I. Derivatives, call and put options, boundaries for option prices, combined strategies

Beáta Stehlíková
Financial derivatives, winter term 2014/2015

Faculty of Mathematics, Physics and Informatics
Comenius University, Bratislava
What are financial derivatives

• Term DERIVATIVE in a dictionary:

noun

1 something which is based on another source:

the aircraft is a derivative of the Falcon 20G

• a word derived from another or from a root in the same or another language:

‘fly-tip’ is a derivative of the phrase ‘on the fly’

• a substance that is derived chemically from a specified compound:

crack is a highly addictive cocaine derivative

2 (often derivatives) Finance an arrangement or product (such as a future, option, or warrant) whose value derives from and is dependent on the value of an underlying asset, such as a commodity, currency, or security:

[as modifier]:

the derivatives market

3 Mathematics an expression representing the rate of change of a function with respect to an independent variable.

http://oxforddictionaries.com/definition/derivative
Derivatives

- Aristotle writes about Thales of Miletus (Politics, Book I, Chapter XI):

 ... while it was yet winter, having got a little money, he gave earnest for all the oil works that were in Miletus and Chios, which he hired at a low price, there being no one to bid against him; but when the season came for making oil, many persons wanting them, he all at once let them upon what terms he pleased; and raising a large sum of money

 English translation: http://www.gutenberg.org

- Right to use the oil presses - its value depends on the crop in the given year

- Some presses may stay unused; Thales has a right, but not an obligation to use the presses
Derivatives

- A right but also an obligation to realize an arranged trade - some historical examples:
 - England, France, 12th century - arrangement of a future trade based on a sample, "lettre de faire"
 - Japan, 17th century - standardized rice trades
 - Chicago, 19th century - wheat, establishment of Chicago Board of Trade (1848)
 - 1898 - Chicago Mercantile Trading, butter and eggs, later also other agricultural commodities
 - 1978 - International Monetary Market as a part of Chicago Mercantile Trading, foreign exchange, later also (e.g.) S&P 500 derivatives
Akcie

• Mostly we will deal with derivatives in stock market
• Example: evolution of DIS (*The Walt Disney Company*) stock price

http://finance.yahoo.com
Stocks

- Evolution of a stock price consists of a trend and random fluctuations
- Example of a trend: NFLX (Netflix, Inc.), August 2012 - August 2014:

http://finance.google.com
Stocks

• Example of fluctuations: NFLX (Netflix, Inc.)

http://finance.google.com

• Next lecture: mathematical modelling of this observation trend + fluctuations
Stock options

• **European call option** is a right - but not an obligation - to buy the asset for the predetermined price E (strike price, exercise price) in the predetermined time T (expiration time)

• **European put option** is a right - but not an obligation - to sell the asset for the predetermined price E (strike price, exercise price) in the predetermined time T (expiration time)

• **American call/put options** - a right to buy/sell the stock not only at the expiration time T, but at any time prior to the expiration time
Stock options

- Example of real data: put options on Disney stock

<table>
<thead>
<tr>
<th>Strike</th>
<th>Symbol</th>
<th>Last</th>
<th>Chg</th>
<th>Bid</th>
<th>Ask</th>
<th>Vol</th>
<th>Open Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00</td>
<td>DIS141018P00050000</td>
<td>0.03</td>
<td>0.00</td>
<td>0.01</td>
<td>0.04</td>
<td>34</td>
<td>396</td>
</tr>
<tr>
<td>55.00</td>
<td>DIS141018P00055000</td>
<td>0.05</td>
<td>0.00</td>
<td>0.02</td>
<td>0.05</td>
<td>32</td>
<td>172</td>
</tr>
<tr>
<td>60.00</td>
<td>DIS141018P00060000</td>
<td>0.09</td>
<td>0.00</td>
<td>0.04</td>
<td>0.08</td>
<td>10</td>
<td>416</td>
</tr>
<tr>
<td>65.00</td>
<td>DIS141018P00065000</td>
<td>0.15</td>
<td>0.00</td>
<td>0.07</td>
<td>0.14</td>
<td>25</td>
<td>815</td>
</tr>
<tr>
<td>67.50</td>
<td>DIS141018P00067500</td>
<td>0.15</td>
<td>0.00</td>
<td>0.08</td>
<td>0.14</td>
<td>5</td>
<td>130</td>
</tr>
<tr>
<td>70.00</td>
<td>DIS141018P00070000</td>
<td>0.17</td>
<td>0.03</td>
<td>0.12</td>
<td>0.17</td>
<td>30</td>
<td>1,062</td>
</tr>
<tr>
<td>72.50</td>
<td>DIS141018P00072500</td>
<td>0.23</td>
<td>0.03</td>
<td>0.17</td>
<td>0.21</td>
<td>2</td>
<td>734</td>
</tr>
</tbody>
</table>

http://finance.yahoo.com
Option price

- Option price consists of two parts:
 - **intrinsic value** - value of the option if exercised now
 - **time value** - remaining part of the price:
 - holder of the option pays this value, expecting that the option brings him profit in the future
 - risk premium for the writer of the option
Intrinsic and time value: example

