.1 DEFINITION OF A GEOMETRICAL BROWNIAN MOTION. If w is a Wiener process, then the process

x(t) = x0e
µt+σw(t),

where µ, σ and x0 are constants, is called a geometrical Brownian motion.

2.3.2 LOGNORMAL PROBABILITY DISTRIBUTION. Geometrical Brownian motion is closely related to a
lognormal probability distribution. Recall that a random variable X has a lognormal distribution if

log(X) (by log we denote the natural logarithm) has a normal distribution N (µ, σ2). Then the probability

density function of the variable X is given by

f(x) =

{

1√
2πσ2x

e−
(log x−µ)2

2σ2 for x > 0,

0 for x ≤ 0.

The first two moments of the random variable X are given by

E[X ] = eµt+
1
2σ

2t,

D[X ] = e2µt+σ2t
(

eσ
2t − 1

)

.
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2.3.3 PROBABILITY DISTRIBUTION OF A GEOMETRICAL BROWNIAN MOTION. Based on the given prop-

erties of the lognormal distribution, derive the density and the first two moments of the value of a
geometrical Brownian motion at time t.

Simulate trajectories of a geometrical Brownian motion with selected parameters; a sample result is

shown in Figure 2.7. Add the expected value of the process to the graph.

Figure 2.7: Geometrical Brownian motion.

2.3.4 MODELLING STOCK PRICES WITH A GBM, ESTIMATING THE PARAMETERS. Geometrical Brownian
motion can be used as a simple model for the stock prices2. It means that if the initial stock price S0 at

time t = 0 is given, the future stock prices are modelled as

S(t) = S0e
µt+σ2t. (2.1)

Then the (logarithmic) returns

returnt = log

(

St

St−∆t

)

= µ∆t+ σ∆w

are independent random variables with N (µ∆t, σ2∆t) distribution, which is a base for the estimation of

the parameters from the stock price data.
We rewrite the estimation procedure from the lectures into Scilab, assuming that the data are given

in the text file stock.txt which is located in the current working directory. Finish the code using the

outline below:

s= fscanfMat("stock.txt");

dt=1/252 ; // time step , in years

// 1/252 for the daily data

returns= ; //create the vector of returns

2It is also one of the assumptions of the Black-Scholes model for pricing derivatives, which we will study later.
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muDelta=mean(returns); // estimate of mu*dt

sigma2Delta= variance(returns); // estimate of (sigma ^2)*dt

mu=muDelta/dt // estimate of mu

sigma=sqrt(sigma2Delta/dt) // estimate of sigma

Download the historical data3 for a selected stock from finance.yahoo.com or finance.google.com

(see Figure 2.8 for a snapshop of the data table at finance.google.com) and use them for the following
tasks:

• Display the evolution of the stock prices and the returns.

• Estimate the parameters of the geometrical Brownian motion.

• Add the estimated expected value of the stock price in the future, conditioned on its last observed
value.

Figure 2.8: Historical stock price data at finance.google.com.

2.3.5 EXERCISE: FORECASTING THE STOCK PRICE EVOLUTION USING GBM. Suppose that the stock price
follows the geometric Brownian motion (2.1) with parameters µ = 0.15 and σ = 0.20. The price of the

stock today is 120 USD.

• Plot the density of the stock price in one month. Perform simulations: generate 1000 values of the

stock price and plot their histogram. Compare the two plots.

HINT. Outline of the Scilab code for the density:

// density of S(t) for the given S(0)=s0

// when modelling S by a geometric BM: S(0)* exp(mu*t+sigma*w(t))

function [pdf]=densityS(s,mu ,sigma ,s0 ,t)

muS=log(s0)+mu*t;

sigma2S=t*sigma ^2;

pdf=exp(-(log(s)-muS).^2/(2*sigma2S))./...

(s*sqrt (2*%pi* sigma2S));

endfunction

// left: exact density , right: histogram from simulations

figure;

subplot(1 ,2 ,1);

s= ; // suitable range of s (stock price)

f= ; // densityS(...) - density values

plot(s,f);

3Note that the data are usually displayed with the most recent in to the top. It is easy to adjust the computation of the
parameters, but it is better to adjust the data - in order to be able to produce graphs, etc.
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and for the simulated values:

subplot(1 ,2 ,2);

// vector of 1000 iid N(0,1) realizations

n=rand(1 ,1000 ,"normal");

// use the vector n to simulate the stock prices

Ssim= ;

// plot a histogram: histplot(N,data), where N = number of bins

A sample result is shown in Figure 2.9.
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Figure 2.9: Density of the future stock price and histogram of the simulated values.

• What is the expected value of the quarterly return? What is the probability that it will be negative?

HINT. We can simplify the original Scilab function for cumulative distribution function and define
a new function normcdf for the N (0, 1) distribution which has only one parameter:

function [cdf]=normcdf(x)

cdf=cdfnor("PQ",x,0 ,1);

endfunction

• What is the probability that in one year the stock price exceeds 150 USD? What is the probability

that it falls below 100?

2.3.6 EXERCISE: ESTIMATING THE PARAMETERS OF A GBM AND CHOICE OF THE TIME PERIOD. Select a

stock and download the historical data of its prices. Estimate the parameters of the GBM, using the data
from different time period: last quarter, last year, last couple of years, etc. Plot the stock prices for each

period, list the estimates and comment on the differences.

2.3.7 EXERCISE: PRICING OPTIONS - MONTE CARLO METHOD. In this course we are going to study

derivatives pricing using the partial differential equation approach. Another alternative is probabilistic

characterization of the option price. This allows the computation of the derivatives prices by simulations.
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In this exercise we outline the basic idea. We assume that the stock price behaves according to the

geometric Brownian motion (2.1) and that the derivative has the payoff V̄ (S) at the time of its expiration.

Firstly, we need to realize that the correct price of the derivative is not the expected value of V̄ (S) (or

its discounted value, taking interest rates into account). The derivative is not a simple ”bet” in which we

receive V̄ (S) with a certain probability distribution of S. The difference from a bet is, that in our case it
is possible to trade also the underlying stock.

It can be shown that the price is the discounted expected value of the payoff, but under another -
so called risk neutral - probability measure. The stock price follows a geometric Brownian motion also

under this risk neutral measure, but instead of the parameter µ there is r − σ2

2 where r is the interest

rate. The volatility σ remains the same.

This means that the price of the derivative at time t, when the stock price equals S, equals

V (S, t) = e−r(T−t)EQ
[

V̄ (S)
]

,

where T is the expiration time and Q denotes the risk neutral measure. The expected value can be

approximated by the arithmetic average of the realizations, and hence

V (S, t) ≈ e−r(T−t) 1

N

N
∑

i=1

V̄ (Si),

where S1, . . . , SN are simulated values of the stock price at the expiration time under the risk neutral

measure Q.

Let us consider a specific call option:

// GBM for the stock price:

mu=0.35;

sigma =0.30;

// Current stock price

s0=150;

// Call option

E=175; // exercise price

tau=1/2; // time to expiration

// Interest rate

r=0.01;

At the time of expiration we have:

Z=randn (); // N(0,1), randn () has been defined earlier

wT=sqrt(tau)*Z; // Wiener process at time T

// risk neutral measure

// => "r-0.5* sigma ^2" instead of "mu" in the GBM

sT=s0*exp((r -0.5* sigma ^2)*tau+sigma*wT); // stock at time T

vT=max(0,sT-E); // option at time T

Repeat this in a loop and after each new simulation compute the current approximation of the option

price based on the simulations performed so far. The approximations converge to the options price

with increasing number of simulations. A sample result is shown in Figures 2.10 (convergence of the
intermediate results) and 2.11 (histogram of 1000 values attained after 10000 simulations). It is possible

to price this option also analytically4 using the Black-Scholes formula (this will be studied later), its price
is 4.8572 USD.

Note that the variance of the Monte Carlo simulations performed in this direct way is quite high.

There are methods, so called variance reduction methods whose aim is to decrease this variance5
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Figure 2.10: Computing the option price using Monte Carlo method.
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Figure 2.11: Computing the option price using Monte Carlo method - histogram of the values after 10000

simulations.

2.3.8 EXERCISE. Find the cover of the 6th edition of the book Stochastic differential equations by Berndt

Oksendal. What is in the picture? Produce such a plot.

4This is not possible or the more complicated derivatives, hence the need for approximate methods, for example Monte Carlo
simulations. Using these methods in the simple cases with analytical solution enables us to test their efficiency and precision.

5For a simple introduction to these techniques see the chapter 3.5.4. of the book [4].
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2.4 Stochastic differential equations, Itō lemma

2.4.1 EXERCISE: ORNSTEIN-UHLENBECK PROCESS. Consider the stochastic differential equation

dx = κ(θ − x)dt+ σdw, (2.2)

where κ, θ, σ are positive constants. In this example we will see how to visualize a process given by a

stochastic differential equation by discretizing it, and its dependence on parameters.

• For the beginning disregard the stochastic part; this leaves an ordinary differential equation dx =
κ(θ − x)dt. How does its solution (for a given initial condition x(0) = x0) look like? What is the

role of the parameters κ and σ, how do they influence the behaviour of the solution?

• The stochastic parts ads fluctuations. We can get a quick idea about the process by discretizing it.

The simplest way is replacing the differentials in (2.2) by differences:

∆x = κ(θ − x)∆t+ σ∆w,

xi+1 = xi + κ(θ − xi)∆t+ σ∆w,

where ∆w in each step are independent random variables with N (0,∆t) distribution. Being a

generalization of the Euler method for obtaining a numerical solution of an ordinary differential
equation, this procedure is known as Euler-Maruyama method.

kappa =10; theta =1; sigma =0.25; // parameters

x0=0.5; // initial value

dt=0.001; // time step

n=1000; // number of steps

// Euler -Maruyama

x(1)=x0;

for i=1:n

dw=sqrt(dt)*randn ();

dx=kappa*(theta -x(i))*dt+sigma*dw;

x(i+1)=x(i)+dx;

end;

t=0:dt:n*dt; // time

figure;

plot(t,x);

A sample path generated in this way is shown in Figure 2.12.

• Define a Scilab function of the following form which returns a vector with the values of an Ornstein-

Uhlenbeck process:

function [x]=ou(dt ,n,x0 ,kappa ,theta ,sigma)

// insert the body of the function

endfunction

// Then we can make plots such as:

plot(t,ou(dt,n,x0 ,kappa ,theta ,sigma ));

Plot the trajectories of the process with different parameters to get an intuition about the behaviour

of the process.

• The trajectories in Figure 2.13 we obtained for the following sets of parameters:

1. κ = 20, θ = 1, σ = 0.5,
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Figure 2.12: A sample path of an Ornstein-Uhlenbeck process obtained by Euler-Maruyama discretiza-
tion.

2. κ = 3, θ = 1, σ = 0.5,

3. κ = 10, θ = 3, σ = 0.2,
4. κ = 10, θ = 3, σ = 0.5.

Match the parameter set with the corresponding trajectory in Figure 2.13.

2.4.2 EXERCISE: ORNSTEIN-UHLENBECK PROCESS IN FINANCIAL MODELLING. One of the applications of
the OU process in finance is modelling interest rates. So far, we have considered constant interest rates,

which is a simplification of reality. We return to interest rate modelling in later chapters, now we show
an example to illustrate the use of the OU process.

We refer to the paper Further evidence on alternative continuous time models of the short-term interest

rate published in 20006, in which data from many countries have been analyzed. The model considered
is

dr = (α+ βr)dt+ σrγdw (2.3)

Note that for γ = 0 we obtain constant volatility, as is the case of the OU process, which is known as

Vasicek process in the context of interest rate modelling. Since both (2.2) and (2.3) have a general form
of a linear drift, so they are only reparametrizations of the same function. We are going to work with

the parameters which are given in Table 2.1 (we present only the estimates of the parameters and omit

their standard deviations and other statistics associated with them). They were estimated from monthly
data of New Zealand interest rates from April 1986 to April 1998. The table shows the estimates of the

general model (2.3), Vasicek model (which we are going to use) and CIR model (which is studied later
in lectures, when dealing with interest rate modelling).

• Write the Vasicek process in the parameterization with κ, θ, σ. What is the level, to which the
interest rates converge according to this models?

• Plot some trajectories starting from a chosen initial value and see the speed of the convergence to

the equilibrium level computed above.

6A. Episcopos, Further evidence on alternative continuous time models of the short-term interest rate, Journal of International
Financial Markets, Institutions and Money 10 (2000) 199-212.
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Figure 2.13: Sample path of an Ornstein-Uhlenbeck processes with different parameters.

• How would you need to adjust the parameters to observe a higher speed of convergence? Generate

trajectories with the suggested value and show the difference.

• Suppose that the model is estimated with the current data. What differences in the estimates of
the parameters would you expect?

Model α β σ2 γ
Unrestricted 0.0045 -0.048 0.0034 0.7815

Vasicek 0.0046 -0.0487 0.0001 0

CIR 0.0041 -0.0447 0.0010 0.5

Table 2.1: Estimated parameters for the process dr = (α + βr)dt+ σrγdw and some of its special cases.
(Episcopos, 2000)

2.4.3 ITŌ LEMMA Let x be a process satisfying the stochastic differential equation

dx = µ(x, t)dt+ σ(x, t)dw

and f = f(x, t) be a smooth function. Then the process y = f(x) satisfies

dy =
∂f

∂t
dt+

∂f

∂x
dx+

1

2
σ2(x, t)

∂2f

∂x2
dt

=

(

∂f

∂t
+ µ(x, t)

∂f

∂x
+

1

2
σ2(x, t)

∂2f

∂x2

)

dt+ σ(x, t)
∂f

∂x
dw. (2.4)

2.4.4 EXAMPLE: APPLICATION OF THE ITŌ LEMMA. Let x be a process satisfying the stochastic differen-

tial equation dx = 2xdt+ xdw. We define y = e2tx2 and compute dy using Itō lemma.

