73. You are given:
(i) $\frac{\mathrm{d} S(t)}{S(t)}=0.3 \mathrm{~d} t-\sigma \mathrm{d} Z(t), \quad t \geq 0$,
where $Z(t)$ is a standard Brownian motion and σ is a positive constant.
(ii) There is a real number a such that

$$
\frac{\mathrm{d}[S(t)]^{a}}{[S(t)]^{a}}=-0.66 \mathrm{~d} t+0.6 \mathrm{~d} Z(t), \quad t \geq 0
$$

Calculate σ.
(A) 0.16
(B) 0.20
(C) 0.27
(D) 0.60
(E) 1.60
36. Assume the Black-Scholes framework. Consider a derivative security of a stock.

You are given:
(i) The continuously compounded risk-free interest rate is 0.04 .
(ii) The volatility of the stock is σ.
(iii) The stock does not pay dividends.
(iv) The derivative security also does not pay dividends.
(v) $S(t)$ denotes the time- t price of the stock.
(iv) The time- t price of the derivative security is $[S(t)]^{-k / \sigma^{2}}$, where k is a positive constant.

Find k.
(A) 0.04
(B) 0.05
(C) 0.06
(D) 0.07
(E) 0.08
14. You are using the Vasicek one-factor interest-rate model with the short-rate process calibrated as

$$
\mathrm{d} r(t)=0.6[b-r(t)] \mathrm{d} t+\sigma \mathrm{d} Z(t)
$$

For $t \leq T$, let $P(r, t, T)$ be the price at time t of a zero-coupon bond that pays $\$ 1$ at time T, if the short-rate at time t is r. The price of each zero-coupon bond in the Vasicek model follows an Itô process,

$$
\frac{\mathrm{d} P[r(t), t, T]}{P[r(t), t, T]}=\alpha[r(t), t, T] \mathrm{d} t-q[r(t), t, T] \mathrm{d} Z(t), \quad t \leq T
$$

You are given that $\alpha(0.04,0,2)=0.04139761$.
Find $\alpha(0.05,1,4)$.
8. You are considering the purchase of a 3-month 41.5-strike American call option on a nondividend-paying stock.

You are given:
(i) The Black-Scholes framework holds.
(ii) The stock is currently selling for 40 .
(iii) The stock's volatility is 30%.
(iv) The current call option delta is 0.5 .

Determine the current price of the option.
(A) $20-20.453 \int_{-\infty}^{0.15} e^{-x^{2} / 2} \mathrm{~d} x$
(B) $20-16.138 \int_{-\infty}^{0.15} e^{-x^{2} / 2} \mathrm{~d} x$
(C) $20-40.453 \int_{-\infty}^{0.15} e^{-x^{2} / 2} \mathrm{~d} x$
(D) $16.138 \int_{-\infty}^{0.15} e^{-x^{2} / 2} \mathrm{~d} x-20.453$
(E) $40.453 \int_{-\infty}^{0.15} e^{-x^{2} / 2} \mathrm{~d} x-20.453$