- Put prices from page 9 - we will use the last realized price
- Stock price: 87.40 USD

Let us consider the put option with exercise price 70 USD which costs 0.17 USD:
 - intrinsic value: 0
 - time value: 0.17
Intrinsic and time value: example

• Questions:
 ◦ Why do all the options (page 9) zero intrinsic value?
 ◦ Which puts would have a positive intrinsic value?
 ◦ How about call options? Use data below:

<table>
<thead>
<tr>
<th>Strike</th>
<th>Symbol</th>
<th>Last</th>
<th>Chg</th>
</tr>
</thead>
<tbody>
<tr>
<td>110.00</td>
<td>TM141018C00110000</td>
<td>9.45</td>
<td>1.79</td>
</tr>
<tr>
<td>115.00</td>
<td>TM141018C00115000</td>
<td>4.45</td>
<td>1.40</td>
</tr>
<tr>
<td>120.00</td>
<td>TM141018C00120000</td>
<td>1.20</td>
<td>0.44</td>
</tr>
<tr>
<td>125.00</td>
<td>TM141018C00125000</td>
<td>0.20</td>
<td>0.03</td>
</tr>
<tr>
<td>130.00</td>
<td>TM141018C00130000</td>
<td>0.05</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Example

• We sell the DIS stock for the current bid price (the price a buyer is willing to pay): 87.33 USD.

http://finance.yahoo.com
Example

- Then, we sell a put option with exercise price 60 USD and expiration in October for - we find the *bid price* - 0.04 USD

<table>
<thead>
<tr>
<th>Strike</th>
<th>Symbol</th>
<th>Last</th>
<th>Chg</th>
<th>Bid</th>
<th>Ask</th>
<th>Vol</th>
<th>Open Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00</td>
<td>DIS141018P00050000</td>
<td>0.03</td>
<td>0.00</td>
<td>0.01</td>
<td>0.04</td>
<td>34</td>
<td>396</td>
</tr>
<tr>
<td>55.00</td>
<td>DIS141018P00055000</td>
<td>0.05</td>
<td>0.00</td>
<td>0.02</td>
<td>0.05</td>
<td>32</td>
<td>172</td>
</tr>
<tr>
<td>60.00</td>
<td>DIS141018P00060000</td>
<td>0.09</td>
<td>0.00</td>
<td>0.04</td>
<td>0.08</td>
<td>10</td>
<td>416</td>
</tr>
<tr>
<td>65.00</td>
<td>DIS141018P00065000</td>
<td>0.15</td>
<td>0.00</td>
<td>0.07</td>
<td>0.14</td>
<td>25</td>
<td>815</td>
</tr>
<tr>
<td>67.50</td>
<td>DIS141018P00075000</td>
<td>0.15</td>
<td>0.00</td>
<td>0.08</td>
<td>0.14</td>
<td>5</td>
<td>130</td>
</tr>
<tr>
<td>70.00</td>
<td>DIS141018P00070000</td>
<td>0.17</td>
<td>0.03</td>
<td>0.12</td>
<td>0.17</td>
<td>30</td>
<td>1,062</td>
</tr>
<tr>
<td>72.50</td>
<td>DIS141018P00072500</td>
<td>0.23</td>
<td>0.03</td>
<td>0.17</td>
<td>0.21</td>
<td>2</td>
<td>734</td>
</tr>
</tbody>
</table>

http://finance.yahoo.com
Example

• How much are you willing to pay for a call option with the same exercise price and the same expiration time?
• Recall the evolution of DIS stock price; the data are from August 11, 2014:

http://finance.yahoo.com
Example

- Russel Sage, New York, 19th century:
 - bought a stock and a put option, sold a call with the same exercise price and the same expiration time
 - avoided bounds on interest rates given by usury laws

- **Example - continued:**
 - We show that this strategy is - in fact - a loan (so called *synthetised loan*)
 - What interest rate did you agreed on by your accepted price of the call option?
Call-put parity

• Consider a portfolio:
 ◦ write 1 call option with exercise price \(E \)
 ◦ sell 1 put option with the same exercise price and the same expiration time
 ◦ buy 1 stock

• What will be the portfolio value at the time of expiration?