34



SOLUTION I. We use the formula (2.4). In this case we have µ(x, t) = 2x, σ(x, t) = x and f(x, t) = e2tx2.
We compute the partial derivatives

∂f

∂t
= 2e2tx2,

∂f

∂x
= 2e2tx,

∂2f

∂x2
= 2e2t.

and substituting them into (2.4) we obtain

dy =

(

2e2tx2 + (2x)(2e2tx) +
1

2
(x2)(2e2t)

)

dt+ x(2e2tx)dw

= 7y dt+ 2y dw

SOLUTION II. We do not need to remember the formula (2.4). Instead we can proceed as in its derivation
(cf. the lectures) - compute the expansion up to the second order with respect to t and x, use the ”rule”

(dw)2 = dt and ignore the terms of higher order than dt and dw:

dy =
∂f

∂t
dt+

∂f

∂x
dx+

1

2

∂2f

∂x2
(dx)2

= (2e2tx2)dt+ (2e2tx)(2xdt+ xdw) +
1

2
(2e2t)(2xdt+ xdw)2

= 2y dt+ (4y dt+ 2y dw) +
1

2
(2e2t)(x2)dt

= 2y dt+ (4y dt+ 2y dw) + y dt = 7y dt+ 2y dw.

2.4.5 EXERCISES: ITŌ LEMMA.

1. Compute dy for the following processes

• y = e−tx3, where dx is the same as in the previous problem, i.e., dx = 2xdt+ xdw,

• y = log x, where dx = −2xdt+ 3xdw,

• y = e2x, where dx = 3dt+ 4dw.

2. Compute dy for the following processes (there may be several possibilities for choosing a process x
and a function f(x, t)):

• y = 3t+ 2w,

• y = 3e2w,
• y = etw,

• y = 2e3t+4w,
• y = t2ew.

2.4.6 EXERCISE: STOCHASTIC DIFFERENTIAL EQUATION FOR A GEOMETRIC BROWNIAN MOTION. Let y
be a geometric Brownian motion y = y0e

µt+σw.

• Compute dy.

• The assumption of the geometrical Brownian motion for the stock price S is often written in the

differential form as dS = µSdt + σSdw. Write S in the explicit form and note that it is not equal
to S0e

µt+σw .

• Suppose that the model for the stock price is given in the differential form as dS = µSdt+ σSdw.

How do you estimate parameters µ and σ from the data; what changes in the algorithm from 2.3.4
are necessary?

2.4.7 EXERCISE: STOCHASTIC DIFFERENTIAL EQUATION. Show that the process x = w
1+t satisfies the

stochastic differential equation

dx = − x

1 + t
dt+

1

1 + t
dw
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and the initial condition x(0) = 0.

2.4.8 ON UNIQUENESS OF A SOLUTION TO A STOCHASTIC DIFFERENTIAL EQUATIONS. Similarly as it is

the case for ordinary differential equation, the existence and uniqueness of a solution to a stochastic
differential equation does not automatically hold. There are conditions which guarantee it (see, for

example, [3] or other text specialized on stochastic processes); here we present an example showing the

possibility of nonuniqueness of a solution. Compare this result with the ordinary differential equation
obtained by taking only the deterministic part of the equation and a question of uniqueness of a solution

to this ODE.

Consider the stochastic differential equation

dx =
1

3
x1/3dt+ x2/3dw

with the initial condition x(0) = x0.

• Show that the process x =
(

x
1/3
0 + 1

3w
)3

is a solution

• Find another solution in the case x0 = 0.

Based on this example, write another, analogous stochastic differential equation with an initial condition,

for which the solution is not uniquely determined.

2.4.9 SOLVING STOCHASTIC DIFFERENTIAL EQUATIONS. In certain cases we are able to solve a given
stochastic differential equation. The following problems show some of the methods that can be used -

guessing a form of the solution (and determining the coefficients) and substitution leading to an equation

which is easier to solve.

1. Solve the following stochastic differential equation, i.e., find a process which satisfies the given

SDE and the initial condition:

dx = 4dt+ 3dw, x(0) = 2.

HINT. The solution is a shifted Brownian motion.

2. Solve the equation

dx = 2xdt+ xdw, x(0) = x0

by the following two methods:

• Note that this is a special case of a geometric Brownian motion; hence write a general form

of a GBM, compute its differential and match the coefficients.

• Alternatively, make a substitution y = log x, find the stochastic differential equation for y,

solve it and finally express the original process x.

3. Use the same two methods as in the previous problem to solve the equation

dx = xdw, x(0) = x0.

4. Use a substitution y = etx to solve the equation

dx = −xdt+ e−tdw, x(0) = x0.

2.4.10 EXERCISE. Suppose that the random process x can be written as x = f(y, z) and we know the

differentials dy and dz. How can they be used to compute dx? Show this procedure on computation of
dx, where

• x = (w3 − t2) ew−t4,

• x = (w3 − t2)2 ew−t4 .
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Compare with a direct application of the Itō lemma.

2.4.11 EXERCISE: ACCURACY OF THE EULER-MARUYAMA DISCRETIZATION. In Exercises 2.1.6 and 2.4.7
we studied the process

x =
w

1 + t

and we have seen that it satisfies the stochastic differential equation

dx = − x

1 + t
dt+

1

1 + t
dw

with the initial condition x(0) = 0. Having an explicit solution to the stochastic differential equation
enables us to check the accuracy of the Euler-Maruyama discretization scheme. We generate the sample

path of the process and then we use the same trajectory of the Wiener process in the discretization. The
outline of the script is the following:

T=5; // time interval [0,T]

dt =0.001; // time step

t=0:dt:T; // vector of time

// generate the trajectory of a Wiener process

// common to both exact process and discretization

w=...

// x = exact process

// use its definition and w generated above

x=...

// xD = discretization of the SDE

// note that dw needs to be computed from w above

xD (1)=...;

for ...

xD(i +1)=... ;

end;

// compare

plot(t,x);

plot(t,xD ,’r’);

Finish the script and run it for different time steps. Sample results are shown in Figure 2.14.
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Figure 2.14: Checking the accuracy of Euler-Maruyama discretization: time step equals 0.05 (above)
and 0.01 (below).
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Chapter 3
Black-Scholes model

3.1 Black-Scholes partial differential equation

3.1.1 BLACK-SCHOLES PARTIAL DIFFERENTIAL EQUATION. Under the assumptions of the Black-Scholes

model (cf. the lectures), the price V = V (S, t) of a European-type derivative satisfies the partial differ-

ential equation
∂V

∂t
+ rS

∂V

∂S
+

σ2

2
S2 ∂

2V

∂S2
− rV = 0 (3.1)

for the stock price S ∈ (0,∞) and time t ∈ [0, T ), where T is the expiration time. In the equation (3.1),
r is the interest rate and σ is a volatility of a stock which is modelled by a geometric Brownian motion

dS = µSdt+ σSdw.

The value at the time of expiration is given by the payoff as V (S, T ) = V̄ (S) for S ∈ (0,∞).

3.1.2 EXERCISE: SOME SIMPLE SOLUTIONS TO THE BLACK-SCHOLES PDE. Show that the following

function satisfy the Black-Scholes partial differential equation (3.1). What is their value at time t = T
and what is the financial interpretation of the price V (S, t)?

• V (S, t) = Ke−r(T−t),
• V (S, T ) = KS,

where K > 0 is a constant

3.1.3 EXERCISE: PUT-CALL PARITY AS A CONSEQUENCE OF LINEARITY OF THE BLACK-SCHOLES PDE.

• What does it mean that a PDE is linear? Verify that the Black-Scholes PDE (3.1) is linear.

• Denote by V call(S, t) and V put(S, t) the prices of a European call and put options with the same
exercise prices and define a new function V (S, t) = V put(S, t) − V call(S, t). Derive the partial

differential equation and the terminal condition at time t = T for the function V (S, t).

• Using the previous exercise and the linearity of the PDE find the solution V (S, t). Finally, from the

definition of V write the relation between V call(S, t) and V put(S, t) (put-call parity).

3.1.4 EXERCISE: SOLUTION TO THE BLACK-SCHOLES PDE IN THE SPECIAL FORM. Find the solutions to
the Black-Scholes PDE (3.1) which have the form V (S, t) = V (S), i.e., the price of the derivative depends

only on the current price of the stock. (Note that as a special case of your general solution you should

obtain also a solution KS from an earlier exercise.)

3.1.5 EXERCISE: MATHEMATICAL PROPERTIES OF THE SOLUTIONS AND THEIR FINANCIAL INTERPRETA-
TION. Prove the following properties using only the mathematical formulation of V (S, t) as a solution to
the Black-Scholes PDE (3.1). Then, give their financial interpretation.

• If V̄ (S) ≥ 0 and is positive on some interval, then V (S, t) > 0 for all S > 0 and t ∈ [0, T ).
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• Suppose that V̄ (S) is a differentiable function of S and that
∂V̄ (S)
∂S (S) > 0 for all S. Prove that then

also ∂V
∂S (S, t) > 0 for all S and t.

HINT. Firstly show the following: if V (S, t) is a solution to (3.1), then also S ∂V
∂S (S, t) is a solution.

3.1.6 EXERCISE: ADDING CONTINUOUS DIVIDENDS TO THE BLACK-SCHOLES MODEL. Suppose that the

stock pays continuous dividends with dividend rate q. The remaining assumptions remain the same.

• Following the lectures and the derivation of the Black-Scholes model, modify the equation for the

change of the portfolio value if the stock pays dividends as described above.

• Repeat the subsequent steps of the derivation and show that the partial differential equation for

the price of a derivative changes to

∂V

∂t
+ (r − q)S

∂V

∂S
+

σ2

2
S2 ∂

2V

∂S2
− rV = 0 (3.2)

for the stock price S ∈ (0,∞) and time t ∈ [0, T ). The value at the time of expiration is again given

by the payoff as V (S, T ) = V̄ (S) for S ∈ (0,∞).

• Show that V (S, t) = S is not a solution to (3.2) if q > 0. Why? Find the solution to the equation

(3.2) with the terminal condition V (S, T ) = S for S ∈ (0,∞). What is its financial interpretation?

• Based on the previous question, modify the put-call parity for the case of positive continuous

dividends.

3.2 Pricing call and put options, and combined strategies

3.2.1 BLACK-SCHOLES FORMULA FOR A CALL OPTION. The solution to the equation (3.2) with the

terminal condition V (S, T ) = max(0, S − E), i.e., the price of a European call option can be expressed
using the cumulative distribution function N of a normalized normal distribution N (0, 1):

V (S, t) = Se−qτN(d1)− Ee−rτN(d2), (3.3)

where

d1 =
log(S/E) + (r + q + σ2

2 )τ

σ
√
τ

, d2 =
log(S/E) + (r − q − σ2

2 )τ

σ
√
τ

(3.4)

and τ = T − t is time remaining to expiration of the option.

At this point we suggest writing the following functions into a separate .sci Scilab file. These func-

tions will be used in the various exercises and keeping them separated adds to clarity of the files and
computations.

// we redefine our earlier function normcdf

// so that it can take also vector argument

function [cdf]= normcdf(x)

cdfN=length(x);

cdf=cdfnor("PQ",x,zeros(1,cdfN),ones(1,cdfN));

endfunction

function [v]=Call(S,E,r,q,sigma ,tau)

d1=(log(S/E)+(r-q+0.5* sigma ^2)*tau)./(sigma*sqrt(tau));

d2=(log(S/E)+(r-q -0.5* sigma ^2)*tau)./(sigma*sqrt(tau));

v=S*exp(-q*tau).*normcdf(d1)-E*exp(-r*tau)*normcdf(d2);

endfunction
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Now, after loading these functions by getd() command1, we can compute for example the price of a

call option with exercise price of 100 USD and expiry in one month, written on a non-dividend paying
stock with volatility 0.30, which has the current price 105 USD. The interest rate is one percent. We use

the function Call defined above and write:

Call(105 ,100,0.01,0 ,0.3,1/12)

The resulting option price is 6.645 USD.

The function Call can also take a vector of stock prices as an argument, which allows us to easily

plot for example the dependence of the option price on the current stock price. Figure 3.1 shows the
option above, but for different times to maturity as a function of the stock price.

S=0:200;

plot(S,Call(S,100 ,0.01 ,0 ,0.3 ,1/252);

plot(S,Call(S,100 ,0.01 ,0 ,0.3 ,1/12 ,"r");

plot(S,Call(S,100 ,0.01 ,0 ,0.3,1/2,"g");

plot(S,Call(S,100 ,0.01 ,0,0.3,1,"y");
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Figure 3.1: Price of a call option.

3.2.2 BLACK-SCHOLES FORMULA FOR A PUT OPTION. Show that the price of a put option can be ex-

pressed as

V (S, t) = Ee−rτN(−d2)− Se−qτN(−d1), (3.5)

where d1, d2 are given be (3.4) as before and τ = T − t is time remaining to expiration of the option.

HINT. Use the put-call parity and the symmetry of the cumulative distribution function of N (0, 1) distri-
bution: N(−x) = 1−N(x).

Write a Scilab function Put(S,E,r,q,sigma,tau) for computation of a put option price. Produce
similar plot as in Figure 3.1, but for a put option. A sample result is given in Figure 3.2.

3.2.3 PRICING COMBINED STRATEGIES. From the linearity of the Black-Scholes equation it follows that if
the payoff of a strategy is a linear combination of payoffs of call and put options, the price of the strategy

is the same linear combination of call and put options prices.

Use this property to make a graph of a dependence of a chosen combined strategy value on the

underlying stock price for a couple of times to expiration. Figure 3.3 shows such a plot for a butterfly

1This has to be done with the working directory set to the folder which includes the .sci file with the functions, see also the
website for more information on working in Scilab.
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Figure 3.2: Price of a put option.

strategy, which consists of buying a call option with an exercise price of 80 USD and a call option with
an exercise price of 100 USD, and selling two call options with an exercise price of 120 USD.
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Figure 3.3: Price of a butterfly strategy.

3.2.4 COMPARISON OF THE BLACK-SCHOLES PRICES WITH MARKET PRICES. Consider the stock that does
not pay dividends or approximate the dividends paid by the stock by continuous dividends. Take current

market prices for the call options or consider those from the first chapter. Estimate the volatility using

the historical data and find the interest rate. Other parameters are given directly by the option and the
stock. Compare the resulting Black-Scholes prices with the market data.

How is the answer sensitive to the choice of the interest rate? How is it sensitive to the choice of the
dataset used to estimate the historical volatility? We are going to deal with dependence of the options

prices on parameters in the later sections.

3.2.5 BLACK-SCHOLES PRICES OF CALL AND PUT VS. THEIR PAYOFF DIAGRAMS. The following properties
of the call and put prices will be useful later, when dealing with so called American style of options.

• Show that if the stock does not pay dividends, than the price of a call option is above the payoff

diagram for all τ > 0.
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• Show that if the stock does pays dividends, than the price of a call option crosses the payoff diagram

for all τ > 0 and is below the payoff for large S. Put more precisely: Let τ > 0 be fixed. Show that
there is S∗ such that for S > S∗ the inequality V call(S, τ) < max(0, S − E) hold.

