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The signs of the rhos of the option prices confirm the above claims on the
effects of changing interest rate on call and put prices.

2.1.4 Calculation of implied volatility

The option prices obtained from the Black-Scholes pricing framework are
functions of five parameters: asset price S, strike price X, interest rate r,
time to expiry T and volatility o. Except for the volatility parameter, the
other four parameters are observable quantities. The difficulties of setting
volatility value in the valuation formulas lie in the fact that the model should
be the forecast value over the remaining life of the option rather than an
estimate value from the past market data of the asset price. The estimate of
the volatility value from past data is commonly called the historical volatility.
Here, we propose the following inverse problem: instead of computing the op-
tion price given the volatility value using the Black-Scholes formula, we solve
for the volatility value from the observed market option price. The volatil-
ity value implied by an observed option price is called the implied volatility,
which indicates a consensual view about the volatility level determined by
the market. In particular, several implied volatility values obtained simul-
taneously from different options on the same underlying asset provide an
extensive market viewpoint about the volatility of the stochastic movement
of that asset. Such information may be useful for a trader to set the volatility
value for the underlying asset of an option that he is interested in. In finan-
cial markets, it becomes a common practice for traders to quote an option's
market price in terms of implied volatility, o;mp. In essence, oym, becomes a
means of quoting prices.
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29b)), the iterative algorithms become more simplified. We propose two sim-
algorithms, namely, the bisection search method and the Newton-Raphson
method for the calculation of the implied volatility.

Bisection search method X
The bisection search method takes advantage of the monotonicity property of
the option price function V(o). As a preliminary step, we find two estimated
volatility values oo and Fhigh by trial n‘“"ﬂ‘m such that V(eigw) < Fm.nr.kgt
and v{ﬂ'ﬁiﬂh} = Fmrk:l:r where I"'III'rJ'-I.vunnl'\vrl is the market value of the ﬂptl,l.'ln
price, Let aiymp be the implied volatility such that V(oimp) = ‘.i.fm,ht_ By the
monotonicity property of V(e), dimp is guaranteed to lie within (Clow, Thi gh).
We take Opmid = ﬂ'ﬂ'{-’dﬂ and bisect the interval (#iow, hign) into two equal
half intervals (@ow, Fmid) 80d (Fmid, Thigh)- In the following procedure, we
delete either one of the half intervals while ensuring that the remaining half
interval contains gymp:

If @ = [Vimarket =V (Tmid)] [Vinarket—V(Thign)] < 0, then delete

(Cuow, Tmid) B0d take Oy = Omig; otherwise, if Q > 0, then

delete (Omid, Thigh) and take gpigh = Omid.

After one iterative step as outlined above, the width of the bracketing
interval (&, Thigh) is halved. Suppose the above procedure is performed a
sufficient number of times, the interval is eventually reduced to a width less
than 24, where § is some chosen small positive tolerance value. The iteration
may then be terminated and o,,;4 taken as an estimate to Timp- L he error in
the volatility estimation is guaranteed to be less than é.

Neuton-Raphson method

Another common method used for the root-finding procedure is the Newton-

Raphson method. Applied to the present problem, the Newton-Raphson it-

erative scheme is given by

Vien) — Vinarket
Vi(en) :

where o, denotes the nth iterative for o;mp. Provided that the first iterate
ay h_mpulyﬂhm theﬁmitufthemq;rﬁm {on} converges to the unique
solution o;my. The Newton-Raphson method enjoys its popularity due to its
qundnﬂ:muufmnmpmmthnh, : mo)?
for some K independent of n. Equation (24)
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, e
V{¢}=§%>n for all o, (26a)
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where d; and dy are defined in Eq. (10b). Therefore, the critical points of the
function V'(c) are given by d; = 0 and d3 = 0, which lead respectively to
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The above two values of ¢ both give V""(¢) < 0. Hence, we can choose the

which satisfies the requirement of maximizing V'(#). Setting n = 1 in Eq.
(25), we then have

(28)

0« B"%mp ., (29a)
T = Timp

In general, suppose we can establish (see Problem 8)

0<2_Timp oy px, (296)
On = Timp
then the sequence {,} is monotonic and bounded and so {¢,} converges to
the unique solution ¢;mp- In conclusion, if we start with the first iterate o,
given by Eq. (28), then the sequence {7, } generated by Eq. (24) will converge
t0 Oymp monotonically with a quadratic rate of convergence.

2.1.5 Pricing biases of the Black-Scholes model

The Black-Scholes model assumes the lognormal probability distribution of
the asset price at any future time. Since volatility is the only unobservable

in the Black-Scholes model, the model gives the option price as a
function of volatility. If the model were perfect, the implied volatility would
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