\[
\text{portfolio} = -1 \text{ call} + 1 \text{ put} + 1 \text{ stock} \\
\Rightarrow \\
\text{payoff} = -[\text{payoff of call}] + [\text{payoff of put}] + [\text{stock price}]
\]
Call-put parity

- Hence, depending on the stock price S at the time of expiration:
 - if $S \leq E$:
 \[
 \text{payoff} = -[0] + [E - S] + [S] = E
 \]
 - if $S \geq E$:
 \[
 \text{payoff} = -[S - E] + [0] + [S] = E
 \]

So, without any risk we end up with E

- Therefore, the value of the portfolio today has to be
 \[
 -c(S, E, \tau) + p(S, E, \tau) + S = E e^{-r\tau}
 \]

- we have obtained a relation between call and put prices, known as call-put parity
Payoff diagram

- Payoff diagram of an option - value of the option at the time of expiration, as a function of the stock price at this time
- Call option: $\max(0, S - E)$, put option: $\max(E - S, 0)$
Profit diagram

- Profit diagram of an option - payoff of the option minus the value of our initial investment:
 - If $r = 0$, then
 \[
 \text{profit} = \text{payoff} - \text{costs}
 \]
 - In general:
 \[
 \text{profit} = \text{payoff} - \text{costs} \times e^{r\tau}
 \]

(to pay costs today is the same as to pay costs$ \times e^{r\tau}$ at the expiration time)
Profit diagram - example 1

- Consider a call option with exercise price 105 USD which costs 15 USD
- Profit diagram (for $r = 0$):

![Profit Diagram](image-url)
Profit diagram - example 2

- Analyze the following profit diagram of a put option (for $r = 0$):
Profit diagram - example 2

- **SIMPLE QUESTIONS:**
 - What is the exercise price of the option? How much did it cost?
 - Is the possible profit bounded? If it is bounded, when it is maximal? If it is not bounded, when it rises without bounds?
 - Is the possible loss bounded? If it is bounded, when it is maximal? If it is not bounded, when it rises without bounds?
Bounds for option prices

- We show some inequalities for prices, which have to hold - otherwise there is an arbitrage on the market
- All the options considered have the same expiration time
- We denote the riskless interest rate by r.
- Notation:
 - $c(S, E, \tau)$ is the market price of a call option with exercise price E, if the stock price today is S and time remaining to expiration is τ
 - $p(S, E, \tau)$ is the market price of a put option with exercise price E, if the stock price today is S and time remaining to expiration is τ
Bounds for option prices

• Outline:
 ◦ We consider two portfolios - such that at the time of expiration we have:
 \[(\text{value of portfolio I.}) \leq (\text{value of portfolio II.})\]
 ◦ To avoid a possibility of arbitrage, also today necessarily
 \[(\text{value of portfolio I.}) \leq (\text{value of portfolio II.})\];

 the portfolios are constructed in such a way that this is the inequality that we need to prove
Bounds for option prices - examples

Example 1: Clearly

\[c(S, E, \tau) \geq 0, \quad p(S, E, \tau) \geq 0 \]

Example 2: Show that

\[E_1 \geq E_2 \Rightarrow c(S, E_1, \tau) \leq c(S, E_2, \tau) \]

Solution Let \(E_1 \geq E_2 \) Consider the following portfolios

portfolio I.: option with exercise price \(E_1 \)

portfolio II.: option with exercise price \(E_2 \)

We compare their value at the expiration time, depending on the stock price \(S \) at this time.
Bounds for option prices - examples

<table>
<thead>
<tr>
<th></th>
<th>$0 \leq S \leq E_2$</th>
<th>$E_2 \leq S \leq E_1$</th>
<th>$E_1 \leq S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>portfolio I.</td>
<td>0</td>
<td>0</td>
<td>$S - E_1$</td>
</tr>
<tr>
<td>portfolio II.</td>
<td>0</td>
<td>$S - E_2$</td>
<td>$S - E_2$</td>
</tr>
<tr>
<td>comparison</td>
<td>$0 = 0$</td>
<td>$0 \leq S - E_2$</td>
<td>$S - E_1 \leq S - E_2$</td>
</tr>
</tbody>
</table>

At the expiration time:

(value of portfolio I.) \leq (value of portfolio II.)

\Rightarrow also today:

(value of portfolio I.) \leq (value of portfolio II.),

i.e.,

$c(S, E_1, \tau) \leq c(S, E_2, \tau)$, QED
EXAMPLE 3:
Assume zero interest rate and the following call option prices:

<table>
<thead>
<tr>
<th>exercise price</th>
<th>option price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>30</td>
<td>19</td>
</tr>
</tbody>
</table>

Find an arbitrage.