• Show that the price of a put option crosses the payoff diagram for all τ > 0, regardless on whether

the underlying stock pays dividends or not.

These properties are graphically presented in Figure 3.4.
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Figure 3.4: Option prices vs. payoff diagram.

3.2.6 LIMIT PROPERTIES OF CALL AND PUT OPTIONS PRICES. Let τ > 0 be fixed.

• Show that the price of a put option converges to zero as S approaches infinity. Similarly, the price

of a call option approaches zero as S approaches zero.

• Compute the limit of a put option as S approaches zero.

• Show that the ratio V call

S converges to unity as S approaches infinity. Show that the same hold

for the ratio V call

Se−qτ−Ee−rτ . Numerically compare the approximations V call ≈ Se−qτ − Ee−rτ and

V call ≈ S for large S (relative to the expiration price E) - which one is more precise?

Why could we expect this behaviour without knowing the explicit formulae for the options prices and

computing the given quantities?

3.3 Implied volatility

3.3.1 DEPENDENCE OF THE CALL OPTION PRICE ON VOLATILITY. Recall from the lectures the following
properties of the Black-Scholes price of a call option written on a stock which does not pay dividends:

• The call option price is an increasing function of the volatility σ.
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• If the volatility σ approaches infinity, the option price converges to the current price of the under-

lying stock S.

• If the volatility σ approaches zero, the limit of the option price depends on the relation between
the stock price S and the exercise price E of the option: if S > Ee−rτ , the limit is S − Ee−rτ ; if

S ≤ Ee−rτ , the limit is zero. We can write this limit in a compact form as max(0, S − Ee−rτ ).

3.3.2 EXERCISE. Plot a graph showing the properties stated in the previous point, such as the one shown

in Figure 3.5.
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Figure 3.5: Price of a call option on a non-dividend paying stock - dependence on volatility.

3.3.3 EXERCISE. What would happen if the price of a call option was greater than S? What if it was
less than S − Ee−rτ (assuming that this quantity is positive)? Note that this does not depend on the

Black-Scholes pricing, but on general principles which hold for options, recall the first chapter.

3.3.4 EXERCISE: CALL OPTION ON A DIVIDEND PAYING STOCK. Adjust the computations from the lecture
for a stock which pays dividends. In particular:

• Show that the call option price is an increasing function of σ.

• Compute the limits of the option price as volatility approaches zero and infinity and show that

lim
σ→0+

V call(S, τ ;σ) = max(Se−qτ − Ee−rτ , 0),

lim
σ→∞

V call(S, τ ;σ) = Se−qτ .

Demonstrate these properties graphically.

3.3.5 IMPLIED VOLATILITY OF A CALL OPTION. The volatility σ for which the Black-Scholes value of the
option equals its market value is called implied volatility. From the properties stated above and the

continuous dependence if the Black-Scholes option price on σ it follows that of the real market price

V real satisfies
V real ∈

(

max(Se−qτ − Ee−rτ , 0), Se−qτ
)

,

then the implied volatility exists and is uniquely determined.

As an example, consider the market data on GM option in Table 3.1. The come from the end of

trading on 22nd July 2013, which makes 19 trading days until the expiration of the options on 17th
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August 2013. The last traded stock price was 36.76 USD, the interest rate was 0.01 percent. The stock

does not pay dividends.

exercise price price of the option

34 3.05
35 2.25

36 1.57

37 0.97
38 0.59

39 0.32

Table 3.1: Data from 22nd July 2013 on GM options expiring on 17th August 2013; the stock price is

36.76 USD.

We define a function to compute of the implied volatility of a call option. It uses the earlier function

Call(S,E,r,q,sigma,tau) which computes the Black-Scholes price; the initial point is chosen to be

0.2 which the usual order of the volatility (however, the algorithm is not sensitive to the choice of this
starting point):

function [sigmaImpl]=ImplVolCall(S,E,r,q,tau ,V)

function [d]= difference(sigma)

d=Call(S,E,r,q,sigma ,tau)-V;

endfunction

sigmaImpl=fsolve (0.2, difference);

endfunction

We use it to find the implied volatility of the option with the expiration price 35 USD in Table 3.1:

ImplVolCall(36.76 ,35 ,0.0001 ,0 ,19/252 ,2.25)

The resulting implied volatility is 0.296. Compute all the implied volatilities and make a graph of the

implied volatility as a function of the exercise price of the option, see Figure 3.6 for the result.

3.3.6 EXERCISE. Take the current data and compute the implied volatilities for the options. Moreover,

compare the obtained implied volatilities with the historical volatility estimated from the historical stock
prices.

3.3.7 EXERCISE: IMPLIED VOLATILITY OF A PUT OPTION. Derive the necessary properties of the Black-
Scholes price of a put option and state a theorem about the existence and uniqueness of the implied

volatility. Write a function for its computation.

3.3.8 EXERCISE. Suppose that the stock price equals 130 USD, the exercise price of a call option is 140

USD and the option expires in one year. The interest rate is 0.5 %. Show that for all of the following
potential option prices the implied volatility exists: 10 USD, 15 USD, 20 USD, 25 USD. Which of them

results in the highest implied volatility? How can we answer the previous question without actually

computing the implied volatilities?

3.3.9 EXERCISE. Consider the option prices in Table 3.1. Find the value of σ which minimized the sum

of squared relative errors in option prices:

F (σ) =
n
∑

i=1

(

V real
i − V bs

i (σ)

V real
i

)2

, (3.6)

where V real
i (i = 1, . . . , n) is the real price of the i-th option and V bs

i (σ) (i = 1, . . . , n) is its Black-Scholes

price for the given σ.
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Figure 3.6: Implied volatilities for the options in Table 3.1.

3.4 Delta of a derivative, delta hedging

3.4.1 DELTA OF A DERIVATIVE, CASE OF A CALL OPTION ON NON-DIVIDEND PAYING ASSET. By delta of a

derivative we denote the partial derivative of the Black-Scholes price V with respect to the price of the

underlying asset S:

∆ =
∂V

∂S

It has been shown in lectures that for the call option on a stock which does not pay the dividends, the

delta equals

∆ =
∂V call

∂S
= N(d1),

where N is the cumulative distribution function of N (0, 1) distribution and d1 is given by (3.4) with
q = 0. Note that both d1 and d2 in (3.3) and (3.4) depend on S, which has to be taken into account

when computing the derivative of V call with respect to S. Recall that the lemma

S
∂N(d1)

∂S
− Ee−rτ ∂N(d2)

∂S
= 0 (3.7)

has been used to eliminate the remaining terms which are obtained when differentiating the option price.

3.4.2 EXERCISE: DELTA OF A CALL OPTION ON A DIVIDEND PAYING STOCK. Show that if the underlying

stock pays dividends, then the delta of a call option is given by

∆ = e−qτ ∂V
call

∂S
= N(d1),

where N is the cumulative distribution function of N (0, 1) distribution and d1 is given by (3.4) How

does the lemma (3.7) change?
We define the function DeltaCall(S,E,r,q,sigma,tau) using the results above, which allows us to

numerically compute the delta of a call option (it uses our earlier function normcdf) and add it to the

.sci file with Black-Scholes related functions:
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function [delta ]=DeltaCall(S,E,r,q,sigma ,tau)

d1=(log(S/E)+(r-q+0.5* sigma ^2)*tau)./(sigma*sqrt(tau));

v=exp(-q*tau)*normcdf(d1);

endfunction

3.4.3 INTERPRETATION OF THE DELTA AND THE DELTA HEDGING. Recall from the derivation of the Black-

Scholes model that ∆ = ∂V
∂S denotes the number of the underlying stocks which are present at a given

moment in the riskless portfolio with one sold derivative.

More generally, denote the amounts of the derivatives and the stocks by QV and QS . Then the

portfolio is riskless if the ratio QS

QV
equals to minus ∆. Maintaining this ratio by selling and buying stocks

is known as delta hedging.

It should be noticed that the hedge is valid only for a short moment, since the delta changes both with

time and with movements of the stock price. The portfolio has to be rehedged; in theory, the hedging is
continuous.

In what follows, by hedging we mean delta hedging.

3.4.4 EXERCISE: DELTA HEDGING. Suppose that we have sold 1000 options with the exercise price 25

USD which expires in one month. The volatility of the underlying stock is 0.25, it does not pay dividends
and the interest rate is 0.5%. The current price of the stock is 23 USD. How many stocks do we need in

our portfolio, to hedge the options which we have sold?

SOLUTION. We have QV = −1000, hence

∆ = −QS

QV
⇒ QS = −∆Qv = 1000∆,

which we obtain by the command

1000* DeltaCall(23 ,25 ,0.005,0 ,0.25,1/12)

that yields a numerical answer 132.744. We therefore buy 133 stocks.

3.4.5 EXERCISE. Suppose that the volatility of the underlying stock is 0.2, it pays dividends with the
dividend rate 2 percent and its current price of is 92.50 USD. The interest rate is one percent. Determine

the number of stocks that we need to hedge the options in the following cases:

• We have sold 100 call options with the exercise price of 100 USD which expire in two months.

• We have bought 100 call options with the exercise price of 100 USD which expire in two months.

Determine the sign of the answer (i.e., whether we will be buying the stocks or going to short positions)

in advance, before computing the numerical result.

3.4.6 EXERCISE: DEPENDENCE OF DELTA ON THE PARAMETERS. To motivate the following considera-

tions, let us firstly consider the situation from Exercise 3.4.4, changing the current value of the stock to
26 USD. Since we have sold options which allow the holder to buy the stock for 25 USD in one month,

there is a higher chance now that these options will be exercised. It is therefore natural to expect that
more stocks will be needed to hedge this risk. Indeed, the command

1000* DeltaCall(26 ,25 ,0.005,0 ,0.25,1/12)

produces the result of 720.832, and hence in this modified situation we buy 721 stocks.

• Consider the delta of a call option as a function of the stock price S, while keeping the remaining
parameters fixed, i.e., ∆ = ∆(S). Show that it is an increasing function of S and compute its limits

as S → 0+ and S → ∞. Compare the results with Figure 3.7. Give a financial interpretation of

these results.
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Figure 3.7: Delta of the option.

• What is the range of possible values of ∆? Explain the consequences for delta hedging: how many

stocks can there possibly be in the portfolio?

• Consider ∆ = ∆(τ) and in Figure 3.8 see the plot of deltas for the options with different expiration

times, which have the remaining parameters the same Compute the limit of the delta as τ → 0+,
i.e., the time approaching the exercise time of the option. Why is it logical that the result depends

of the relation between the stock price and the exercise price?

• Plot deltas of options written on stocks with different dividend rates. Explain the dependence of ∆
on q when the other parameters are fixed, find a financial interpretation and prove your statements
by performing the necessary computations.
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Figure 3.8: Deltas of options with different expiration times.

3.4.7 EXERCISE. Figure 3.9 shows deltas of three call options: an ITM option, an ATM option and an
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OTM option. Which graph corresponds to each of the options?
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Figure 3.9: Delta of the options

3.4.8 EXERCISE: DELTA OF A PUT OPTION. Use the put-call parity to derive that

∆put = ∆call − e−qτ . (3.8)

Suppose that the volatility of the underlying stock is 0.2, it pays dividends with the dividend rate of 2

percent and its current price of is 92.50 USD. The interest rate is one percent. Determine the number of
stocks that we need to hedge the options in the following cases:

• We have sold 100 put options with the exercise price of 100 USD which expire in two months.

• We have bought 100 put options with the exercise price of 100 USD which expire in two months.

Determine the sign of the answer (i.e., whether we will be buying or short selling the stocks) in advance,

before computing the numerical result - both by a financial intuition and using the formula (3.8)

3.4.9 EXERCISE: DELTA OF A PUT OPTION - PROPERTIES. Perform the required computations and give

financial interpretation of the results. Plot graphs illustrating the given properties.

• Show that delta of a put option is always negative

• Consider the delta of a put option as a function of the stock price S, while keeping the remaining

parameters fixed, i.e., ∆ = ∆(S). Show that it is an increasing function of S and compute its limits

as S → 0+ and S → ∞.

• Compute the limit of the delta as τ → 0+, i.e., the time approaching the expiration time of the

option.

• How does the delta depend on the dividend rate q?
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3.4.10 EXERCISE. Figure 3.10 shows delta of the following options, written on the same stock, as

functions of the stock price S:

1. call option with expiration price 25 USD on a non-dividend paying stock, which expires in one year,

2. call option with expiration price 25 USD on a stock paying continuous dividends with 3 percent
rate, which expires in one year,

3. call option with expiration price 55 USD on a non-dividend paying stock, which expires in one year,

4. put option with expiration price 55 USD on a non-dividend paying stock, which expires in one year,

5. put option with expiration price 55 USD on a non-dividend paying stock, which expires in one

month.

Determine which graph corresponds to each of the options.
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Figure 3.10: Deltas of the options.

3.4.11 DELTA OF A PORTFOLIO. From the linearity of the Black-Scholes equation it follows that delta
of the portfolio can be computed by adding deltas of its components. This can be also seen from the

assumptions of the model, since hedging a portfolio is equivalent to hedging each of its components

independently (this is not the case, for example, in the presence of transaction costs).

3.5 Greeks: sensitivities of the option to the parameters

3.5.1 GREEKS: DEFINITIONS AND VALUES. Greeks are the partial derivatives of the option price on the
parameters. They give sensitivities of the option price to these parameters. Table 3.2 summarizes their

definitions and values. The name greeks comes from the fact they most of them are denoted by letters

from the Greek alphabet.
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name notation definition value for a call value for a put

delta ∆ ∂V
∂S e−qτN(d1) −e−qτN(−d1)

gamma Γ ∂2V
∂S2 e−qτ e−d21/2

√
2πτSσ

e−qτ e−d21/2
√
2πτSσ

rho ρ ∂V
∂r Eτe−rτN(d2) −Eτe−rτN(−d2)

theta Θ ∂V
∂t = −∂V

∂τ − Eσ
2
√
τ
e−rτ e−d22/2

√
2π

− Eσ
2
√
τ
e−rτ e−d22/2

√
2π

−rEe−rτN(d2) +rEe−rτN(−d2)
+qSe−qτN(d1) −qSe−qτN(−d1)

vega Υ ∂V
∂σ Ee−rτ

√
τ e−d22/2

√
2π

Ee−rτ
√
τ e−d22/2

√
2π

Table 3.2: Options greeks.

Note that Θ is sometimes defined as a partial derivative with respect to τ , instead of t. In this text we

use the definition Θ = ∂V /∂t, as given in Table 3.2.

3.5.2. EXERCISE: SIGNS OF THE GREEKS. With one exception, the greeks presented in Table 3.2 do not

change their sign. Determine the signs of the greeks - except for the theta of a put option - and explain

why these signs could have been expected.
Theta of a put option can be both positive and negative. Recall that it is a derivative of a put price

with respect to time, i.e., it measures the change of the put option price as time passes, if the other

parameters (including stock price) are fixed. We know that as the time approaches maturity, the option
price approaches the payoff. Therefore, according to the plot of the option price in Figure 3.11, we can

expect the negative theta for the price S1 and positive theta for the price S2. Find the concrete values of
the parameters, for which the theta of a put option is positive and for which it is negative.
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Figure 3.11: Put option: price (left) and theta (right).

3.5.3 EXERCISE: GAMMA OF AN OPTION AND ITS RELATION TO OPTION PRICE AND DELTA. Gamma,

the second derivative of the option price with respect to the stock price S, can be interpreted in the

following ways: as a curvature of the graph of V (S) and as a measure of how much the delta changes
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with a change of the stock price. Explain these interpretations using Figure 3.12 and make similar graphs

for a put option.
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Figure 3.12: Option price, delta and gamma of a call option.

3.5.4 MAXIMUM OF GAMMA. Find the stock price S, for which the option gamma attains its maximum
and compare the answer with previous graphs. Alternatively, for a given stock price S, which exercise

price of an option leads to the highest gamma?

3.5.5 EXERCISE: MAXIMAL GAMMA AND THE ILLUSIONS OF RISK. The title of this exercise is taken

from the section title in the paper Know Your Weapon: Part 1 by E. G. Haug, published in the Wilmott

Magazine. The author writes:

One day in the trading room of a former employer of mine, one of the BSD traders suddenly

got worried over his gamma. He had a long dated deep-out-of-the money call. The stock price

had been falling, and the further the out-of-themoney the option went the lower the gamma
he expected. As with many option traders he believed the gamma was largest approximately

at-the-money-forward. Looking at his Bloomberg screen, however, the further out of the
money the call went the higher his gamma got. Another BSD was coming over, and they both

tried to come up with an explanation for this. Was there something wrong with Bloomberg?2

This can indeed occur, as it can be seen by plotting 3-dimensional graph of gamma as a function of stock
price S and time remaining to expiration τ , see Figure 3.13. The OTM options really have high gammas,

when there is a long time remaining to maturity.

2E. G. Haug, Know your weapon, Part 1, Wilmott Magazine 5 (2003), p. 53
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To make a 3-dimensional plot, we can use the function meshgrid, as shown below. In the following

code we assume that we have already defined a function bsGamma which computes the Black-Scholes
gamma of a call or a put option, as well as the vectors s and tau for stock prices and expiration times,

which will be used in the plot.3.

[s0 ,tau0]= meshgrid(s,tau);

g= bsGamma(s0 ,50 ,0.01,0 ,0.2 ,tau0);

plot3d(s,tau ,g);
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Figure 3.13: 3-dimensional graph of gamma.

Recall that gamma measures the approximate change in delta if the stock price changes by one dollar.

However, if the stock price is close to zero, a change of its value by one dollar is actually a big change

(for example, a change of a price from 1 USD to 3 USD is a 200 percent rise). It is not probable that the
price will change from 1 USD to 3 USD suddenly, contrary to a change such as going from 500 USD to

503 USD which may likely happen in quite a short period of time.

Let us therefore define a ”modified gamma” as a percentage change of delta for a percentage change
of the underlying stock price, denoted by ΓP in the cited paper.

• Explain, why ΓP = S Γ/100.

• Plot a figure similar to that in Figure 3.13, but for ΓP and show that the feature of a surprisingly
high gamma for OTM options with long time remaining to their exercise disappears.

3.5.6 EXERCISE: ONE MORE EXPERIENCE BY E. HAUG. Consider the second derivative of the option

price V with respect to volatility σ and the stock price S, i.e., ∂2V
∂S∂σ , which is known as vanna. This

can be interpreted as the derivative of vega with respect to stock price, thus showing how the vega is
sensitive to the change of the stock price. Alternatively, it can be seen as the derivative of delta with

respect to sigma, and thus it tells how sensitive is delta to the stock volatility.

• Derive a closed form expression for vanna.

• In the paper cited in the previous exercise, we can also read:

3To obtain the plot shown in Figure 3.13, we have afterwards selected Edit and Axes properties from the menu, where we
have checked the checkbox Cube scaling in the tab Aspect and chosen a suitable point in the Viewpoint tab. See the website
for more detailed information on plotting graphs in Scilab.
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One fine day in the dealing room my risk manager asked me to get into his office. He

asked me why I had a big outright position in some stock index futures - I was supposed
to do ”arbitrage trading”. That was strange as I believed I was delta neutral: long call

options hedged with short index futures. I knew the options I had were far out-of-the-

money and that their DdeltaDvol was very high. So I immediately asked what volatility
the risk management used to calculate their delta. As expected, the volatility in the

risk-management-system was considerable below the market and again was leading to
a very low delta for the options. This example is just to illustrate how a feeling of your

DdeltaDvol can be useful. If you have a high DdeltaDvol the volatility you use to compute

your deltas becomes very important. 4

Explain the assertions made in the quote above: Why do those options have high DdeltaDvol5?
Why is the choice of volatility important in this situation and why does using too low volatility lead

to too low deltas?

3.5.7 EXERCISE: DELTA FOR SIMPLE ”DERIVATIVES”.

• Recall that V (S, t) = S and V (S, t) = Ke−r(T−t) are solutions to the Black-Scholes PDE with q = 0.

What is their delta? Give an interpretation of this result.

• Recall the solution to the general Black-Scholes equation (general q ≥ 0) with the terminal condi-
tion V (S, t) = S. What is its delta? Explain the effect of dividends.

3.5.8 EXERCISE: GREEKS FOR A CASH-OR-NOTHING OPTION. Recall the binary options from the lectures

and for simplicity assume q = 0. Consider cash-or-nothing binary option with payoff

V (S, T ) =

{

0 for S ≤ E,
1 for S > E.

We know that its price is V (S, t) = e−qτN(d2), where d2 is the expression (3.4) from the Black-Scholes

formula, and it is shown in Figure 3.14 as a function of the stock price.

• Compute its delta and plot its dependence on the stock price S for different times remaining to
expiration. See Figure 3.15 for a sample result. By relating it to hedging such an option, explain,

why such a behaviour could have been expected.

• Explain the following quote on a cash-or-nothing option:

What starts off as a placid instrument turns into an unmanageable monster over the last

few hours of its life as the at-the-money delta becomes so high that the option becomes
unhedgeable.6

• Based on the graph of delta, sketch the graph of gamma.

• How does the option price depend on volatility? Plot the dependence of vega on the stock price

for different times remaining to expiration and explain its behaviour. See Figure 3.16 for a sample
result.

• How does the option price depend on time? Plot the dependence of theta on the stock price for
different times remaining to expiration and explain its behaviour. See Figure 3.17 for a sample

result.

4Ibid., p. 51
5This notation is used for derivative of the delta with respect to the volatility.
6http://www.binaryoptions.com/binary-call-options-delta/
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Figure 3.14: Price of a cash-or-nothing option.
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Figure 3.15: Delta of a cash-or-nothing option.
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Figure 3.16: Vega of a cash-or-nothing option.
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Figure 3.17: Theta of a cash-or-nothing option.

56



Chapter 4
Leland model: modelling transaction

costs

4.1 Definition of the model and the PDE for the price of a derivative

4.1.1 TRANSACTION COSTS IN LELAND MODEL. Recall from the lectures that the transaction costs in

Leland model come from different bid (Sbid) and ask (Sask) prices for the stock, while the quantity
entering the model and being modelled by a geometric Brownian motion dS = µSdt + σSdw is their

average

S =
Sask + Sbid

2
. (4.1)

A nondimensional parameter characterizing the transaction costs is defined by

c =
Sask − Sbid

S
. (4.2)

Then, transaction costs arising from buying or selling one asset are equal to cS/2.

4.1.2 EXERCISE: COMPUTING THE PARAMETER c DEFINING TRANSACTION COSTS. Figure 4.1 shows bid
and ask prices of AMZN stock (prices in the Bid and Ask rows) as presented at finance.yahoo.com.

Compute the parameter c based on these values. Repeat with the stock prices given in Table 4.1.

Figure 4.1: Bid and ask prices of AMZN stock at finance.yahoo.com from the beginning of trading on

8th July 2013.
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stock bid price ask price

IBM 195.50 195.55
MSFT 34.50 34.51

VOW.DE 153.75 153.95

YHOO 25.79 25.80

Table 4.1: Selected stock prices from the beginning of trading on 8th July 2013.

4.1.3 PDE FOR THE OPTION PRICE IN THE LELAND MODEL. Recall from the lectures that the PDE satisfied

by the option price V = V (S, t) reads as follows:

∂V

∂t
+

σ2

2
S2

(

1 +

√

2

π

c

σ
√
∆t

sign

(

∂2V

∂S2

)

)

∂2V

∂S2
+ rS

∂V

∂S
= 0 (4.3)

for S ∈ (0,∞) and t ∈ [0, T ), where ∆t is the time between two adjustments of the portfolio, since a

continuous hedging (which it was the case in Black-Scholes setting) is not possible in the presence of
transaction costs. The terminal condition V (S, T ) = V̄ (S) for S ∈ (0,∞) is determined by the option

type.

4.2 Call and put prices

4.2.1 BID PRICE OF A CALL AND PUT OPTION. Bid price is a price suggested by a potential buyer of the

option. Hence its price comes from hedging a portfolio with one call option.

The main outline of the derivation of the price is as follows (see lectures for more details): For the

Black-Scholes price of both call and put option, the second derivative with respect to S is always positive.
It follows that, if the quantity

σ̃2 :=

(

1−
√

2

π

c

σ
√
∆t

)

σ2 (4.4)

is positive, we can compute the Leland price as the Black-Scholes price, by replacing σ2 in the Black-
Scholes formula by σ̃2 given by (4.4).

4.2.2 EXERCISE. Give an example of a payoff, for which the second derivative of the Black-Scholes price
with respect to S changes the sign. For such a derivative, the reasoning above does not apply and the

Leland price cannot be computed simply as the Black-Scholes price with adjusted volatility.

4.2.3 EXERCISE: NONLINEARITY OF THE LELAND PDE. Note that the PDE (4.3) is nonlinear, which

means that a linear combination of solutions is not necessarily a solution again. Give an example of such
solutions and their linear combination. How does this property relate to hedging such a portfolio?

4.2.4 LELAND NUMBER. Define the Leland number as

Le =

√

2

π

c

σ
√
∆t

. (4.5)

Then the adjustment of the volatility (4.4) can be written as σ̃2 := (1 − Le)σ2. The constraint on the

adjusted volatility then translates into the condition

Le < 1. (4.6)

Since the other parameters are given by the market, we are only able to choose ∆t, the time between

two adjustments of the portfolio. Hence the condition (4.6) is, in fact, a restriction on ∆t.

4.2.5 EXERCISE: ADMISSIBLE ∆t AND DETERMINING THE BID PRICES OF OPTIONS. Consider one of the

stocks for which we have computed the transaction costs c.
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• Use the historical prices of the stock to estimate the volatility S (in Leland model it is the volatility

of the average of bid and ask prices, use the closing prices as a proxy.

• Plot the dependence of the Leland number on ∆t. What are the admissible values of ∆t, for which

the Leland number satisfies the condition (4.6)? For an illustrative graph see Figure 4.2. Note that

∆t is measured in years. Write the condition on ∆t in units which are more easily interpreted in
this context (days, hours1, or minutes).

• Find the interest rate and select the parameters of the option which you are going to use for the
following questions.

• Choose a concrete admissible value of ∆t and compute the corresponding option price.

• Plot the dependence of the option price on ∆t, over the admissible values of ∆t. Is this dependence
increasing or decreasing? Why?
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Figure 4.2: Leland number as a function of the time interval between two adjustments of the portfolio.

4.2.6 EXERCISE. How does the range of admissible values for ∆t depend on transaction costs measure
c?

4.2.7 EXERCISE. Suppose that the difference between the bid and ask price of a stock equals to 0.4

percent of their average value. We would like to hedge a call option every 5 minutes. For what values of

the stock volatility would it be an admissible time?

4.2.8 EXERCISE: ASK PRICE OF THE OPTION. Show that the ask price of the call and put option can be
computed by the Black-Scholes formula, where instead of σ we use the adjusted volatility given by

σ̃2 = (1 + Le)σ2, (4.7)

where Le is given by (4.5). Use both the approaches below:

• Go through the derivation of the PDE for the bid price from the lectures, but instead of having one

option in the portfolio consider minus one option.

1Similarly as with considering only trading days (e.g., the convention of 252 trading days a year), we should also consider only
hours during which the stock market is open for trading.
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• Consider plus one option (hence you are able to use the results above), but with the payoffs

−max(0, S − E) and −max(0, E − S).
HINT. How does the opposite sign of a payoff change the second partial derivative with respect to

S?

4.2.9 EXERCISE: COMPARISON WITH THE REAL DATA. Consider the AMZN stock and the parameter c
estimated in Exercise 4.1.2. Use historical prices to estimate the volatility σ and find the interest rate.

Select an option from those listed in Table 4.2

• What are the admissible values of ∆t?

• Plot the bid and ask prices as functions of ∆t and compare them with market prices.

option code bid price ask price

AMZN130817C00280000 18.25 18.45
AMZN130817C00285000 15.20 15.40

AMZN130817C00290000 12.30 12.45

AMZN130817C00295000 10.15 10.35

Table 4.2: Selected options prices from the beginning of trading on 8th July 2013.

4.2.10 EXERCISE: Show that the following inequality between bid and ask prices (Vbid, Vask) from the

Leland model and the Black-Scholes price (Vbs) holds for both call and put options:

Vbid(S, t) < Vbs(S, t) < Vask(S, t)

for all S > 0 and t < T . This property is graphically illustrated in Figure 4.3.
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Figure 4.3: Bid and ask prices from the Leland model compared with the Black-Scholes price.

4.2.11 EXERCISE: IMPLIED PARAMETERS. Consider the option priced in the previous exercise and the
remaining parameters except for the historical volatility. We are going to compute the implied volatility

σ and implied time ∆t using the following steps (cf. also the lectures):

• Compute the Black-Scholes implied volatility σask using the ask price of the option (note that the

value of the stock price is given by S, not Sask).