SOLUTION: We plot the dependence of the call option price on the exercise price - its decreasing character, proved in the previous example, is not satisfied.
We should have $c(S, 15, \tau) \geq c(S, 20, \tau)$; however, here $c(S, 15, \tau) < c(S, 20, \tau)$. Therefore:

- **we buy the option, which costs less than it is supposed to,** in this case the option with exercise price $E = 15$,

- **we sell the option, which costs more than it is supposed to,** in this case the option with exercise price $E = 20$.
Bounds for option prices - examples

• We check the result of our strategy:

```matlab
S = 0:30;
payoff = max(S - 15, 0) - max(S - 20, 0);
price = 26:27; // price of the strategy = initial investment
profit = payoff - price;

figure(1);
plot(S, profit);
xlabel("stock at expiration"); ylabel("profit");
```

• What do we expect as a result? How does a profit diagram of an arbitrage look like?
Bounds for option prices - examples

- Resulting profit diagram:

⇒ this strategy is indeed an arbitrage

- EXERCISES SESSION NEXT WEEK: More practice with proving bounds for option prices and finding arbitrage opportunities
Combined strategies

• In the previous (theoretical) example we combined the options to construct an arbitrage

• This idea of buying and selling several options can be used also with real option prices - based on our expectations about future behaviours of the stock price
Combined strategies

EXAMPLE:

- Consider the MCD (Mac Donald’s Corp.) stock prices

http://finance.yahoo.com

and suppose (for this exercise) that we expect the stock price to be falling
Combined strategies

- The stock price is 93.72 USD and some of the available options are (data from August 11):

<table>
<thead>
<tr>
<th>Strike</th>
<th>Symbol</th>
<th>Last</th>
<th>Chg</th>
<th>Bid</th>
<th>Ask</th>
<th>Vol</th>
<th>Open Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>85.00</td>
<td>MCD140920P00035000</td>
<td>0.22</td>
<td>0.00</td>
<td>0.17</td>
<td>0.22</td>
<td>56</td>
<td>1,471</td>
</tr>
<tr>
<td>90.00</td>
<td>MCD140920P00039000</td>
<td>0.16</td>
<td>0.00</td>
<td>0.11</td>
<td>0.18</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>97.50</td>
<td>MCD140920P00037500</td>
<td>0.33</td>
<td>0.03</td>
<td>0.31</td>
<td>0.33</td>
<td>17</td>
<td>1,575</td>
</tr>
<tr>
<td>89.00</td>
<td>MCD140926F00039000</td>
<td>0.59</td>
<td>0.00</td>
<td>0.41</td>
<td>0.49</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88.00</td>
<td>MCD140926F00039000</td>
<td>0.36</td>
<td>0.00</td>
<td>0.28</td>
<td>0.34</td>
<td>26</td>
<td>965</td>
</tr>
<tr>
<td>89.00</td>
<td>MCD140912F00039000</td>
<td>0.45</td>
<td>0.00</td>
<td>0.37</td>
<td>0.44</td>
<td>13</td>
<td>83</td>
</tr>
<tr>
<td>99.00</td>
<td>MCD140926F00039000</td>
<td>0.66</td>
<td>0.00</td>
<td>0.56</td>
<td>0.63</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>100.00</td>
<td>MCD140920P00039000</td>
<td>0.65</td>
<td>-0.07</td>
<td>0.62</td>
<td>0.66</td>
<td>21</td>
<td>6,135</td>
</tr>
</tbody>
</table>

http://finance.yahoo.com

- We expect the stock to fall ⇒ we buy a put option, for example one with exercise price 90 USD
- However, we don’t expect it to fall too low ⇒ we sell a put option with a lower expiration price, for example 85 USD
- We expect that the latter will not be exercised, but by writing it, we lower the initial investment
Combined strategies

• Our strategy:
 we buy a put with $E = 16$ and sell a put with $E = 14$

• Recall bid and ask prices:
 - bid price (the lower one) - the price a buyer is willing to pay → I can sell the option for bid
 - ask price (the higher one) - the price a seller is willing to accept → I can see the option for ask

• Therefore our initial investment is **0.49**, since:
 - we buy the put with $E = 16$ for **0.66**
 - we sell the put with $E = 13$ for **0.17**
Combined strategies

- Profit diagram:
Combined strategies

- Comparison - with only buying the put with $E = 90$:

![Graph showing profit vs. stock at expiration for different options](image-url)
Combined strategies

- **EXTRA CREDIT:**
 Construction of a combined strategy using the real data, aiming to achieve the highest profit

- **Overview of combined strategies:**
 - Ševčovič, Stehlíková, Mikula: *Analytické a numerické metódy oceňovania finančných derivátov*. STU 2009. (In Slovak) - chapter 2.3.3.