• Compute the Black-Scholes implied volatility σbid using the bid price of the option (again, note that

the value of the stock price is given by S, not Sbid).
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• From the formulae for computations of Leland prices of call and put options it follows that

σask = (1 + Le)σ, σbid = (1 − Le)σ.

Use these two equations to determine the implied values of the volatility σ and the Leland number

Le.

• Using the volatility σ and the Leland number Le from the previous point (and the other necessary

parameters), compute the implied time ∆t and express it in suitable units. Compare the implied
volatility with its value estimated from the historical data of the stock prices.

4.2.12 EXERCISE: Show that the bid-ask spread for a call and a put option with the same parameters is

the same.

4.2.13 EXERCISE: MODELLING BID-ASK SPREADS.

• For the selected parameters, plot the difference between ask and bid price of a selected option,

as a function of the stock price, with other parameters fixed. Figure 4.4 shows a sample result.
Numerically find the value for which the difference is the highest.

• Find a general formula for the stock price, for which the bid-ask spread is highest.
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Figure 4.4: Bid-ask spreads in Leland model.
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Chapter 5
Numerical methods for the Black-Scholes

equation

5.1 Transformation to heat equation

5.1.1 MOTIVATION. The Black-Scholes equation for pricing European call and put option can be solved
explicitly but we have two reasons for solving it numerically:

• testing the numerical schemes by comparing the obtained numerical results with the exact solution,

• using a modification of the method to price American-style option, where no closed form solution

is available.

5.1.2 TRANSFORMATION TO S HEAT EQUATION ON THE LINE. The transformation consists of the following

steps:

1. Transformation of the time τ = T − t - it leads to having an initial condition instead of a terminal

condition.

2. Logarithmic transformation of the stock price x = log(S/E) - the new variable x is defined on the

whole line x ∈ R; note that a simple logarithm log(S) would suffice, but this transformation is
suitable for generating the mesh, see the following exercise.

3. The function Z(x, τ) defined by Z(x, τ) = V (Eex, T − t) satisfies a parabolic partial differential
equation with constant coefficients. This can be transformed to a heat equation by transformation

u(x, τ) = eαx+βτZ(x, τ), where the coefficients α and β are chosen so that the terms u and ∂u/∂x
diminish and we obtain a heat equation. This leads to the choice of

α =
r − q

σ2
− 1

2
, β =

r + q

2
+

σ2

8
+

(r − q)2

2σ2
. (5.1)

The resulting PDE for the function u(x, τ) then reads as

∂u

∂τ
=

σ2

2

∂2u

∂x2
for x ∈ R, τ ∈ (0, T ] (5.2)

and the initial condition is transformed into

u(x, 0) = eαxV̄ (Eex) for x ∈ R.

5.1.3 EXERCISE: LOGARITHMIC TRANSFORMATION. Consider the logarithmic transformation in the

second step described in the previous point.
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• In the variable x, a numerical solution will be computed on a finite interval symmetric around zero,

which we denote by [−L,L]. What stock price does the value x = 0 correspond to?

• What interval of the stock prices does the interval x ∈ [−L,L] correspond to? Give numerical
answer for different expiration prices, when L = 2, L = 3, or some other choices of L.

• When numerically solving the heat equation, we are going to need boundary conditions for x = −L
and x = L. Based on the answer to the previous question - what stock prices does this correspond
to? We are able to deduce the option price was very low stock price, close to zero, as well for the

very high price. Show that our transformation produces reasonable boundary points, which can be

made common for different expiration prices.

• How do the answers to the previous questions change if we consider the logarithmic transformation

x = log(S) which also leads to a heat equation?

5.1.4 EXERCISE: BOUNDARY CONDITIONS. Explain, why we should expect that the options prices satisfy

V call(0, t) ≈ 0, V call(S, t) ≈ Se−rτ − Ee−rτ for large S

for the call option and

V put(0, t) ≈ Ee−rτ , V put(S, t) ≈ 0 for large S

for the put option.

Earlier (cf. 3.2.6), we have seen that these approximations hold for the closed-form solution to the

Black-Scholes equation. We are, however, interested in financial reasoning. In other models, where a
closed-form solution is not available and we need to impose boundary conditions, this has to be done by

analyzing what is happening at these boundary points.

5.1.5 MESH FOR NUMERICAL SOLUTION. Numerical solution will be defined on the mesh with the time

step k and the space step h. In what follows, the index i corresponds to space and index j corresponds

to time. The grid points are denoted by xi (for i = −n,−n + 1, . . . ,−1, 0, 1, . . . , n − 1, n) and τj (for
j = 0, 1, . . . ,m).

5.1.6 PRACTICAL IMPLEMENTATION: INITIAL STEPS. We start the practical implementation in Scilab.
These steps are be common for both schemes which we will consider.

• At the beginning, we set the parameters of the call option which we are going to price:

// parameters of the call option

E=50;

q=0.12;

sigma =0.4;

T=1;

// interest rate

r=0.04;

• We choose the parameter L defining the space interval [−L,L], on which the solution will be

computed:

L=2; // x in [-L,L]

the parameters of the time and space discretization:

// discretization in space

n=20; // x_i for i=-n,-n+1,..,-1,0,1,...,n-1,n

h=L/n; // space step

// discretization in time

m=12; // tau_j for j=0,1,...,m

k=T/m; // time step
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Now we can define the mesh:

x = -L:h:L;

tau = 0:k:T;

• When defining the initial and boundary conditions, we will need the constants used in the trans-
formation of the Black-Scholes equation to the heat equation (since the initial and boundary condi-

tions are originally defined for the option price and we need to define them for the heat equation):

alpha=(r-q)/(sigma ^2) -0.5;

beta=(r+q)/2+( sigma ^2)/8+((r-q )^2)/(2*sigma ^2);

Also, these constants will be needed at the end, when expressing the option prices from the solution

of the heat equation.

• The boundary and initial conditions will be defined as functions. Derive these expressions from the

boundary conditions for call option prices.

// x=-L, i.e., price close to zero

function [phi]=phi(tau)

phi=0;

endfunction

// x=L, i.e., price close to infinity

function [psi]=psi(tau)

psi=E*exp(alpha*L+beta*tau).*(exp(L-q*tau)-exp(-r*tau));

endfunction

// initial condition

function [u0]=u0(x)

u0=E*exp(alpha*x).*max(0, exp(x)-1);

endfunction

This allows an easy change of the code if we want to price other derivative than a call option which

we consider now.

• We define the matrix, into which we insert the computed numerical values of the function u:

sol=zeros (2*n+1,m+1);

5.1.7 EXERCISE: BOUNDARY AND INITIAL CONDITIONS. Using the function phi, psi and u0 defined

above (we stress again that in this way, when pricing another derivate, only these functions will be
changed, not the code written now), insert the initial and boundary conditions into the matrix sol.

5.2 Explicit and implicit numerical schemes

5.2.1 DISCRETIZATION OF THE HEAT EQUATION. Recall the following two dicretizations of the heat

equation (5.2):

• the explicit scheme given by

uj+1
i − uj

i

k
=

σ2

2

uj
i+1 − 2uj

i + uj
i−1

h2
, (5.3)
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• the implicit scheme given by

uj
i − uj−1

i

k
=

σ2

2

uj
i+1 − 2uj

i + uj
i−1

h2
. (5.4)

In both cases uj
i denotes the approximation of the function u for x = xi and τ = τj , i.e.,

uj
i ≈ u(xi, τj).

Recall that k is the time step and h is the space step.

5.2.2 EXERCISE: IMPLEMENTING THE EXPLICIT NUMERICAL SCHEME, CFL CONDITION. Compute the
numerical solution on the next time layers using the explicit numerical scheme given by (5.3). Note

that practically this means going through the columns of the solution matrix (each column represents
one time layer) and adding the values one after another using an explicit formula (which uses only the

values from the previous time layer)). Transform the numerical solution of the function u to the option

prices. Compute the exact option prices using the Black-Scholes formula and compare the obtained
numerical solution with the exact prices. Repeat the same procedure for different time and space steps.

There is a condition on the time and space step known as Courant-Friedrichs-Lewy condition which

has to be satisfied to ensure the stability of the explicit numerical scheme for heat equations. If the heat

equation with a diffusion coefficient a2 (using the usual notation for a heat equation ∂u
∂t = a2 ∂2u

∂x2 ) is
being solved with time step k and space step h, the CFL condition reads as

a2
k

h2
≤ 1

2
.

What does it mean in our case? Check this condition for the time and space steps used and plot the
comparison of the numerically obtained values and the exact option price in a case the CFL condition is

satisfied and in a case the condition is not satisfied. A sample result is shown in Figure 5.1.

For the given space step h, find the condition on the time step k, so that the CFL condition is satisfied.
Suppose that we want to increase the number of grid points in space and set n = 40. Determine the

condition on the time step, so that the CFL condition holds.
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Figure 5.1: Numerical solution of the Black-Scholes equation. The heat equation is solved by explicit
scheme while not satisfying the CFL condition (left) and satisfying the CFL condition (right).

5.2.3 EXERCISE: TRINOMIAL TREE. The explicit numerical scheme can be seen as a trinomial tree: The

value uj
i is computed as a weighted sum of uj−1

i−1 , uj−1
i , uj−1

i+1 with the weights w1, w2, w3 . What is the

relation between the positivity of the weights w1, w2, w3 and the CFL condition1.

1These weights are related to so called risk neutral pricing and risk neutral probabilities.
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5.2.4 EXERCISE: EXPLICIT SCHEME IN THE MATRIX FORM. Write the explicit numerical scheme in the

matrix form

uj+1 = Auj + b,

where uj and uj+1 are vectors of numerical values on j-th and (j+1)-th time layer, A is a suitable matrix

and b is a suitable vector. Determine A and b. What does the CFL condition say about the properties of
the matrix A?

5.2.5 EXERCISE: BINOMIAL TREE. In the special case, when h = σ
√
k, each value is computed as the

average of two values from the previous time layer and hence it can be seen as a binomial tree. Show

that in this case the CFL condition is satisfied. Choose the parameters of the numerical scheme which
lead to a binomial tree and plot the comparison of the numerical values with the exact prices. Suppose

that we want to increase the number of grid points, what is the corresponding time step?

5.2.6 EXERCISE: IMPLICIT SCHEME IN THE MATRIX FORM. Show that the implicit numerical scheme

(5.4) can be written as a system of linear equations which has to be solved to obtain the numerical
values of the j-th time layer. Write it in the form

Auj = b, (5.5)

where uj is vector of numerical values on j-th time layer, A is a suitable matrix and b is a suitable vector.
Determine A and b.

5.2.7 EXERCISE: IMPLEMENTING THE IMPLICIT SCHEME. Define the matrix A from (5.5); this will be

common for the computation of all the time layers. In a cycle, for each time layer define the right hand

side b and solve the system (5.5).

In Scilab, the backslash operator can be used to compute the solution of a system of linear equations2:

A\b

Compute the solution on the system on each time layer and compare the obtained numerical prices with

the exact ones.

Note that in this case CFL condition is not needed, see Figure 5.2.
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Figure 5.2: Numerical solutions obtained by explicit and implicit methods with the same time and space

steps.

2See http://help.scilab.org/docs/5.4.1/en US/backslash.html for information on what methods are used.
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5.2.8 EXERCISE. Find the parameters of the numerical scheme, for which the numerical prices obtained

by implicit method are accurate to four decimal places.

5.3 The SOR method for solving a system of linear equations

5.3.1 MOTIVATION. We are able to solve the system of linear equations arising from the implicit scheme

by a simple command, but nevertheless, we are going to study methods for solving such a system, and
successive overrelaxation (SOR) method in particular. Why?

• To achieve a reasonable precision in option prices, we need to use suitable space interval and step,

which leads to a higher dimension of the system. The speed of the computation can be increased
by choosing a suitable method. SOR method, in particular, always converges for our system and

the speed of the convergence can be increased by a suitable choice of the parameter of the method.

• The SOR method will be a base for the algorithm pricing American-style options, where the nu-

merical problem will no longer be a system of linear equations.

5.3.2 JACOBI AND GAUSS-SEIDEL METHOD. Recall the motivation behind the formulae for these two
schemes: Let us write a regular system Ax = b with aii 6= 0 in the form

ai1x1 + . . .+ ainxn = bi for i = 1, . . . , n,

where n is the number of equations. The assumption aii 6= 0 enables us to write these equations in the

following equivalent form, where we have put xii to the left hand side of the i-th equation:

xi =
1

aii



bi −
∑

j 6=i

aijxj



 for i = 1, . . . , n.

Thus, if we define the iterations x(k) (where k denotes the number of the iteration), starting from

some vector x(0), by

x
(k)
i =

1

aii



bi −
∑

j 6=i

aijx
(k−1)
j



 for i = 1, . . . , n. (5.6)

for k = 1, 2, . . . and these iterations converge to a vector x, then the vector x is the solution to the system

Ax = b. This is known as Jacobi method.
Note that when computing x

(k)
i using (5.6), we already have x

(k)
j for j = 1, . . . , i. Therefore, alterna-

tively, we may use them in (5.6) instead of the values x
(k−1)
j (j = 1, . . . , i) from the previous iteration.

This leads to the scheme

x
(k)
i =

1

aii



bi −
∑

j<i

aijx
(k)
j −

∑

j>i

aijx
(k−1)
j



 for i = 1, . . . , n (5.7)

for k = 1, 2, . . ., which is known as Gauss-Seidel method.

5.3.3 REVISION: ITERATIVE SCHEMES. Recall the general iterative scheme

x(k+1) = Tx(k) + c (5.8)

(with a certain initial approximation x(0) for solving a regular system of linear equations Ax = b.

• What is the condition for convergence of the iterative scheme (5.8)?

• Write the Jacobi and Gauss-Seidel schemes (5.6) and (5.7) in the form (5.8), using the decompo-

sition A = −L+D−U.

• Write a condition ensuring convergence of the Gauss-Seidel method in terms of the matrix A (i.e.,

in terms of the matrix A of the linear system, not in terms of the iteration matrix T).
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• Show that the Gauss-Seidel method converges for any starting point, when applied to the system

from the implicit scheme for solving the heat equation.

5.3.4 EXERCISE: EXPLORING THE GAUSS-SEIDEL METHOD ON A SMALL SYSTEM. Let us take the example

from the lecture: the system Ax = b with

A=[8 ,6;6 ,7];

b=[14;13];

which has the exact solution (x1, x2)
′ = (1, 1)′. We will do the similar analysis in Scilab, as was presented

at lecture on a spreadsheet.

• Show that the Gauss-Seidel method converges for any starting point.

• Define the initial approximation of the solution:

x1=[0];

x2=[0];

and the Gauss-Seidel iterations:

N= ; // here choose the number of iterations

for i=1:N

x1new =(b(1)-A(1 ,2)*x2(i))/A(1 ,1);

x1=[x1 ,x1new ];

x2new =(b(2)-A(2 ,1)*x1(i+1))/A(2 ,2);

x2=[x2 ,x2new ];

end

Plot the iterations and the exact solution:

plot(x1 ,x2 ,’o--’);

A sample result is shown in Figure 5.3.

• Using the results from the previous point, make a table such as the one started in Table 5.1. How

many Gauss-Seidel iterations are needed to achieve the precision ‖x(k) − x∗‖ < 10−5?

• Repeat the same analysis with another matrix (and possibly another right hand side, so that the
exact solution is easily computed), while leaving is symmetric and positive definite3.

k x
(k)
1 x

(k)
2 ‖x(k) − x∗‖

0 0 0 1.4142136

1 1.75 0.3571429 0.9878083

2 1.4821429 0.5867347 0.6350196
3 1.309949 0.7343294 0.4082269

. . . . . . . . . . . .
10 1.0140634 0.9879456 0.0185226

Table 5.1: Convergence of the Gauss-Seidel method. Here, x∗ denotes the exact solution of the system
and for ‖.‖ we use the L2-norm.

3The reason for these conditions will be seen later, when considering the SOR method.
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Figure 5.3: Convergence of Gauss-Seidel method; the red point is the exact solution.

5.3.5 SUCCESSIVE OVERRELAXATION (SOR) METHOD. Recall from the lectures that the Gauss-Seidel
iteration can be written as

x
(k)
i = x

(k−1)
i +

1

aii
r
(k)
ii ,

where r
(k)
i is the residue at the time of the computation of x

(k)
i and r

(k)
ii is its i-th element. Motived by

the numerical experiments in the previous point, we define the new method by

x
(k)
i = x

(k−1)
i + ω

1

aii
r
(k)
ii , (5.9)

where ω is a parameter. For ω > 1 we have an overrelaxation (this agrees with our original motivation)

and for 0 < ω < 1 we have an underrelaxation (as we will see, the method may converge also in this
case). For ω = 1, the method coincides with Gauss-Seidel.

5.3.6 EXERCISE: IMPLEMENTING AND TESTING THE SOR METHOD, EXERCISE 5.3.4 CONTINUED. The
SOR method (5.9) can be written as

x
(k)
i =

ω

aii



bi −
∑

j<i

aijx
(k)
j −

∑

j>i

aijx
(k−1)
j



+ (1− ω)x
(k−1)
i . (5.10)

Use this expression to modify the Gauss-Seidel iterations in the Scilab script and produce the iterations
of the SOR method.

• Add these iterations to the plot of the Gauss-Seidel iterations. A sample result is in Figure 5.4.

• How many SOR iterations are needed to achieve the precision ‖x(k)−x∗‖ < 10−5? Add columns to

Table 5.1, indicating the same quantities for SOR method, as suggested in Table 5.2. Choose two
values of ω - one for which the SOR method converges more quickly and one for which the SOR

method converges but more slowly than Gauss-Seidel.

• Find an example of a value of ω, for which the SOR method diverges.
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Figure 5.4: Convergence of Gauss-Seidel and SOR methods; the red point is the exact solution.

Gauss-Seidel SOR, ω = 1.2

k x
(k)
1 x

(k)
2 ‖x(k) − x∗‖ x

(k)
1 x

(k)
2 ‖x(k) − x∗‖

0 0 0 1.4142136 0 0 1.4142136

1 1.75 0.3571429 0.9878083 2.1 0.0685714 1.4413741
2 1.4821429 0.5867347 0.6350196 1.6182857 0.5503347 0.7645104

3 1.309949 0.7343294 0.4082269 1.2810416 0.8008617 0.3444423

. . . . . . . . . . . . . . . . . . . . .
10 1.0140634 0.9879456 0.0185226 1.0008177 0.9994245 0.0009999

Table 5.2: Convergence of Gauss-Seidel method and SOR methods. Here, x∗ denotes the exact solution

of the system and for ‖.‖ we use the L2-norm.

5.3.7 OSTROWSKI-REICH CONVERGENCE THEOREM FOR SOR METHOD. This theorem states that for a
system with a positive definite matrix, the SOR method converges for any 0 < ω < 2 and any initial

approximation.

5.3.8 EXERCISE. Compare your observations from Exercise 5.3.6 with Ostrowski-Reich theorem.

5.3.9 ERROR ESTIMATE AND SPECTRAL RADIUS. For the iterative scheme (5.8), the following estimate
holds4

‖x(k) − x∗‖ = ‖Tk [x(0) − x∗]‖ ≤ ‖Tk‖ ‖x(0) − x∗‖,
where x(k) is the approximation from k-th iteration and x∗ is the exact solution. This motivates finding

an estimate on ‖Tk‖. This estimate follows from the following property of the spectral radius (the

maximum absolute value of the eigenvalues of the matrix), known as Gelfand theorem:

lim
k→∞

‖Tk‖1/k = ρ(T), (5.11)

where ρ(T) is the spectral radius of the matrix T. Thus, ‖Tk‖ ≈ ρ(T)k and so we have an estimate

‖x(k) − x∗‖ ≤ ‖Tk‖ ‖x(0) − x∗‖ ≈ ρ(T)k ‖x(0) − x
∗‖. (5.12)

4For the last inequality we need the vector and matrix norms to be compatible (cf.notes on the website).
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5.3.10 NUMERICAL EXAMPLES ILLUSTRATING GELFAND THEOREM. We are going to numerically ”check”

the relation (5.11).

• By typing

help norm

get an information on the vector and matrix norms in Scilab.

• Firstly, we repeat the computation presented in lectures: Generate a random matrix, for example:

A=rand(3,3,"normal");

and compute its spectral radius5 and the values of ‖Ak‖1/k. Plot a graph showing their convergence
to spectral radius. A sample result is shown in Figure 5.5.

102 4 6 8 12 14 161 3 5 7 9 11 13 15
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3

2.8

3.2
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4.2

4.4

power of the matrix

Figure 5.5: Convergence of ‖An‖1/n to the spectral radius of the matrix A.

• What we actually need for our analysis of the iterative schemes for solving systems of linear equa-

tions, is the approximation ‖Ak‖ ≈ ρ(A)k for a matrix A with spectral radius less than unity6.

Suggest a method that generates a random matrix with spectral radius less than unity and com-
pare the quantities ‖Ak‖ and ρ(A)k.

5.3.11 ESTIMATE ON THE SPECTRAL RADIUS OF THE SOR ITERATION MATRIX (KAHAN THEOREM). If the
diagonal elements of the matrix of the system are nonzero, then we have the following estimate on the

spectral radius of the SOR iteration matrix7
Tω:

ρ(Tω) ≥ |ω − 1|. (5.13)

5.3.12 EXERCISE: DERIVATION OF A NECESSARY CONDITION FOR THE CONVERGENCE OF THE SOR
METHOD. Use the estimate (5.13) to show that the SOR method can converge only for ω ∈ (0, 2).

In general, this not a sufficient condition, but we have seen a class of matrices for which this con-
stitutes also a sufficient condition (positive definite matrices, according to the Ostrowski-Reich theorem,

see point 5.3.7). However, if ω is outside of the interval (0, 2), the method does not converge.

5Scilab command spec computes the eigenvalues of a matrix, i.e., its spectrum.
6Recall that this condition on the spectral radius of the iteration matrix is needed for convergence of the iteration scheme.
7The subscript denotes the dependence of the iteration matrix T on the parameter ω.
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Again, compare this result with the numerical experiments and finding the value of ω, for which the

SOR method does not converge.

5.3.13 SOLVING A SYSTEM WITH POSITIVE DEFINITE TRIDIAGONAL MATRIX. For the SOR method applied
to a system with positive definite tridiagonal matrix, the following propositions hold:

1. There is a relation between the spectral radii of the Jacobi and Gauss-Seidel iteration matrices:

ρ(Tgs) = ρ(Tj)
2

2. The optimal choice of the parameter ω for the SOR method (i.e., which leads to the smallest spectral

radius of the iteration matrix) is given by

ω =
2

1 +
√

1− [ρ(Tj)]2
. (5.14)

With this choice of ω we have ρ(Tω) = ω − 1

Above, we have denoted Tj ,Tgs,Tω the iteration matrices of Jacobi, Gauss-Seidel and SOR (with pa-
rameter ω given by the subscript) methods.

5.3.14 EXERCISE. Consider the system with positive tridiagonal matrix. Denote Tω∗ the iteration matrix

of the SOR method with optimal ω chosen according to (5.14). Show that then

ρ(Tj) < ρ(Tgs) < ρ(Tω∗),

where Tj ,Tgs are the iteration matrices of Jacobi and Gauss-Seidel methods. What does this inequality
say about the speed of convergence of these methods?

5.3.15 EXERCISE. Return to the numerical experiments with our small 2× 2 system from 5.3.4 an 5.3.6.

• The SOR method can be written in the matrix form as

x(k+1) = (D− ωL)−1[(1− ω)D+ ωU]x(k) + ω(D− ωL)−1b (5.15)

Make a plot of the spectral radius of the iteration matrix as a function of ω. A sample result is

given in Figure 5.6. Then, show the dependence of the number of iterations necessary to achieve
a given precision (for example, so that the norm of the difference between the approximation and

the exact solution is less than 10−5) as a function of ω. Compare the two graphs.

• Compute the optimal value of ω according to (5.14). Check the relation with the graphs from the
previous question.

• Verify numerically the statement that for the spectral radius of the iteration matrix for the optimal
ω equals ω − 1.

• Find the range of ω, for which the iteration matrix corresponding to SOR method has a smaller

spectral radius than the matrix corresponding to Gauss-Seidel method.

5.4 Application of the SOR method to the Black-Scholes equation

5.4.1 EXERCISE: MATRIX FROM THE NUMERICAL SOLUTION OF THE BLACK-SCHOLES EQUATION Show

that the matrix from the implicit scheme applied to solving the Black-Scholes equation is tridiagonal and

positive definite. Which properties from the previous section therefore hold?

5.4.2 EXERCISE: AUXILIARY FUNCTION FOR GAUSS-SEIDEL METHOD APPLIED TO A SYMMETRIC TRIDI-
AGONAL SYSTEM. Firstly, we consider the Gauss-Seidel method. Finish the code below an save it as

gs.sci:
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Figure 5.6: Spectral radius of the SOR method iteration matrix for different values of ω.

function [v] = gs(a,b,rhs ,v0 ,epsilon)

// Gauss -Seidel method for a symmetric tridiagonal system A*v=rhs

//

// inputs:

// a,b: the matrix A has: a above and under the diagonal

// b on the diagonal

// rhs: right hand side of the system

// v0: the initial approximation

// epsilon: iterations finish when norm(A*v-b)<= epsilon

//

// output:

// v: approximation of the solution

function [v]=gs(a,b,rhs ,v0 ,epsilon)

N=length(v0);

// here write the subfunction which computes te error

// for the given approximation w

//

// function [err]=err(w)

// ...

// endfunction

// loop: iterations continue while the error is still large

v=v0;

while err(v)>epsilon

v(1)=( rhs(1)-a*v(2))/b;

for i=2:N-1

v(i)=(rhs(i)-a*(v(i -1)+v(i+1))/b;
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end;

v(N)=(rhs(N)-a*v(N-1))/b;

end;

endfunction;

Explain this form for a symmetric tridiagonal matrix (what do the sums appearing in the formula simplify
to?).

5.4.3 EXERCISE: APPLICATION OF GAUSS-SEIDEL METHOD TO BLACK-SCHOLES PDE. Use the function

defined in the previous point to solve the system arising from the implicit scheme for solving the heat
equation, as a part of the numerical solution to the Black-Scholes equation.

HINT. The only difference is in the line where the system of linear equation is being solved. Instead of

using

A\b

call the function

gs(a,b,rhs ,v0 ,eps)

with suitable parameters. Although the method converges for any initial approximation, it is a good idea
to provide it close to the expected solution to speed up the computation. A good candidate is the solution

from the previous time layer. Use the parameters from Exercise 5.2.8 and find suitable value of precision
parameter epsilon, so that the option prices retain the precision. How many iterations are needed to

compute one time layer? Compare with using the Gauss-Seidel method.

5.4.4 EXERCISE: AN ALTERNATIVE CRITERION FOR STOPPING ITERATIONS. When pricing American

options in the next chapter, the problem to be solved will not be a system of linear equations, and
hence we will not be able to use a criterion based on the error. An alternative criterion suggesting

that the convergence has been achieved is, that the two successive iterations are already close to each
other. If we denote the approximation from the k-th iteration as x(k), then the criterion takes the form

‖x(k) − x(k−1)‖ ≤ ε.
Implement this criterion to solving the system of linear equations using Gauss-Seidel method and find

a suitable ε.
We return to this in the next chapter in the context of pricing American derivatives. In this chapter,

we continue using the original criterion based on the norm of the residue.

5.4.5 EXERCISE: AUXILIARY FUNCTION FOR THE SOR METHOD. Define the function

sor(omega ,a,b,rhs ,v0 ,eps)

analogous to gs(a,b,rhs,v0,eps) by adjusting the while loop.

5.4.6 EXERCISE: APPLICATION OF SOR METHOD TO BLACK-SCHOLES PDE. Use the function defined in

the previous point to numerically solve the heat equation, as a part of finding a numerical solution to

the Black-Scholes equation. Based on the earlier propositions and analyses, what values of ω produce a
convergent scheme?

5.4.7 EXERCISE: CHOICE OF PARAMETER ω FOR THE SOR METHOD APPLIED TO BLACK-SCHOLES PDE:
PARAMETERS OF THE SCHEME.Firstly, we should note that numerical computation of the spectral radii

of the iteration matrices for different values of ω is computationally demanding and practically it is
not a good way of choosing ω for a concrete numerical scheme. The aim of this exercise is to get an

intuition about behaviour of the optimal ω. This intuition is also useful when studying the analytical
optimality results for this problem, presented in the lectures: the resulting - otherwise complicated

looking - formulae ”make sense”.

Choose different set of parameters of the numerical scheme and see, how refining the mesh (which

should lead to a more precise numerical solution) affects the performance of the SOR method. For a
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given set of parameters compute the optimal ω using the formula (5.14) and display them graphically.

How does it depend on the parameters of the numerical scheme? A sample result is shown in Figure 5.7.
Check the accuracy of the numerical solution for a given set of parameters. If a more precise solution

is needed, how could it be achieved? What do you expect about the corresponding optimal value of ω?
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Figure 5.7: Optimal ω for the numerical schemes.

5.4.8 EXERCISE: PRICING THE PUT OPTION. We are going to price a put option. Choose L and compute
the boundary points for the stock price, in which the boundary conditions are used - do you consider

these prices to be sufficiently low and high, so that the boundary conditions can be applied? Based

on the previous exercises, choose parameters of the scheme which you consider reliable to provide an
approximation with high accuracy and the parameter ω for the SOR method, which you consider suitable

with respect to speed of the convergence.

Use these values to price the selected put option. Then compare your numerical results with the exact
solution. Was your computation successfull?
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Chapter 6
American derivatives: properties and

numerical methods

6.1 American derivatives: the basic principles and properties

6.1.1 AMERICAN DERIVATIVES. The feature, which distinguishes American derivatives from their Euro-
pean counterparts, is the possibility of their early exercise. European derivatives can be exercised only at

the predetermined exact time (time of expiration), while American derivatives can be exercised at any

time prior to the time of their expiration.

6.1.2 EXERCISE: PRICE OF AN AMERICAN DERIVATIVE VS. THE PAYOFF. The price of an American

derivative cannot fall under the payoff, as a consequence of a possibility of its immediate exercise.
Consider an American call option with exercise price of 100 USD. The price of the underlying stock

is 120 USD. Show what arbitrage would be present, if the option price was 115 USD.

6.1.3 EXERCISE: NATURAL INEQUALITY COMPARING AMERICAN AND EUROPEAN OPTION PRICES. In

what follows, we denote by Ca(S, t), P a(S, t) the prices of American call and put options, and by

Ce(S, t), P e(S, t) their European counterparts. Parameter S denotes the current price of the underly-
ing stock and t is the time. All the options considered are written on the same underlying asset and have

the same exercise price. Unless stated otherwise, they have the same expiration time.

Since American options provide their holder more opportunities (exercise at any time until the expi-
ration time) than European ones (exercise only at the expiration time), the obvious inequalities have to

hold:

Ce(S, t) ≤ Ca(S, t), P e(S, t) ≤ P a(S, t).

What would happen otherwise? Explicitly describe the arbitrage strategy in the following situation: The

stock price today equals 100 USD. There are European and American options with expiration price 125
USD, which expire in two months. The price of the European option is 30 USD and the price of the

American option is 28 USD.

6.1.4 EXERCISE: AMERICAN OPTIONS WITH DIFFERENT EXPIRATION TIMES. Using the same idea as
above, comparing the possibilities given by two derivatives, we can deduce that the price of the American

option which expires later cannot be smaller than the price of the American option with earlier expiration
if they have the same exercise price.

Construct the arbitrage strategy in the following situation: The stock price today equals 100 USD.

There is are two American options with expiration price 125 USD: the first one expires in two months
and costs 28 USD, the second one expires in one month and costs 31 USD.

6.1.5 AMERICAN CALL OPTION ON A NON-DIVIDEND PAYING STOCK. In general, prices of the American
type options are higher than those of European type. There is, however, one important difference:

The price of the American call option on a stock which does not pay dividends, equals the price of the

European option. We assume that r > 0.
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This proposition says that the extra possibility of an earlier exercise, which the American call option

gives, has in fact a zero value. To see why, suppose that we have the option and exercise it prior to the
expiration, at time t < T . We receive the stock for the price E, so our profit is S − E, where S is the

stock price at the time we decided to use the option. If instead of exercising the option, we decide to sell

it, we get Ca(S, t). Using the bounds on the call option price (see Exercise 1.3.6) we obtain the estimate

Ca(S, t) ≥ Ce(S, t) ≥ S − Ee−r(T−t) > S − E, (6.1)

since both r and T − t are positive. Hence it is never optimal to exercise the option prior the expiration,

it is always better to sell it instead. Hence the possibility to exercise the option early has no value.

6.1.6 EXERCISE: AMERICAN CALL OPTION ON A NON-DIVIDEND PAYING STOCK, AN ALTERNATIVE PROOF.
Give an alternative proof of the statement Ca = Ce using an arbitrage argument. Suppose that Ca > Ce

at a certain moment and consider the following strategy:

• We buy the American call and sell the European call.

• If the American call is exercised at the expiration time or it is not exercised at all, we do the same

with our European call.

• If the American call is exercised at time t < T , we go to short position in stock to fulfill our

obligation and put the received premium E to the bank account. At time T we use our European
option to get the stock for E and close the short position.

Show that the initial cash flow is positive and the payoff at time T is E(er(T−t) − 1) > 0 if the American

option is exercised prior to expiration at time t < T and zero otherwise.

6.1.7 AMERICAN CALL OPTION ON A NON-DIVIDEND PAYING STOCK: ANALYSIS OF THE PROOF. We have
shown that the Black-Scholes price of a call option on a stock which pays dividends is below the payoff

for large values of the stock price, see Exercise 3.2.5. Hence the prices of an American and an European

option cannot coincide in this case. Where we have used in 6.1.5 and 6.1.6 that the stock does not pay
dividends?

6.1.8 EXERCISE: BOUNDS ON THE DIFFERENCE BETWEEN PRICES OF AMERICAN PUT AND CALL OPTIONS

ON A NON-DIVIDEND PAYING STOCK. Recall that in the case of European option, the difference between
put and call option is related to the stock price and exercise price by a put-call parity P e−Ce+S = Ee−rτ ,

see 1.3.1.

• Why a similar equality does not hold for American options? Which step from the derivation of the

put-call parity for European options cannot be done?

• Derive the following bounds on American options prices, which are written on a stock that does

not pay dividends:

Ee−r(T−t) ≤ S + P a − Ca ≤ E. (6.2)

• Using the real data of call option prices and the bounds (6.2), form an interval for possible put

option prices. Compare with the actual price of the put option.

6.2 American derivatives in the Black-Scholes setting

6.2.1 EXERCISE: AMERICAN PUT OPTIONS. Show that regardless on whether the underlying stock does

not pay dividends or not, the price of the American put option cannot be equal to the price of its European
counterpart if r > 0.

6.2.2 SUMMARY: WHAT NEEDS TO BE DONE. We are going to consider:

• call options on the non-dividend paying assets,

• put options on both dividend paying and non-dividend paying assets.
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6.2.3 FREE BOUNDARY PROBLEM FOR THE AMERICAN CALL OPTION PRICE. Recall the behaviour of the

price from the lectures, see also Figure 6.1.

• if S < Sf (t): the price satisfies Black-Scholes PDE, we keep the option (we do not exercise it)

• if S > Sf (t): the price equals payoff, we exercise the option

• if S = Sf (t): at this point, the price has the same value (because of the requirement of the
continuity) and derivative (because of the requirement of the smoothness) as the payoff

The function Sf (t) represents the early exercise boundary; from the mathematical point of view it is a

free boundary.
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Figure 6.1: Pricing American call option.

The mathematical formulation is therefore the following:

• Function V (S, t) is a solution to the Black-Scholes PDE

∂V

∂t
+

σ2

2
S2 ∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0

on the time-dependent domain 0 ≤ t < T, 0 < S < Sf (t).

• Terminal condition is given by

V (S, T ) = max(S − E, 0).

for all S.

• Conditions on the boundary S = 0 and S = Sf (t) for 0 ≤ t < T are the following:

V (0, t) = 0, V (Sf (t), t) = Sf(t)− E,
∂V

∂S
(Sf (t), t) = 1.

6.2.4 LINEAR COMPLEMENTARITY PROBLEM FOR THE AMERICAN CALL OPTION PRICE. The free boundary

formulation from 6.2.3 can be transformed into the following linear complementarity problem:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV ≤ 0,

V (S, t) ≥ V̄ (S),
(

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV

)

(

V (S, t)− V̄ (S)
)

= 0
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for all S ∈ (0,∞), 0 < τ ≤ T .

Recall that in this transformation we have used the bound of the free boundary position

Sf (t) ≥ Emax(1, r/q),

which we had derived. It is used to establish the inequality

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV ≤ 0.

6.2.5 EXERCISE: TRANSFORMATION OF THE LINEAR COMPLEMENTARITY PROBLEM FOR THE CALL. Use
the same series of the transformations V (S, t) → Z(x, τ) → u(x, τ) as in the case of pricing European

options to obtain the following linear complementarity problem:

(

∂u

∂τ
− σ2

2

∂2u

∂x2

)

(u(x, τ) − g(x, τ)) = 0,

∂u

∂τ
− σ2

2

∂2u

∂x2
≥ 0, u(x, τ)− g(x, τ) ≥ 0

for x ∈ R, 0 < τ ≤ T , with transformed payoff

g(x, τ) = Eeαx+βτ max(0, ex − 1),

where α, β are given by (5.1). This is supplemented with initial condition u(x, 0), x ∈ R.
Using the computations done for the European option, writing the most part of the transformed

problem is straightforward; we are mostly concerned in establishing whether ∂u
∂τ − σ2

2
∂2u
∂x2 ≥ 0 or ∂u

∂τ −
σ2

2
∂2u
∂x2 ≤ 0.

6.2.6 EXERCISE: FREE BOUNDARY PROBLEM FOR THE AMERICAN PUT OPTION PRICE. Write down the

free boundary formulation of the American put option pricing problem and sketch the solution (option
price as a function of the current price of the underlying stock). What are the differences from the

American call option pricing problem?

6.2.7 EXERCISE: LOCATION OF THE FREE BOUNDARY. Consider the option prices, computed for an

American put with exercise price of 10 USD, given in Table 6.1. Determine the interval in which the free

boundary is located.

stock price price of the put option

0 10.0000

2 8.0000
4 6.0000

6 4.0000
8 2.0200

10 0.6913

12 0.1711
14 0.0332

16 0.0055

Table 6.1: American put option prices.

6.2.8 EXERCISE: LINEAR COMPLEMENTARITY PROBLEM FOR THE AMERICAN PUT OPTION PRICE. The aim

is to transform also the American put option pricing problem written in its free boundary formulation as
a linear complementarity problem. We follows the steps from the transformation in the case of a call.

• Recall the property of the free boundary

∂V call

∂t
(Sf (t), t) = 0,
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derived in lectures for the price of an American call. Using the same method, derive this property

of the price of an American put option.

• Recall from the lectures the derivation the the estimate on the free boundary location for the call

option, which reads as

Sf (t) ≥ max

(

r

q
E,E

)

.

Derive an analogous estimate for the free boundary in the case of pricing a put option. Use the
inequality to show that

∂V put

∂t
+

1

2
σ2S2 ∂

2V put

∂S2
+ (r − q)S

∂V put

∂S
− rV put ≤ 0.

• Write down the linear complementarity problem for the American put option price.

6.3 Numerical algorithm for pricing American call and put options

6.3.1 PARAMETERS OF THE TEST EXAMPLE. We are going to price the put option on a stock with volatility
σ = 0.40 which does not pay dividends. The exercise price is 10 USD and the option expires in 3 months.

The interest rate is assumed to be equal to 10 percent per annum. Thus we have the following:

// parameters of the option

E=10;

q=0;

sigma =0.4;

T=1/4;

// interest rate

r=0.1;

The prices, accurate to four decimal places are given in Table 6.1, which we can use for checking the
accuracy of our computations.

6.3.2 EXERCISE: TRANSFORMED PROBLEM. Based on the computations from the previous section, write
down the transformed linear complementarity problem and its discretization in the form

Au ≥ b, u ≥ g, (Au− b)i(ui − gi) = 0 for all i, (6.3)

which we need to solve on each time layer.

6.3.3 EXERCISE: ANALYSIS OF THE ALGORITHM FOR EUROPEAN OPTIONS. The beginning of the code
can be preserved: definition of the mesh, definition of the initial condition, inserting the initial condition

into the matrix. We need to take care about the boundary conditions: at one boundary, the original

boundary condition is preserved; on the other boundary, the value is set to be equal to the payoff.

What boundary condition remains the same and which one equals the payoff in our case of a put

option? How is it in the case of a call option? Change the definitions of the transformed boundary
conditions in the code:

// x=-L, i.e., price close to zero

function [phi]=phiUS(tau)

phi= ... ;

endfunction

// x=L, i.e., price close to infinity

function [psi]=psiUS(tau)

psi=...;

endfunction
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Insert the values into the matrix with solution.

6.3.4 NUMERICAL METHOD FOR SOLVING THE DISCRETE LINEAR COMPLEMENTARITY PROBLEM. At
each time layer we are solving a problem which has the form (6.3). The PSOR (projected successive
overrelaxation) method for solving this system is given by

u
(p+1)
i = max

[

ω

Aii



bi −
∑

j<i

Aiju
(p+1)
j −

∑

j>i

Aiju
(p)
j



+ (1− ω)u
(p)
i , gi

]

and some initial approximation u0. It means that in each step we compare the SOR iteration with the

transformed payoff. If the SOR iteration falls below the transformed payoff (which is not permitted for
the solution), it is replaced by the transformed payoff. Otherwise it is kept. The convergence of the

algorithm has been proved in lectures.

6.3.5 IMPLEMENTATION OF THE PSOR ALGORITHM TO AMERICAN OPTION PRICING. Implement the

PSOR method on each time layer to solve the discrete linear complementarity problem. Transform the

obtained values into the option prices and compare them with the values given in Table 6.1. If the
precision is not satisfactory, adjust the parameters of the numerical scheme.

6.3.6 NUMERICALLY FINDING THE FREE BOUNDARY. Using the developed algorithm, find the numerical
approximation of the free boundary. Plot it and give the implications of the result for trading.
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Chapter 7
Vasicek model of interest rates

7.1 Modelling the short rate

7.1.1 STOCHASTIC DIFFERENTIAL EQUATION FOR THE SHORT RATE. The short rate (the instantaneous
interest rate) r is modelled by an Ornstein-Uhlenbeck process

dr = κ(θ − r)dt + σdw, (7.1)

where κ, θ, σ are positive parameters. We have already studied this process and mentioned its application

to interest rate modelling, see Exercises 2.4.1 and 2.4.2. Recall the effect of the parameters to the typical
evolution of the short rate.

7.1.2 ITŌ INTEGRAL. In lectures, the conditional distribution of the short rate, given its value at an
earlier time, was derived using the Fokker-Planck equation. Here, we present an alternative derivation,

which uses the notion of Itō integral.
The Itō integral of a nonrandom function f = f(t) is defined by1

∫ b

a

f(τ)dw(τ) = lim
ν→0

n
∑

i=0

f(τi)[w(τi+1)− w(τi)], (7.2)

where a = τ0 < τ1 < . . . < τn−1 < τn = b is a partition of the interval [a, b] and ν is the norm of this
partition. Note the similarity of (7.2) with the definitions of Riemann and Riemann-Stieltjes integrals.

7.1.3 EXERCISE: PROPERTIES OF ITŌ INTEGRAL. We see that the Itō integral (7.2) depends on the
Wiener process, so it is a random variable. The aim of the following questions is to explore this concept

numerically by computer simulations and to compute its probability distribution.

PART I: NUMERICAL SIMULATIONS.

• In Exercise 2.1.2 we have simulated trajectories of a Wiener process in the following way:

function [r]=randn()

r=rand(1,"normal");

endfunction

function [w]=wiener(dt,n)

w(1)=0;

for i=1:n

dw=sqrt(dt)*randn ();

w(i+1)=w(i)+dw;

1We stay at this intuitive level; the details on the class of integrable functions, existence of the limit, etc. in a text specialized
on stochastic calculus, for example [3].
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end;

w=w’;

endfunction

We define a function which we are going to integrate:

function [f]=f(t)

f=t.^2;

endfunction

Now, we have everything necessary to numerically simulate Itō integral.

• Create a trajectory of a Wiener process:

dt=0.01;

n=100;

t=(0:dt:n*dt);

w=wiener(dt ,n);

Compute the approximation of the Itō integral corresponding to this trajectory by evaluating the

sum at the right hand side of (7.2).

• Simulate more trajectories of the Wiener process and compute the corresponding values of the Itō

integral. Plot the histogram of all the values generated.

• Repeat for the simulation with a smaller time step.

PART II: COMPUTATION OF THE PROBABILITY DISTRIBUTION.

• Show that the probability distribution of the sum on the right hand side of (7.2) is normal and

compute its expected value and variance.

• What is the limit of the expected value and variance, as the norm of the partition approaches zero?

• Deduce the probability distribution of the Itō integral and compare with the results of the simula-

tions.

7.1.4 EXERCISE: CONDITIONAL DISTRIBUTION OF THE SHORT RATE. The solution to the stochastic

differential equation (7.1) with initial condition r(t0) = r0 can be written in a closed form, using the Itō
integral:

r(t) = e−κ(t−t0) r0 + (1 − e−κ(t−t0)) θ + σ

∫ t

t0

e−κ(t−s)ds. (7.3)

• By differentiating (7.3) verify that it is indeed a solution to the stochastic differential equation

(7.1) and check that it also satisfies the initial condition r(t0) = r0.

• Use the properties of the Itō integral to show that the conditional distribution of r(t), given that
r(t0) = r0, is a normal distribution and its moments are given by

E[r(t)|r(t0) = r0] = e−κ(t−t0) r0 + (1− e−κ(t−t0)) θ,

D[r(t)|r(t0) = r0] =
σ2

2κ
(1− e−2κ(t−t0)).

• Find the limiting distribution as t → ∞.
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7.1.5 EXERCISE. Consider the conditional distribution of r(t), given that r(0) = r0. How does the

expected value and dispersion depend on t? Sketch their graphs. How do they depend on the parameters
of the process?

Match the following parameter values with evolutions of expected value and variance of the future

interest rates in Figure 7.1; in all the cases, θ is equal to 0.05 and the initial value of the short rate is
0.07:

1. κ0 = 0.75, σ0 = 0.01,

2. κ1 = 5× κ0, σ1 = 2× σ0,
3. κ1 = 10× κ0, σ1 = σ0.
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Figure 7.1: Evolution of the expected value and variance of the future interest rates.

7.1.6 EXERCISE. Consider the parameters values of the Vasicek model from Table 2.1 and choose the
initial value of the interest rate. Plot the probability density functions of the interest rate at future times.

Show how they converge to the limiting distribution. A sample output is presented in Figure 7.2.

What parameters does the speed of convergence depend on? Adjust the parameters so that the
convergence to the limiting distribution is faster and plot similar graphs.

7.1.7 EXERCISE: ACCURACY OF THE EULER-MARUYAMA DISCRETIZATION FOR VASICEK MODEL. In Exer-

cise 2.4.1 we used the Euler-Maruyama discretization to simulate trajectories of the Vasicek model. Now,
knowing the exact distribution, we can check the accuracy of the the Euler-Maruyama discretization by

comparing distribution of the interest rates, when simulated from the exact distribution and when using

the approximation. We are going to compare the densities.

Firstly, derive the conditional distribution of the interest rate simulated using the Euler-Maruyama

discretization with the time step ∆t.
Now, consider the parameters of Vasicek model from Table 2.1 and choose the initial value of the in-

terest rate. Suppose that we simulate daily data. Plot the density functions of the interest rate generated
from exact distribution and using the discretization.

How does the comparison change when we increase the time step (for example, if we simulate

monthly data)?
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Figure 7.2: Densities of the interest rates in the future.

7.1.8 EXERCISE. Consider again the parameters of Vasicek model from Table 2.1. Assuming the the
current interest rate is 6 percent, compute:

• the expected value of the interest rate in 1 week, 1 month, 1 year,

• the 95 % confidence interval for the interest rate in 1 week, 1 month, 1 year,

• probability than in 1 year the interest rate will be lower than 4 percent,

• probability than in 1 year the interest rate will be higher than today.

7.1.9 EXERCISE: PROBABILITY OF THE NEGATIVE INTEREST RATES. One of the problems arising in
the Vasicek model is a positive probability of negative interest rates, which is a consequence of normal

distribution. The seriousness of this problem depends on the parameters, which affect this probability.

Assume the parameters from Table 2.1. Compute the probability that

• the interest rate in one year2 is negative, if its value today is 5 percent,

• the interest rate in one year is negative, if its value today is 2 percent,

• the interest rate under the limiting distribution is negative (note that this does not depend on the

initial interest rate).

How do these probabilities depend on the initial level of the short rate?

Find a set of parameters for which these probabilities are not negligible (i.e., what combinations of

parameters cause problems?).

7.1.10 MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS. Knowledge of the conditional distri-

bution of the interest rates enables us to form the likelihood function for the given time series of interest

2Note that this refers to the interest rate at one precise time, not to a possibility that the interest rate is negative at a certain
time during the year. The latter question is related to so called first passage times, see lectures and the additional notes at the
website.
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rates. Since this distribution is normal, the likelihood function is sufficiently simple to allow the explicit

computation of the maximum likelihood estimates.
Suppose that we have the equidistant data r1, r2, . . . , rn and the length of the time interval between

two observations is dt. Define

A = e−κdt, V 2 =
σ2

2κ
(1 − e−2κdt);

note that V 2 is exactly the conditional variance and the parameter κ appears in the conditional expected
value through the new parameter A - hence it is natural to expect that the new parameters A and V 2

will make a suitable reparametrization for the maximum likelihood estimation. Then the maximum
likelihood estimates of the parameters θ, A, V 2 can be computed using the following code:

// r - vector with the data

n=length(r);

A=((n -1)*sum(r(2:n).*r(1:n-1))-sum(r(2:n))*...

sum(r(1:n -1)))/((n-1)*sum(r(1:n-1).^2)-( sum(r(1:n -1)))^2);

theta=sum(r(2:n)-A*r(1:n -1))/((n -1)*(1 -A));

v2=sum((r(2:n)-A*r(1:n-1)-theta*(1-A)*ones(n-1 ,1)).^2)/(n-1);

7.1.11 EXERCISE: MAXIMUM LIKELIHOOD ESTIMATION. Transform the estimates of the parameters

A, θ, V 2 from the previous section into the original parameters κ, θ, σ.

Download data3, choosing some interest rate as a proxy for the short rate. Model these data by the
Vasicek model and use the maximum likelihood method to estimate the parameters. Plot the time series

of the data and add the predicted expected value of the interest rate in the future.

7.2 Bond prices and term structure of interest rates

7.2.1 BOND, INTEREST RATE, TERM STRUCTURE OF INTEREST RATES. A zero-coupon bond is a security

which pays its holder a specified amount of money at a specified time (called maturity of the bond).
If it pays a unit amount of money, it is called a discount bond. In what follows, by a bond we mean a

discount zero-coupon bond.

The bond prices define interest rates. If we denote the price at time t of a bond with maturity T as
P (t, T ) and the corresponding interest rate by R(t, T ), they are connected through the formulae

P (t, T ) = e−R(t,T )(T−t) ⇒ R(t, T ) = − logP (t, T )

T − t
.

Plotting the interest rates at the given time with different maturities produces term structure of
interest rates. Figure 7.3 shows an example of market data.

7.2.2 BOND PRICES IN GENERAL ONE-FACTOR MODEL. If the short rate follows a stochastic differential
equation

dr = µ(t, r)dt+ σ(t, r)dw,

then the bond price P = P (t, r) satisfies the partial differential equation

∂P

∂t
+ (µ(r, t) − λ(r, t)σ(r, t))

∂P

∂r
+

σ2(r, t)

2

∂2P

∂r2
− rP = 0 (7.4)

for all r and all t ∈ [0, T ).

3Interest rates data are available for example at the following websites:
http://www.euribor-ebf.eu/

http://www.federalreserve.gov/releases/h15/data.htm

http://www.bankofcanada.ca/rates/interest-rates/bond-yield-curves/
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Figure 7.3: Term structure of interest rates, Euribor rate on 22nd July 2013.

The function λ(r, t) is so called market price of risk and it denotes the expected increase of the

return associated with a unit increase in risk:

λ(r, t) =
µB(r, t, T )− rP (r, t, T )

σB(r, t, T )
, (7.5)

where µB and σB are drift and volatility of the price of a bond which has maturity at time T . Note that
λ does not depend on T , it is a function of t and r only. It is an additional input that has to be provided

to price bonds, in addition to the stochastic differential equation for the short rate.

The terminal condition at time T is given by the payoff of the bond, i.e., P (T, r) = 1 for all r.

7.2.3 BOND PRICES AND INTEREST RATES IN THE VASICEK MODEL. In Vasicek model, it is customary

to take a constant market price of risk (7.5), i.e., λ(r, t) = λ. Then, the bond pricing equation (7.4)
becomes

∂P

∂t
+ (κ(θ − r)− λσ)

∂P

∂r
+

σ2

2

∂2P

∂r2
− rP = 0. (7.6)

Writing its solution in the form
P (τ, r) = A(τ)e−B(τ)r, (7.7)

where τ = T − t is time remaining to maturity, transforms the partial differential equation (7.6) into
a system of two ordinary differential equations for functions A and B. The system has a closed-form

solution:

B(τ) =
1− e−κτ

κ
,

logA(τ) =

[

1

κ
(1− e−κτ )− τ

]

R∞ − σ2

4κ3
(1− e−κτ )2,

where

R∞ = θ − λσ

κ
− σ2

2κ2
. (7.8)

From (7.7) it follows that the interest rates are computed as

R(τ, r) = − logP (τ, r)

τ
= −A(τ)

τ
+

B(τ)

τ
r. (7.9)

Sample bond prices and term structures of interest rates, corresponding to parameters κ = 0.5, θ =
0.05, σ = 0.01, λ = −0.1 and several values of the short rate r, are shown in Figure 7.4.

7.2.4 EXERCISE: LIMIT OF THE TERM STRUCTURES. Show that

lim
τ→∞

R(τ, r) = R∞,
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Figure 7.4: Bond prices (top) and term structures of interest rates (bottom) from the Vasicek model.

i.e., the term (7.8) represents the limit of term structures as time to maturity approaches infinity. More-
over, it does not depend on the short rate level (which is the beginning of the term structure). Compare

this results with numerical examples of the term structures in Figure 7.4.

7.2.5 EXERCISE. Download data of interest rates with different maturities. Use another interest rate
with shorter maturity as a proxy for the short rate and estimate the parameters κ, θ, σ of the Vasicek

model by maximum likelihood. Plot term structures for these parameters and different values of the
market price of risk λ. How do they differ? Compare them with the real term structures. What values of

λ seem most plausible?

7.2.6 EXERCISE: FORECASTING TERM STRUCTURES. In the previous section we considered the distri-
bution of the future values of the short rate r, given its value today. Having the distribution of r, the

formula (7.9) enables us to predict also the term structures.

• Given the value of the short rate r today, at time t0, compute the distribution, expected value and

variance of the interest rate at time t > t0 with maturity t+ τ .

• Plot a numerical example, showing the expected term structure of interest rates and 95% confi-

dence intervals for the interest rates.

• How does the width of the confidence interval for a given maturity τ depend on the prediction

time t? How does it depend on the maturity τ for a fixed prediction time t? Find a general answer
and compare with the numerical example from the previous point. Give an interpretation of these

results.

7.2.7 EXERCISE: SHAPES OF TERM STRUCTURES. There are three possibilities for a shape of the term

structure in the Vasicek model:
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• the term structure is monotonically increasing if

r ≤ R∞ − σ2

4κ2
,

• the term structure is humped (initially increasing and then decreasing) if

R∞ − σ2

4κ2
< r < R∞ +

σ2

2κ2
,

• the term structure is monotonically decreasing if

r ≥ R∞ +
σ2

2κ2
.

Demonstrate these properties graphically.

7.2.8 EXERCISE. Consider the parameters of the Vasicek model given in Table 2.1.

• Compute the market price of risk, if the limit of term structures is 10 percent.

• Compute the market price of risk, if the limit of term structures equals 1.5 multiple of the long

term limit of the short rate.

• The term structure corresponding to the short rate equal to 8 percent is humped. What values of

market price of risk are consistent with this?

7.2.9 EXERCISE: PROBLEM FROM AN INTERNET FORUM. This question related to the Vasicek model
appeared on an internet forum4:

My attempts to solve this problem are no where near correct. Could someone please help me

understand how to do it?

Let P(r, t, T) denote the price at time t of $1 to be paid with certainty at time T, t<=T, if the
short rate at time t is equal to r.

For the Vasicek model, you are given:

P(0.07, 3, 5) = 0.8654

P(0.06, 1, 3) = 0.9152
P(r*, 2, 4) = 0.8337

Calculate r*.

Can you solve this problem?

4The whole post and the discussion can be found at http://www.actuarialoutpost.com/actuarial discussion forum/

showthread.php?t=134262
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